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Abstract5

We study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional6

rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely for-7

mulate the problem in terms of graph decompositions, and state a general lower bound for all the8

values of the grooming factor C and N, the size of the ring. We first study exhaustively the cases9

C = 1, C = 2, and C = 3, providing improved lower bounds, optimal constructions for several10

infinite families, as well as asymptotically optimal constructions and approximations. We then study11

the case C > 3, focusing specifically on the case C = k(k + 1)/2 for some k ≥ 1. We give optimal de-12

compositions for several congruence classes of N using the existence of some combinatorial designs.13

We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings.14

15

Keywords: Traffic grooming, SONET ADM, optical WDM network, graph decomposition, combi-16

natorial designs.17

1 Introduction18

1.1 Background and motivation19

Optical wavelength division multiplexing (WDM) is today the most promising technology to accom-20

modate the explosive growth of Internet and telecommunication traffic in wide-area, metro-area, and21

backbone networks. Using WDM, the potential bandwidth of approximately 50 THz of a fiber can be22

divided into multiple non-overlapping wavelength or frequency channels. Since currently the commer-23

cially available optical fibers can support over a hundred frequency channels, such a channel has over24

one gigabit-per-second transmission speed. However, the network is usually required to support traffic25
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2 Traffic grooming in bidirectional WDM ring networks

connections at rates that are lower than the full wavelength capacity. In order to save equipment cost26

and improve network performance, it turns out to be very important to aggregate the multiple low-speed27

traffic connections, namely requests, into higher speed streams. Traffic grooming is the term used to28

carry out this aggregation, while optimizing the equipment cost.29

Among possible criteria to minimize the equipment cost, one is to minimize the number of wave-30

lengths used to route all the requests [2, 20]. A better approximation of the true equipment cost is to31

minimize the number of add/drop locations, namely ADMs using SONET terminology, instead of the32

number of wavelengths. This leads to the grooming problem, that we state formally later in Section 2.33

These two problems are proved to be different. Indeed, it is known that even for a simple network like34

the unidirectional ring, the number of wavelengths and the number of ADMs cannot be simultaneously35

minimized [12, 23].36

The SONET ring is the most widely used optical network infrastructure today. In these networks,37

a communication between a pair of nodes is done via a lightpath, and each lightpath uses an Add-38

Drop Multiplexer (ADM), i.e., an electronic termination, at each of its two endpoints (but none in the39

intermediate nodes). If each request uses 1
C of the capacity of a wavelength, then C is said to be the40

grooming factor, i.e., C requests can be aggregated in the same wavelength through the same link. If two41

or more lightpaths using the same wavelength share a common endpoint, then the same ADM might be42

used for all lightpaths and therefore the number of ADMs needed could be reduced. Due to this fact, it43

makes sense to try to minimize the total number of ADMs required.44

1.2 Previous work and our contribution45

The notion of traffic grooming was introduced in [25] for the ring topology. Since then, traffic grooming46

has been widely studied in the literature (cf. [22,29,35] for some surveys). The problem has been proved47

to be NP-complete for ring networks and general C [12]. Hardness results for rings and paths have been48

proved in [1]. Many heuristics have been proposed, but exact solutions have been found only for certain49

values of C and for the uniform all-to-all traffic case in unidirectional ring and path topologies [8].50

Many versions of the problem can be considered, according for example to the routing, the physical51

graph, and the request graph, among others. For example, in [3,6] the Path Traffic Grooming problem is52

studied. If the network topology is a ring (which is the case of SONET rings), we mainly distinguish two53

cases depending on the routing. The Unidirectional Ring Traffic Grooming problem has been studied54

extensively in the literature. In an unidirectional ring, requests are routed following only one direction55

in the cycle. To date, the all-to-all case has been completely solved for values of the grooming factor up56

to 8 [4, 5, 8, 16, 17]. Also, recently the unidirectional ring with bounded degree request graph has been57

studied [28, 30].58

In the Bidirectional Ring Traffic Grooming problem, the scenario is quite different. In a bidirec-59

tional ring, requests are routed either clockwise or counterclockwise. This case has been much less60

studied than the unidirectional one, due to its higher complexity. There is important work providing61
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heuristics for the ring traffic grooming [11, 12, 20, 21, 23, 24, 27, 31], but there is still an important lack62

of theoretical analysis of the problem. Nevertheless, its study has attracted the interest of numerous63

researchers. For instance, in [26] a MILP formulation of the problem can be found. In [33] two lower64

bounds are provided for the number of ADMs in a bidirectional ring with traffic grooming, and in [14]65

another lower bound is proved, regardless of the routing. In [18, 19, 32, 33] tools from design theory are66

applied to the bidirectional ring. Their method is based in the idea of primitive rings, which consists67

roughly in appropriately generating subgraphs of the request graph inducing unitary load each, and then68

packing them into sets of at most C subgraphs. Namely, in [33] several heuristics are proposed, the cases69

C = 2 and C = 4 are studied in [32] (as well as other solutions that do not proceed via primitive rings),70

the case C = 8 in [19], and the cases C = 4 and C = 8 in [18]. Nevertheless, they do not provide general71

lower bounds and they do not analyze the approximation ratio of the proposed algorithms. Therefore,72

the gaps between their solutions and the optimal ones are unknown.73

In this work we focus on a bidirectional ring with symmetric shortest path routing, and on the all-to-74

all case. We begin by formally stating the problem in terms of graph partitioning in Section 2. In Section75

3 we provide lower bounds and compare them with those existing in the literature. The remainder of the76

article is devoted to finding families of solutions for certain values of C and N. First we solve in Section 477

the case C = 1. In Section 5 we study the case C = 2, improving the general lower bound and providing78

a 34
33 -approximation. In Section 6 we tackle the case C = 3, improving the lower bound when N ≡ 379

(mod 4) and giving optimal solutions when N ≡ 0, 1, 4, 5 (mod 12). For all other values of N we give80

asymptotically optimal solutions. In Section 7 we use design theory to provide optimal solutions when81

C is of the form k(k + 1)/2, for some congruence classes of values of N. We also give improved lower82

bounds when C is not of the form k(k + 1)/2. In Section 8 we compare unidirectional and bidirectional83

rings in terms of minimizing the cost. We conclude the article in Section 9.84

2 Statement of the Problem85

2.1 Load constraint86

In a graph-theoretical approach, we are given an optical network represented by a directed graph G on87

N vertices (in many cases a symmetric one) – called the physical graph – for example a unidirectional88

ring ~CN or a bidirectional symmetric ring C∗N . We are given also a traffic (or instance) matrix, that is89

a family of connection requests represented by an arc-weighted multidigraph I – called the logical or90

request graph – where the number of arcs from i to j corresponds to the number of requests from i to91

j, and the weight of each arc corresponds to the amount of bandwidth used by each request. Here we92

suppose that there is exactly one request from i to j (all-to-all case) and that each request uses the same93

bandwidth. In that case I = K∗N . We also suppose that the bandwidth used by any request is a fraction94

1/C of the available bandwidth of a wavelength. Said otherwise, each wavelength ω can carry on a given95

arc at most C requests. This positive integer C is called the grooming factor. For a wavelength ω, we96
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denote by Bω the set of requests carried by ω. Satisfying a request r from i to j consists in finding a97

dipath P(r) in G and assigning it a wavelength ω. Note that a wavelength ω is directed either clockwise98

or counterclockwise, so all the dipaths associated with requests in the same Bω are directed in the same99

way.100

For a subgraph Bω of requests of I, we define the load of an arc e of G, L(Bω, e), as the number of

requests which are routed through e, that is

L(Bω, e) := |{P(r) : r ∈ E(Bω), e ∈ P(r)}|.

Note that if Bω is associated with a clockwise (resp. counterclockwise) wavelength ω, only the101

clockwise (resp. counterclockwise) arcs of the ring are loaded by Bω. The constraint given by the102

grooming factor C means that for each subgraph Bω and each arc e, L(Bω, e) is at most C. In this article103

we focus on the bidirectional ring topology with all-to-all unitary requests. Therefore, our problem104

consists of finding a partition of K∗N into subdigraphs Bω satisfying the load constraint for C∗N and such105

that the total number of vertices is minimized. We have two choices for routing a request (i, j): either106

clockwise or counterclockwise. Although there is no physical constraint imposing it, it is common for107

the operators to consider symmetric routings. That is, if the request (i, j) is routed clockwise, then the108

request ( j, i) is routed counterclockwise. Furthermore it is also common for the sake of simplicity to use109

shortest path routing. Therefore we will restrict ourselves to symmetric shortest path routings. Let us see110

how the restrictions on the routing affect the solutions.111

2.2 Constraints on the routing112

In a ring C∗N with an odd number of vertices, shortest path routing implies symmetric routing. But in a113

ring with an even number of vertices this is not necessarily the case, as a request of the form (i, i + N
2 )114

can be routed via a shortest path in both directions. Consider for example N = 4 and C = 2. If we do115

not impose symmetric routing, we can have a solution consisting of the two subdigraphs Bω1 with the116

requests (0, 1), (1, 2), (2, 3), (3, 0), (0, 2), and (2, 0) routed clockwise, and Bω2 with the requests (1, 0),117

(0, 3), (3, 2), (2, 1), (1, 3), and (3, 1) routed counterclockwise. Altogether we use 8 ADMs. Suppose now118

that we further impose symmetric routing, and assume without loss of generality that the requests (0, 2)119

and (1, 3) are routed clockwise. The best we can do for a Bω with 4 vertices is to put 5 requests if ω is120

clockwise, namely (0, 1), (1, 2), (2, 3), (3, 0), and at most one of (0, 2) and (1, 3). The other request out121

of (0, 2) and (1, 3) will need 2 ADMs, so we use a total of 12 ADMs. If we do not use any Bω with 4122

vertices, note that a subdigraph with 3 (resp. 2) vertices contains at most 3 requests (resp. 1 request).123

