
HAL Id: hal-00643734
https://hal.science/hal-00643734v3

Submitted on 18 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial structure of rigid transformations in 2D
digital images

Phuc Ngo, Yukiko Kenmochi, Nicolas Passat, Hugues Talbot

To cite this version:
Phuc Ngo, Yukiko Kenmochi, Nicolas Passat, Hugues Talbot. Combinatorial structure of rigid trans-
formations in 2D digital images. Computer Vision and Image Understanding, 2013, 117 (4), pp.393-
408. �10.1016/j.cviu.2012.08.014�. �hal-00643734v3�

https://hal.science/hal-00643734v3
https://hal.archives-ouvertes.fr

Combinatorial structure of rigid transformations

in 2D digital images

Phuc Ngoa, Yukiko Kenmochia, Nicolas Passatb, Hugues Talbota

aUniversité Paris-Est, LIGM, UPEMLV-ESIEE-CNRS, France
bUniversité de Strasbourg, LSIIT, UMR 7005 CNRS, France

Abstract

Rigid transformations are involved in a wide range of digital image process-

ing applications. When applied on discrete images, rigid transformations are

usually performed in their associated continuous space, requiring a subse-

quent digitization of the result. In this article, we propose to study rigid

transformations of digital images as fully discrete processes. In particular,

we investigate a combinatorial structure modelling the whole space of digital

rigid transformations on arbitrary subset of Z2 of size N × N . We describe

this combinatorial structure, which presents a space complexity O(N9) and

we propose an algorithm enabling to construct it in linear time with respect to

its space complexity. This algorithm, which handles real (i.e., non-rational)

values related to the continuous transformations associated to the discrete

ones, is however defined in a fully discrete form, leading to exact computa-

tion.

Keywords: digital rigid transformations, combinatorial structure, discrete

algorithm.

1. Introduction

Rigid transformations, (i.e., transformations based on translations and

rotations) are frequently involved in the design of computer vision and image

processing techniques (e.g., object tracking [1], image registration [2]), and

considered in applications related to 2D or 3D images (e.g., remote sensing,

medical imaging). Despite the digital nature of the processed images, such

transformations are generally performed by considering the Euclidean space

(Rn) associated to the Eulerian space (Zn) of the data. Such “partially

continuous” transformations then need to be interfaced with a subsequent

digitization process to finally obtain a result in Z
n.

The purpose of this article is to study rigid transformations of digital im-

ages as fully discrete processes. Discrete processes for the classes of rotations

and affine transformations have been studied in the literature. One can cite

the quasi-shear rotation [3] and quasi-affine [4] for instance. Their approach

consists of decomposing transformations into three shears and then obtain

the discrete transformations. From the decomposition, the transformations

preserve their bijectivity. One major drawback of this approach is that the

result obtained after composing the three shears is not always identical to

the discretized result of the initial transform. Here, we study an approach

which preserves such discretization rather than the bijectivity. Moreover, we

consider several issues related to (i) the number of possible rigid transfor-

mations given a finite subspace of Zn, (ii) the way to generate all of them,

and (iii) the relations between all such transformations. Some combinato-

rial and algorithmic answers are provided to these questions, in the case of

Z
2. Recently, C. Hundt and M. Lískiewicz have proposed in [5, 6, 7, 8]

2

a discretization technique under projective transformations and some of its

subclasses for the problem of 2D pattern matching. Our approach is in-

spired by their discretization technique and adapted for the classes of rigid

transformations.

The contributions of this article are twofold. The first –more theoretical–

consists of the proposal of a combinatorial structure (namely a graph) mod-

elling the whole space of digital rigid transformations on arbitrary subset of

Z
2 of size N ×N , and the links between these transformations. These links

correspond to the discontinuities induced by the digitization of the continuous

transformations in R
2 associated to those defined in Z

2. This combinatorial

structure presents a space complexity O(N9). On the one hand, this first

result provides a contribution to the field of combinatorial analysis of image

transformations (where previous works, summarised in Table 1, have already

been proposed for rotations [9, 10], scalings [11, 12], combined scalings and

rotations [5], affine transformations [6, 7], projective and linear transforma-

tions [8]). On the other hand, a new concept related to the topology of digital

transformations is introduced in this structure, namely a neighborhood rela-

tionship between transformations induced by their relations.

The second contribution –of a more methodological nature– is an efficient

algorithm enabling the construction of this combinatorial structure, with a

computational cost linear with respect to its space complexity. This algo-

rithm, which handles real (i.e., non-rational) values related to the continuous

transformations associated to the discrete ones, is however defined in a fully

discrete form, allowing for exact computation, and avoiding in particular any

approximations related to floating point arithmetic.

3

Classes of transformations Complexity

Rotations [9, 10] O(N3)

Scalings [11, 12] O(N3)

Rotations and scalings [5] O(N6)

Linear transformations [8] O(N12)

Affine transformations [6, 7] O(N18)

Projective transformations [8] O(N24)

Table 1: Space complexity of different classes of transformations on a subspace of Z2 of

size N ×N .

The article is organised as follows. Sections 2 and 3 restates background

notions and useful concepts. Section 4 introduces two notions: those of tip-

ping surfaces and tipping curves, which constitute the basis of the proposed

combinatorial structure. Section 5 actually defines this structure, while Sec-

tions 6 and 7 propose an algorithm for its construction. Complexity and

experiments are discussed in Section 8. Section 9 presents some applications

of the proposed graph and Section 10 concludes the article.

2. Geometric transformations and digitization

2.1. 2D images and digitization

Let V be a set called value space containing at least two elements, in-

cluding one, noted ⊥, corresponding to the “background”. A 2D image is

a function I : R2 → V such that I−1(V \ {⊥}) is finite. (As examples, if

|V | = 2, we say that I is a binary image; if |V | is equipped with a total

order, we say that I is a grey-level image). Without loss of generality, we

4

can suppose that I−1(V \ {⊥}) ⊆ E =]− 1
2
, N − 1

2
[2 for a given N ∈ N. The

set E is called the support of I and N is called the size of I.
A 2D digital image is defined as a function I : Z2 → V such that I−1(V \

{⊥}) is finite. Without loss of generality, we can suppose that I−1(V \{⊥}) ⊆
S = [0, N − 1]2 for a given N ∈ N. The set S is called the support of I and

N is the size of I.

In the sequel, by abuse of notation, we will sometimes set I : E → V and

I : S → V , instead of I : R2 → V and I : Z2 → V .

The 2D digital image I can be seen as a numerical representation of the

2D image I obtained by a digitization process that associates I : S → V to

I : E → V , such that S = E ∩ Z
2. It then maps each point of E to exactly

one point of S according to a square grid structure. This digitization process

is defined via the following function:
∣

∣

∣

∣

∣

∣

D : E −→ S

x = (x, y) 7−→ p = (p, q) = ([x], [y])
(1)

where [·] is the rounding function. Note in particular that we have I = I|S,
that is I(x) = I(x) for any x ∈ S. In other words, we have D|S = IdS.

Broadly speaking, the real points x ∈ E are mapped onto the integer

point p ∈ S with respect to the Voronoi diagram of S in E. This mapping

is deterministic everywhere except on the frontier of the Voronoi cells, that

is, for the real points x ∈ E presenting at least one semi-integer coordinate.

We call the subset H of E that consist of all such points the half-grid :

H = E ∩
[

(

R× (Z+
1

2
)
)

∪
(

(Z+
1

2
)× R

)

]

. (2)

Broadly speaking, the digitization function D decomposes E into unit

5

(open) squares, namely the pixels, whose centres are points of Z2. In other

words, the half-grid H represents the union of the boundaries of all pixels.

The correct handling of this half-grid, which can be seen as the “inter-

pixel” space in digital imaging is sometimes of great importance, for instance

in (digital) topology [13, 14]. However, in the digital geometry context of

this article, the way the points of H are digitized is not crucial, since they

represent an infinitesimal part of E. Nevertheless, H remains of first impor-

tance in the understanding of digitization, since the discontinuities induced

by this process will occur on the points located in this set.

2.2. Geometric transformations for digital images

We call geometric transformation any bijective function T : R2 → R
2.

Such a geometric transformation applied on an image I : R2 → V provides

a new transformed image I ◦ T −1 : R2 → V .

However it is not possible to apply directly T on a digital image I in

order to define I ◦ T −1, since there are no guarantees that T −1(p) ∈ Z
2 for

all p ∈ Z
2. The handling of geometric transformations for digital images

then requires the definition of a function noted T−1 : Z2 → Z
2 (which is not

necessarily bijective) such that we can define the digital transformed image

I ◦T−1 : Z2 → V being correct with respect to T −1. This can be conveniently

obtained by setting:

T−1 = D ◦ T −1 (3)

as illustrated in Figure 1. Such a transformation T is called a 2D digital

image transformation.

