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Abstract

Rigid transformations are involved in a wide range of digital image processing
applications. When applied on such discrete images, rigid transformations
are however usually performed in their associated continuous space, then
requiring a subsequent digitization of the result. In this article, we propose
to study rigid transformations of digital images as a fully discrete process.
In particular, we investigate a combinatorial structure modelling the whole
space of digital rigid transformations on any subset of Z2 of size N × N .
We describe this combinatorial structure, which presents a space complexity
O(N9) and we propose an algorithm enabling to build it in linear time with
respect to this space complexity. This algorithm, which handles real (i.e.
non-rational) values related to the continuous transformations associated to
the discrete ones, is however defined in a fully discrete form, leading to exact
computation.

Keywords: digital rigid transformations, combinatorial structure, discrete
algorithm

1. Introduction

Rigid transformations, (i.e. transformations based on translations and
rotations) are frequently involved in the design of computer vision and image
processing techniques (e.g., object tracking [1], image registration [2]), and
considered in applications related to 2D or 3D images (e.g., remote sensing,
medical imaging). Despite the digital nature of the processed images, such
transformations are generally performed by considering the Euclidean space
(Rn) associated to the Eulerian space (Zn) of the data. Such “partially
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continuous” transformations then need to be interfaced with a subsequent
digitization process to finally obtain a result in Z

n.
The purpose of this article is to study rigid transformations of digital

images as a fully discrete process. In particular, several issues are considered,
related to the number of possible rigid transformations given a finite subspace
of Zn, the way to generate all of them, and the relations between all such
transformations. Some combinatorial and algorithmic answers are provided
to these questions, in the case of Z2.

The contributions of this article are twofold. The first –theoretical– one
consists of the proposal of a combinatorial structure (namely a graph) mod-
elling the whole space of digital rigid transformations on any subset of Z2

of size N × N , and the links between these transformations. These links
correspond to the discontinuities induced by the digitization of the continu-
ous transformations in R

2 associated to those defined in Z
2. The structure

presents a space complexity O(N9). On the one hand, this first result pro-
vides a contribution to the field of combinatorial analysis of image transfor-
mations (where previous works, summarised in Table 1, have already been
proposed for rotations [3, 4], scalings [5, 6], combined scalings and rotations
[7], affine transformations [8, 9], projective and linear transformations [10]).
On the other hand, a new concept related to the topology of digital transfor-
mations is introduced in this structure. This is neighbour of transformations
induced by the relations between the transformations.

Classes of transformations Complexity
Rotations O(N3)
Scalings O(N3)
Rotations and scalings O(N6)
Linear transformations O(N12)
Affine transformations O(N18)
Projective transformations O(N24)

Table 1: Space complexity of different classes of transformations on a subspace of Z2 of
size N ×N .

The second –methodological– contribution is an efficient algorithm en-
abling to build this combinatorial structure, with a computational cost linear
with respect to its space complexity. This algorithm, which handles real (i.e.
non-rational) values related to the continuous transformations associated to
the discrete ones, is however defined in a fully discrete form, leading to ex-
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act computation, and avoiding in particular any approximations related to
floating point arithmetic.

The article is organised as follows. Sections 2 and 3 recall background no-
tions and useful concepts. Section 4 introduces two notions: tipping surfaces,
and tipping curves, which constitute the basis of the proposed combinatorial
structure. Section 5 actually defines this structure, while Section 6 and 7
propose an algorithm for its construction. Complexity and experiments are
discussed in Section 8 . Section 9 concludes the article.

2. Geometric transformations and digitization

2.1. 2D images and digitization

Let V be a set called value space containing at least two elements, and in
particular one of them is background and noted ⊥. A 2D image is a function
I : R2 → V such that I−1(V \ {⊥}) is finite. (If |V | = 2, we say that I
is a binary image; if |V | is equipped with a total order, we say that I is a
grey-level image; etc.). We can suppose that I−1(V \ {⊥}) ⊆ E = [−N

2
, N

2
]2

for a given N ∈ N. The set E is called a support of I and N is the size of I.
A 2D digital image is defined as a function I : Z2 → V such that I−1(V \

{⊥}) is finite. We can suppose that I−1(V \ {⊥}) ⊆ S = [−N
2
, N

2
]2 for a

given N ∈ N. The set S is called a support of I and N is the size of I.
In the sequel, by abusing of notation, we set I : E → V and I : S → V ,

in stead of I : R2 → V and I : Z2 → V .
The 2D digital image I is a numeric presentation of the 2D image I

followed by a digitization process. In other words, the digitization consists
of defining I : S → V associated to I : E → V , such that S = E ∩ Z

2. It
relies on the partition of E into a regular grid (such as square, triangular,
hexagonal grid, etc.) induced by the points of S.

The digitization process then associates each point of E to exactly one
point of S. In this paper, we define the partition of E on a square grid. In
such a case, the digitization process is defined via the following function

∣

∣

∣

∣

D : E → S

x = (x, y) 7→ p = (p, q)
(1)

such that x and p verify

p = [x+
1

2
] and q = [y +

1

2
] (2)
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where [ . ] is a round function, which can be either the floor, ceiling, etc.
All these round functions are equal for all the points which do not have
semi-integer coordinates, and (possibly) differ on these last points.

We call the subset of E made of such points the half-grid, and we note
this subset H. More formally, we have

H = E ∩
(

R× (Z+
1

2
)
)

∪
(

(Z+
1

2
)× R

)

. (3)

Broadly speaking, the digitization function D decomposes E into unit
(open) squares, namely the pixels, whose centres are points of Z2. In other
words, the half-grid H represents the set of boundaries of pixels.

The correct handling of this half grid, which can be seen as the “inter-
pixel” space in digital imaging is sometimes of great importance, for instance
in (digital) topology [11, 12]. However, in the present context of digital geom-
etry, the way the points of H are digitised is not crucial, since they represent
an infinitesimal part of E. Nevertheless, H remains of first importance in
the understanding of digitization, since the discontinuities induced by this
process will occur on the points located in this set.

2.2. Geometric transformations for digital images

We call geometric transformation any injective function T : R2 → R
2.

Such a transformation induces, of course, a bijection between E and T (E) =
{T (x) | x ∈ E}. A geometric transformation applied on an image I : E → V

will provide a new transformed image T ◦ I : E → V .
However it is not possible to apply directly T on a digital image I, since

there is no guarantee that T (x) ∈ Z
2, for any x ∈ S. The handling of geo-

metric transformations for digital images requires to define a digital function
T : Z2 → Z

2, such that by applying T on I : S → V we obtain a new digital
transformed image T ◦ I : S → V . This can be conveniently done by setting

T = D ◦ T , (4)

i.e. T is obtained by embedding S in E, then applying T , and digitizing
the result by D (see Figure 1). Such a transformation T is called 2D digital
image transformation.

