N

N

Out-of-order Evaluation of Timed Petri Nets for
Distributed Monitoring
Olivier Baldellon, Matthieu Roy, Jean-Charles Fabre

» To cite this version:

Olivier Baldellon, Matthieu Roy, Jean-Charles Fabre. Out-of-order Evaluation of Timed Petri Nets
for Distributed Monitoring. 2011. hal-00643683

HAL Id: hal-00643683
https://hal.science/hal-00643683

Submitted on 22 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00643683
https://hal.archives-ouvertes.fr

Out-of-order Evaluation of Timed Petri
Nets for Distributed Monitoring

Olivier BALDELLON ; Matthieu ROY ; Jean-Charles FABRE

LAAS ; CNRS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS, F-31077 Toulouse Cedex 4, France
Email: {baldellon|roy|fabre}@laas.fr

Abstract—Modern embedded systems for safety crit-
ical applications, found in planes or cars, are based
on real-time distributed networks and require high
level of robustness, reliability and adaptability. In order
to complement static off-line validation of such sys-
tems, this paper introduces a novel approach for on-
line verification of behavioral properties expressed as
a sub-family of timed Petri nets. We show that, for
the subclass of acyclic safe nets, whose expressivity
matches real-time systems constraints, it is possible
to define a commutative and associative operation on
states that enables out-of-order evaluation of the state
of the Petri net, and thus a fully distributed evalua-
tion of the behavior of the system under supervision.
Additionally, when provided with a mapping between
events and nodes of the distributed system, we show
how to efficiently distribute the monitoring system on
top of the applicative system, and provide algorithms
for local evaluation and merging of information in order
to detect as soon as possible when the system deviates
from its specification.

I. INTRODUCTION

The current and future evolution of embedded systems
shifts them from the traditional small sized and cen-
tralized machines to widely distributed ones with timing
constraints.

In the different means to provide dependability, mon-
itoring systems and applications states seems a suitable
and necessary tool to take into account at runtime many
factors that could not be fully verified before execution.
Indeed, the inherent complexity and unpredictability of
distributed systems in interaction with their environment
hardens the task of offline verification, due to components
composition issues and high complexity.

Monitoring a system is the first step to be taken when
programming dependable systems, since it is required to
detect that something has failed in the execution, enabling
possible reconfiguration of the system.

Alas, on-line monitoring of complex, distributed and
real-time systems is a highly complex task that, to our
knowledge, has not yet been fully tackled. On-line moni-
toring of applications (distributed or not) in a centralized
way has been an active research domain since few years
now (see, e.g., [1], [2]), but these approaches cannot handle

the case of systems that are both distributed and real-
time. An interesting paper [3] proposed some mechanisms
for distributed monitoring of simple properties, but this
approach is not easily generalizable for more complex
properties, as for example those with logical “or”.

This paper introduces a new approach that allows to
monitor in an efficient and fault tolerant way properties
expressed with arc timed Petri nets. The main idea is
to execute the Petri net on the fly, as soon as system
events are received, by aggregating partial executions of
Petri nets. We will show in the paper that this aggre-
gation provides correct results independently of how (in
which order) this aggregation is done. This out-of-order
evaluation of Petri nets, which is the main contribution of
our work, is an essential feature for enabling distributed
run-time evaluation of properties expressed as Petri nets.

This paper is organized as follows. In Section II, we
define the model of Petri nets used to express distributed
and real time properties, and we express the link between
system activity and the properties to be monitored. Then
we present the semantics of our model, and define the
failure model in Section III. Section IV presents an algebra
that enables out-of-order execution of a Petri net, allowing
speculative transition firings. Section V describes how
to deploy the monitoring mechanisms on a distributed
system and how to efficiently verify a property at runtime.
Section VI compares our strategy with existing works.

II. SYSTEM MODEL

A behavioral property on a system can be expressed
with different formalisms, such as logics, (temporal) au-
tomata, Petri nets, etc. In this work, we focus on dis-
tributed and temporal properties, and we will suppose in
the remainder of the paper that we are provided with a
behavioral property expressed using a tailored version of
arc-timed Petri nets.

First we define in Section II-A the Petri net model
used for specifying distributed real-time properties. In
Section II-B we refine the hypotheses made on the system
and the model. The notion of timed event sequences that
will be used to describe the observation done by monitors
is explained in Section II-C. An example will be given and
explained in Section II-D.

A. Acyclic Safe Nets

We will assume in this paper that the reader is familiar
with Petri net formalism. Let us first recall some basic
definitions on arc-timed Petri nets. In this paper the set
B4 will be the set of functions from A to B.