Remark 1. In the “nearest neighbour” digitization paradigm considered in

6

S

S

E

E

V

V

D

Id

Id

D

TT −1

I

I ◦ T −1

I

I ◦ T−1

TT−1

Figure 1: Geometric transformation and the associated digital image transformation (see

text). First row: image support before transformation. Second row: image support after

transformation.

Section 2.1 (see Equation (1)), we can consider two models for image trans-

formations. Given a transformation T , the first (the Lagrangian model) con-

sists of determining T (x) for any point x in the initial space, while the second

(the Eulerian model) consists of determining T −1(y) for any point y in the

deformed space. Both models are equal for a transformation T : R2 → R
2,

since T is bijective. In the digital case, these models are actually distinct,

since D◦T −1 and D◦T are not bijective, in general. In the current work, and

without loss of generality, we focus on the Lagrangian model (see Figure 2).

The results shown in this article remain however valid for both models. Still

without loss of generality (due to symmetry considerations), we will consider

in the sequel T and D ◦ T instead of T−1 and D ◦ T −1 (see Equation (3)).

7

D ◦ T

T

x

(a) Lagrangian model

D ◦ T −1

T −1
y

(b) Eulerian model

Figure 2: Image transformation models: (a) Lagrangian and (b) Eulerian. (a) and (b)

left: image support before transformation, right: image support after transformation. The

digital support S ⊂ Z
2 is depicted by white dots. The Voronoi cells of E associated to the

points of S are depicted by squares.

3. Rigid transformations for digital images

3.1. Digital rigid transformations

From this point on, we only consider 2D rigid transformations which are

composed of translations and rotations. Formally, a rigid transformation

T : R2 → R
2 transforms any point p = (p, q) ∈ R

2 into a point p
′ ∈ R

2

according to the following relation:

T (p) = p
′ =

cos θ − sin θ

sin θ cos θ

p

q

+

a

b

 (4)

where a, b, θ ∈ R.

If we consider T : Z2 → Z
2, from Equations (1), (3) and (4), the trans-

formed point T (p) = p
′ = (p′, q′) associated to p ∈ Z

2 is then defined as:

T (p) =

p′

q′

 =

[p cos θ − q sin θ + a]

[p sin θ + q cos θ + b]

 . (5)

This transformation is called a 2D digital rigid transformation. Note that any

rigid transformation (resp. digital rigid transformation) can be represented

8

by a triplet of parameters (a, b, θ), noted Tabθ (resp. Tabθ). We note T (resp.

Td) the set of all rigid transformations (resp. digital rigid transformations):

T = {Tabθ | (a, b, θ) ∈ R
3}, (6)

Td = {Tabθ | (a, b, θ) ∈ R
3}. (7)

Remark 2. A digital rigid transformation T (resp. a rigid transformation

T) maps the support S (resp. E) –of size N– of a digital image I (resp. an

image I) onto a set T (S) (resp. T (E)) that is included in a finite (resp.

bounded) part of Z2 (resp. R
2) corresponding to a disk of diameter N

√
2.

In the following discussion, as the complexity is expressed as an order of

N , the multiplicative constant factor
√
2 does not matter. Without loss of

correctness, we can assume that both S and T (S) (resp. E and T (E)) are

of size N such that N is “sufficiently large” with respect to S (resp. E) and

the
√
2 factor.

3.2. Discontinuities of digital rigid transformations

Let us define the function T (resp. Td), which associates to each triplet

of parameters (a, b, θ) the rigid transformation (resp. digital rigid transfor-

mation) modelled by these parameters (see (4) and (5)):
∣

∣

∣

∣

∣

∣

T : R
3 −→ T

(a, b, θ) 7−→ T (a, b, θ) = Tabθ,
(8)

∣

∣

∣

∣

∣

∣

Td : R
3 −→ Td

(a, b, θ) 7−→ Td(a, b, θ) = Tabθ.
(9)

The function T is continuous on R
3. In other words, for any value δ > 0,

there exists ǫ > 0 such that for all (a1, b1, θ1), (a2, b2, θ2) ∈ R
3

‖(a1, b1, θ1)− (a2, b2, θ2)‖ < ǫ⇒ ‖T(a1, b1, θ1)− T(a2, b2, θ2)‖ < δ (10)

9

for given norms ‖ · ‖ on R
3 and (R3)R

3

= {F : R3 → R
3} (for instance the

N∞ and pointwise N∞ norms, respectively).

Due to the digitization involved in the definition of T in Equation (5),

the function Td is piecewise constant on R
3. For the same reason, Td

presents discontinuities. More precisely, there exist some points c ∈ R
3

such that for any ball B(c, ǫ) of center c and radius ǫ > 0, there exist

(a1, b1, θ1), (a2, b2, θ2) ∈ B(c, ǫ) such that for some values δ > 0 (for instance

δ = 1), we have

‖(a1, b1, θ1)− (a2, b2, θ2)‖ < ǫ ∧ ‖Td(a1, b1, θ1)− Td(a2, b2, θ2)‖ ≥ δ. (11)

Such points c ∈ R
3 are critical points in the parameter space of the digi-

tal rigid transforms. They characterize, in particular, some transformations

which map at least one point onto the half grid (see Figure 3). These con-

siderations lead to the following definition.

Definition 1. Let (a, b, θ) ∈ R
3, and Tabθ be the associated rigid transforma-

tion. We say that Tabθ is a critical transformation if

∃p ∈ Z
2, Tabθ(p) ∈ H. (12)

We denote by Tc the set of all critical transformations.

The set Tc of the critical transformations obviously corresponds to the

part of R3 inducing discontinuities in Td.

3.3. Discrete rigid transformations

As a result of the discontinuity of digital rigid transformations, it is pos-

sible for the digitization D of two rigid transformations of a digital image to

10

(p, q) ∈ Z
2

Tabθ

(λ, l + 1
2) ∈ H

(a)

(p, q) ∈ Z
2

Tabθ

(k + 1
2, λ) ∈ H

(b)

Figure 3: Examples of critical transformations Tabθ, which map at least one integer value

onto a “horizontal” (a) or “vertical” (b) half-grid point. The digital support S ⊂ Z
2 is

depicted by white dots. The Voronoi cells of E associated to the points of S are depicted

by squares.

be identical. This leads to the following consideration about the equivalence

between transformations.

Definition 2. Let I : S → V . Two elements T , T ′ ∈ T are considered

equivalent, and we write T ∼ T ′, iff D ◦ T (p) = D ◦ T ′(p), ∀p ∈ S.

Then an equivalence class in T under ∼ is a set of rigid transformations

that provides the same digital transformed image.

Definition 3. For a given digital image I : S → V , each equivalence class

in T (induced by I) is called a discrete rigid transformation (DRT).

Note that the term discrete thus refers to the non-continuous structure

of transformations for digital images. In this way, the parameter space of the

rigid transformations is partitioned into the disjoint sets of the equivalence

classes, such that each of which associates exactly to one DRT.

11

4. Tipping surfaces and tipping curves

In this section, we introduce two notions, that allow us to study the de-

composition of the parameter space into the DRTs. As stated in the preceding

section, the digital rigid transformations present a discontinuous property,

which is characterized by the critical transformations. The later transforma-

tions are actually related to the structure of DRTs in the parameter space,

since they represent the boundaries of the equivalence classes. We propose

the two following notions: tipping surfaces and tipping curves which are, in

fact, analytical expressions of critical rigid transformations.

4.1. Tipping surfaces

According to Definition 1, a critical rigid transformation Tabθ moves at

least one integer point p = (p, q) ∈ Z
2 into a half-grid point which can

be either a vertical half-grid point (k + 1
2
, λ) or a horizontal half-grid point

(λ, l + 1
2
) for k, l ∈ Z and λ ∈ R, or both. The set of values (a, b, θ) ∈ R

3

associated to this critical transformation forms a surface in the parameter

space, called a tipping surface. Note that a tipping surface can be represented

by an integer triplet associated to such a vertical or horizontal half-grid point.

Definition 4. Given an integer triplet (p, q, k) (resp. (p, q, l)), we define a

vertical (resp. horizontal) tipping surface as the function Φpqk (resp. Ψpql)

such that
∣

∣

∣

∣

∣

∣

Φpqk : R
2 −→ R

(b, θ) 7−→ a = k + 1
2
+ q sin θ − p cos θ,

(13)

∣

∣

∣

∣

∣

∣

Ψpql : R
2 −→ R

(a, θ) 7−→ b = l + 1
2
− p sin θ − q cos θ.

(14)

12

Figure 4: Discrete rigid transformations (DRTs) are observed as regions separated by

tipping surfaces.

The sets of all tipping surfaces defined by Formulae (13) and (14) clearly

correspond to the discontinuities of digital rigid transformations. They divide

the parameter space (a, b, θ) into the equivalence classes. In each of these

classes, any rigid transformation leads to an identical digital transformed

image. We restate that each equivalence class is represented by a DRT. As

the number of critical transformations is limited by the size of a given digital

image I, the number of tipping surfaces and DRTs in the parameter space

are both finite. Figure 4 visualizes the DRTs as regions separated by tipping

surfaces Φpqk and Ψpql in the parameter space, for p, q ∈ [0, 2] and k, l ∈ [0, 3].