Remark 1. There exist two models for image transformation. Given a trans-
formation T , the first one (Lagrangian model) consists of determining T (x)
for any point x in the initial space, while the second one (Eulerian model)

4



Figure 1: Geometric transformation and its digitalization.

consists of determining T −1(y) for any point y in the deformed space. Both
models are equal for a transformation T : R2 → R

2, since T is bijective. In
the digital case, these model are actually distinct, since D ◦ T is not bijec-
tive, in general. In the current work, and without loss of generality, we focus
on the Lagrangian model (see Figure 2). Note that the results shown in this
paper are valid for any of the two models.

Figure 2: Two digital image transformation models: Lagrangian (left) and Eulerian (right)
models.
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3. Rigid transformations for digital images

3.1. Digital rigid transformation

From now on, we only consider 2D rigid transformations which compose
of translations and rotations. Formally, a rigid transformation T : R2 → R

2

transforms any point p = (p, q) ∈ R
2 into a point r = (r, s) ∈ R

2 according
to the following relation

T (p) = r =

(

r

s

)

=

(

cos θ − sin θ
sin θ cos θ

)(

p

q

)

+

(

a

b

)

(5)

where a, b, θ ∈ R and θ ∈ [0, 2π[.
In the case where T : Z2 → Z

2, from (1), (4) and (5), the transformed
point T (p) = (p′, q′) associated to p ∈ Z

2 is then defined as

T (p) =

(

p′

q′

)

=

(

[p cos θ − q sin θ + a + 1
2
]

[p sin θ + q cos θ + b+ 1
2
]

)

. (6)

This transformation is called 2D digital rigid transformation. Note that any
rigid transformation (resp. digital rigid transformation) can be modelled by
a triplet of parameters (a, b, θ), noted Tabθ (resp. Tabθ). We note T (resp. Td)
the set of all the rigid transformations (resp. digital rigid transformations)

T = {Tabθ | (a, b, θ) ∈ R
3} (7)

Td = {Tabθ | (a, b, θ) ∈ R
3} (8)

3.2. Discontinuities of digital rigid transformations

Let us define the function T (resp. Td), which associates to each triplet
of parameters (a, b, θ) the rigid transformation (resp. digital rigid transfor-
mation) modelled by these parameters (see (5) and (6)):

∣

∣

∣

∣

T : R
3 → T

(a, b, θ) 7→ T (a, b, θ) = Tabθ, (9)

∣

∣

∣

∣

Td : R
3 → Td

(a, b, θ) 7→ Td(a, b, θ) = Tabθ.
(10)

The function T is continuous on R
3. In other words, for any value δ > 0,

there exists ǫ > 0 such that for all (a1, b1, θ1), (a2, b2, θ2) ∈ R
3

‖(a1, b1, θ1)− (a2, b2, θ2)‖ < ǫ⇒ ‖T(a1, b1, θ1)− T(a2, b2, θ2)‖ < δ (11)
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for given norms ‖ . ‖ on R
3and (R3)R

3

(for instance the N∞ and pointwise
N∞ norms, respectively).

Due to the digitization involved in the definition of T in (6), the function
Td is piecewise constant on R

3. For the same reason, Td presents discontinu-
ities. More precisely, there exist some points c ∈ R

3 such that for any ball
B(c, ǫ) of center c and radius ǫ > 0, there exist (a1, b1, θ1), (a2, b2, θ2) ∈ B(c, ǫ)
such that for δ = 1,

‖(a1, b1, θ1)− (a2, b2, θ2)‖ < ǫ⇒ ‖Td(a1, b1, θ1)− Td(a2, b2, θ2)‖ ≥ δ. (12)

Such points c ∈ R
3 are critical points in the parameter space of the digital

rigid transform. They characterise, in particular, some transformations which
map at least one point onto the half grid (see Figure 3). These considerations
lead to the following definition.

Definition 1. Let (a, b, θ) ∈ R
3, and Tabθ be the associated rigid transforma-

tion. We say that Tabθ is a critical transformation if

∃p = (p, q) ∈ Z
2, Tabθ(p) ∈ H. (13)

We denote by Tc the set of all the critical transformations.

The set Tc of the critical transformations obviously corresponds to the
part of R3 inducing discontinuities in Td.

Figure 3: A critical transformation is a transformation of an integer point to either a
vertical (left) and horizontal (right) half-grid point.

3.3. Discrete rigid transformations

As a result of the discontinuity of digital rigid transformation, it is possi-
ble that the digitalizations D for two rigid transformations of a digital image
are identical. This leads to the following consideration about the equivalence
transformations.
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Definition 2. Let T be the set of all rigid transformations for a given digital
image I. Two elements T , T ′ ∈ T are considered equivalent, and we write
T ∼ T ′, iff D ◦ T (p) = D ◦ T ′(p) for ∀p ∈ I.
We define the equivalence class of T ∈ T under the equivalence relation ∼,
denoted by [T ]∼, as the set of all transformations in T that are equivalent to
T

[T ]∼ = {T ′ ∈ T : T ′ ∼ T } .
In this context, each equivalence class is a set of rigid transformations

that provides the same digital transformed image.

Definition 3. For a given digital image I, each equivalence class in T of I
under ∼ is called a discrete rigid transformation(DRT).

Please note that the term discrete thus refers to the non-continuous structure
of transformations for digital images. By this way, the parameter space of the
rigid transformations is partitioned into the disjoint sets of the equivalence
classes, such that each of which associates exactly to one DRT.

4. Tipping surfaces and tipping curves

In this section, we introduce two necessary notions to study the decom-
position of the parameter space into the DRTs. As we have explained in
precedent section, the digital rigid transformations possess a discontinuous
property, which is characterized by the critical transformations. The last
transformations are actually related to the structure of DRTs in the param-
eter space, since they represent the boundaries of the equivalence classes.
We will propose as follows two notions: tipping surfaces and tipping curves
which in fact are analytical expression of critical rigid transformations.

4.1. Tipping surface

According to Definition 1, a critical rigid transformation Tabθ moves at
least one integer point p = (p, q) ∈ Z

2 into a half-grid point which can
be either vertical half-grid point (k + 1

2
, λ) or a horizontal half-grid point

(λ, l + 1
2
) for k, l ∈ Z and λ ∈ R. The set of (a, b, θ) associated to the

critical transformation forms in the parameter space a surface, called tipping
surfaces. Note that any tipping surface can be represented by an integer
triplet (p, q, k) or (p, q, l) corresponding to vertical or horizontal half-grid
point.
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Definition 4. Given an integer triplet (p, q, k) (resp. (p, q, l)), we define
a vertical (resp. horizontal) tipping surface as a function Φpqk (resp. Ψpql)
such that

∣

∣

∣

∣

Φpqk : R
2 −→ R

(b, θ) 7−→ a = k + 1
2
+ q sin θ − p cos θ, (14)

∣

∣

∣

∣

Ψpql : R
2 −→ R

(a, θ) 7−→ b = l + 1
2
− p sin θ − q cos θ. (15)

The sets of all tipping surfaces defined by (14) and (15) correspond obviously
to the discontinuity of digital rigid transformations. They divide then the
parameter space (a, b, θ) into the equivalence classes, in each of which any
rigid transformation gives the identical digital transformed image. We restate
that each equivalence class is represented by a DRT. As the number of critical
transformations is limited by the size of a given digital image I, the number
of tipping surfaces and DRTs in the parameter space are finite. Figure 4
illustrates the parameter space of an image of size 3× 3.