Definition 1 — Arc-Timed Petri Net

An arc-timed Petri Net is tuple (P,T,°(-),(-)*, Mo, I),
where P is a finite set of places, T is a finite set of
transitions, My is the initial marking (a function from
the set of places to the set {0,1}, i.e., My € M, where
My = {0,1} is the set of markings), *(-) and (-)* are
the backward and forward incidence marking functions
of (M;)T, and I a function that associates to each arc
between a place and a transition a time interval.

We say that there is an arc between a place p and an
transition ¢ if p € *¢t. We will use in this paper the following
notations: for every marking m and for every place p, we
have “p e m iff m(p) =17, *p={t|pet*}, p*={t|pe
*t}, and °(-) is the transitive closure of *(-) on P UT.

An arc-timed Petri net is a classical Petri net where
arcs between places and transitions are labelled with time
intervals. Intuitively, a token can fire a transition if and
only if the duration between the token’s creation in the
place and the firing of the transition belongs to the time
interval that labels the arc between the place and the
transition. For a more formal definition of the semantics,
the reader can refer to [4] where different formalisms of
timed Petri nets — including arc-timed Petri nets — are
compared.

Definition 2 — Enabled and Fireable Transitions

Let M be a marking, a transition ¢ is said to be enabled
if Vp € *t, M(p) = 1. A transition ¢ is said to be fireable
if 1) t is enabled 2) for any p € °t, the token in place p
stayed in p during a time included in I(p,t).

We will now introduce a new subclass of Petri nets, a
generalization of occurrence nets that will be called acyclic
safe nets. In the next definition, a 1-safe Petri net is a net
whose all reachable markings contain at most one token
per place; moreover an acyclic Petri net is a net such
that °(-) is irreflexive, in other words, for every place or
transition e we have e ¢ °e.

Definition 3 — Acyclic Safe Nets
A arc-timed Petri net AV is an acyclic safe net if:

— N is a l-safe acyclic Petri net.

— VpGP, |‘p\21:>M0(p)=0

- VpeP, [*p|=0= My(p)=1

— Vt € T, there is a reachable marking that enables the
transition ¢ (Quasi-liveness).

A direct and important consequence of this definition
is that for every correct execution and for every place p,
at most one transition of ®*p and at most one transition
of p* can be fired. This will be an interesting point for

monitoring by making easy the association of the firing of
the transition that created a token and the firing of the
transition that consumed it. Indeed, with general Petri net
the following scenario, that we want to avoid, is possible.
Let p be a place, t; be a transition of ®*p and ts be a
transition of p®. If the two events “¢; is fired at time 0”
and “t9 is fired at time 10” are received, we can not be
sure that a token stayed in p for a duration of 10 (perhaps
two firings was missed: to at time 1 and ¢; at time 9).
With acyclic safe nets, such ambiguous situations are not
possible.

A drawback of this definition is the impossibility to
represent looping processes, such as a periodic task. The
special case of periodic tasks can be solved by launching
the monitoring of the task periodically. Additionally, a
loop with a bounded number of iteration can easily be
unfolded. As this formalism is meant for modeling real
time systems, unbounded loops that could result in a
system hang cannot be represented in this model.

B. System, Model & FEvents

The principle of our approach is first to describe the
system using an acyclic safe net N and then to execute this
Petri net with a monitoring mechanism using a mapping
that associates to each event a transition.

Transitions associated to events are called event transi-
tions (or e-transition); the monitoring mechanism has to
fire them when corresponding events are received. Transi-
tions not associated to events are called logical transitions
(or f-transitions); the monitoring mechanism has to fire
them as soon as they are fireable.

C. Timed Event Sequences

As explained in the previous subsection, our monitoring
approach consists in: first associating to a sequence of
observed events (e-transition) a sequence of events (that
can correspond to e-transitions or (-transitions), then
associating to this sequence of events a Petri net execution.
The first association will be described at the end of
this paper in Section V. The second association will be
described in the next section: Section III. The notion of
sequence of event is introduced in this subsection.

Definition 4 — Timed Event
An timed event is a couple (¢, 7) where ¢ is a transition (not
necessarily a e-transition) and 7 a date (a real number).

A timed event can either be observed (an event as-
sociated to an e-transition occurred) or calculated (a ¢-
transition that has to be fired). The monitor has to execute
a sequence of timed events (e; = (£, 7)) <j<p-

From now on we will assume that for any timed event
e; of a sequence &, the two values t; and 7; are defined by
the relation (¢;,7;) = e;.

Definition 5 — Correct Timed Event Sequences
Let £ =e;1...e, a timed event sequence, we say that £ is
correct (or valid) if:

Fig. 1.