4.2. Tipping curves

We remark that the tipping surface Φpqk in Formula (13) is independent of

b. Consequently, the cross-sections of Φpqk orthogonal to the b-axis orthogonal

13

are identical for any b ∈ R, and each has the form of a trigonometric curve.

We call these tipping curves, and we denote them by φpqk. This means that

Formula (13) defines a tipping curve as well if it is observed in the plane

(a, θ). Similarly, Formula (14) is also considered as a tipping curve on the

plane (b, θ), denoted by ψpql.

Definition 5. Given an integer triplet (p, q, k) (resp. (p, q, l)), we define a

vertical (resp. horizontal) tipping curve as a function φpqk (resp. ψpql) such

that
∣

∣

∣

∣

∣

∣

φpqk : R −→ R

θ 7−→ a = k + 1
2
+ q sin θ − p cos θ,

(15)

∣

∣

∣

∣

∣

∣

ψpql : R −→ R

θ 7−→ b = l + 1
2
− p sin θ − q cos θ.

(16)

The sets of all tipping curves φpqk and ψpql provide two families of critical

rigid transformations projected on the planes (a, θ) and (b, θ) respectively.

Definition 6. Two families of tipping curves are defined for θ ∈ R by

Fφ(θ) = {φpqk(θ) | p, q, k ∈ Z}, (17)

Fψ(θ) = {ψpql(θ) | p, q, l ∈ Z}. (18)

Note that an operation applied to a family of curves means that it is

applied to all tipping curves belonging to the family. For instance, −Fφ(θ) =
{−φpqk(θ) | φpqk(θ) ∈ Fφ(θ)}.

Figure 5 illustrates a part of Fφ for p, q ∈ [0, 4] and k ∈ [0, 5].

14

�
�

�
�

�
�

�
�

	
A
�
�
�
�
�
�

Figure 5: A part of the family of tipping curves Fφ.

4.3. Properties of tipping curves

So far we have studied the definitions of tipping surfaces and tipping

curves. We now discuss the combinatorial structure of discrete rigid trans-

formations by using the sets of tipping surfaces and curves. Before this, we

state some properties about tipping curves. From Definition 5, we remark

that Fφ and Fψ have similar forms. Indeed, if we translate Fψ by π
2
with re-

spect to θ, then we obtain Fφ. For simplicity, we will thus show the properties

for Fφ that are valid for Fψ as well.

The first property concerns the unique representation of tipping curves.

This is a direct result of the fact that the three functions {1, cos, sin} involved
in Formula (15) are linearly independent.

Property 1. There exists a unique integer triplet (p, q, k) ∈ Z
3 for each

tipping curve.

The next property shows the relationships between two tipping curves.

15

This will be used in the algorithm of construction of the combinatorial struc-

ture of discrete rigid transformations. Geometrically, two tipping curves can

relate to each other in four different ways (see Figure 6): they can be iden-

tical, intersecting1, tangent2 or not intersecting. Analytical interpretation of

these relationships is expressed as follows.

Property 2. let φpqk and φp′q′k′ be two tipping curves. Setting K = k − k′,
P = p − p′, Q = q − q′, ∆1 = P 2(P 2 + Q2 −K2), ∆2 = Q2(P 2 + Q2 −K2)

and ∆ = ∆1 +∆2, we have the following relations between φpqk and φp′q′k′:

• if P = Q = 0,

(i) if K = 0 then φpqk and φp′q′k′ are identical,

(ii) if K 6= 0 then they have no intersection,

• otherwise,

(iii) if ∆ = 0 and |KP | ≤ P 2 +Q2 and |KQ| ≤ P 2 +Q2 then they are

tangent,

(iv) if ∆ > 0 and |KP ±
√
∆1| ≤ P 2+Q2 and |KQ±

√
∆2| ≤ P 2+Q2

then they intersect, (note that ± means “+ or −”)
(v) otherwise, they have no intersection.

Proof (i) is easily induced by Property 1. Assume that two tipping curves

φpqk and φp′q′k′ are different. The solution set satisfying both equations φpqk

and φp′q′k′ determines the nature of the relationships between two curves;

it provides either the tangent point (iii), the intersection points (iv) or the

1Two tipping curves intersect if they cross each other at a point.
2Two tipping curves are tangent if both share the same tangent line at a point, i.e.,

the curves touch but do not cross each others.

16

Figure 6: Relationships between two tipping curves, which are identical (a), intersecting

(b), tangent (c) and not intersecting (d,e).

empty set (ii)(v). Supposing the equation system has a solution, then we can

find a value θ satisfying the following:

k +
1

2
− p cos θ + q sin θ = k′ +

1

2
− p′ cos θ + q′ sin θ.

Replacing K = k − k′, P = p− p′ and Q = q − q′, then we have

K − P cos θ = −Q sin θ. (19)

Squaring both sides of Equation (19), we obtain

K2 − 2KP cos θ + P 2 cos2 θ = Q2 sin2 θ.

Because cos2 θ + sin2 θ = 1, we have

(P 2 +Q2) sin2 θ − 2KQ sin θ +K2 − P 2 = 0, (20)

(P 2 +Q2) cos2 θ + 2KP cos θ +K2 −Q2 = 0, (21)

which are quadratic equations if P 2 + Q2 6= 0. As we assume that φpqk and

φp′q′k′ are different, either P , Q or K are not equal to 0. If P = Q = 0 and

K 6= 0, then Equation (19) has no solution (ii). Otherwise, P 2 + Q2 6= 0 so

that the discriminants ∆1 and ∆2 of Equations (20) and (21) determine the

number and nature of the roots. There are three cases; the curves are:

17

• tangent (iii): each of Equations (20) and (21) has one solution, if ∆ = 0

(namely, ∆1 = ∆2 = 0) and |KP | ≤ P 2 + Q2 and |KQ| ≤ P 2 + Q2,

since −1 ≤ sin θ ≤ 1 and −1 ≤ cos θ ≤ 1,

• intersecting (iv): at least one of Equations (20) and (21) has more

than one solution, if ∆ > 0 (namely, either ∆1 ≥ 0 ∧∆2 > 0 or ∆1 >

0∧∆2 ≥ 0) and |KP ±√∆1| ≤ P 2 +Q2 and |KQ±√∆2| ≤ P 2 +Q2,

since −1 ≤ sin θ ≤ 1 and −1 ≤ cos θ ≤ 1,

• otherwise, there are no intersections (v).

�

Given two curves φpqk and φp′q′k′ , we can find out their relationship by

evaluating the integer triplets (p, q, k) and (p′, q′, k′) exactly, i.e., by using

only integers during computation. Indeed, the values P,Q,K,∆1,∆2 and ∆

are all integers, while the inequalities |KP ± √∆1| ≤ P 2 + Q2 and |KQ ±
√
∆2| ≤ P 2 +Q2 can be verified by using squaring procedures. The proof of

Property 2 implies the following corollary.

Corollary 1. Let us consider the same notations as in Property 2. Given

two tipping curves φpqk and φp′q′k′, if they are

• tangent, the tangent point satisfies sin θ = KQ

P 2+Q2 and cos θ = KP
P 2+Q2 ,

• intersecting, the intersection points satisfy sin θ = KQ±
√
∆1

P 2+Q2 and cos θ =

KP±
√
∆2

P 2+Q2 . Note that there are four possible combinations for sin θ and

cos θ, but only two of them are valid for intersections (see Corollary 2).

Since Equation (19) has at most two solutions in [0, 2π[, we also have the

following corollary.

18

Corollary 2. Two distinct tipping curves have at most two intersections in

[0, 2π[.

As the tipping curves have the form of trigonometric functions with sin θ

and cos θ, they inherit the properties of the trigonometric functions as follows.

Property 3. The family of tipping curves Fφ is symmetric:

Fφ(θ) = −Fφ(θ),

Fφ(θ) = Fφ(−θ +m
π

4
), ∀m ∈ Z.

Property 4. The family of tipping curves Fφ is periodic:

Fφ(θ) = Fφ(θ +m
π

2
), ∀m ∈ Z,

Fφ(θ) = Fφ(θ) +m, ∀m ∈ Z.

So far, we have considered a digital image support as a set of points

of Z2. Under this assumption, the subdivision of the parameter space into

DRTs is infinite. However a digital image is finite in practice, and we can

then consider S instead of Z2. Given a digital image I of size N × N , we

define the set of tipping surfaces with respect to I as Φpqk and Ψpql for

0 ≤ p, q ≤ N − 1, 0 ≤ k, l ≤ N and p, q, k, l ∈ Z. Thus we have 2N2(N + 1)

tipping surfaces partitioning the parameter space. Tipping curves φpqk and

ψpql are correlated to the tipping surfaces, since they are the projections of

Φpqk and Ψpql respectively on the planes (a, θ) and (b, θ) of the parameter

space.