Figure 4: Discrete rigid transformations (DRTs) are observed as regions separated by
tipping surfaces.

4.2. Tipping curve

We remark that the tipping surface Φpqk in Equation (14) is independent
of b. Consequently, the b-axis orthogonal cross-sections of Φpqk at any b ∈
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R are identical, and each has the form of a trigonometric curve, called a
tipping curve, denoted by φpqk. This means that (14) is the equation of a
tipping curve as well if it is observed in the plane (a, θ). Similarly, (15) is
also considered as a tipping curve on the plane (b, θ), denoted by ψpql.

Definition 5. Given an integer triplet (p, q, k) (resp. (p, q, l)), we define a
vertical (resp. horizontal) tipping curve as a function φpqk (resp. ψpql) such
that

∣

∣

∣

∣

φpqk : R −→ R

θ 7−→ a = k + 1
2
+ q sin θ − p cos θ, (16)

∣

∣

∣

∣

ψpql : R −→ R

θ 7−→ b = l + 1
2
− p sin θ − q cos θ. (17)

The sets of all tipping curves φpqk and ψpql provide two families of critical
rigid transformations projected on the planes (a, θ) and (b, θ) respectively.

Definition 6. Two families of tipping curves are defined as:

∣

∣

∣

∣

∣

Fφ : R −→ R
|Z3|

θ 7−→ ⋃

p,q,k∈Z
φpqk(θ),

∣

∣

∣

∣

∣

Fψ : R −→ R
|Z3|

θ 7−→ ⋃

p,q,l∈Z
ψpql(θ).

Figure 5 illustrates a part of Fφ for an digital image I of size 5 × 5; we set
here p, q ∈ [−2, 2] and k ∈ [−3, 2].

4.3. Properties of tipping curves

So far we have studied the definitions of tipping surfaces and tipping
curves. We will discuss more about combinatorial structures of discrete rigid
transformations by using the sets of tipping surfaces and curves. Before
this, we will state in this part some properties about tipping curves. From
Definition 5, we remarked that Fφ and Fψ have the similar forms. Indeed, if
we translate Fψ by π

2
with respect to θ, then we obtain Fφ. For simplicity,

we will thus show the properties for Fφ that are valid for Fψ as well.
The first property talks about the unique representation of tipping curves.

This is a direct result of the fact that the basis {1, cosθ, sinθ} of function
(16) is linearly independent.
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Figure 5: A part of the family of tipping curves Fφ for an digital image of size 5× 5.

Property 1. There exists a unique integer triplet (p, q, k) ∈ Z
3 for each

tipping curve.

The next property shows the relationships between two tipping curves.
This will be used for the algorithm of constructing the combinatorial struc-
ture of discrete rigid transformations. Geometrically, two tipping curves can
relate to each other in five different ways; they are identical, intersecting1,
vertical offset2, tangent3 or not intersecting (see Figure 6). Analytical inter-
pretation of these relationships is expressed as follows.

Property 2. Let φpqk and φp′q′k′ be two tipping curves. Setting K = k − k′,
P = p− p′, Q = q − q′ and ∆ = 4Q2(P 2 −K2 + Q2), we have the following
relations between φpqk and φp′q′k′:

• if P = 0, Q = 0, and

(i) if K = 0 then φpqk and φp′q′k′ are identical,
(ii) otherwise they are vertical offset,

• otherwise,

1Two tipping curves intersect if they cross each other at a point.
2Two tipping curves are vertical offset if one can be obtained by translating the other

vertically, thus they do not intersect.
3Two tipping curves are tangent if both share the same tangent line at a point, i.e. the

curves touch but do not cross each others.
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(iii) if ∆ < 0 then they have no intersection,
(iv) if ∆ = 0 then they are tangent,
(v) if ∆ > 0 then they intersect.

Figure 6: Relationships between two tipping curves, which are identical (a), vertical offset
(b), not intersecting (c), tangent (e) and intersecting (d).

Proof (i) is easily induced by Property 1. Now, assuming that two tipping
curves φpqk and φp′q′k′ are different. The solution set of the equations φpqk
and φp′q′k′ determinates the nature of the relationships between two curves;
it gives the either intersection points (v), tangent point (iv), or empty set
(ii)(iii). Supposing the equation system has a solution, then we can find a θ
satisfying the following:

k +
1

2
− p cos θ + q sin θ = k′ +

1

2
− p′ cos θ + q′ sin θ.

Replacing K = k − k′, P = p− p′ and Q = q − q′, then we have

K − P cos θ = −Q sin θ.

Squaring both sides of the equation, we obtain

K2 − 2KP cos θP 2 cos2 θ = Q2 sin2 θ.

Because cos2 θ + sin2 θ = 1, thus

(P 2 +Q2) cos2 θ − 2KP cos θ +K2 −Q2 = 0,

which is a quadratic equation if P 2 + Q2 6= 0. As we assume that φpqk and
φp′q′k′ are different, either P , Q or K are not equal to “0”. If P = 0, Q = 0
and K 6= 0, then two curves are vertical offset (ii). Otherwise P 2 + Q2 6= 0,
the discriminant ∆ of the above quadratic equation determines the number
and nature of the roots. There are three cases:
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• ∆ < 0 : no-intersection (iii),

• ∆ = 0 : tangent curves (iv),

• ∆ > 0 : intersecting curves (v).

�

Therefore, given two curves φpqk and φp′q′k′ we can find out their relationship
by evaluating the integer triplets (p, q, k) and (p′, q′, k′) with exact comput-
ing4. The proof of Property 2 implies the following corollaries.

Corollary 1. Given two tipping curves φpqk and φp′q′k′, if they are

• tangent, the tangent point satisfies cos θ = KP
P 2+Q2 ,

• intersect, the intersection points satisfy cos θ = −2KP±
√
∆

2(P 2+Q2)
,

where P = p− p′, Q = q − q′, K = k − k′ and ∆ = 4Q2(P 2 −K2 +Q2).

Corollary 2. Two distinct tipping curves have at most two intersections.

As the tipping curves have the form of trigonometric functions with sin θ
and cos θ, they inherit the properties of the trigonometric functions as follows.

Property 3. The family of tipping curves Fφ is symmetric, such that

Fφ(θ) = −Fφ(θ),
Fφ(θ) = Fφ(−θ +m1

π

4
) for m1 ∈ Z.

Property 4. The family of tipping curves Fφ is periodic, such that

Fφ(θ) = Fφ(θ +m2
π

2
) for m2 ∈ Z,

Fφ(θ) = Fφ(θ) +m3 for m3 ∈ Z.

The following property studies about the complexity of Fφ for a digital
image I of a finite size. This property induces the fact that the number of
possible DRTs is finite and bounded by the size of I.