Therefore to route all the requests we need at least 12 ADMs.124

Imposing shortest path routing might increase the number of ADMs of an optimal solution. Consider125

for example N = 3 and C = 3. With shortest path routing, we need two subdigraphs Bω1 with the requests126

(0, 1), (1, 2), (2, 0) and Bω2 with the requests (1, 0), (2, 1), (0, 2), for a total of 6 ADMs (each arc of C∗3 is127

loaded once). Without the constraint of shortest path routing, we can do it with 3 ADMs, namely with128
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all the requests routed clockwise. In that case, the requests (1, 0), (2, 1), and (0, 2) are routed via dipaths129

of length 2 (for instance, the request (1, 0) uses the arcs (1, 2) and (2, 0)). In that case the load of the arcs130

(in the clockwise direction) is 3.131

We cannot always use shortest path routing and have a minimum load. Indeed, consider the case132

C = 1 and a set of 3 requests (i, j), ( j, k), and (k, i) forming a triangle. The subdigraph formed by the133

3 requests routed in the same direction has load 1, but there is no reason that the associated routes are134

shortest paths. For example, let N = 5 and (0, 1), (1, 2), (2, 0) be the three mentioned requests, which we135

assume to be routed clockwise. If we want a valid solution, then the request (2, 0) is routed via the path136

[2, 3, 4, 0] of length 3 (and not 2). If we want to use shortest paths, then these three requests induce load137

2, hence they cannot fit together in the same wavelength. Summarizing, in this example either we use138

shortest paths and the load is 2 or we get a solution with load one but not using shortest paths.139

2.3 Symmetric shortest path routing140

In the sequel we will only consider symmetric shortest path routings. Besides being a common sce-141

nario in telecommunication networks, this assumption also simplifies the problem, as we can split it into142

two separate problems, half of the requests being routed clockwise and half counterclockwise. Each of143

these two subproblems can be viewed as a grooming problem where G = ~CN (the unidirectional cycle)144

and I = TN , where TN is a tournament on N vertices, that is, a complete oriented graph (for each pair of145

vertices {i, j} there is exactly one of the arcs (i, j) or ( j, i)).146

As we consider shortest path routing, for N odd TN is unique. But for N even we have two possibili-147

ties for the pairs of the form {i, i + N
2 }: either the arc (i, i + N

2 ) or (i + N
2 , i). So the choice of these arcs has148

to be made. We are now ready to state precisely our problem.149

Traffic Grooming in BidirectionalWDM Ring Networks

Input: A unidirectional cycle ~CN with vertices 0, . . . ,N −1, a grooming factor C and a digraph

of requests consisting of the tournament TN with arcs (i, i+1) for 0 ≤ i ≤ N−1 and 1 ≤ q ≤ N−1
2 ,

plus if N is even N
2 arcs of the form (i, i + N

2 ), where we cannot have both (i, i + N
2 ) and (i + N

2 , i)

(or said otherwise, for N even we have one of the two arcs (i, i+ N
2 ) or (i+ N

2 , i) for 0 ≤ i ≤ N
2 −1).

Output: A partition of TN into digraphs Bω, 1 ≤ ω ≤ W, such that for each arc e ∈ E( ~CN),

L(Bω, e) ≤ C.

Objective: Minimize
∑W
ω=1 |V(Bω)|. The minimum will be denoted A(C,N).

150

Note that for N even we do not specify a particular orientation of the arcs of the form (i, i + N
2 ).151

Remark 2.1 Solutions to the original problem can be found by solving the above problem and using152

the solution for the counterclockwise requests by reversing the orientation of the arcs of ~CN and TN .153

Therefore, the total number of ADMs for the original problem – under the constraints of symmetric154

shortest path routing – is 2A(C,N).155
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Let us see an example for N = 5 and C = 1. Then the following three subdigraphs form a solution156

with 10 ADMs: one with arcs (0, 1), (1, 3), (3, 0), another with arcs (1, 2), (2, 4), (4, 1), and another with157

arcs (0, 2), (2, 3), (3, 4), (4, 0). Thus, a solution for the bidirectional ring C∗5 and I = K∗5 needs 20 ADMs.158

Let now N = 5 and C = 2. We can use the preceding solution or another one with also 10 ADMs159

with only two ~C5’s with arcs (0, 2), (1, 2), (2, 3), (3, 4), (4, 5) and (0, 2), (2, 4), (4, 1), (1, 3), (3, 0), the sec-160

ond one inducing load 2. But we can do better, with only 8 ADMs, with one subdigraph with arcs161

(1, 3), (3, 4), (4, 1), and another one with arcs (0, 1), (1, 2), (0, 2), (2, 3), (2, 4), (3, 0), (4, 0). This latter par-162

tition is optimal. In that case, we need 16 ADMs for the bidirectional ring.163

To tackle our problem we will use tools from design theory, similar to those used for the unidirec-164

tional ring and I = KN [7,8]. In particular, it is helpful to use, for a given C, digraphs having a maximum165

ratio of the number of arcs to the number of vertices (see Section 3.2).166

2.4 Admissible digraphs167

Let Bω = (Vω, Eω) be a digraph with Vω = {a0, . . . , ap−1} involved in a partition of the tournament TN .168

Note that the edges of Bω belong to TN , so (ai, a j) ∈ Eω if and only d ~CN
(ai, a j) ≤ N

2 , where d ~CN
(ai, a j) is169

the distance between ai and a j in ~CN .170

A digraph Bω is said to be admissible if it satisfies the load constraint, that is, L(Bω, e) ≤ C for each171

arc e ∈ E( ~CN). A partition of TN into admissible subdigraphs is called valid. As the paths associated172

with an arc of Bω form a dipath (an interval) in ~CN , the load is exactly the same as if we consider Bω173

embedded in a cycle ~Cp with vertex set 0, 1, . . . , p− 1. More precisely, we associate with Bω the digraph174

Bp
ω having vertices 0, 1, . . . , p − 1 and with (i, j) ∈ E(Bp

ω) if and only if (ai, a j) ∈ E(Bω). Hence, to175

compute the load we will consider digraphs with p vertices and their load in the associated ~Cp. Note that176

it can happen that d ~CN
(ai, a j) ≤ N

2 but d ~Cp
(i, j) > p

2 , and vice versa.177

Figure 1(a) illustrates a digraph Bω that is admissible for N = 8 and C = 2, as it induces load 2 in178

~C8. Its associated digraph B4
ω is shown in Figure 1(b). Figure 1(c) shows a digraph B′ω which has also179

Bω as associated digraph, but it is not admissible as (a3, a0) is not an arc of T8.180

0

4

(b)

Bω3

2

1

a0

a1

a2

a3

(a)

Bω

a0

a1

a2

a3

(c)

Bω
'

Figure 1: (a) Digraph Bω admissible for N = 8 and C = 2; (b) Its associated digraph B4
ω; (c) Non-

admissible digraph B′ω that has also B4
ω as associated digraph.
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Figure 2(a) shows an admissible digraph for N = 7 and C = 2. Its associated digraph B5
ω, which is181

depicted in Figure 2(b), induces load 2 but the arc (1, 4) is not routed via a shortest path (although the182

arc (a1, a4) was in Bω).

0a0

a1

a2

a4

(a)

Bω

a3

(b)

Bω
5

1

23

4

Figure 2: (a) Digraph Bω admissible for N = 7 and C = 2; (b) Its associated digraph B5
ω.

183

In what follows we will compute the load in the associated digraph, but we will have to be careful184

that the arcs of Bω are those of TN , as pointed out by the above examples.185

3 Lower Bounds186

In this section we state general lower bounds on the number of ADMs used by any solution.187

3.1 Equations of the problem188

Given a valid solution of the problem, let ap denote the number of subgraphs of the partition with exactly189

p nodes, let A denote the total number of ADMs, let W denote the number of subgraphs of the partition,190

and let Eω be the set of arcs of Bω. Recall that here I = TN , which has N(N−1)
2 arcs. The following191

equalities hold:192

A =

N∑
p=2

pap (1)

N∑
p=2

ap = W (2)

W∑
w=1

|Eω| =
N(N − 1)

2
(3)
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Proposition 3.1 For I = TN ,

W ≥
⌈

N2 + α

8C

⌉
, where α =


−1, if N is odd

4, if N ≡ 2 (mod 4)

8, if N ≡ 0 (mod 4)

Proof: The set of arcs of TN of the form (i, i + q), 0 ≤ q < N
2 , load each arc of the ring exactly q times.193

So if N is odd the load of any arc of the ring is 1 + 2 + · · · + N−1
2 = N2−1

8 .194

If N is even the load due to these arcs is 1 + 2 + · · · + N−2
2 = N2−2N

8 . We have to add the load due to195

arcs of TN of the form
(
i, i + N

2

)
. As there are N

2 such arcs, the total load is N2

4 and so one arc of the ring196

has load at least N
4 .197

If N ≡ 2 (mod 4) that gives a load at least
⌈

N
4

⌉
= N+2

4 , so one arc has load at least N2−2N
8 + N+2

4 = N2+4
8 .198

If N ≡ 0 (mod 4) the maximum load due to the arcs
(
i, i + N

2

)
is at least N

4 , but in this case we can199

give a better bound. Indeed, suppose w.l.o.g. that we have the arc
(
0, N

2

)
, and let j be the number of arcs200

starting in the interval [1, N
2 − 1] of the form

(
i, i + N

2

)
with 0 < i < N

2 . The load of the arc
(

N
2 − 1, N

2

)
of201

the ring is then j + 1. As there are N
2 − 1 − j arcs ending in the interval [1, N

2 − 1], the load of the arc202

(0, 1) is 1 + N
2 − 1 − j. Therefore the sum of the loads of the arcs (0, 1) and

(
N
2 − 1, N

2

)
is N

2 + 1, and so203

one of these 2 arcs has load
⌈

N
4 + 1

2

⌉
= N

4 + 1. The total load of this arc is N2−2N
8 + N

4 + 1 = N2+8
8 .204

As each subgraph can load one arc at most C times, we obtain the lemma. 2205

3.2 The parameter γ(C, p)206

To obtain accurate lower bounds we need to bound the value of |Eω| for a digraph with |Vω| = p ver-207

tices, satisfying the load constraint (admissible digraph). As we discussed in the preceding section, we208

need only to consider the associated digraph embedded in ~Cp. To this end, we introduce the following209

definitions.210

Definition 3.1 Let γ(C, p) be the maximum number of arcs of a digraph H with p vertices such that211

L(H, e) ≤ C, for every arc e of ~Cp.212

Definition 3.2
ρ(C) = max

p≥2

{
γ(C, p)

p

}
.