5. Graph representation of discrete rigid transformations

As discussed in the previous section, the parameter space of rigid trans-

formations is divided into DRTs, whose boundaries are the tipping surfaces.

19

Figure 7: Four tipping surfaces in the parameter space (a, b, θ) (left) and its DRT graph

(right).

This subdivision can be represented by a graph which is defined as follows.

Definition 7. Let V be a set of vertices and E be a set of labelled edges,

such that

• a vertex v ∈ V corresponds to a DRT, and

• an edge e = (u, w, f) ∈ E, where f = Φpqk or Ψpql, connects a pair of

DRTs {u, w} ∈ V separated by the tipping surface f , which is consid-

ered as the label of the edge.

The graph G = (V,E) is called a discrete rigid transformation graph (DRT

graph) (see Figure 7).

In order to distinguish between the integer triplets of vertical and hori-

zontal tipping surfaces, we use an integer quadruple (p, q, k, i) for modelling

20

each tipping surface, where i = 0 or 1 indicates respectively the vertical or

horizontal set.

Strictly speaking, each vertex in V represents one digital transformed

image generated by the corresponding DRT. Each labelled edge in E that

links two vertices represents a critical transformation. This transformation

links a digital image to a neighbouring one, such that they differ by only one

pixel. Note that the DRT graph G = (V,E) does not contain any geometric

information, such as the parameter (a, b, θ) of rigid transformations, but only

the integer quadruples (p, q, k, i) representing the tipping surfaces.

The construction of a DRT graph can be performed with the help of

surface arrangements [15]. However this implies a complexity of Ω(n4) for

general surfaces, where n is the number of surfaces. In this article, we propose

an algorithm with a better complexity of O(n3) by using the properties of

tipping surfaces described in Section 4. We know that while projecting two

families of tipping surfaces on the planes (a, θ) and (b, θ), we obtain the

corresponding families of tipping curves defined by Formulae (13) and (14).

The combinatorial structure of DRTs in a 2D parameter space is called a 2D

DRT graph. This graph is built from tipping curves on the planes (a, θ) or

(b, θ). The DRT graph can be reconstructed by combining these two 2D DRT

graphs. For this, we will first describe an algorithm for building a 2D DRT

graph. Then we extend it to 3D to reconstruct the complete DRT graph.

6. Construction of 2D discrete rigid transformation graph

This section presents a method for constructing a 2D DRT graph of a set

of tipping curves generated from a given digital image I of size N ×N .

21

6.1. Problem formalization

A finite set of n tipping curves C partitions the plane into three types

of regions: a vertex is an intersection point of curves, an arc is a largest

connected portion of a curve that is not intersected by any other curve, and

a face is a largest connected region that is not intersected by any other curve

in C. We define as follows an incident graph represented by the partition C.

Definition 8. Given a set of tipping curves C, the 2D DRT graph GC =

(V C , EC) of C consists of a set V C of vertices and a set EC of labelled edges,

such that:

• each vertex v ∈ V C corresponds to a face, and

• each edge e = (u, w, φ) ∈ EC corresponds to an arc that connects two

faces {u, w} ∈ V C sharing a boundary tipping curve φ.

Note that the tipping curve φ is considered as a label of the edge e ∈ EC .

Figure 8 illustrates a 2D DRT graph.

The problem of the construction of GC is related to curve arrangements

[16]. Various methods have been proposed including incremental construc-

tions [16], sweeping lines [17] and others. A comprehensive discussion on

arrangements can be found in [16, 18]. Since our curves are tipping curves,

many degenerate cases can present themselves, such as tangent and multiple

intersections. In addition, we are only interested in the information about

faces and arcs in the arrangement. Therefore, instead of using the basic al-

gorithm of curve arrangement, we propose a variation of the sweeping line

method for constructing the graph GC . The main idea of the algorithm is

that a (vertical) cut is swept throughout tipping curves, and stops at some

22

Figure 8: Four tipping curves on the plane (a, θ) (left) and the associated 2D DRT graph

(right).

points to construct GC incrementally. The details of algorithm and its im-

plementation are explained in the sequel.

6.2. Principles of incremental 2D DRT graph reconstruction

Let C be a set of n tipping curves and GC denotes the partition graph of

C. We define a (vertical) cut, noted γ, as a monotonic line intersecting each

tipping curve in C exactly once [17]. Note that γ is an unbounded simple

curve and is represented by a sequence of tipping curves which γ intersects

from top to bottom, as illustrated in Figure 9. We assume that γ starts

at θ = 0 and ends at θ = 2π. While moving γ, its sequence of tipping

curves changes, but not continuously. Indeed, γ changes only at intersection

points, called event points. When γ reaches an event point, the algorithm

updates γ and constructs a part of GC . This is called an elementary step of

the algorithm. As a set of event points forms a series of elementary steps,

23

Figure 9: Event points and a vertical cut γ = (φ2, φ1, φ3) .

we need to maintain a sorted set of event points and make the curve γ go

through them in their increasing order.

In fact, the cut γ can be also represented as a directed graph such that

each edge corresponds to a tipping curve in γ and each vertex corresponds

to a face bounded by two consecutive tipping curves in γ.

Definition 9. Let γ = (φ1, φ2, ..., φn) be the cut. The partial graph δGC =

(δV C , δEC) with respect to γ is defined as a directed graph, such that

• δV C = {v0, v1, ..., vn} is the set of vertices,

• δEC = ((v0, v1, φ1), (v1, v2, φ2), ..., (vn−1, vn, φn)) is the ordered set of

edges.

In practice, elements of δEC are also ordered in the same way as γ.

At each elementary step, the partial graph δGC is updated with respect

to the change of γ. If such an operation is applied, then the sweep progresses

such that δGC is partially modified and integrated in the final graph GC .

Proposition 1. Let GC be the 2D DRT graph. Then we have

GC =
m
⋃

i=0

δGC
i (22)

24

where δGC
i is the partial graph at the i-th elementary step and m is the total

number of ordered event points.

Note that a partial graph is a directed graph because we need edge di-

rections during the update. However the final graph GC is not directed, so

that we do not keep directions while integrating δGC
i into GC .

6.3. Initial graph construction

The initialization step provides the graph δGC
0 with respect to the initial

cut γ0. In fact, γ0 is a sequence of tipping curves in C with the order defined

by the following relation ≺0.

Definition 10. For any pair of tipping curves φpqk(θ) and φp′q′k′(θ), a rela-

tion ≺0 is defined as φpqk(θ) ≺0 φp′q′k′(θ) iff

• φpqk(0) < φp′q′k′(0), or

• φpqk(0) = φp′q′k′(0) and the first derivatives verify φ′
pqk(0) < φ′

p′q′k′(0),

or

• φpqk(0) = φp′q′k′(0) and φ
′
pqk(0) = φ′

p′q′k′(0) and φpqk(π) < φp′q′k′(π).

From Definition 9, we can generate the initial graph δGC
0 of γ0. Note that

δGC
0 corresponds to the cut at θ = ǫ, where ǫ is some very small positive

value. The 2D DRT graph GC is then initialized by δGC
0 .

6.4. Incremental 2D DRT graph construction for simple cases

We first present the construction algorithm in simple cases, i.e., such that

any intersection consists only of two crossing tipping curves (Figure 10(a)).

We call the other cases degenerate or non-simple (see Figure 10(b)). We will

discuss how to deal with such degeneracies in Section 6.5.

25

(a) (b)

Figure 10: Illustration for simple (a) and non-simple (b) cases.

6.4.1. Detecting and ordering event points

The following question arises in the sweeping algorithm: how to detect

event points, or how to discover when an elementary step is applied? Since

event points are intersections of two tipping curves, the answer is linked to

Property 2 (iv). More precisely, given two tipping curves φpqk and φp′q′k′

modelled by the integer triplets (p, q, k) and (p′, q′, k′), they intersect if the

following relation is satisfied: ∆1 + ∆2 > 0 and |KP ± √∆1| ≤ P 2 + Q2

and |KQ ±
√
∆2| ≤ P 2 + Q2, where P = p − p′, Q = q − q′, K = k − k′,

∆1 = P 2(P 2 +Q2 −K2) and ∆2 = Q2(P 2 +Q2 −K2).

All event points need to be sorted and then stored in a queue, to be

handled one by one. We call this queue of event points an event queue. It is

defined as Q = (E ,≺E) where E is a set of all event points and ≺E is a binary

relation defined on E . The event points are sorted by ≺E as follows.

Definition 11. For any pair of event points u = (ux, uy) and v = (vx, vy) ∈
E , a relation ≺E is defined as u ≺E v iff ux < vx or ux = vx and uy < vy.