4Exact computing means using only integers during computation.
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Property 5. Given a digital image I of size N ×N , the family Fφ has

(i) N2(N + 1) tipping curves,

(ii) N2 sets of vertical offset tipping curves,

(iii) N + 1 vertical offset tipping curves in each set, and

(iv) 2N intersections at θ = π
2
d for d ∈ Z.

Proof (i): The number of tipping curves φpqk is simply the possible com-
binations of integer triplet (p, q, k). Since 0 ≤ p ≤ N − 1, 0 ≤ q ≤ N − 1
and 0 ≤ k ≤ N , there are N2(N + 1) tipping curves. (ii) and (iii): From
Property 2, two trigonometric curves φpiqiki and φpjqjkj are vertical offset if
and only if they have pi = pj, qi = qj and ki 6= kj. We thus obtain N2 sets of
vertical offset tipping curves, such that each set contains N+1 curves having
different values of k. (iv): Thanks to the property 4, we need only evaluating
(16) at θ = 0, we have a(0) = k + 1

2
+ q. The number of intersections is the

number of combinations of q and k, which is 2N . �

5. Graph representation of discrete rigid transformations

As we discussed in the previous section, the parameter space of rigid
transformation is divided into DRTs, whose the boundaries are the tipping
surfaces. This subdivision can be represented by a graph which is defined as
follows.

Definition 7. Let V be a set of vertices and E be a set of labelled edges,
such that

• a vertex v ∈ V corresponds to a DRT, and

• an edge e = (u, w, f) ∈ E, where f = Φpqk or Ψpql, connects a pair of
DRTs {u, w} ∈ V separated by the tipping surface f , which is consid-
ered as a label of the edge.

The graph G = (V,E) is called a discrete rigid transformation graph (DRT
graph).

As was mentioned, each tipping surface is modelled by an integer triplet,
such as for the vertical (resp. horizontal) tipping surface Φpqk (resp. Ψpql),
we have (p, q, k) (resp. (p, q, l)). Reversely, given an integer triplet (p, q, k), it
can be either Φpqk or Ψpqk. In order to distinguish between the integer triplets
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of vertical and horizontal tipping surfaces, we will use an integer quadruple
(p, q, k, i) for modelling each tipping surface, where i indicates either vertical
or horizontal ones.

Strictly speaking, each vertex in V represents one digital transformed
image generated by the corresponding DRT. Each labelled edge in E that
links two vertices represents a critical transformation. This transformation
links a digital image to a neighbouring ones, such that they differ by only
one pixel. By that way, the DRT graph G = (V,E) does not contain any ge-
ometric information, such as the parameter (a, b, θ) of rigid transformations,
but integer quadruples (p, q, k, i) representing the tipping surfaces.

The construction of a DRT graph can be solved with the help of surface
arrangements [13, 14], with a complexity of O(n3) for general surfaces, where
n is the number of surfaces. In this article, we propose an algorithm for the
problem whose complexity is O(n2) by using properties of tipping surfaces
described in Section 4. We know that while projecting two families of tipping
surfaces on the planes (a, θ) and (b, θ), we obtain the corresponding families of
tipping curves whose equations are given in (14) and (15). The combinatorial
structure of DRTs in a 2D parameter space is called a 2D DRT graph. This
graph is built from tipping curves on the plane either (a, θ) or (b, θ). The
DRT graph can be reconstructed by combining these two 2D DRT graphs.
For this, we will first describe an algorithm for building a 2D DRT graph.
Then we extend it for 3D to reconstruct the complete DRT graph.

6. Construction of 2D discrete rigid transformation graph

This section presents a method for constructing a 2D DRT graph of a set
of tipping curves generated from a given digital image I of size N ×N .

6.1. Problem formalization

A finite set of tipping curves C partition the plane into three types of
maximal connected regions: a vertex is an intersection point of curves, an
arc is a maximal connected portion of a curve that is not intersected by any
other curve, and a face is a maximal connected region that is not intersected
by any other curve in C.

Our problem is formalized as follows: given a set of n tipping curves C,
we would like to construct a 2D DRT graph of C, denoted by GC . Figure 7
illustrates the 2D DRT graph for a set of 4 tipping curves on the plane (a, θ).
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Definition 8. Given a set of tipping curves C, the 2D DRT graph GC =
(V C , EC) of C consists of a set V C of vertices and a set EC of labelled edges,
such that:

• each vertex v ∈ V C corresponds to a face, and

• each edge e = (u, w, φ) ∈ EC corresponds to an arc that connects two
faces {u, w} ∈ V C sharing a boundary tipping curve φ.

Note that the tipping curve φ is considered as a label of the edge e ∈ EC .

Figure 7: Four tipping curves on plane (a, θ) (left) and its 2D DRT graph (right).

This problem is related to curve arrangements [15, 16]. Various meth-
ods have proposed such as: incremental construction [17], zone theorem [18],
sweeping line [16], etc. A comprehensive discussion on arrangement can be
found in [19]. Since our curves are tipping curves, there thus exist many
degenerate cases such as tangent and multiple intersections. In additions, we
are only interested in the informations about faces and arcs in the arrange-
ment. Therefore, instead of using the basic algorithm of curve arrangement,
we will propose a variation of sweeping line method for constructing the
graph GC . The main idea of the algorithm is that a (vertical) cut is swept
throughout tipping curves, and stops at some points to construct GC incre-
mentally. The detail of algorithm and its implementation will be explained
in the following.
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6.2. Principles of incremental 2D DRT graph reconstruction

We restate that C denotes a set of n tipping curves. We define a (vertical)
cut, noted γ, as monotonic line intersecting exactly once for each tipping
curve in C. Please note that γ is an unbounded simple curve and represented
by a sequence of tipping curves which γ intersects from the top to bottom, as
illustrated in Figure 8. We assume that γ starts at θ = 0 and ends at θ = 2π.
While moving γ, its sequence of tipping curves changes, but not continuously.
Indeed, γ changes only at the intersection points, called event points. The
moment at which γ reaches an event point, the algorithm updates γ and
constructs a part of the graph GC . This is called an elementary step of the
algorithm. As a set of event points forms a series of elementary steps, we need
to maintain a sorted set of event points and progress γ in their increasing
order.

Figure 8: The event points, the vertical cut γ = (φ3, φ2, φ1) .

In fact, the cut gamma can be also represented as a directed graph such
that each edge corresponds to a tipping curve in γ and each vertex corre-
sponds to a face bounded by two consecutive tipping curves in γ.

Definition 9. Let γ = (φ1, φ2, ..., φn) be the cut. The partial graph δGC =
(δV C , δEC) with respect to γ is defined as a directed graph, such that

• δV C = {v0, v1, ..., vn} is the set of vertices,

• δEC = ((v0, v1, φ1), (v1, v2, φ2), ..., (vn−1, vn, φn)) is the ordered set of
edges.