In [33] the authors define two parameters which coincide with the parameters γ(C, p) and ρ(C) intro-213

duced above. In [33] the parameter ρ(C) is called maximal ADM efficiency, and its value is determined,214

but no closed formula for γ(C, p) is given in [33]. Here we give again the value of ρ(C), using different215

tools, and give the exact value of γ(C, p).216

The next proposition shows that, in fact, the maximum number of requests we can groom is attained217

by taking those of minimum length. It is worth mentioning that this property is not true if the physical218

graph is a path, as shown with a counterexample in [3].219
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Proposition 3.2 Let C =
k(k+1)

2 + r, with 0 ≤ r ≤ k. Then

γ(C, p) =


p(p−1)

2 , if p ≤ 2k + 1, or p = 2k + 2 and r ≥ k+2
2

kp + 2r − 1 , if p = 2k + 2 and 1 ≤ r < k+2
2

kp +
⌊

rp
k+1

⌋
, otherwise

The graphs achieving γ(C, p) are either the tournament Tp if p is small (namely, if p ≤ 2k+1 or p = 2k+2220

and r ≥ k+2
2 ), or subgraphs of a circulant digraph containing all the arcs of length 1, 2, . . . , k, plus some221

arcs of length k + 1 if r > 0.222

Proof: We distinguish three cases according to the value of p.223

Case 1. If p is small, that is such that the tournament Tp loads each arc at most C times, then224

γ(C, p) =
p(p−1)

2 . Let us now see for which values of p this fact holds.225

If p is odd, the load of Tp is p2−1
8 ≤ C. The inequality p2 − 1 ≤ 8C implies p2 − 1 ≤ 4k(k + 1) + 8r,226

and is satisfied if p ≤ 2k + 1, as p2 − 1 ≤ 4k(k + 1).227

If p is even, the load of Tp is p2

8 + 1+δ
2 , where δ = 1 if p ≡ 0 (mod 4) (see proof of Proposition 3.1).228

If p ≤ 2k, then p2+8
8 ≤ 4k2+8

8 ≤
k(k+1)

2 ≤ C.229

For p = 2k + 2, then p2

8 + 1+δ
2 = k2

2 + k + 1 + δ
2 ≤

k2+k
2 + r = C if and only if r ≥ k+2+δ

2 , with δ = 1 if230

p ≡ 0 (mod 4), that is, if k is odd. Therefore, the condition is satisfied if r ≥ k+2
2 .231

In the next two cases, we provide first a lower bound on γ(C, p), and then we prove a matching upper232

bound.233

Case 2. If p = 2k + 2 and 1 ≤ r < k+2
2 , a solution is obtained by taking all the arcs of length234

1, 2, . . . , k
(
=

p−2
2

)
– giving a load of k(k+1)

2 – plus 2r − 1 arcs of length p
2 . For example, we can take the235

arcs
(
i, i +

p
2

)
for i = 0, 2, . . . , 2r − 2

(
<

p
2

)
and the arcs

(
i, i − p

2

)
for i = 1, 3, . . . , 2r − 3. The load due to236

these arcs is at most r. Therefore, in this case γ(C, p) ≥ kp + 2r − 1.237

Case 3. If p > 2k + 2 or p = 2k + 2 and r = 0, a solution is obtained by taking all the arcs of

length 1, 2, . . . , k plus
⌊

rp
k+1

⌋
arcs of length k + 1, in such a way that the load due to these arcs is at

most C, which is always possible (for example, if p and k + 1 are relatively prime, we take the requests

((k + 1)i, (k + 1)(i + 1)) for 0 ≤ i ≤
⌊

rp
k+1

⌋
− 1, the indices being taken modulo p). Therefore, in this case

γ(C, p) ≥ kp +

⌊ rp
k + 1

⌋
. (4)

Let us now turn to upper bounds. Suppose we have a solution with γ arcs, γi being of length i on ~Cp.238
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As each arc of length i loads i arcs, and the total load of the arcs of ~Cp is at most Cp, we have239

Cp ≥

∞∑
i=1

iγi ≥

k∑
i=1

iγi + (k + 1)

γ − k∑
i=1

γi


=

k∑
i=1

ip + (k + 1)(γ − kp) +

k∑
i=1

(k + 1 − i)(p − γi)︸                ︷︷                ︸
≥0

≥
k(k + 1)

2
· p + (k + 1)(γ − kp).

Since Cp =
k(k+1)

2 · p + rp, we obtain rp ≥ (k + 1)(γ − kp), and therefore

γ(C, p) ≤ kp +
rp

k + 1
. (5)

Combining Relations (4) and (5), we get the result for Case 3. For Case 2, i.e., when p = 2k + 2 and240

1 ≤ r < k+2
2 , Relation (5) yields γ(C, p) ≤ kp + 2r. If we have equality, then necessarily γi = p for241

i = 1, . . . , k, so we have all arcs of length at most k. However, the 2r arcs of length at least k + 1 induce242

a load at least r + 1 on some arc of ~Cp, so the total load would be strictly greater than C. Therefore, we243

have at most γ(C, p) ≤ kp + 2r − 1, which gives the result. 2244

Proposition 3.3 Let C = k(k + 1)/2 + r, with 0 ≤ r ≤ k. Then

ρ(C) = k +
r

k + 1
. (6)

Proof: In Case 1 of the proof of Proposition 3.2, ρ(C) ≤ p−1
2 . If p ≤ 2k + 1, ρ(C) ≤ k. If p = 2k + 2 and

r ≥ k+2
2 , ρ(C) = k + 1

2 < k + r
k+1 . Otherwise, by Relation (5),

ρ(C) ≤
kp +

rp
k+1

p
= k +

r
k + 1

, (7)

where C =
k(k+1)

2 + r, with 0 ≤ r ≤ k. So, in all cases, ρ(C) ≤ k + r
k+1 . Note that when p is a multiple of245

k + 1, Relation (4) implies that γ(C, p) ≥ kp +
rp

k+1 , and therefore ρ(C) ≥ k + r
k+1 . The result follows. 2246

Note that in [33] the following formula is given, equivalent to Equation (6):

ρ(C) =
C

k + 1
+

k
2
. (8)

Table 1 shows the parameter γ(C, p) for small values of C and p, as well as the parameter ρ(C).247

3.3 General lower bounds248

By Propositions 3.1 and 3.2, Equations (1), (2), and (3) become249
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p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ρ(C)
C = 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
C = 2 1 3 5 7 9 10 12 13 15 16 18 19 21 22 24 3/2
C = 3 1 3 6 10 12 14 16 18 20 22 24 26 28 30 32 2
C = 4 1 3 6 10 13 16 18 21 23 25 28 30 32 35 37 7/3
C = 5 1 3 6 10 15 18 21 24 26 29 32 34 37 40 42 8/3
C = 6 1 3 6 10 15 21 24 27 30 33 36 39 42 45 48 3
C = 7 1 3 6 10 15 21 25 29 32 35 39 42 45 48 52 13/4
C = 8 1 3 6 10 15 21 27 31 35 38 42 45 49 52 56 14/4
C = 9 1 3 6 10 15 21 28 33 37 41 45 48 52 56 60 15/4
C = 10 1 3 6 10 15 21 28 36 40 44 48 52 56 60 64 4

Table 1: The parameter γ(C, p) for some values of C and p, as well as ρ(C). The bold values achieve
ρ(C).

A =

N∑
p=2

pap (9)

N∑
p=2

ap ≥

⌈
N2 + α

8C

⌉
, where α =


−1 , if N is odd

4 , if N ≡ 2 (mod 4)

8 , if N ≡ 0 (mod 4)

(10)

N∑
p=2

apγ(C, p) ≥
N(N − 1)

2
(11)

We are ready to prove the general lower bound on the number of ADMs used by any solution.250

Theorem 3.1 (General lower bound) Let C =
k(k+1)

2 +r, with 0 ≤ r ≤ k. The number of ADMs required

in a bidirectional ring with N nodes and grooming factor C satisfies

A(C,N) ≥
⌈

N(N − 1)
2 · ρ(C)

⌉
=

⌈
N(N − 1)

2
k + 1

k(k + 1) + r

⌉
. (12)

Proof: Using Equation (9) and Relation (11), and the definition of ρ(C), we get that the number A of

ADMs used by any solution satisfies

N(N − 1)
2

≤

N∑
p=2

ap · γ(C, p) =

N∑
p=2

p · ap · ρ(C) = ρ(C) · A.
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From the above relation and using Relation (7), we get

A ≥
⌈

N(N − 1)
2 · ρ(C)

⌉
=

⌈
N(N − 1)

2
k + 1

k(k + 1) + r

⌉
.