Sorting event points can be performed with exact computation. We know

that the coordinates (θ, a) of event points are typically irrational numbers

and that we generally cannot compute an exact value for θ. Nevertheless, in

26

order to sort event points with respect to θ ∈ [0, 2π[, we can use the values

cos θ and sin θ which are calculated from Corollary 1. We can also easily

obtain the value a from Formula (15) with cos θ and sin θ. Note that a, cos θ

and sin θ are all quadratic irrationals3. Therefore, sorting event points then

relies on the capacity to compare quadratic irrationals. It is known in [19]

that two quadratic irrationals can be compared by an exact method. In fact,

a quadratic irrational can be represented exactly using a periodic continued

fraction modelled by a sequence of integers, and this representation is unique.

Moreover the comparison of periodic continued fractions can be performed

in constant time [20] (see Appendix A for more details), so that sorting all

event points requires O(|Q| log |Q|) times of such a comparison.

Using integer arithmetic avoids the technical problems due to the use of

floating point representations. Most importantly, this allows us to prevent

detecting false event points that would arise from the limited precision of

floating-point representation supported in computer implementations. This

would be likely to occur in degenerate cases such as multiple tangent and/or

intersecting points.

Each event point is represented by the intersecting tipping curves at that

point, but not its coordinates, since they are more important for constructing

GC . In simple cases, any event point inQ is thus stored as two tipping curves,

represented by the integer triplets.

3A quadratic irrational is an irrational number that is a solution of some quadratic

equations.

27

�

�

Figure 11: Illustration of a progress of a cut by which the partial graph δGC
i+1 is modified

from δGC
i in simple case.

6.4.2. Elementary step

An elementary step corresponds to a transposition of two curves in a cut

γ around an event point, as illustrated in Figure 11. Following a change in

γ, the partial graph δGC is modified.

Formally, given an event point q = {φu, φv}, if the cut on the left of

q is denoted by γi = (φi1 , . . . , φu, φv, . . . , φin), then after q we have γi+1 =

(φi1 , . . . , φv, φu, . . . , φin). Let δGC
i and δGC

i+1 denote the partial graph of γi

and γi+1 respectively. We can generate δGC
i+1 from δGC

i according to the

following four steps:

1. finding the current vertex w bounded by φu and φv;

2. deleting two edges that are adjacent to w;

28

Procedure 1: Elementary step for simple cases.

Input: A partial graph δGC
i and an event point q = {φu, φv}.

Output: A partial graph δGC
i+1.

1 eu ← ε(φu); ev ← ε(φv);

2 {w} ← ϑ(eu) ∩ ϑ(ev);
3 {wu} ← ϑ(eu) \ {w}; {wv} ← ϑ(ev) \ {w};
4 ∆V C

− ← {w}; // w is a removed vertex

5 ∆EC
− ← {(wu, w, φu), (w,wv, φv)};

6 ∆V C
+ ← {w′}; // w′ is a new vertex

7 ∆EC
+ ← {(wu, w′, φv), (w

′, wv, φu)};
8 δGC

i+1 ← δGC
i \∆GC

− ∪∆GC
+ ;

/* ∆GC
− = (∆V C

− ,∆E
C
−) is the subtracting part from δGC

i

and ∆GC
+ = (∆V C

+ ,∆E
C
+) is the adding part to δGC

i */

3. replacing w by a new vertex w′;

4. creating two new edges that are linked to w′.

This procedure is called an i-th elementary step, by which the partial graph

of a cut is modified. The implementation is given in Procedure 1, which

requires the following two functions:

• ϑ(e) returns two adjacent vertices of the edge e in δV C
i ;

• ε(φ) returns the edge corresponding to the tipping curve φ in δEC
i .

6.4.3. Algorithm

We now present an algorithm for incremental 2D DRT graph construction.

The algorithm builds GC by picking event points in Q one by one. Each

29

iteration consists of modifying the partial graph δGC according to the current

cut γ (see Section 6.4.2), and then integrating δGC into GC .

Algorithm 1: Incremental construction of a 2D DRT graph in simple

cases.
Input: A tipping curve set C = {φ1, φ2, ..., φn}.
Output: A 2D DRT graph GC = (V C , EC).

1 Initialize GC and δGC ; (see Section 6.3)

2 Generate an event queue Q; (see Section 6.4.1)

3 while Q 6= ∅ do
4 q← dequeue(Q);
5 δGC ← Procedure 1 (δGC ,q);

6 GC ← GC ∪ δGC ;

6.5. Incremental 2D DRT graph construction for degenerate cases

As real data with tipping curves have degeneracies, we now discuss how to

deal with such cases. The algorithm for constructing a 2D DRT graph with

degeneracies is similar to Algorithm 1 except for two modifications. The first

of these –in step 2– consists of detecting and sorting degenerate event points

to generate an event queue Q (see Section 6.5.1). The second modification

–in step 5– is, despite dealing with a pair of tipping curves in simple cases,

dealing with a family of tipping curves; thus the elementary step needs to be

modified (see Section 6.5.2).

6.5.1. Detecting and sorting event points

According to their natures, the degeneracies can be classified into the

following three cases, illustrated in Figure 12. More than two tipping curves

can be:

30

(a) (b) (c)

Figure 12: Degenerate cases: multiple intersection (a), multiple tangent point (b) and

multiple mixed point (c).

(i) intersecting at a single point (multiple intersection);

(ii) tangent at a single point (multiple tangent point);

(iii) tangent and/or intersecting at a single point (multiple mixed point).

In fact, those degeneracies can be detected by using Property 2 (iii)(iv)

and Corollary 1 as mentioned in Section 6.4.1. More precisely, comparing

the intersections allows us to detect degenerate event points since they have

the same coordinates4 at the point. Such a degenerate event point is now

represented by a family of tipping curves that go through the intersection

point.

6.5.2. Elementary step for degenerate event points

Based on the classification of degenerate event points, we can handle

each case explicitly. For a multiple intersection, we swap the order of all

intersecting tipping curves in the cut γ before and after this event point.

A multiple tangent is not considered as an event point because there is no

change of γ around this point. The last case, a multiple mixed point, is

4Note that we do not know the exact value of θ but the values sin θ and cos θ.

31

more complicated. Observing carefully Figure 12, we remark that tipping

curves are decomposed into sets sorted by tangent values; each set contains

tipping curves with the same tangent. When γ passes this point, only the

order of these sets of curves are reversed while the order of curves in each

set is preserved. In fact, this provides the general procedure for multiple

intersection cases in which each tipping curve is seen as a set of equal tangent

curves.

At each event point, the elementary step consists of modifying the partial

graph δGC according to the change of γ in a similar way to Procedure 1.

Note that in degenerate cases, each event point contains a family of tipping

curves instead of a pair as in simple cases. Let q be an event point, then

q = {τ0, τ1, ..., τm} is a family of tipping curves where each τj = {φj1 , φj2 , ...}
is a set of tipping curves with the same tangent at q. Let δGC

i and δGC
i+1 be

respectively the partial graph with respect to γi and γi+1, which go through

on the left and right of the event point q. The construction of δGC
i+1 from

δGC
i proceeds following these steps:

1. Generating two lists of tipping curves which give the order of tipping

curves before and after q and storing them into two Last-In First-Out

(LIFO) stacks S1 and S2 respectively. Details are given below.

2. Finding the initial and terminal vertices u and v for an event point q,

between which δGC
i changes.

3. Finding the current vertices and edges between u and v.

4. Replacing the current vertices and edges by the new vertices and edges

between u and v.

While creating new edges in the last step, each edge is given a label of a

32

�

�

Figure 13: Illustrating the progress of a cut by which the partial graph δGC
i+1 is modified

from δGC
i in a degenerate case.

tipping curve taken from S2.

We now explain how to fill two LIFO stacks S1 and S2 according to the

order of tipping curves before and after the event point q. For this, we first

need to sort the sets τj and the tipping curves φ in each set τj of q with the

order obtained from δEC
i . After sorting, we assume that q = (τ0, τ1, . . . , τm)

and each τj = (φj1 , φj2 , . . .) with respect to δEC
i . The stacks S1 and S2 are

generated by using the reverse sequences of τj, which is τ j = (. . . , φj2 , φj1),

as follows.

for j = 0→ m do

for each φ ∈ τm−j do

S1 ← push(φ);

33

end for

for each φ ∈ τ j do
S2 ← push(φ);

end for

end for

Note that in S1, tipping curves have the same order as in δEC
i , and in

S2 the order of sets of tipping curves are reversed while the order of curves

in each set is preserved. Procedure 2 generates δGC
i+1 from δGC

i at the event

point q.

7. Construction of a discrete rigid transformation graph

In this section, we present an algorithm to construct a DRT graph from

a set of tipping surfaces. The basic idea is quite similar to the algorithm

for constructing a 2D DRT graph, which is based on sweeping a cut and

updating the DRT graph G at event points. At each elementary step, we

build an additional part ∆G and then integrate it into G .

7.1. Principles of incremental DRT graph construction

As explained before, the graph of the parameter space can be constructed

from its projections into the planes (a, θ) and (b, θ). We denoteGa = (V a, Ea)

(resp. Gb = (V b, Eb)) the projection DRT graph into the planes (a, θ) (resp.