In practice, elements of δEC are also ordered in the same way as γ.
At each element step, the partial graph δGC is updated with respect to

the change of γ. This corresponds to modify a part of δGC . If such an
operation is applied, then the sweep progresses as such δGC is modified and
integrated in GC for constructing the final graph.
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Proposition 1. Let GC be the 2D DRT graph. Then we have

GC = ∪
m
∑

i=0

δGC
i

where δGC
i is the partial graph at the i-th element step and m is the total

number of ordered event points.

Note that a partial graph is a directed graph because we need edge direc-
tions for its update. However the final graph GC is not directed, so that we
do not keep directions while integrating δGC

i into GC .

6.3. Initial graph construction

Our initialization step provides the initial graph δGC
0 with respect to the

initial cut γ0. In fact, γ0 is a sequence of tipping curves in C with the order
defined by the following relation ≺0.

Definition 10. For any pair of tipping curves φpqk(θ) and φp′q′k′(θ), a rela-
tion ≺0 is defined as φpqk(θ) ≺0 φp′q′k′(θ) iff

• φpqk(0) < φp′q′k′(0), or

• φpqk(0) = φp′q′k′(0) and the first derivatives φ′
pqk(0) < φ′

p′q′k′(0), or

• φpqk(0) = φp′q′k′(0) and φ
′
pqk(0) = φ′

p′q′k′(0) and φpqk(π) < φp′q′k′(π).

From Definition 9, we can generate δGC
0 of γ0. Note that δG

C
0 corresponds

to the initial cut at θ = ǫ, where ǫ is some very small positive value. The 2D
DRT graph GC is then initialized by δGC

0 .

6.4. Incremental 2D DRT graph construction for simple cases

We will first present the construction algorithm in simple cases, such
that any intersection is made by only two crossing tipping curves (Figure
9a). Otherwise, we have degenerate or non-simple cases (Figure 9b). We will
discuss how to deal with such degeneracies in the next part.
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(a) (b)

Figure 9: Illustration for simple (a) and non-simple (b) cases.

6.4.1. Detecting and ordering event points

The following question arises in sweeping algorithm: how to detect event
points, or how to discover when an elementary step is applied? Since event
points are intersections of two tipping curves, the answer is linked to Property
2. More precisely, given two tipping curves φpqk and φp′q′k′ modelled by the
integer triplets (p, q, k) and (p′, q′, k′), they intersect if the following relation
is satisfied: Q2(P 2 − K2 + Q2) > 0, where P = p − p′, Q = q − q′ and
K = k − k′. Then the coordinates of their intersections are also obtained by
Corollary 1.

All event points need to be sorted and then stored in a queue, to be
handled one by one. Such a queue of event points is called an event queue
and defined as Q = (E ,≺E) where E is a set of all event points and ≺E is a
binary relation to define the order on E . The event points are sorted by ≺E
as follows.

Definition 11. For any pair of event points u = (ux, uy) and v = (vx, vy) ∈
E , a relation ≺E is defined as u ≺E v iff ux < vx or ux = vx and uy < vy.

Sorting event points can be done with exact computing. Indeed, from
Corollary 1 we know that the coordinates of any intersection of two tip-
ping curves can be expressed by quadratic irrationals5; they have the form
A+

√
B

C
, where A,B,C ∈ Z. Sorting event points then becomes the problem

of comparing quadratic irrationals. It is known in [20] that two quadratic
irrationals can be compared by an exact method. In fact, a quadratic irra-
tional can be represented exactly using a periodic continued fraction, and
this representation is unique. Then the comparison of their corresponding
periodic continued fractions are made by comparing two sequences of integers

5A quadratic irrational is an irrational number that is a solution of some quadratic
equations.
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(see Appendix A). Comparison between two quadratic irrationals is realized
in O(

√
A lnA) and sorting event points requires O(|Q| log |Q|) time, so that

there is no influence to the global complexity of algorithm.
The fact of using integer arithmetic is first to avoid the technical problems

due to the use of floating points. Also the more important point is to prevent
faux event points which are obtained from the limited precision of floating-
point representation supported in computer implementation for degenerate
cases such as multiple tangent and/or intersecting points.

Rather than the coordinates of event points, a pair of their intersecting
tipping curves is more important for constructing GC . In simple cases, any
event point in Q is thus stored as two tipping curves, represented by the
integer triplets. This representation however must be modified in degenerate
cases (see Section 6.5.1).

6.4.2. Elementary step

An elementary step corresponds to a transposition of two curves in a cut
γ around an event point, as illustrated in Figure 10. According to such a
change of γ, the partial graph δGC is modified.

C

C

Figure 10: Illustration of a progress of a cut by which the partial graph δGC
i+1 is modified

from δGC
i in simple case.

Formally, given an event point q = {φu, φv}, if the cut on the left of
q is denoted by γi = (φi1 , ..., φu, φv, ..., φin), then after q we have γi+1 =
(φi1, ..., φv, φu, ..., φin). Let δG

C
i and δGC

i+1 denote the partial graph of γi and
γi+1 respectively. We can generate δGC

i+1 from δGC
i by following four steps:
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1. finding the removed vertex w bounded by φu and φv.

2. deleting two edges that are adjacent to w.

3. replacing w by a new vertex w′.

4. creating two new edges that are linked to w′.

This procedure is called an i-th elementary step, by which the partial graph
of a cut is modified. This implementation is given in Procedure 1.

Procedure 1: Elementary step for simple cases.

Input: A partial graph δGC
i and an event point q = {φu, φv}.

Output: A partial graph δGC
i+1.

1 eu ← ε(φu) ; ev ← ε(φv) ;
2 {w} ← ϑ(eu) ∩ ϑ(ev) ;
3 {wu} ← ϑ(eu) \ {w} ; wv ← ϑ(ev) \ {w} ;
4 ∆V C

− ← {w} ; // w is a removed vertex

5 ∆EC
− ← {(wu, w, φu), (w,wv, φv)} ;

6 ∆V C
+ ← {w′} ; // w′ is a new vertex

7 ∆EC
+ ← {(wu, w′, φv), (w

′, wv, φu)} ;
8 δGC

i+1 ← δGC
i \∆GC

− ∪∆GC
+ ;

/* ∆GC
− = (∆V C

− ,∆E
C
−) is a subtracting part of δGC

i

and ∆GC
+ = (∆V C

+ ,∆E
C
+) is a adding part of δGC

i */

The procedure requires two functions:

• ϑ(e) returns two adjacent vertices of the edge e in δV C
i .

• ε(φ) returns the edge corresponding to the tipping curve φ in δEC
i .

6.4.3. Algorithm

We present hereafter an algorithm of our incremental 2D DRT graph
construction. The algorithm builds GC by picking event points in Q one by
one. Each iteration consists in modifying the partial graph δGC according
to the current cut γ (see Section 6.4.2), and then integrate δGC into GC .
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Algorithm 1: Incremental construction of a 2D DRT graph in simple
cases.
Input: A tipping curve set C = {φ1, φ2, ..., φn}.
Output: A 2D DRT graph GC = (V C , EC).