2251

To achieve the lower bound of Theorem 3.1, the only possibility is to use graphs on p vertices with252

γ(C, p) arcs. The bold values in Table 1 achieve ρ(C), and therefore the subgraphs corresponding to253

those values (which exist by Proposition 3.2) are good candidates to construct an optimal partition of the254

request graph.255

Comparison with existing lower bounds. In [14] the Ring Traffic Grooming problem in the bidirec-256

tional ring is studied. The authors state a lower bound regardless of routing for a general set of requests.257

In the particular case of uniform traffic, they get a lower bound of N2−1
4
√

2C
(see [14, Theorem 1, page 198]).258

They indicate in their article that they can improve this bound by a factor of 2 for all-to-all uniform259

unitary traffic. We thank T. Chow and P. Lin for sending us the proof of the following theorem, which is260

only announced in [14].261

Theorem 3.2 ([13, 14]) If a traffic instance of ring grooming is uniform and unitary, then, regardless of

routing,

A(C,N) ≥
1

2
√

C

√
N2(N − 1)2

2
− N(N − 1).

262

The lower bound we obtained in Theorem 3.1 is greater than the bound of Theorem 3.2, but it should

be observed that we restrict ourselves to shortest path symmetric routing. Our bound is N(N−1)
2ρ(C) and the

lower bound of Theorem 3.2 is less than N(N−1)
2
√

2C
. The fact that our bound is better follows from the fact

that ρ(C) <
√

2C. Indeed,

ρ2(C) ≤
(
k +

r
k + 1

)2
= k2 +

2kr
k + 1

+
r2

(k + 1)2 < k2 + 2r + 1 < k2 + k + 2r = 2C.

4 Case C = 1263

For C = 1, by Proposition 3.2 γ(1, p) = p if p ≥ 2. Furthermore, all the directed cycles achieve ρ(1) (see264

Table 1).265

Theorem 4.1

A(1,N) =

 N(N−1)
2 , if N is odd

N2

2 , if N is even
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Proof: For C = 1, the only possible subgraphs involved in the partition of the edges of TN are cycles266

and paths. If only cycles are used, the total number of ADMs is N(N−1)
2 , which equals the lower bound of267

Theorem 3.1. Each path involved in the partition adds one unit of cost with respect to N(N−1)
2 .268

If N = 2q + 1 is odd, by [10, Theorem 3.3] we know that the arcs of TN can be covered with q ~C3’s269

and q(q−1)
2

~C4’s. The total number of vertices of this construction is 3q + 2q(q − 1) = q(2q + 1) =
N(N−1)

2 .270

If N is even, each vertex must appear with odd degree in at least one subgraph, so the number271

of paths in any construction is at least N/2. Therefore, the lower bound becomes N(N−1)
2 + N

2 = N2

2 .272

By [10, Theorem 3.4] the arcs of TN can be covered with273

• 4 ~C3’s and 2q2 − 3 ~C4’s, if N = 4q with q > 1;274

• 2 ~C3’s and 2q2 + 2q − 1 ~C4’s, if N = 4q + 2.275

For N = 4, we cover T4 with a ~C4 and two arcs. Note that in these constructions, some arcs are covered276

more than once. In both cases, the total number of vertices of the construction is N2

2 , hence the lower277

bound is attained.278

Finally, one can check that in the constructions of [10], the length of the arcs involved in the covering279

of TN is in all cases bounded above by
⌊

N
2

⌋
, and therefore all the cycles induce load 1. 2280

Remark 4.1 For the original problem with G = C∗N and I = K∗N , if we apply Theorem 4.1 we get in the281

case N even a value of N2 ADMS; but if we delete the constraint of symmetric routings we get a value of282

N(N − 1)/2 by using [10, Theorems 4.1 and 4.2] (however these constructions use many K2’s).283

5 Case C = 2284

When C = 2 the general lower bound of Theorem 3.1 gives A(2,N) ≥ N(N−1)
3 . We first improve this285

bound in Section 5.1, and then give solutions with a good approximation ratio in Section 5.2.286

5.1 Improved lower bounds287

For C = 2, by Proposition 3.2 γ(2, 2) = 1, γ(2, 3) = 3, γ(2, 4) = 5 (note that γ(2, 4) = 6 if the routing288

is not restricted to be symmetric), and γ(2, p) =
⌊ 3p

2

⌋
for p ≥ 5. The optimal solutions for p ≥ 4 even289

consist of the p arcs of length 1 (i, i + 1) for 0 ≤ i ≤ p − 1, plus the p/2 arcs of length 2 (2i, 2i + 2) for290

0 ≤ i ≤ p/2 − 1 (in fact, triangles sharing a vertex; see Figure 3 for p = 6). For p odd we have two291

classes of optimal graphs (see Figure 3 for p = 5).292

Figure 3: Some admissible digraphs for C = 2.
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Relation (11) becomes in the case C = 2

N∑
p=2

apγ(2, p) = a2 + 3a3 + 5a4 + 7a5 + 9a6 + 10a7 + 12a8 + · · · ≥
N(N − 1)

2
.

Therefore,293

A =

N∑
p=2

pap ≥
2
3

N∑
p=2

apγ(2, p) +
4
3

a2 + a3 +
2
3

a4 +
1
3

(a5 + a7 + a9 + · · · ) (13)

≥
N(N − 1)

3
+

4
3

a2 + a3 +
2
3

a4 +
1
3

(a5 + a7 + a9 + · · · ). (14)

We can already see that the bound N(N−1)
3 cannot be attained. Indeed, to reach it we need to use only294

graphs with 6, 8, 10, . . . vertices. But the number of graphs W satisfies, by Proposition 3.1, W ≥ N2−1
16 , so295

A ≥ 6 N2−1
16 > N(N−1)

3 .296

The following proposition gives a lower bound of order 11
32 N(N−1). Note that 11/32 > 11/33 = 1/3.297

Proposition 5.1 (Tighter lower bound for C = 2)

A(2,N) ≥
⌈
11N2 − 8N − 3

32

⌉
=

⌈
11
16

N(N − 1)
2

+
3N − 3

32

⌉
. (15)

Proof: We can write A ≥ 6(W − a2 − a3 − a4 − a5) + 2a2 + 3a3 + 4a4 + 5a5, that is,

A ≥ 6W − (4a2 + 3a3 + 2a4 + a5). (16)

From Relations (13) and (14) we get

3A ≥ N(N − 1) + (4a2 + 3a3 + 2a4 + a5). (17)

Summing Relations (16) and (17) gives

4A ≥ 6W + N(N − 1). (18)

By Proposition 3.1, we have that

W ≥
N(N − 1)

16
+

N + α

16
. (19)

Combining Relations (18) and (19) and using α ≥ −1 yields

A ≥
11N(N − 1)

32
+

3N
32

+
3α
32
≥

11N2 − 8N − 3
32

.
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2298

5.2 Upper bounds299

In this section we build families of solutions for C = 2. We conjecture that there exists a decomposition300

using A vertices with ratio A
N(N−1)

2
of order 11

16 , which would be optimal by Proposition 5.1. For that, we301

should find some (multipartite) graphs achieving this ratio. A candidate is K4,4,4, which has 48 edges.302

Unfortunately, we have not been able to cover it with 33 vertices (which would achieve the optimal ratio)303

but only with 34, giving a 34/33-approximation.304

For the sake of the presentation, we first present a simple 12/11-approximation inspired from a305

construction of [10].306

5.2.1 A 12/11-approximation307

This construction is defined recursively. Suppose we have a solution for N vertices using AN ADMs, with308

N = 2p or N = 2p+1. Let the vertex set be labeled 0A < 1A < · · · < (p−1)A < 0B < 1B < · · · < (p−1)B,309

plus ∞ is N is odd. For N + 2, we add two vertices xA and xB with the order xA < 0A < 1A < · · · <310

(p − 1)A < xB < 0B < 1B < · · · < (p − 1)B < ∞. We use as subdigraphs those of the solution for N311

plus the bp/2c digraphs on the 6 vertices xA, iA, (i + bp/2c)A, xB, iB, (i + bp/2c)B and the 8 arcs (xA, iA),312

(xA, (i + bp/2c)A), (iA, xB), ((i + bp/2c)A, xB), (xB, iB), (xB, (i + bp/2cB), (iB, xA), ((i + bp/2c)B, xA), for313

0 ≤ i ≤ bp/2c − 1.314

If N = 2p with p even, there remains uncovered the arc (xA, xB).315

If N = 2p + 1 with p even, there remain the 3 arcs (xA, xB), (xB,∞), and (∞, xA), which we cover316

with the circuit (xA, xB,∞).317

If N = 2p with p odd, there remain the 5 arcs (xA, (p−1)A), ((p−1)A, xB), (xB, (p−1)B), ((p−1)B, xA),318

and (xA, xB), which we cover with a digraph on 4 vertices containing all of them.319

Finally, if N = 2p + 1 with p odd, there remain the 7 arcs (xA, (p − 1)A), ((p − 1)A, xB), (xB, (p −320