(b, θ)). From Formulae (13) and (14) of tipping curves, we derive the following

proposition:

Proposition 2. Let Ga (resp. Gb) be a 2D DRT graph constructed from a

set of tipping curves Fφ (resp. Fψ). G
a and Gb are isomorphic, denoted by

34

Procedure 2: Elementary step for degenerate cases.

Input: A partial graph δGC
i and an event point q.

Output: A partial graph δGC
i+1.

1 Fill S1 and S2 as explained above.

2 φu ← pop(S1); φv ← pop(S1);

3 eu ← ε(φu); ev ← ε(φv);

4 {u} ← ϑ(eu) \ ϑ(eu) ∩ ϑ(ev); // u is the initial vertex

5 S1 ← push(φv); S1 ← push(φu);

6 φu ← pop(S2); φv ← pop(S2);

7 eu ← ε(φu); ev ← ε(φv);

8 {v} ← ϑ(eu) \ ϑ(ev) ∩ ϑ(ev); // v is the terminal vertex

9 S2 ← push(φv); S2 ← push(φu);

10 while S1 6= ∅ do
11 φu ← pop(S1); φv ← pop(S1);

12 eu ← ε(φu); ev ← ε(φv);

13 {w} ← ϑ(eu) ∩ ϑ(ev);
14 {wu} ← ϑ(eu) \ {w};
15 ∆V C

− ← ∆V C
− ∪ {w}; // w is a removed vertex

16 ∆EC
− ← ∆EC

− ∪ {(wu, w, φu)};
17 if S1 6= ∅ then S1 ← push(φv);

18 j ← 0;

19 φ← pop(S2);

20 ∆V C
+ ← {wj}; // wj is a new vertex

21 ∆EC
+ ← {(u, wj, φ)};

22 while S2 6= ∅ do
23 j ← j + 1;

24 φ← pop(S2);

25 ∆V C
+ ← ∆V C

+ ∪ {wj}; // wj is a new vertex

26 if S2 6= ∅ then ∆EC
+ ← ∆EC

+ ∪ {(wj−1, wj, φ)};
27 else ∆EC

+ ← ∆EC
+ ∪ {(wj, v, φ)};

28 δGC
i+1 ← δGC

i \∆GC
− ∪∆GC

+ ;

35

Ga ∼ Gb.

Proof Translating Formula (14) by π
2
with respect to θ, we obtain a set

of tipping curves that corresponds to the set of Formula (13), so that there

exists exactly one correspondence between φpqk and ψpql:

b(θ +
π

2
) = l +

1

2
− p sin(θ + π

2
)− q cos(θ + π

2
)

= l +
1

2
− p cos θ + q sin θ = a(θ).

As the sets Fφ and Fψ are periodic with period π
2
(Property 4), the 2D DRT

graphs in the two planes (a, θ) and (b, θ) are isomorphic. �

Since Ga ∼ Gb, we need to construct only one graph, Ga for example,

and by the correspondence of tipping curves between φpqk and ψpql we can

induce the other. The proof of Proposition 2 implies the following lemma.

Lemma 7.1. Let Ea ⊂ R
2 (resp. Eb ⊂ R

2) be the set of event points for the

set of tipping curves Fφ (resp. Fψ). We have Ea = Eb.

If Qa (resp. Qb) denotes the event queue corresponding to Ea (resp. Eb),
then |Qa| = |Qb|. Note that we store an event point as a list of tipping curves

which generates this event point, but not as its coordinates; thus Qa 6= Qb
even if their event points have the same coordinates.

In order to construct a DRT graph G we use two vertical cuts, each of

which sweeps the plane either (a, θ) or (b, θ) respectively. Thus an elementary

step is performed for each pair of event points on the two planes to generate

the additional part ∆G of G by combining the partial graph δGa and δGb

of Ga and Gb respectively. The construction of δGa and δGb was described

in Section 6.

36

Figure 14: Illustration of construction of an initial DRT graph G0 from two 2D DRT

partial graphs δGa
0 and δGb

0 on the planes (a, θ) and (b, θ).

7.2. Initial graph construction

The initial DRT graph G0 = (V0, E0) is generated from δGa
0 = (δV a

0 , δE
a
0)

and δGb
0 = (δV b

0 , δE
b
0) as follows:

• V0 = {(va, vb) | va ∈ δV a
0 , vb ∈ δV b

0 };

• E0 = {((u1, v), (u2, v), φu) | u1, u2 ∈ δV a
0 , v ∈ δV b

0 , (u1, u2, φu) ∈ δEa
0} ∪

{((u, v1), (u, v2), φv) | v1, v2 ∈ δV b
0 , u ∈ δV a

0 , (v1, v2, φv) ∈ δEb
0}.

Therefore G0 contains (n + 1)2 vertices and 2n(n+ 1) edges, where n is the

number of tipping curves of each of Fφ and Fψ (see Figure 14).

7.3. Elementary step

The additional part ∆Gi at each elementary step is constructed by Pro-

cedure 3, from δGa
i and δGb

i in a similar way to the initialization. The

difference being that a new vertex is generated from a pair of a new vertex

in δV a
i and one of the vertices in δV b

i or vice-versa. Thus a new edge con-

nects two vertices sharing an edge in δEa
i and δEb

i . Procedure 3 requires

37

Procedure 3: Elementary step for DRT graph construction.

Input: Two 2D partial graphs δGa
i and δGb

i and their additional

vertex sets ∆V a
+ and ∆V b

+.

Output: The additional part ∆Gi.

1 Initialize ∆Gi = ∅, with ∆Vi = ∅ and ∆Ei = ∅;
2 foreach u ∈ ∆V a

+ and v ∈ δV b
i do

3 ∆Vi ← ∆Vi ∪ {(u, v)};

4 foreach u ∈ δV a
i and v ∈ ∆V b

+ do

5 ∆Vi ← ∆Vi ∪ {(u, v)};

6 foreach eu = (u1, u2, φu) ∈ δEa
i do

7 foreach v ∈ ∆V b
+ do

8 ∆Ei ← ∆Ei ∪ {((u1, v), (u2, v), φu)};

9 foreach ev = (v1, v2, φv) ∈ δEb
i do

10 foreach u ∈ ∆V a
+ do

11 ∆Ei ← ∆Ei ∪ {((u, v1), (u, v2), φv)};

the additional parts ∆V a
+ and ∆V b

+ of δGa
i and δGb

i respectively. We modify

Procedure 2 and obtain Procedure 2’, such that it returns not only a partial

graph δGC
i+1 but also an adding vertex set ∆V C

+ , which is already calculated

in Procedure 2 as an intermediate parameter.

7.4. Algorithm

The final algorithm (Algorithm 2) builds a DRT graph G by taking two

event points qa ∈ Qa, qb ∈ Qb, whose coordinates are identical. At each

iteration, we generate ∆G simply by using Procedure 3 and then integrates

38

Algorithm 2: Construction of DRT graph.

Input: A set of tipping surfaces, i.e., two sets of tipping curves.

Output: A DRT graph G = (V,E).

1 Initialize δGa and δGb; (see Section 6.3)

2 Initialize G = G0 from δGa
0 and δGb

0; (see Section 7.2)

3 Generate Qa and Qb; (see Section 6.5.1)

4 while Qa 6= ∅ and Qb 6= ∅ do
5 qa ← dequeue(Qa);
6 {δGa,∆Ga

+} ← Procedure 2’ (δGa,qa);

7 qb ← dequeue(Qb);
8 {δGb,∆Gb

+} ← Procedure 2’ (δGb,qb);

9 ∆G ← Procedure 3 (δGa, δGb,∆Ga
+,∆Gb

+);

10 G ← G ∪∆G ;

it into G .

8. Complexity analysis and experiments

8.1. Space complexity of DRT graph

The complexity of a 2D DRT graph, i.e., the numbers of its vertices and

edges, is obtained by counting the number of event points.

Proposition 3. Given a set C of n tipping curves,

(i) the number of event points is at most n(n− 1);

and the generated 2D DRT graph GC has

(ii) at most n2 + 1 vertices;

39

(iii) at most 2n2 − n edges.

Proof (i) The number of event points is the number of intersections of two

curves in C. Since two tipping curves meet at most in two points (Corol-

lary 2), the number of event points is less than or equal to 2(n2) = n(n− 1).

(ii) The vertices of GC correspond to the faces of the arrangement of tipping

curves. If n = 1, the number of faces is 2 = 12 + 1, the curve forms the

boundary between two faces. Let us now assume that there are (n− 1)2 + 1

faces for n−1 tipping curves. When adding the n-th curve, this curve will be

divided into at most 2(n− 1) + 1 arcs by the n− 1 other curves, and each of

these arcs will split at most one face into two. Therefore, at most 2(n−1)+1

new faces will be created. Thus, the total number of faces (i.e., that of ver-

tices in the 2D DRT graph) is at most (n− 1)2 + 1 + 2(n− 1) + 1 = n2 + 1.