1 Initialize GC and δGC as explained in Section 6.3 ;
2 Generate an event queue Q as explained in Section 6.4.1 ;
3 while Q 6= ∅ do
4 q← dequeue(Q) ;
5 δGC ← Procedure 1 (δGC ,q) ;
6 GC ← GC ∪ δGC ;

6.5. Incremental 2D DRT graph construction for degenerate cases

As real data with tipping curves have degeneracies, in this part, we dis-
cuss how to dealing with such cases. The algorithm for constructing a 2D
DRT graph with degenerate cases is similar to Algorithm 1 except for two
modifications. The first modification – in step 2 – consists in detecting and
sorting degenerate event points to generate an event queue Q (see Section
6.5.1). The second one – in step 5 – is, in spite of dealing with a pair of two
tipping curves in simple cases, dealing with a family of tipping curves; thus
the elementary step for modifying a partial graph need to be modified (see
Section 6.5.2).

6.5.1. Detecting and sorting event points

According to the nature of the degeneracies, they can be classified into
the following three cases, as shown in Figure 11: more than two tipping
curves are

(i) intersecting at a single point, called a multiple intersection,

(ii) tangent at a single point, called a multiple tangent point

(iii) tangent and/or intersecting at a single point, called a multiple mixed
point.

In fact, those degeneracies can be detected by using Property 2 and Corollary
1 as mentioned in Section 6.4.1. Comparing the coordinates of intersections
enable us to detect degenerate event points; they have the same coordinates.
Such an event point is now represented by a family of tipping curves that go
through the intersection point.
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Figure 11: Degenerate cases: multiple intersection (a), multiple tangent point (b) and
multiple mixed point (c).

6.5.2. Elementary step for degenerate event points

Based on the classification of degenerate event points, we can handle
each case explicitly. For a multiple intersection, we swap the order of all
intersecting tipping curves in the cut γ before and after this event point.
A multiple tangent is not considered as an event point because there is no
change of γ around this point. The last case, a multiple mixed point, is more
complicated. Observing carefully Figure 11, we remark that tipping curves
are decomposed into sets sorted by tangent values and each sets contains
tipping curves have the same tangent. While γ passes this point, only the
order of these sets of curves are reversed while the order of curves in each set
is preserved. In fact, this gives the general procedure for multiple intersection
cases in which each tipping curve is seen as a tangent set.

At each event point, the elementary step consists in modifying the partial
graph δGC according to the change of γ in a similar way to Procedure 1.
Note that in degenerate cases, each event point contains a family of tipping
curves in stead of a pair as in simple cases. Let q be an event point, then
q = {τ0, τ1, ..., τm} is a family of tipping curves where each τj = {φu, φv, ...} is
a set of tipping curves having the same tangent at q. Let δGC

i and δGC
i+1 be

respectively the partial graph with respect to γi and γi+1, which go through
on the left and right of the event point q. The construction of δGC

i+1 from
δGC

i proceeds in the following steps:

1. generating two lists of tipping curves which give the order of tipping
curves before and after event point q and storing them in two queues
Q1 and Q2 respectively. The detail is given below.

2. finding initial and terminal vertices, u and v, for an event point q

between which δGC
i changes.

3. finding the removed vertices between u and v.

4. deleting the edges which are tied to those removed vertices.
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5. replacing the removed vertices by the new ones.

6. linking the new vertices, u and v by the new edges.

While creating new edges in the last step, each edge is given a label of a
tipping curve taken from Q2.

C

C

Figure 12: Illustration of a progress of a cut by which the partial graph δGC
i+1 is modified

from δGC
i in a degenerate case.

We will explain how to generate two queues Q1 and Q2 according to the
order of tipping curves before and after the event point q. For this, we first
need to sort the sets τj of tipping curves and the tipping curves φ in each
set τj of q with the order obtained from δEC

i . After sorting, we assume that
q = (τ0, τ1, ..., τm) and each τj = (φu, φu, ...) with respect to δEC

i . The queues
Q1 and Q2 are generated as follows.

for j = 0→ m do

for each φ ∈ τj do
Q1 ← enqueue(φ) ;

end for

for each φ ∈ τm−j do
Q2 ← enqueue(φ) ;

end for

end for

Note that in Q1 tipping curves have the same order as in δEC
i , and in Q2

the order of sets of tipping curves are reversed while the order of curves in
each set is preserved.
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Procedure 2 generates δGC
i+1 from δGC

i at the event point q.

Procedure 2: Elementary step for degenerate cases.

Input: A partial graph δGC
i and an event point q.

Output: A partial graph δGC
i+1.

1 Generate Q1 and Q2 as explained above.
2 φu ← dequeue(Q1) ; φv ← dequeue(Q1) ;
3 eu ← ε(φu) ; ev ← ε(φv) ;
4 {u} ← ϑ(eu) \ ϑ(eu) ∩ ϑ(ev) ; // u is the initial vertex

5 Q1 ← enqueue(φv) ; Q1 ← enqueue(φu) ;
6 φu ← dequeue(Q2) ; φv ← dequeue(Q2) ;
7 eu ← ε(φu) ; ev ← ε(φv) ;
8 {v} ← ϑ(eu) \ ϑ(ev) ∩ ϑ(ev) ; // v is the terminal vertex

9 Q2 ← enqueue(φv) ; Q2 ← enqueue(φu) ;
10 while Q1 6= ∅ do
11 φu ← dequeue(Q1) ; φv ← dequeue(Q1) ;
12 eu ← ε(φu) ; ev ← ε(φv) ;
13 {w} ← ϑ(eu) ∩ ϑ(ev) ;
14 {u} ← ϑ(eu) \ {w} ;
15 ∆V C

− ← ∆V C
− ∪ {w} ; // w is a removed vertex

16 ∆EC
− ← ∆EC

− ∪ {(wu, w, φu)} ;
17 if Q1 6= ∅ then Q1 ← enqueue(φv) ;

18 j ← 0 ;
19 φ← dequeue(Q2) ;
20 ∆V C

+ ← {wj} ; // wj is a new vertex

21 ∆EC
+ ← {(u, wj, φ)} ;

22 while Q2 6= ∅ do
23 j ← j + 1 ;
24 φ← dequeue(Q2) ;
25 ∆V C

+ ← ∆V C
+ ∪ {wj} ; // wj is a new vertex

26 if Q2 6= ∅ then ∆EC
+ ← ∆EC

+ ∪ {(wj−1, wj, φ)} ;
27 else ∆EC

+ ← ∆EC
+ ∪ {(wj, v, φ)} ;

28 δGC
i+1 ← δGC

i \∆GC
− ∪∆GC

+ ;

7. Construction of discrete rigid transformation graph

In this section, we will present an algorithm to construct a DRT graph G
from a set of tipping surfaces. The basic idea is quite similar to the algorithm
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for construction a 2D DRT graph, which are based on sweeping a cut and
modifying it at event points. At each elementary step, we modify a partial
graph δG and then integrate it into G .