1)B), ((p−1)B, xA), (xA, xB), (xB,∞), and (∞, xA), which we cover with a digraph on 5 vertices containing321

all of them.322

One can check that, in all cases, the arcs (u, v) considered satisfy d ~Cn
(u, v) ≤ N/2.323

To compute the number of ADMs of this construction, we have the recurrence relations A4q+2 =324

A4q + 6q + 2, A4q+4 = A4q+2 + 6q + 4, A4q+3 = A4q+1 + 6q + 3, and A4q+5 = A4q+3 + 6q + 5. Starting with325

A2 = 2 or A4 = 6 (obtained with the partition with the digraph on 4 vertices formed by the C4 (0, 1, 2, 3)326

plus the arc (0, 2) and the digraph on 2 vertices (1, 3)) and A3 = 3 or A5 = 8 (obtained with the partition327

of T5 using the first digraph on 5 vertices of Figure 3 and the remaining T3), we get A4q = 6q2 = 6N2

16 ,328

A4q+2 = 6q2 + 6q + 2 = 6N2+8
16 , A4q+1 = 6q2 + 2q = 6N2−4N−2

16 , and A4q+3 = 6q2 + 8q + 3 = 6N2−4N+6
16 .329

In all cases, the number of ADMs is of order 6
8

N(N−1)
2 , so asymptotically the ratio between the number330

of ADMs of this construction and the lower bound of Proposition 5.1 tends to 6
8

16
11 = 12

11 .331
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5.2.2 A 34/33-approximation332

It will be useful to use the notation G5 and G6 to refer to the digraphs depicted in Figure 4. The key idea of333

this construction is that an oriented tripartite graph K4,4,4 can be partitioned into admissible subdigraphs334

for C = 2 using 34 vertices overall, as follows.335

Let the tripartition classes of the K4,4,4 be {1A, 1B, 1C , 1D}, {2A, 2B, 2C , 2D}, {3A, 3B, 3C , 3D}, and let336

the vertices be ordered in the ring 1A < 2A < 3A < 1B < 2B < 3B < 1C < 2C < 3C < 1D <337

2D < 3D. The arcs of an oriented K4,4,4 can be partitioned into 4 G6’s with {x1, x2, x3, x4, x5, x6} =338

{1A, 2A, 3B, 1C , 2C , 3D}, {1B, 2B, 3B, 1D, 2D, 3D}, {1B, 2C , 3C , 1D, 2A, 3A}, and {1A, 3A, 2B, 1C , 3C , 2D}, plus339

2 G5’s with {x1, x2, x3, x4, x5} = {3A, 1C , 2C , 1D, 2D} and {3D, 2A, 2B, 1D, 1C} (see Figure 4). The total340

number of vertices of this partition is 34.341

G6G5
x1 x2

x2

x3

x3

x4

x4 x5

x5 x6

x1

G7

Figure 4: Digraphs G5 and G6 used in the 34/33-approximation for C = 2, and digraph G7 suitable for
C = 3 referred to in the proof of Proposition 6.2.

We are now ready to explain the construction. We take an integer p ≡ 1 or 3 (mod 6), hence Kp can342

be partitioned into triangles. We replace each vertex i of Kp with 4 vertices iA, iB, iC , iD, and order the343

vertices 1A < · · · < pA < 1B < 2B < · · · < pB < 1C < · · · < pC < 1D < · · · < pD. To a triple {i, j, k}344

corresponding to a triangle of Kp, with i < j < k, we associate the decomposition described above of345

the K4,4,4 on vertices {`A, `B, `C , `D : ` = i, j, k}. In this way, Kp×4 can be partitioned into p(p−1)
6 K4,4,4’s,346

or equivalently into p(p−1)
6 · 4 G6’s and p(p−1)

6 · 2 G5’s. Overall, we use 34p(p−1)
6 vertices. Each of the347

subdigraphs of this partition is admissible, as the distance in the ring between the endpoints of an arc is348

strictly smaller than 2p.349

To partition an oriented K4p, there remain only the K4’s induced inside each class of the Kp×4. As350

A(2, 4) = 6, we use 6p vertices to cover all the K4’s.351

Therefore, if p ≡ 1 or 3 (mod 6), an oriented K4p can be partitioned using 6p +
34p(p−1)

6 =
34p2+2p

6 =352

34N2+8N
96 vertices. To decompose K4p+1, we add a vertex ∞, and we partition the p K5’s using 8 vertices353

for each one of them. Overall, we use 8p +
34p(p−1)

6 =
34p2+14p

6 = 34N2−12N−24
96 vertices.354

If p . 1 or 3 (mod 6), we introduce dummy vertices to get p′ ≡ 1 or 3 (mod 6), we do the construc-355

tion described above, and then we remove the dummy edges and vertices. It is clear that these dummy356

vertices add O(N) vertices to the construction, hence the coefficient of the term N2 remains the same.357

Since 33N2−24N−9
96 is a lower bound by Proposition 5.1, we get the following result.358

Proposition 5.2 The above construction approximates A(2,N) within a factor 34/33.359
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6 Case C = 3360

We first provide improved lower bounds for some congruence classes in Section 6.1 and then we provide361

constructions in Section 6.2, which are either optimal or asymptotically optimal.362

6.1 Improved lower bounds363

In this case (see Table 1) we have γ(3, 2) = 1, γ(3, 3) = 3, γ(3, 4) = 6, and γ(3, p) = 2p for p ≥ 5, so364

ρ(3) = 2. Therefore, by Theorem 3.1, we get365

Proposition 6.1 A(3,N) ≥ N(N−1)
4 .366

By Relations (9) and (11) we have367

2A =

N∑
p=2

2pap = 4a2 + 6a3 + 8a4 +

N∑
p=5

2pap

N(N − 1)
2

≤

N∑
p=2

apγ(3, p) = a2 + 3a3 + 6a4 +

N∑
p=5

2pap

So

A ≥
N(N − 1)

4
+

3
2

a2 +
3
2

a3 + a4.

Therefore, if the lower bound is attained, then necessarily a2 = a3 = a4 = 0. We will see in Section 6.2368

that this is the case for N ≡ 1 or 5 (mod 12), using optimal digraphs on 5 vertices (namely T5) and on 6369

vertices (namely ~K2,2,2, see Figure 5). Optimal graphs are obtained by using arcs of length 1 and 2, so the370

degree of any vertex in an optimal subdigraph is 4. That is possible only if the total degree of a vertex,371

namely N − 1, is a multiple of 4. Otherwise, the following proposition shows that the lower bound of372

Proposition 6.1 cannot be attained.373

Proposition 6.2 mh374

If N ≡ 3 (mod 4), A(3,N) ≥ N(N−1)
4 + N

6 = 3N2−N
12 .375

If N ≡ 0 (mod 2), A(3,N) ≥ N(N−1)
4 + N

4 = N2

4 .376

Proof: We use the following observation: If a vertex x has out-degree 3 (resp. in-degree 3) in a digraph377

Bω, then its nearest out-neighbor A+
x (resp. in-neighbor A−x ) has in-degree 1 and out-degree at most 1378

(resp. out-degree 1 and in-degree at most 1). Indeed, suppose x has out-degree 3, and let A+
x , B

+
x ,C

+
x be379

the out-neighbors of x. Then the load of the arc entering A+
x is already 3, so A+

x has no other in-neighbor380

than x. The load of the arc leaving A+
x is already 2, so A+

x has at most 1 out-neighbor y. If y has 2 or more381

in-neighbors, then A+
x is not its nearest one. Hence, to each vertex x of out-degree 3 (resp. in-degree 3)382

is associated a distinct vertex A+
x (resp. A−x ) of degree at most 2.383
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Consider the digraphs in which a given vertex x appears. Let αx
i be the number of times x appears

with degree i, and let αi =
∑

x α
x
i . Vertex x appears in

∑
i α

x
i digraphs, so

A =
∑

x

∑
i

αx
i =

∑
i

αi. (20)

As each vertex has degree N − 1, N − 1 =
∑

i i · αx
i , and so

N(N − 1) =
∑

x

∑
i

i · αx
i =

∑
i

i · αi. (21)

Due to the load constraint, a vertex has out-degree (resp. in-degree) at most 3 in all the digraphs in

which it appears. Therefore, its degree is at most 6, that is, αi = 0 for i ≥ 7. Furthermore, by the above

observation if a vertex has degree 6 (resp. 5), to this vertex are associated 2 vertices (resp. 1 vertex) of

degree at most 2, and all these vertices are distinct, so

α1 + α2 ≥ 2α6 + α5. (22)

Combining Equations (20) and (21) we get

4A = N(N − 1) + 3α1 + 2α2 + α3 − α5 − 2α6. (23)

We distinguish two cases: N even or N = 4t + 3.384

If N is even, N − 1 is odd and each vertex must appear at least in one Bω with odd degree, so

α1 + α3 + α5 ≥ N. (24)

Using Relation (22) multiplied by 2 in Relation (23) we get 4A ≥ N(N − 1) + α1 + α3 + α5 + 2α6, so by385

Relation (24), 4A ≥ N(N−1)+ N, as claimed. Note that to obtain equality we need α6 = 0, α1 +α2 = α5,386

and α1 + α3 + α5 = N.387

If N = 4t + 3, the degree of each vertex satisfies N − 1 ≡ 2 (mod 4), so no vertex can appear with

degree 4 in all the digraphs. Each vertex must appear either at least once with degree 6 or 2, or at least

twice with odd degree (for example, 5 and 5, 3 and 3, 1 and 1, or 5 and 1), so

α2 + α6 +
1
2

(α1 + α3 + α5) ≥ N. (25)