The result follows by induction. (iii) If n = 1, there is one curve and thus

we obtain 1 = 2 · 12 − 1 edge. Let us now assume that for n − 1 curves

there are at most 2(n − 1)2 − (n − 1) edges. When adding the n-th curve,

this curve will intersect at most the n − 1 previous curves. Since there are

at most two intersections for each one, this creates at most 2(n − 1) edges.

Moreover, the n-th curve itself will create at most 2(n− 1) + 1 new edges as

it has intersected at most 2(n− 1) points. Thus, the total number of created

edges is at most 2(n− 1)2− (n− 1)+ 2(n− 1)+ 2(n− 1)+ 1 = 2n2−n. The
result follows by induction. �

The following property allows us to study the complexity of Fφ for a

digital image I with finite size. This property induces the fact that the

number of possible DRTs is finite and bounded by the size of I. We say two

tipping curves are vertically offset if one can be obtained by translating the

40

other vertically. In fact, two vertically offset curves is a special case of two

tipping curves with no intersection, which corresponds to (ii) in Property 2.

Property 5. Given a digital image I of size N ×N , the family Fφ has

(i) N2(N + 1) tipping curves,

(ii) N2 sets of vertical offset tipping curves,

(iii) N + 1 vertically offset tipping curves in each set, and

(iv) 2N intersections at θ = π
2
d for d ∈ Z.

Proof (i) The number of tipping curves φpqk is simply the possible combi-

nations of integer triplets (p, q, k). Since 0 ≤ p, q ≤ N − 1 and 0 ≤ k ≤ N ,

there are N2(N + 1) tipping curves. (ii),(iii) From (ii) of Property 2, two

trigonometric curves φpiqiki and φpjqjkj are vertically offset if and only if they

have pi = pj, qi = qj and ki 6= kj. We thus obtain N2 sets of vertically offset

tipping curves, such that each set contains N +1 curves with different values

of k. (iv) Thanks to Property 4, we only need to evaluate Formula (15) at

θ = 0 and we have a(0) = k + 1
2
+ q. The number of intersections is the

number of different sums of q and k, which is 2N . �

In practice, the various numbers of event points, vertices and edges are

all lower than their upper-bound O(n2), due to the degenerated cases in the

arrangement of n tipping curves. From Property 5, we know that n = O(N3)

for an image of size N × N . Then, those complexities such as the numbers

of event point, vertices and edges can be re-expressed as O(N6).

As mentioned in Section 7, the construction of a DRT graph G is obtained

from its projections on the planes (a, θ) and (b, θ) using two cuts. Then we

notice that the initial graph has a complexity O(N3) × O(N3). We also

41

know that at each elementary step, there are O(N3) vertices generated. As

the number of event points is O(N6), in total there are O(N6) × O(N3)

vertices added in G . This justifies the following theorem.

Theorem 1. The DRT graph G associated to an image of size N × N has

a space complexity of O(N9).

8.2. Run-time complexity of construction algorithm

First, in Step 1 of Algorithm 2, the partial graphs δGa
0 and δGb

0 are

initialized with a time complexity of O(N3 logN), when tipping curves are

sorted as explained in Section 6.3. Note that the number of tipping curves

is O(N3). Then in Step 2, since each of δGa
0 and δGb

0 has O(N3) vertices

and edges, from section 7.2 we can generate G0 in O(N6). For Step 3, firstly

a O(N6) time complexity is needed to detect all the intersections of tipping

curves, Secondly, from Proposition 3, we know that the total number of

event points is O(N6), thus sorting the event points takes O(N6 logN). As

explained in Section 6.4.1, to compare any two event points we use their

corresponding continued fractions. Practically, this comparison is executed

in constant time [20] so that this does not increase the time complexity

of sorting event points. The sweep of a cut, in Steps 4 to 10, has O(N6)

iterations, for each of which Procedure 2’ and Procedure 3 are executed in

O(N3) operations respectively. Finally, the DRT graph is constructed in

O(N9) time.

8.3. Experiments

We have implemented our algorithm in C++. From the experiments,

the numbers of vertices (and edges) of the DRT graphs have been computed

42

2D DRT Graph DRT Graph

N Vertices Edges Vertices Edges

1 1 0 1 0

2 49 144 1 033 5 040

3 431 1 472 29 631 160 512

4 2 277 8 144 357 421 1 993 696

5 8 371 3 0304 2 487 053 13 978 176

6 25 033 92 176 12 550 225 71 310 320

7 62 199 229 184 48 604 267 276 284 416

8 139 661 518 096 160 554 101 916 648 928

9 282 731 1 049 344 457 270 393 2 612 082 816

Table 2: Numbers of DRT graph vertices and edges with respect to image sizes of N ×N .

for images of sizes varying from 1 × 1 to 9 × 9. The experiments were car-

ried out on a personal computer equipped with a processor 3.0GHz Intel R©
CoreTM 2 Duo and 4GB of memory. The results, shown in Table 2 and Figure

15, validate the theoretical O(N9) space complexity stated in the previous

theorem.

9. Applications

This section illustrates the practical applicability of our proposed combi-

natorial structure for DRTs.

9.1. Generation of all digital transformed images

Given a digital image I of size N ×N , we firstly show how to generate all

possible transformed images of I under rigid transformations. We know that

43

Figure 15: The relation between image size and number of elements, (i.e., vertices or

edges) in Table 2 for 2D DRT graphs (left) and DRT graphs (right).

the DRT graph models the whole space of digital rigid transformations on

any subset of Z2 of size N ×N . It should be mentioned that this graph does

not contain any geometric parameters (a, b, θ) for the rigid transformations

but only the topological information, which gives the relationship between

any neighbouring transformed images. Indeed, each edge of the DRT graph is

labelled by an integer quadruple (p, q, k, i) indicating that the pixel (p, q) ∈
Z
2 will cross the half-grid line, either x = k + 1

2
if i = 0 or y = k + 1

2
if

i = 1. Using this information, when we move from one vertex –a transformed

image– to its neighbour, only one pixel (p, q) changes. Thus, we can provide

incrementally all possible images under any rigid transformations of I. Figure

16 shows all generated digital transformed images from a part of the DRT

graph for an image of size 3 × 3 where a ∈] − 1
2
, 1
2
[, b ∈] − 1

2
, 1
2
[and

θ ∈]0, π
4
[.

44

Figure 16: A set of 231 images generated from the part of a DRT graph for a given image

of size 3 × 3 where a ∈] − 1

2
, 1

2
[, b ∈] − 1

2
, 1

2
[and θ ∈]0, π

4
[. The first image is the

identity transformation.

9.2. Discrete representation of the transformation of an image: discrete tran-

sition path

Given an image I and its transformed image I ′, we define a transition

path between I and I ′ as the (possibly non unique) locus of rigid transfor-

mations transitioning I to I ′ in the parameter space (a, b, θ). By using the

DRT framework, such a transition path can be represented as a connected

path in the DRT graph G , called a discrete transition path. Indeed, we can

find a discrete transition path in G between I and I ′ using the topological

information of G providing the neighbouring relations of DRTs. Figure 17

shows a discrete transition path between two vertices of G and the sequence

of transformed images corresponding to the vertices through the path. This

representation of such a sequence illustrates the fact that only one pixel is

45

changed between two incident transformed images. This allows us to define

a metric on the DRT graph for measuring similarity between different trans-

formed images, simply by counting the number of pixel changes, i.e., the

length of the path.

Figure 17: A discrete transition path of the DRT graph in the parameter space (a, b, θ)

(left) and a sequence of transformed images (right). Each vertex of the path represents a

DRT which gives a digital transformed image. The first image corresponds to the identity

transformation and the images from left to right and from top to bottom correspond to

the vertices ordered in the path.

9.3. Evaluation of discrete transition paths

Given two DRT graph vertices, it is observed in Figure 18 that their

discrete transition paths are not unique. Assuming the existence of several

different transition paths, we would like to find the best path which preserves

some additional criteria such as topology and geometry of our object of in-

terest in images. We know that for any two consecutive images in a discrete

46

transition path only one pixel changes and thus it may be easy to verify our

criteria incrementally along the path by checking only this pixel. By using

the DRT framework, it may be possible to propose a new evaluation strategy

for discrete transition paths.

Figure 18: Illustration of two different discrete transition paths with the same starting

and ending vertices in a DRT graph: The two paths (left) and their sequences of images

(right). The first row images correspond to the red path and the bottom ones correspond

to the blue path.

10. Conclusion

In this article, we have introduced a combinatorial structure represented

as a graph for modelling the parameter space of digital rigid transformations.

This graph consists of finite sets of vertices and edges. In this graph, each

vertex represents a digital transformed image, and each edge linking two ver-

tices represents a transition changing only one pixel between two transformed

images. This structure presents a space complexity of O(N9), where N ×N

47

is the size of any considered subspace of Z2. An algorithm has also been

proposed in order to define this structure in linear time with respect to this

space complexity.