7.1. Principles of incremental DRT graph construction

As explained, the graph of parameter space can be constructed from
its projections into the planes (a, θ) and (b, θ). We denote Ga = (V a, Ea)
(resp. Gb = (V b, Eb)) the projection DRT graph into the planes (a, θ) (resp.
(b, θ)). Observing (14) and (15) of tipping curves, we find out the following
proposition.

Proposition 2. Let Ga (resp. Gb) be a 2D DRT graph constructed from
a set of tipping curves Fφ (resp. Fψ). Ga and Gb are equivalent, denoted
Ga ∼ Gb.

Proof Translating (15) by π
2
with respect to θ, we obtain a set of tipping

curves that corresponds to the set of (14), so that there exists exactly one
correspondence between φpqk and ψpql:

b(θ +
π

2
) = l +

1

2
− p sin(θ + π

2
)− q cos(θ + π

2
)

= l +
1

2
− p cos θ + q sin θ = a(θ).

As the sets Fφ and Fψ are periodic with period π
2
(Property 4), the 2D DRT

graphs in the two planes (a, θ) and (b, θ) are equivalent. �

Since Ga ∼ Gb, we need to construct only one graph, Ga for example,
and by the correspondence of tipping curves between φpqk and ψpql we can
induce another. The proof of Proposition 2 implies the following lemma.

Lemma 7.1. Let Ea ⊂ R
2 (resp. Eb ⊂ R

2) be the set of event points for the
set of tipping curves Fφ (resp. Fψ). We have Ea = Eb.
If Qa (resp. Qb) denotes the event queue corresponding to Ea (resp. Eb), then
|Qa| = |Qb|. Note that we store an event point as a list of tipping curves
which generate this event point, but not as their coordinates; thus Qa 6= Qb
event if their event point have the same coordinates.

Our algorithm uses two cuts, each of which sweeps a plane that is orthog-
onal to the θ-axis and considered as a vertical cut in both planes (a, θ) and
(b, θ) to construct G. Thus the elementary steps are performed for each pair
of event points on the two planes to generate δG of G by combining δGa and
δGb. The construction of δGa and δGb is shown in Section 6.
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7.2. Initial graph construction

The initial DRT graph δG0 = (δV0, δE0) is generated from δGa
0 = (δV a

0 , δE
a
0 ),

δGb
0 = (δV b

0 , δE
b
0) as follows:

• a vertex v ∈ δV0 is an association of two vertices va ∈ δV a
0 and vb ∈ δV b

0 ,

• an edge e ∈ δE0 connects two vertices sharing an edge in either δEa
0 or

δEb
0.

Therefore δG0 contains (n+1)2 vertices and n2 edges, where n is the number
of given tipping surfaces. Formally, we then have:

• δV0 = {(va, vb) : va ∈ δV a
0 , vb ∈ δV b

0 },

• δE0 = {((u1, v), (u2, v), φu) : u1, u2 ∈ δV a
0 , v ∈ δV b

0 , (u1, u2, φu) ∈
δEa

0} ∪ ((u, v1), (u, v2), φv) : v1, v2 ∈ δV b
0 , u ∈ δV a

0 , (v1, v2, φv) ∈ δEb
0}.

7.3. Elementary step

The modification of the partial graph δGi+1 at each elementary step is
made by Procedure 3 from δGa

i and δGb
i in a similar way as the initialization.

Except, a new vertex is generated from a pair of a new vertex in δGa
i+1 and

a vertex in δGb
i+1 or vice-versa. So a new edge connects two vertices sharing

an edge in δEa
i and δEb

i . The function is given as follows.
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Procedure 3: Elementary step for DRT graph construction.

Input: A partial graph δGi and two modified 2D partial graphs δGa
i+1

and δGb
i+1.

Output: The modified partial graph δGi+1.
1 Initialize δGi+1 = ∅, with δVi+1 = ∅ and δEi+1 = ∅ ;
2 foreach u ∈ δV a

i+1 and v ∈ δV b
i+1 do

3 if (u, v) 6∈ δVi then
4 δVi+1 ← δVi+1 ∪ {(u, v)} ; // u ∈ ∆Va+ and v ∈ ∆Vb+

5 foreach eu = (u1, u2, φu) ∈ δEa
i+1 do

6 foreach v ∈ δV b
i+1 do

7 e← ((u1, v), (u2, v), φu) ;
8 if e 6∈ δEi then
9 δEi+1 ← δEi+1 ∪ {e} ;

10 foreach ev = (v1, v2, φv) ∈ δEb
i+1 do

11 foreach u ∈ δV a
i+1 do

12 e← ((u, v1), (u, v2), φv) ;
13 if e 6∈ δEi then
14 δEi+1 ← δEi+1 ∪ {e} ;

7.4. Algorithm

Our algorithm builds a DRT graph G by taking two event points qa ∈ Qa,
qb ∈ Qb, whose coordinate are identical. For each iteration, we generate δG
and then integrate it into G .
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Algorithm 2: Construction of DRT graph.

Input: A set of tipping surfaces, i.e. two sets of tipping curves.
Output: A DRT graph G = (V,E).

1 Initialize δGa and δGb as explained in Section 6.3
2 Initialize G , δG from δGa and δGb as explained in Section 7.2 ;
3 Generate Qa and Qb as explained in Section 6.5.1
4 while Qa 6= ∅ and Qb 6= ∅ do
5 qa ← dequeue(Qa) ;
6 δGa ← Procedure 2 (δGa,qa) ;
7 qb ← dequeue(Qb) ;
8 δGb ← Procedure 2 (δGb,qb) ;
9 δG ← Procedure 3 (δG , δGa, δGb) ;

10 G ← G ∪ δG ;

8. Complexity analysis and experiments

8.1. Complexity of DRT graph

The complexity of a 2D DRT graph, i.e. the numbers of its vertices and
edges, is obtained by the number of event points.

Proposition 3. Given a set C of n tipping curves,

(i) the number of event points is at most n(n− 1),

and the generated 2D DRT graph GC has

(ii) at most n2 + 1 vertices,

(iii) at most 2n2 − n edges.

Proof (i) The number of event points is the number of intersections of two
curves in C. Since two tipping curves meet at most in two points (Corol-
lary 2), the number of event points is less than or equal to 2.(2n) = n(n− 1).

(ii) The vertices of GC correspond to the faces of the arrangement of
tipping curves. If n = 1, the number of faces is 2 = 12+1, since there are two
faces in two sides of the curve. Let us now assume that there are (n−1)2+1
faces for n−1 tipping curves. When adding an n-th curve, this curve will be
divided into at most 2(n−1)+1 arcs by the n−1 other curves, and each one
of these arcs will split at most one face into two faces. Therefore, at most
2(n− 1) + 1 new faces will be created. Thus, the total number of faces (i.e.
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that of vertices in the 2D DRT graph) is (n−1)2+1+2(n−1)+1 = n2+1.
The result follows by induction.