Equation (23) can be rewritten as

4A = N(N − 1) +
2
3

(
α2 + α6 +

1
2

(α1 + α3 + α5)
)

+
4
3

(α2 + α1 − 2α6 − α5) +
2
3
α3 +

4
3
α1. (26)

Using Relations (22) and (25) in Relation (26) yields 4A ≥ N(N−1)+ 2
3 N + 2

3α3 + 4
3α1, or A ≥ N(N−1)

4 + N
6 ,388
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as claimed. Note that to reach the equality, we need to have α1 = α3 = 0, α2 = 2α6 +α5 by Relation (22),389

and 2α6 + 2α2 + α5 = 2N by Relation (25), so α2 = 2N
3 , hence an optimal decomposition should use N

3390

digraphs like the digraph G7 depicted in Figure 4, having 1 vertex of degree 6 and 2 vertices of degree 2.391

2392

6.2 Constructions393

Our constructions rely on the existence of 3-GDD’s, that is, decompositions of complete multipartite394

graphs into K3’s. We recall the definition and some basic results below.395

Decompositions of complete multipartite graphs into K3’s. Let v1, v2, . . . , vq be non-negative inte-396

gers; the complete multipartite graph with group sizes v1, v2, . . . , vq is defined to be the graph with vertex397

set V1 ∪ V2 ∪ · · · ∪ Vq where |Vi| = vi, and two vertices u ∈ Vi and v ∈ V j are adjacent if i , j. Using398

terminology of design theory, the graph of type pα1
1 pα2

2 . . . pαh
h is the complete multipartite graph with399

αi groups of size pi. The existence of a partition of this multipartite graph into Kk’s is equivalent to the400

existence of a k-GDD (Group Divisible Design) of type pα1
1 pα2

2 . . . pαh
h (see [15]). Here we are interested401

in the existence of 3-GDD’s, that is, partitions into K3’s. When |Vi| = p for all i, we denote by Kp×q the402

multipartite graph of type pq. Trivial necessary conditions for the existence of a 3-GDD are403

(i) the degree of each vertex is even; and404

(ii) the number of edges is a multiple of 3.405

These conditions are in general sufficient. In particular, the following results will be used later.406

Theorem 6.1 ([15]) espai.407

A 3-GDD of type 2q with q ≥ 3 exists if and only if q ≡ 0 or 1 (mod 3).408

A 3-GDD of type 2q−14 with q ≥ 4 exists if and only if q ≡ 1 (mod 3).409

A 3-GDD of type 3q with q ≥ 3 exists if and only if q is odd.410

A 3-GDD of type 3q−11 with q ≥ 3 exists if and only if q is odd.411

A 3-GDD of type 3q−15 with q ≥ 5 exists if and only if q is odd.412

A 3-GDD of type 3q−111 with q ≥ 7 exists if and only if q is odd.413

The basic partition. In what follows ~K2,2,2 will denote the digraph on 6 vertices and 12 arcs depicted414

in Figure 5. This digraph can be viewed as being obtained from K3 (i, j, k) with i < j < k by replacing415

each vertex i with two vertices iA and iB forming an independent set.416

Note that ~K2,2,2 is an optimal digraph for C = 3, since it attains the ratio ρ(3) = 2 (see Table 1).417

The idea of the constructions consists of starting from some graph G (mainly a multipartite graph) which418

can be decomposed into K3’s, replacing each vertex with two non-adjacent vertices, and then using the419

following lemma.420
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K2,2,2
iA

i

jk

jA

kA

iBjB

kB

(a)

T5

iA

ji jAiB

jB

(b)

8

8

Figure 5: (a) Digraph ~K2,2,2 obtained from K3 (i, j, k), with i < j < k; (b) digraph T5 obtained from a K3
of the form (∞, i, j).

Lemma 6.1 If a graph G = (V, E) with vertex set {1, 2, . . . , |V |} can be decomposed into h K3’s, then421

the digraph H obtained from G by replacing each vertex i with two non-adjacent vertices iA and iB, and422

where the vertices are ordered 1A, 2A, . . . , |V |A, 1B, 2B, . . . , |V |B, has a valid decomposition into ~K2,2,2’s423

with a total of 6h vertices.424

Proof: To each triangle (i, j, k) with 1 ≤ i < j < k ≤ |V | is associated the ~K2,2,2 with vertices 1 ≤ iA <425

jA < kA ≤ |V | < iB < jB < kB ≤ 2|V |. To show that the decomposition is valid for C = 3, it suffices to426

show that the distance between the end-vertices of any arc of any ~K2,2,2 is at most |V |. That is true for427

the arcs (xA, yA) or (xB, yB) as they satisfy x < y, and also for the arcs (xA, yB) or (xB, yA) as they satisfy428

x > y (see Figure 5(a)). 2429

Some small cases. We provide here decompositions of some particular small digraphs that will be used430

in the constructions of Propositions 6.4 and 6.5.431

Lemma 6.2 A(3, 5) = 5, A(3, 6) ≤ 10, A(3, 7) ≤ 12, A(3, 8) ≤ 18, A(3, 9) ≤ 21, A(3, 10) ≤ 28,432

A(3, 11) ≤ 31, and A(3, 23) ≤ 132.433

Proof: Case N = 5. The decomposition is given in Figure 5(b), and can be viewed as obtained from the434

K3 (∞, i, j) by replacing each of i, j with two vertices.435

Case N = 6, 7. The complete graph K4 can be decomposed into one K1,3 (0;∞, 1, 2) and one436

K3 (∞, 1, 2). Replace each of the vertices i, j, k with two vertices. The T7 on the ordered vertices437

∞, 0A, 1A, 2A, 0B, 1B, 2B can be partitioned into a T5 on∞, 1A, 2A, 1B, 2B ((see Figure 5(b) with i = 1, j =438

2)) and the admissible digraph on 7 vertices and 11 arcs depicted in Figure 6(b) with i = 0, j = 1, k = 2.439

So we obtain a valid decomposition using 12 vertices. Deleting vertex ∞ yields a decomposition of T5440

with 10 vertices.441

Case N = 8, 9. K5 is the union of two K3’s (∞, 1, 3), (0, 2, 3) and a C4 (∞, 0, 1, 2). Replacing each ver-442

tex with two vertices we get a partition of the T9 on the ordered vertices∞, 0A, 1A, 2A, 3A, 0B, 1B, 2B, 3B.443

Namely, to the K3 (∞, 1, 3) we associate a T5 on ∞, 1A, 3A, 1B, 3B (see Figure 5(b) with i = 1, j = 3).444

To the K3 (0, 2, 3) we associate a ~K2,2,2 on 0A, 2A, 3A, 0B, 2B, 3B. To the C4 (∞, 0, 1, 2) we associate the445

digraph on 7 vertices of Figure 6(a) with i = 0, j = 1, k = 2 and the triangle (1A, 2A, 2B). Therefore,446

A(3, 9) ≤ 21. Vertex 1A appears in 3 digraphs, so A(3, 8) ≤ 21 − 3 = 18.447
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(a)

Figure 6: (a) Digraph associated to a C4 (∞, i, j, k). Digraphs associated to stars (K1,3’s), with ∞ < i <
j < k < `: (b) star of the form (i;∞, j, k); (c) star of the form (i; j, k, `).

Case N = 10, 11. K6 can be partitioned into 3 K3’s (∞, 1, 3), (∞, 2, 4), (0, 1, 4), a star K1,3 (0;∞, 2, 3),448

and a P4 [1, 2, 3, 4]. Replacing each vertex with two vertices we get a partition of the T11 on the ordered449

vertices ∞, 0A, 1A, 2A, 3A, 4A, 0B, 1B, 2B, 3B, 4B into 2 T5’s on ∞, 1A, 3A, 1B, 3B and ∞, 2A, 4A, 2B, 4B, a450

~K2,2,2 on 0A, 1A, 4A, 0B, 1B, 4B, a digraph on 7 vertices and 11 arcs depicted in Figure 6(b) with i = 0, j =451

2, k = 3, and an admissible digraph on 8 vertices with arcs (1A, 2A), (2A, 3A), (3A, 4A), (1B, 2B), (2B, 3B), (3B, 4B),452

(2A, 1B), (2B, 1A), (3A, 2B), (3B, 2A), (4A, 3B), (4B, 3A). Therefore, A(3, 11) ≤ 31, and as vertex ∞ appears453

in 3 subgraphs, we get A(3, 10) ≤ 28.454

Case N = 23. We decompose K12 into 19 K3’s and 3 K1,3’s, where vertex ∞ appears in 5 K3’s and455

in a star (i;∞, j, k), the two other stars being of the form (i′; j′k′, `′) with i′ < j′ < k′ < `′. We obtain456

a decomposition of T23 into 5 T5’s, 14 ~K2,2,2’s, 1 digraph of Figure 6(a), and 2 digraphs of Figure 6(c).457

Thus, A(3, 23) ≤ 5 · 5 + 14 · 6 + 7 + 8 + 8 = 132. 2458

Constructions. We begin with an optimal partition for N ≡ 0, 1, 4, or 5 (mod 12), and then we provide459

near-optimal constructions for the remaining values.460

Proposition 6.3 mh461

If N ≡ 0 or 4 (mod 12), A(3,N) = N2

4 .462

If N ≡ 1 or 5 (mod 12), A(3,N) =
N(N−1)

4 .463

Proof: The lower bound follows from Propositions 6.1 and 6.2. For the upper bound, we will apply464