— if ¢t; € °t; (¢; is a causal successor of t;), then i < j.
— for every place p, if there are two timed events e; =
(t;, ;) and e; = (t;, 7;) such that p € *¢t; and p € *t;
then e; = e;: a token can only be fired once.
— for every e; = (t;,74), for all p € *t;,
— if |*p| =0, then 7; € I(p,t;): p is a source.
— if |*p| # 0 then there is a unique timed event
ex = (tg,7%) such that p € t}, and 7, — 7, €
I(p,t;): the timing of the event is correct.

Property 1 — Validity of Correct Sequences

Let £ = e1...¢, be a correct timed event sequence. For
every j € {1,...,n}, if the transitions ¢1, . .., t;_1 are fired
at time 71, ...7;_1 then the transition ¢; is fireable at time
Tj .

Proof: Let us prove this result by induction. Let £ be
a correct timed event sequence.
Case 1: £ has only one timed event e = (¢,7). Def. 5
implies that for all p in *¢, |*p| = 0 (otherwise, there would
be an event e, = (t,7x) such that p € ¢} and thus we
would have t;, € °t and e # e: absurd !). Because no
transitions were fired, the marking is the initial marking
My, and hence , by Def. 3, Vp € *t, My(p) = 1. From
this result we can know that t is enabled (Def. 2) and,
as 7, € I(p,t), then we can conclude (Def. 2) that ¢ is
fireable.
Case 2: £ contains more than one timed event. By induc-
tion we know that we were able to fire the transitions ¢;
at respective dates 7; for ¢ < n — 1. Let M be the new
marking obtained by firing of transitions (¢;);=1.,—1. Let
p be a place of *t,,. By item 1 of Def. 5, no transition in
p* was fired. If |*p| = 0 then, due to the original marking
Moy, M(p) = 1. If |*p| = 1, there is an event ej such that
the firing of 5 added a token in p and then M(p) = 1.
Finally, we can conclude that ¢ is enabled and, thanks to
the second item of Def. 5, ¢ is fireable. O

D. An Ezample of Distributed Property

Let us consider a critical display in a plane that provides
information to the pilot. The screen is split in two parts:
the left part (Primary Flight Display) and the right part
(Navigation Display).

t3
[} Oo——1
U/ A,

A t11

O : —O
t

~ [0,0] ! 7t

U/ s
t

~_[0.0] 7

U/

An example of a distributed property: correctly displaying related information on an airplane control screen

When the plane is in autopilot mode, the system period-
ically captures information on plane attitude (¢1). Based
on this information, a regulation loop is executed, and the
end of this processing sends an event t5. Then, actuation
orders of flight-related parameters are sent before event
t3, and, finally, the update of display information sends
event t4. On the left part, the Navigation Display, some
navigation information like position information, active
route and tracking are displayed by means of the Control
and Display System.

Fig. 1 presents the related distributed property on
the behavior of the overall display. Event transitions (e-
transitions associated to system events) are colored in
grey and /(-transitions (logical events or computations
performed by the monitor) in white. There are six events
in the system: ;.. .ts.

Informally, this property can be explained as follows:
the upper branch of the net (to,ts,ts) corresponds the
left part of the screen and is a sequential process, while
the lower branch (t¢s,ts,t7,ts) is the right part of the
screen and presents a choice (two disjoint and exclusive
possible paths). In the upper branch, sensing, processing,
actuating and displaying have to be performed timely. The
labels on arcs express the idea that each computation step
has worst case execution time (WCET) in a time interval
A. In parallel, in the lower branch corresponding to the
Navigation Display, sensors capture information and, de-
pending on some value ranges, information is delivered to
the User Application if it belongs to the correct range, or
triggers a recovery action when it is out of range. Notice
that all branches are synchronized at the end to provide
synchronous display of related events both on Primary
Flight and Navigation Displays.

This is why the lower branch splits in two, the output
of the display process depends on the occurrence pattern
“value in range” (whether t5 or tg happens). In practice
the choice is described by the property: “ts or tg have to
happen, but not both”. As there is only one token in the
place preceding t; and tg, only one of those two transitions
can be fired. Suppose that t5,tg are fired in this order;
then t7 will be fired, and tg will not be enabled anymore,
resulting in the death of the token between tg and ts.
The two places and the two transitions with the A,, time

interval forbid a token to stay forever before t5 or tg if one
of those two transitions is not fired. Indeed, a token that
stays forever in a non final place is considered to be a dead
token.

A third property that is expressed in this example is
that the two branches must be synchronized (the display
of the left and right part must be consistent): let 7; the
date of t4’s execution and 5 the date of t5 or tg. If we want
|71 — 72| to be less that a given value ds, then, by choosing
A, = [0,ds/2], a timing failure will occur whenever the
two branches are not synchronized by at most d;.