(iii) If n = 1, there is one curve and thus we obtain 1 = 2.12−1 edge. Let
us now assume that for n − 1 curves; there are at most 2(n− 1)2 − (n − 1)
edges. When adding an n-th curve, this curve will intersect at most the n−1
previous curves. Since there are at most two intersections for each one, this
creates at most 2(n− 1) edges. Moreover, the n-th curve itself will create at
most 2(n−1)+1 new edges as it has intersected at most 2(n−1) points. Thus,
the total number of created edges is: 2(n−1)2−(n−1)+2(n−1)+2(n−1)+1 =
2n2 − n. The result follows by induction. �

Practically, the number of event points, vertices and edges, will be gener-
ally lower than these upper-bounds, due to degenerated cases in the tipping
curves arrangement. From Property 5, we know that n = O(N3) for an image
of size N ×N . Then, these complexities can be re-expressed as O(N6).

As mentioned in Section 7 the construction of a DRT graph G is done
from its projections on the planes (a, θ) and (b, θ) using two cuts. Then we
notice that the initial graph has a complexity O(N3) × O(N3). We also
know that at each elementary step, there are O(N3) vertices generated. As
the number of event points is O(N6), in total there are O(N6) × O(N3)
vertices are added in G . This justifies the following theorem.

Theorem 1. The DRT graph G associated to an image of size N × N has
a space complexity of O(N9).

8.2. Experiments

We have implemented our algorithm in C++ which computes the DRT
graph for a given size of 2D digital image. From the experiments, the numbers
of vertices (and edges) of the DRT graphs have been computed for images of
sizes varying from 1 × 1 to 9 × 9. (The experiments were carried out on a
personal computer equipped with a processor 3.0GHz Intel R© CoreTM 2 Duo
and 4GB of memory.) The results, shown in Table 2 and Figure 13, validate
the O(N9) space complexity stated in the previous theorem.

9. Conclusion

In this article, we have introduced a combinatorial structure as a graph
for modelling the parameter space of digital rigid transformations. Note that
this graph does not contain any parameter (a, b, θ) of rigid transformations
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2D DRT Graph DRT Graph
N Vertices Edges Vertices Edges
1 1 0 1 0
2 49 144 1 033 5 040
3 431 1 472 29 631 160 512
4 2 277 8 144 357 421 1 993 696
5 8 371 3 0304 2 487 053 13 978 176
6 25 033 92 176 12 550 225 71 310 320
7 62 199 229 184 48 604 267 276 284 416
8 139 661 518 096 160 554 101 916 648 928
9 282 731 1 049 344 457 270 393 2 612 082 816

Table 2: Number of vertices and edges of the graphs, with respect to the image size
(N ×N).

Figure 13: The relation between image size and number of elements, (i.e. vertices or
edges) in Table 2 for 2D DRT graphs (left) and DRT graphs (right).

but the integer quadruples (p, q, k, i) modelling the discontinuities of rigid
transformations. Such a graph consists of finite sets of vertices and edges,
in which each vertex represents a digital transformed image and each edge
joins/links two vertices by a transformation moving only one pixel between
two transformed images. This structure presents a space complexity O(N9),
where N × N is the size of any considered subspace of Z2. An algorithm
has also been proposed in order to define this structure in linear time (with
respect to this space complexity).
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Experiments performed on a standard computer emphasise both the cor-
rectness of the algorithm, and the estimated time/space polynomial com-
plexities. Due to these complexities, it remains hardly tractable to compute
the proposed combinatorial structure for images of big size.

However, this size limitation does not actually constitute a deadlock for
several applications. Indeed, image processing techniques based on sub-
image/sample analysis can take advantage of the proposed approach, e.g., in
the context of pattern matching, non-local image processing [21], or marker-
based registration [22].

From a methodological point of view, further works will now involve
studying the way to use the proposed combinatorial structure in multiscale
strategies (enabling to process large images without computing the whole
data structure). Furthermore, for image registration most of the existing
methods [23] have no guarantee to find a global optimal solution in general.
With our approach, we may define a new metric for the graph based on neigh-
bouring relations between discrete rigid transformations, and this way leads
to a global optimal solution. From a theoretical point of view, extensions of
the presented results to 3D digital images (following some connected works
related to 3D pattern matching [24]) will also be investigated.

Appendix A. Exact comparison of quadratic irrationals

This appendix describes an algorithmic process enabling to compare two
quadratic irrationals without numerical approximation. In [20, 25], it has
been proved that a quadratic irrational can be rewritten as a periodic con-
tinued fraction. More formally, for any quadratic irrational Q =

p+
√
q

r

(p, q, r ∈ Z, q > 0, r 6= 0) we have:

Q = a0 +
1

a1+
1

a2+
1

...+ 1

an+ 1
...

.

(A.1)

Such a periodic continued fraction can be unambiguously expressed as the
finite sequence of integers [a0; a1, a2, . . . an] modelling its period.

Based on this formulation, the comparison between two quadratic irra-
tionals:

Q1 =
p1 +

√
q1

r1
= [a0; a1, a2, . . .] and Q2 =

p2 +
√
q2

r2
= [b0; b1, b2, . . .]
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with pi, qi, ri, aj , bj ∈ Z, qi > 0, and ri 6= 0 for i = 1, 2 and j = 0, 1, 2, . . ., can
be performed as follows.

Let k ∈ N be the smallest index for which ak 6= bk. If Q1 6= Q2 (the
equality can be easily checked by comparing the values pi, qi and ri), the
order between Q1 and Q2 is characterised by the sign of the value E =
(−1)k(ak − bk). In particular, we have Q1 < Q2 (resp. Q1 > Q2) if E < 0
(resp. E > 0). This leads to Algorithm 3, which presents a mean complexity
O(1).
Algorithm 3: Comparison of two quadratic irrationals

Input: (p1, q1, r1), (p2, q2, r2) representing two quadratic irrationals Q1

and Q2.
Output: Value in {<,=, >} denoting the relation between Q1 and Q2.
if (p1, q1, r1) = (p2, q2, r2) then

return = ;
else

E ← 0
i← 0
(pi1, q

i
1, r

i
1)← (p1, q1, r1) ;

(pi2, q
i
2, r

i
2)← (p2, q2, r2) ;

while E = 0 do

(qi+1
1 , ri+1

1 , ai+1
1 )← Function (q1, p

i
1, r

i
1, a

i
1) ; // calculate the

term ai+1
1 of the continued fraction of Q1

(qi+1
2 , ri+1

2 , ai+1
2 )← Function (q2, p

i
2, r

i
2, a

i
2) ; // calculate the

term ai+1
1 of the continued fraction of Q2

E ← (−1)i(ai+1
1 − ai+1

2 ) ;
i← i+ 1 ;

if E > 0 then return > ;
else return < ;

The function for calculating the term ai+1 is given as follows.

Function – Calculates the i+1-th term of a continued fraction

Input: The triplet (q, pi, ri) and the i-th term ai.
Output: The triplet (pi+1, ri+1, ai+1).
pi+1 ← ai.ri − pi ;
ri+1 ←q−(pi+1)2

ri
;

ai+1 ← ⌊ pi+1+
√
q

ri+1 ⌋ ; // ⌊ . ⌋ is the floor function
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