Lemma 6.1 with G = K2×q (type 2q), which can be decomposed by Theorem 6.1 into 2q(q−1)
3 K3’s if465

q ≡ 0 or 1 (mod 3). As G has 2q vertices, the graph H described in Lemma 6.1 has 4q vertices and can be466

decomposed into admissible ~K2,2,2’s. Adding an admissible T4 on each of the q independent sets of H (of467

the form {iA, jA, iB, jB} where {i, j} is an independent set of G), we get a valid decomposition of T4q into468

q T4’s and 2q(q−1)
3 admissible ~K2,2,2’s. So using A(3, 4) = 4, we get A(3, 4q) ≤ qA(3, 4) + 4q(q − 1) = 4q2

469

for q ≡ 0 or 1 (mod 3). So A(3,N) ≤ N2

4 for N ≡ 0 or 4 (mod 12).470

For N = 4q + 1, we add to the vertex set of H an extra vertex ∞. Adding to the arcs of H the q471

tournaments T5 built on∞, iA, jA, iB, jB, where vertices i, j are not adjacent in G, we get a decomposition472
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of T4q+1 into q admissible T5’s plus 2q(q−1)
3 admissible ~K2,2,2’s (the distance being at most 2q − 1 in H473

and so 2q in T4q+1). Using A(3, 5) = 5 (see Lemma 6.2), we get A(3, 4q + 1) ≤ qA(3, 5) + 4q(q − 1) =474

4q2 + q =
(4q+1)4q

4 for q ≡ 0 or 1 (mod 3). So A(3,N) ≤ N(N−1)
4 for N ≡ 1 or 5 (mod 12). 2475

We group the non-optimal constructions in Proposition 6.4 and Proposition 6.5 according to whether476

they differ from the lower bound by either a constant or a linear additive term, respectively.477

Proposition 6.4 mh478

If N ≡ 8 (mod 12), A(3,N) ≤ N2

4 + 2.479

If N ≡ 9 (mod 12), A(3,N) =
N(N−1)

4 + 3.480

Proof: We start from G of type 2q−14 with q ≡ 1 (mod 3), which can be decomposed by Lemma 6.1481

into 2(q−1)(q+2)
3 K3’s. As in the proof of Proposition 6.3, we get a decomposition of T4q+4 into q − 1 T4’s,482

one T8 and 2(q−1)(q+2)
3

~K2,2,2’s (indeed, the independent set Vq of G has 4 vertices, so in H it induces483

an independent set of 8 vertices). So using A(3, 4) = 4 and A(3, 8) ≤ 18 (see Lemma 6.2), we get484

A(3, 4q + 4) ≤ (q − 1)A(3, 4) + A(3, 8) + 4(q − 1)(q + 2) ≤ 4q2 + 8q + 6 =
(4q+4)2

4 + 2 for q ≡ 1 (mod 3),485

so A(3,N) ≤ N2

4 + 2 for N ≡ 8 (mod 12).486

Similarly, adding a vertex ∞ to H we get a decomposition of T4q+1 into q − 1 T5’s, one T9 and487

h =
2(q−1)(q+2)

3 K3’s. So using A(3, 5) = 5 and A(3, 9) ≤ 21 we get A(3, 4q+5) ≤ (q−1)A(3, 5)+ A(3, 9)+488

4(q − 1)(q + 2) ≤ 4q2 + 9q + 8 =
(4q+5)(4q+4)

4 + 3 for q ≡ 1 (mod 3), so A(3,N) ≤ N(N−1)
4 + 3 for N ≡ 9489

(mod 12). 2490

Proposition 6.5 mh491

If N ≡ 2 (mod 12), A(3,N) ≤ N2

4 + N+4
6 .492

If N ≡ 3 (mod 12), A(3,N) ≤ N2+3
4 .493

If N ≡ 6 (mod 12), A(3,N) ≤ N2

4 + N
6 .494

If N ≡ 7 (mod 12), A(3,N) ≤ N2−1
4 .495

If N ≡ 10 (mod 12), A(3,N) ≤ N2

4 + N+8
6 .496

If N ≡ 11 (mod 12), A(3,N) ≤ N2+3
4 + ε, with ε = 1 for N = 11, 35.497

Proof: We use as graph G of Lemma 6.1 a multipartite graph of type 3q−1u with 3(q− 1) + u vertices, in498

order to get a decomposition of T6(q−1)+2u (resp. T6(q−1)+2u+1) into q − 1 T6’s (resp. T7’s), one T2u (resp.499

T2u+1) and the digraph H itself decomposed by Lemma 6.1 into h =
9(q−1)(q−2)

6 + u(q − 1) ~K2,2,2’s. We500

distinguish several cases according to the value of u.501

Case 1: u = 1, q ≥ 3 odd.502

Let N ≡ 2 (mod 12), N = 6q − 4. Using A(3, 2) = 2 and A(3, 6) ≤ 10 we get A(3, 6q − 4) ≤503

(q − 1)A(3, 6) + A(3, 2) + (q − 1)(9q − 12) ≤ 9q2 − 11q + 4 =
(6q−4)2

4 + q = N2

4 + N+4
6 .504

Let N ≡ 3 (mod 12), N = 6q − 3. Using A(3, 3) = 3 and A(3, 7) ≤ 12 we get A(3, 6q − 3) ≤505

(q − 1)A(3, 7) + A(3, 3) + (q − 1)(9q − 12) ≤ 9q2 − 9q + 3 =
(6q−3)2

4 + 3
4 = N2+3

4 .506

Case 2: u = 3, q ≥ 3 odd.507
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Let N ≡ 6 (mod 12), N = 6q. Using A(3, 6) ≤ 10 we get A(3, 6q) ≤ qA(3, 6) + 9q(q− 1) ≤ 9q2 + q =508

N2

4 + N
6 .509

Let N ≡ 7 (mod 12), N = 6q + 1. Using A(3, 7) ≤ 12 we get A(3, 6q + 1) ≤ qA(3, 7) + 9q(q − 1) ≤510

9q2 + 3q = N2−1
4 .511

Case 3: u = 5, q ≥ 5 odd.512

Let N ≡ 10 (mod 12), N = 6q + 4. Using A(3, 6) ≤ 10 and A(3, 10) ≤ 28 we get A(3, 6q + 4) ≤513

(q − 1)A(3, 6) + A(3, 10) + (q − 1)(9q + 12) ≤ 9q2 + 13q + 6 =
(6q+4)2

4 +
6q+12

6 = N2

4 + N+8
6 .514

Let N ≡ 11 (mod 12), N = 6q + 5. Using A(3, 7) ≤ 12 and A(3, 11) ≤ 31 we get A(3, 6q + 5) ≤515

(q − 1)A(3, 7) + A(3, 11) + (q − 1)(9q + 12) ≤ 9q2 + 15q + 7 = N2+3
4 .516

For q = 23 we have A(3, 23) ≤ 132 = 232−1
4 , one less than the value given by the preceding517

construction. Using u = 11, q ≥ 7 odd, N = 6q + 17, A(3, 7) ≤ 12, and A(3, 23) ≤ 132 we get518

A(3, 6q + 17) ≤ (q − 1)A(3, 7) + A(3, 23) + (q − 1)(9q + 48) ≤ 9q2 + 51q + 72 =
(6q+17)2−1

4 = N2−1
4 . It519

might be that A(3, 11) ≤ 30, and then the bound N2−1
4 would be also attained for N = 11 and 35. 2520

7 Case C > 3521

For C > 3, we distinguish two cases according to whether C is of the form k(k+1)
2 or not. We focus on522

those cases in Sections 7.1 and 7.2.523

7.1 C not of the form k(k + 1)/2524

If C is not of the form k(k+1)
2 , we can improve the lower bound of Theorem 3.1, as we did for C = 2525

in Proposition 5.1. We provide the details for C = 4 and sketch the ideas for C = 5, that show how to526

improve the lower bound for any value of C not of the form k(k + 1)/2.527

Proposition 7.1

A(4,N) ≥
7

32
N(N − 1) =

(
3
14

+
1

224

)
N(N − 1).

Proof: The values of γ(4, p) are given in Table 1, so Relation (13) becomes in the case C = 4

A =

N∑
p=2

pap ≥
3
7

N∑
p=2

apγ(4, p)+
11
7

a2+
12
7

a3+
10
7

a4+
5
7

a5+
3
7

a6+
1
7

(a7+2a8+a10+2a11+a13+2a14+· · · ).

(27)

Using
∑N

p=2 apγ(4, p) ≥ N(N−1)
2 , Relation (27) becomes

14A ≥ 3N(N − 1) + 22a2 + 24a3 + 20a4 + 10a5 + 6a6 + 2a7 + 4a8 + · · · (28)

On the other hand,

A ≥ 9

W − 8∑
i=2

ai

 +

8∑
i=2

i · ai = 9W − 7a2 − 6a3 − 5a4 − 4a5 − 3a6 − 2a7 − a8. (29)
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Summing Relations (28) and (29) and using W ≥ N(N−1)
32 + N−1

32 by Proposition 3.1 yields

15A ≥
105
32

N(N − 1) +
9
32

(N − 1), and therefore A ≥
7
32

N(N − 1) +
3

160
(N − 1).

2528

For C = 5, a similar computation with ρ(5) = 8/3 gives529

8A ≥
3
2

N(N − 1) + 13a2 + 15a3 + 14a4 + 10a5 + 3a6 + 2a7 + a8. (30)

A ≥ 9W − 7a2 − 6a3 − 5a4 − 4a5 − 3a6 − 2a7 − a8. (31)

So again, summing Relations (30) and (31) and using W ≥ N(N−1)
40 + N−1

40 by Proposition 3.1 yields

A ≥
N(N − 1)

6
+

N(N − 1)
40

+
N − 1

40
=

23
120

N(N − 1) +
N − 1

40
=

(
3

16
+

1
240

)
N(N − 1) +

N − 1
40

.