Experiments performed on a standard computer emphasize both the cor-

rectness of the algorithm, and the estimated time/space polynomial com-

plexities. Due to these complexities, it remains however hardly tractable to

compute the proposed combinatorial structure for large images.

However, this size limitation is not a crippling default in the case of

several applications. Indeed, image processing techniques based on sub-

image/sample analysis can take advantage of the proposed approach, e.g., in

the context of pattern matching, non-local image processing [21], or marker-

based registration [22].

From a methodological point of view, further work will now involve study-

ing ways to use the proposed combinatorial structure in multiscale strate-

gies, most importantly in order to process large images without computing

the whole data structure. Furthermore, for image registration, most existing

methods [2] provide no guarantee to find a global optimal solution in general.

With our approach, we may define a new graph based metric using neigh-

bouring relations between discrete rigid transformations, which may lead to

a global optimal solution. From a theoretical point of view, extensions of

the presented results to 3D digital images (following some connected works

related to 3D pattern matching [23]) will also be investigated.

48

Appendix A. Exact comparison of quadratic irrationals

This appendix describes an algorithmic process enabling to compare two

quadratic irrationals without numerical approximation. In [19, 24], it was

proved that a quadratic irrational can be rewritten as a periodic continued

fraction. More formally, for any quadratic irrational Q =
p+

√
q

r
where p, q, r ∈

Z, q > 0, r 6= 0 we have a periodic continued fraction:

Q = a0 +
1

a1 +
1

a2 +
1

. . .+
1

an +
1

a1 +
1

a2 +
1

. . .

,

(A.1)

where a0 ∈ Z and ai ∈ N for i = 1 . . . n. Such a periodic continued fraction

is unambiguously modelled by a finite sequence of integers (a0, a1, . . . , an),

denoted by [a0; a1, a2, . . . an]. Based on this formulation, the comparison

between two quadratic irrationals can be performed as follows.

Given Q1 =
p1 +

√
q1

r1
= [a0; a1, a2, . . .] and Q2 =

p2 +
√
q2

r2
= [b0; b1, b2, . . .],

let k ∈ N be the smallest index for which ak 6= bk. If Q1 6= Q2 (the equality

can be easily checked by comparing the values pi, qi and ri), the order between

Q1 and Q2 is characterised by the sign of the value E = (−1)k(ak − bk). In

particular, we have Q1 < Q2 (resp. Q1 > Q2) if E < 0 (resp. E > 0) (see

Algorithm 3). Note that for a quadratic irrational Q =
p+

√
q

r
, it is proved

49

Algorithm 3: Comparison of two quadratic irrationals

Input: (p1, q1, r1), (p2, q2, r2) representing two quadratic irrationals Q1

and Q2.

Output: Value in {<,=, >} denoting the relation between Q1 and Q2.

if (p1, q1, r1) = (p2, q2, r2) then
return =;

else

E ← 0;

(p01, q
0
1, r

0
1, a

0
1)← (p1, q1, r1, ⌊p1+

√
q1

r1
⌋);

(p02, q
0
2, r

0
2, a

0
2)← (p2, q2, r2, ⌊p2+

√
q2

r2
⌋);

i← 1;

while E = 0 do

// calculate the term ai1 of Q1

(pi1, r
i
1, a

i
1)← (ai−1

1 ri−1
1 − pi−1

1 ,
q1−(pi

1
)2

ri−1

1

, ⌊pi1+
√
q1

ri
1

⌋);

// calculate the term ai2 of Q2

(pi2, r
i
2, a

i
2)← (ai−1

2 ri−1
2 − pi−1

2 ,
q2−(pi

2
)2

ri−1

2

, ⌊pi2+
√
q2

ri
2

⌋);
E ← (−1)i−1(ai1 − ai2);
i← i+ 1;

if E > 0 then return >;

else return <;

in [25] that the length of repeating block for Q is O(√q ln q). In the worst

case, all terms of the repeating block are compared, i.e., we have O(√q ln q)
comparisons. However, it is proved in [20] that the comparison of continued

fractions has an average-case complexity of O(1).

50

References

[1] A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Com-

puting Surveys 38 (4) (2006) 1–45.

[2] B. Zitová, J. Flusser, Image registration methods: A survey, Image and

Vision Computing 21 (11) (2003) 977–1000.

[3] E. Andres, The quasi-shear rotation, in: Discrete Geometry for Com-

puter Imagery, DGCI, Proceedings, Vol. 1176 of Lecture Notes in Com-

puter Science, Springer, 1996, pp. 307–314.

[4] D. Coeurjolly, V. Blot, M.-A. Jacob-Da Col, Quasi-affine transformation

in 3-D: Theory and algorithms, in: International Workshop on Combina-

torial Image Analysis, IWCIA, Proceedings, Lecture Notes in Computer

Science, Springer, 2009, pp. 68–81.

[5] C. Hundt, M. Lískiewicz, N. Ragnar, A combinatorial geometrical ap-

proach to two-dimensional robust pattern matching with scaling and

rotation, Theoretical Computer Science 410 (51) (2009) 5317–5333.

[6] C. Hundt, M. Lískiewicz, On the complexity of affine image matching,

in: Symposium on Theoretical Aspects of Computer Science, STACS,

Proceedings, Vol. 4393 of Lecture Notes in Computer Science, Springer,

2007, pp. 284–295.

[7] C. Hundt, Affine image matching is uniform TC0-complete, in: Com-

binatorial Pattern Matching, CPM, Proceedings, Vol. 6129 of Lecture

Notes in Computer Science, Springer, 2010, pp. 13–25.

51

[8] C. Hundt, M. Lískiewicz, Combinatorial bounds and algorithmic aspects

of image matching under projective transformations, in: Mathematical

Foundations of Computer Science, MFCS, Proceedings, Vol. 5162 of

Lecture Notes in Computer Science, Springer, 2008, pp. 395–406.

[9] A. Amir, O. Kapah, D. Tsur, Faster two-dimensional pattern matching

with rotations, Theoretical Computer Science 368 (3) (2006) 196–204.

[10] Y. Thibault, Rotations in 2D and 3D discrete spaces, Ph.D. thesis, Uni-

versity Paris-Est (2010).

[11] A. Amir, G. M. Landau, U. Vishkin, Efficient pattern matching with

scaling, Journal of Algorithms 13 (1) (1992) 2–32.

[12] A. Amir, A. Butman, M. Lewenstein, E. Porat, Real two dimensional

scaled matching, Algorithmica 53 (3) (2009) 314–336.

[13] V. A. Kovalevsky, Finite topology as applied to image analysis, Com-

puter Vision, Graphics & Image Processing 46 (2) (1989) 141–161.

[14] T. Y. Kong, A. Rosenfeld, Digital topology: Introduction and survey,

Computer Vision, Graphics & Image Processing 48 (3) (1989) 357–393.

[15] M. Sharir, Recent developments in the theory of arrangements of sur-

faces, in: Foundations of Software Technology and Theoretical Com-

puter Science, FSTTCS, Proceedings, Vol. 1738 of Lecture Notes in

Computer Science, Springer, 1999, pp. 1–21.

[16] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir,

52

Arrangements of curves in the plane-topology, combinatorics, and algo-

rithms, Theorical Computer Science 92 (2) (1992) 319–336.

[17] J. Snoeyink, J. Hershberger, Sweeping arrangements of curves, in: Sym-

posium on Computational Geometry, SOCG, Proceedings, ACM, 1989,

pp. 354–363.

[18] D. Halperin, Arrangements, in: J. E. Goodman, J. O’Rourke (Eds.),

Handbook of Discrete and Computational Geometry, CRC Press LLC,

2004, Ch. 24, pp. 529–562.

[19] K. H. Rosen, Elementary Number Theory and its Applications, 3rd Edi-

tion, Addison-Wesley, 1992.

[20] P. Flajolet, B. Vallée, Continued fractions, comparison algorithms, and

fine structure constants, Tech. Rep. 4072, INRIA (2000).

[21] A. Buades, B. Coll, J. M. Morel, A review of image denoising algorithms

with a new one, Multiscale Modeling & Simulation 4 (2) (2005) 490–530.

[22] X. Pennec, N. Ayache, J.-P. Thirion, Landmark-based registration us-

ing features identified through differential geometry, in: I. N. Bankman

(Ed.), Handbook of Medical Imaging, Academic Press, 2000, Ch. 31, pp.

499–513.

[23] K. Fredriksson, E. Ukkonen, Combinatorial methods for approximate

pattern matching under rotations and translations in 3D arrays, in:

String Processing and Information Retrieval, SPIRE, Proceedings,

IEEE, 2000, pp. 96–104.

53

[24] A. Y. Khinchin, Continued Fractions, Dover Publications, 1964.

[25] E. V. Podsypanin, Length of the period of a quadratic irrational, Journal

of Mathematical Sciences 18 (6) (1982) 919–923.

54