7.2 C of the form k(k + 1)/2530

For C =
k(k+1)

2 the lower bound of Theorem 3.1 can be attained, according to the existence of a type531

of k-GDD, called a Balanced Incomplete Block Design (BIBD). A (v, k, 1)-BIBD consists simply of a532

partition of Kv into Kk’s.533

Theorem 7.1 If there exists a (k + 1)-GDD of type kq (that is, a decomposition of Kk×q into Kk+1’s), then534

there exists an optimal admissible partition of T2kq+1 for C =
k(k+1)

2 with N(N−1)
2k ADMs.535

Proof: The lower bound follows from Theorem 3.1. For the upper bound, as we did in Proposition 6.3536

(case k = 2, C = 2), we replace each vertex i of Kk×q with two vertices iA and iB, and add a new vertex537

∞. We label the vertices of the obtained T2kq+1 with∞, 1A, . . . , (kq)A, 1B, . . . , (kq)B. To each Kk+1 of the538

decomposition of Kk×q we associate a T2×(k+1), which is an optimal digraph for C =
k(k+1)

2 with 2(k + 1)539

vertices and 2k(k + 1) edges, hence attaining ρ(C) = k. So adding vertex ∞ to the stable sets of size 2k540

we obtain a decomposition of T2kq+1 into q T2k+1’s (which are also optimal) and T2×(k+1)’s.541

If Kk×q is decomposable into Kk+1’s, the number of Kk+1’s (and so the number of T2×(k+1)’s) is kq(q−1)
k+1 .542

Therefore the total number of ADMs is q(2k + 1) + 2kq(q − 1) =
(2kq+1)2kq

2k =
N(N−1)

2k . 2543

Note that a decomposition of Kk×q into Kk+1’s is equivalent to a decomposition of Kkq+1 into Kk+1’s by544

adding a new vertex ∞, that is, a (kq + 1, k + 1, 1)-BIBD. In particular, such designs are known to exist545

if N is large enough and (kq + 1)kq ≡ 0 (mod k(k + 1)) [15]. For example, for k = 3 and q ≡ 0 or 1546

(mod 4), or k = 4 and q ≡ 0 or 1 (mod 5).547

Corollary 7.1 mh548

If C = 6 and N ≡ 1 or 7 (mod 24), A(6,N) =
N(N−1)

6 .549

If C = 10 and N ≡ 1 or 9 (mod 40), A(10,N) =
N(N−1)

8 .550
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Corollary 7.2 For C ∈ {15, 21, 28, 36}, there exists a small set of values of N for which the existence of a551

BIBD remains undecided (179 values overall, see [15, pages 73-74]). For the values of N different from552

these undecided BIBDs, the following results apply.553

If C = 15 and N ≡ 1 or 11 (mod 30), A(15,N) =
N(N−1)

10 .554

If C = 21 and N ≡ 1 or 13 (mod 84), A(21,N) =
N(N−1)

12 .555

If C = 28 and N ≡ 1 or 15 (mod 112), A(28,N) =
N(N−1)

14 .556

If C = 36 and N ≡ 1 or 17 (mod 144), A(36,N) =
N(N−1)

16 .557

Wilson proved [34] that for v large enough, Kv can be decomposed into subgraphs isomorphic to any558

given graph G, if the trivial necessary conditions about the degree and the number of edges are satisfied.559

Thus, we can assure that optimal constructions exist when C =
k(k+1)

2 for all k > 0.560

Corollary 7.3 If C =
k(k+1)

2 , then A(C,N) =
N(N−1)

2k for N ≡ 1 or 2k + 1 (mod 4C) large enough.561

We can also use decompositions of Kp×q into Kk+1’s to get constructions asymptotically optimal, but

not attaining the lower bound like for C = 3. For instance, for C = 6 the proof of Theorem 7.1 gives

(without adding the vertex∞) that for q ≡ 0 or 1 (mod 4) and N ≡ 0 or 6 (mod 24),

A(6, 6q) ≤ qA(6, 6) + 6q(q − 1) = 6q2 =
N2

6
.

That might be an optimal value if we could improve the lower bound for C = 6 as we did for C = 3 in562

Proposition 6.2, but the calculations become considerably more complicated.563

Corollary 7.4 mh564

For N ≡ 0 or 6 (mod 24), N(N−1)
6 ≤ A(6,N) ≤ N2

6 .565

For N ≡ 0 or 8 (mod 40), N(N−1)
8 ≤ A(10,N) ≤ N2

8 .566

For a general C of the form C =
k(k+1)

2 , the improved lower bound one could expect is N2

2k .567

Finally, it is worth mentioning here the constructions given in [19] for C = 8. Namely, in [19,568

Corollary 5] the authors provide a construction that uses asymptotically N2

2
5

16 ADMs, using the so-569

called primitive rings. This construction, according to the lower bound of Theorem 3.1, constitutes a 35
32 -570

approximation for C = 8. Note that the construction for C = 6 given in Corollary 7.1 uses asymptotically571

N2

2
1
3 = N2

2
5
15 ADMs, which is already very close to the value obtained in [19] for C = 8, so it seems572

natural to suspect that there is enough room for improvement over the constructions of [19].573

8 Unidirectional or Bidirectional Rings?574

This section is devoted to comparing unidirectional and bidirectional rings in terms of minimizing elec-575

tronics cost, when these rings are used in a WDM network with traffic grooming and all-to-all requests.576
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For bidirectional rings, Theorem 3.1 gives the following lower bound by multiplying by 2 the value,

in order to take into account requests both clockwise and counterclockwise.

LBbi(C,N) =
N(N − 1)

2
·

2
ρ(C)

,

where ρ(C) = k + r
k+1 for C =

k(k+1)
2 + r with 0 ≤ r ≤ k.577

In [7] the following general lower bound was given for unidirectional rings.

LBuni(C,N) =
N(N − 1)

2
·

1
η(C)

,

where η(C) =

 k
2 , if C =

k(k+1)
2 + r and 0 ≤ r ≤ k

2
C

k+2 , if C =
k(k+1)

2 + r and k
2 ≤ r ≤ k

Note that for C =
k(k+1)

2 (that is, for r = 0) the bounds are equal. In general, we have

1 ≤
LBuni(C,N)
LBbi(C,N)

≤ 1 +
1

2(k + 1)
.

Indeed, either 0 ≤ r ≤ k
2 and then578

ρ(C)
2η(C)

= 1 +
r

k(k + 1)
≤ 1 +

1
2(k + 1)

,

or k
2 ≤ r ≤ k, and then

ρ(C)
2η(C)

=
(k + 2)(k(k + 1) + r)
(k + 1)(k(k + 1) + 2r)

= 1 +
k(k + 1) − rk

(k + 1)(k(k + 1) + 2r)
.

Let r = k
2 + r′, and so 0 ≤ r′ ≤ k

2 . Then

ρ(C)
2η(C)

= 1 +
1

2(k + 1)
k(k + 2) − 2r′

k(k + 2) + 2r′
≤ 1 =

1
2(k + 1)

.

Note that there exist constructions for bidirectional rings with cost strictly smaller than LBuni(C,N).579

Indeed, for C = 2 we presented in Section 5.2.2 a construction using at most 17
48 N(N − 1) ADMs. Taking580

into account requests in both directions this construction uses at most 17
24 N(N−1) ADMs, to be compared581

with LBuni(2,N) = 3
4 N(N − 1) > 17

24 N(N − 1).582

However, for large C the lower bounds tend to be equal; hence in terms of the number of ADMs583

there is no real improvement in using bidirectional rings. The real improvement is more in terms of the584

number of used wavelengths (or, equivalently, the load). Indeed, in unidirectional rings this number is585

roughly N2

2C (see for instance [7]), which is twice the number in bidirectional rings (roughly equal to 2 · N2

8C586

by Proposition 3.1).587
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In summary, bidirectional and unidirectional rings are equivalent in terms of the number of ADMs,588

the trade-off being between better bandwidth utilization in bidirectional rings versus simplicity (and the589

use of the other ring for fault tolerance) in unidirectional rings.590

9 Conclusions and Further Research591

In this article we studied the minimization of ADMs in optical WDM bidirectional ring networks under592

the assumption of symmetric shortest path routing and all-to-all unitary requests. We precisely formu-593

lated the problem in terms of graph decompositions, and stated a general lower bound for all the values594

of C and N. We then studied extensively the cases C = 2 and C = 3, providing improved lower bounds,595

optimal constructions for several infinite families, as well as asymptotically optimal constructions and596

approximations. To the best of our knowledge, these are the first optimal solutions in the literature for597

traffic grooming in bidirectional rings. We then study the case C > 3, focusing specifically on the case598

C = k(k + 1)/2 for some k ≥ 1. We gave optimal decompositions for several congruence classes of N,599

using the existence of some combinatorial designs. We concluded with a comparison of the switching600

cost in unidirectional and bidirectional WDM rings.601

Further research is needed to find new families of optimal solutions for other values of C. The first602

step should be to improve the general lower bound for other values of C, namely, finding a closed for-603

mula. It would be interesting to consider other kinds of routing in bidirectional rings, not necessarily604

symmetric or using shortest paths. Stating which kind of routing is the best for each value of N and C605

would be a nice result. Finally, studying the traffic grooming problem using graph partitioning tools in606

other topologies, like trees or hypercubes, would be also interesting.607

608
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