The middle branch with one place and one arc with
interval A;, expresses the property that the time that
elapsed between the beginning (firing of ¢;, or end of
measurement) and the end (firing of tg, or display of the
screen) of the computation must be in A;. Hence, setting
A, = [sup(Ay), oo frees up any blocked token and avoids
dead tokens that do not correspond to any error at the
end of the computation.

III. SEMANTICS

In this section we describe how an execution of a Petri
net is computed from a sequence of timed events. It is
important to notice that we will not only consider correct
event based sequences and that failures will be encoun-
tered. Instead of considering the execution itself, we will
consider the final state of this execution. In this section,
the state is computed in a post-mortem and centralized
way. In Section IV we remove this assumption by providing
a method to compute this state at runtime, in a distributed
way.

A. Fuailures and States

We will assume two types of failures. The first one is
timing failures. It corresponds to the case where a token
in a place p has to fire a transition ¢ while the age of
this token is not included in the time interval I(p,t). The
second kind of failures, missing events, happen when a
required event does not occur.

As the failure model includes missing events, when the
timed event sequences will be executed on the Petri net,
some transitions will have to be fired even if they are not
enabled, i.e., tokens are missing in places before the tran-
sition. To handle this issue, we introduce in this section an
extension of the set of marking by allowing one negative
token in places where one token should be deleted. The
new set of marking will be denoted My = {—1,0,1}7.

Definition 6 — State

A state is a tuple (M, €, €, ¢4, c—) where M is a marking
of M4, ¢ is the set of timing failure, €,, is the set of missing
events, c; is the positive calendar function that returns for
every place p the date when a positive token appeared (a
transition of *p was fired) and ¢_ the negative calendar
function that returns for every place the date when a
negative token appeared (a transition of p® was fired). The
set of states is denoted S = M4 x Ep x Epy x CT x C™.

The timing failures set Ep is composed of tuples (p, ¢, d)
defined by “a token stayed in a place p during § and has
to fire transition ¢ while ¢ is not fireable”

The missing events set Ep; is composed of couples
(place, sign). A couple (p,+) is in Ey; if a transition was
not fired when it was supposed to be, letting a positive
token that will never disappear in place p. A couple (p, —)
is in E,; if a not enabled transition ¢ was fired, resulting
in a negative token in place p.

The positive calendar function gives, for every place p,
the date when the token appears, if any (the date when a
transition of *p was fired). The negative calendar function
provides for every place a couple (date, transition): the
date when the token left the place, and the transition it
fired. Notice that these two functions are partial functions,
since not every place is used in every execution.

B. Semantics

The semantics is a function that takes as an input a
timed event sequence and returns a state (a marking, two
sets of failures and a two calendars).

Let £ = (e; = (ti,7))1<i<n a timed event sequence.
We define the timing-failure function with (p,t¢,0) €
failure(€) if and only if a token in place p fires a transition
t after having waited § while it is not allowed. In a more
formal way, (p,t,0) € failure(€) iff 3i,j such that:

—t=ty

— pE t; N .tj

— 0=m1;—7i ¢ I(p,t;)

Definition 7 — Semantics

Let My be an initial marking and € = (e; = (¢;, 7)) 1<i<n
a timed event sequence. The result of the execution £ is a
state sem(&) = (M, €, €, c4,c—) of Sy such that :

— M is the marking obtain from M, by firing transi-
tions t1,...,t,.

— € is the set of timing failures: ¢, = failure(£)

— €, is the set of missing events, defined by:

em={(p,+) | M(p) =1Ap* #0} U
{(p,—) | M(p) = -1}

— the calendar functions c; and c_ are defined as
follows:

Viel.n Vpetl,ci(p)=mi

Vpe®t;, c—(p) = (14, t;)
IV. ALGEBRA AND DISTRIBUTED EXECUTION

We defined in Section IIT a semantics based on timed
events. The computational result of such a semantics is a
final marking and failure sets. We will see in this section
how we can compute this result, not in a sequential way
(as it is usually done) but in a fully distributed way. In
other words, even if a transition #; has to be fired before
to in the Petri net, we provide a semantics that will allow
to fire t and t; in parallel.

The main idea is the following. Let Sy be an initial state
and eq,...e, a timed event sequence. To compute the final
state and the errors, we have to add e; to Sy and then es to
the result and so on. Our approach consists in associating a
state [e;] to each event e; and introducing a new operation
® to obtain a commutative group. Thus, to compute Sy ®
[e1] ® [e2] ® [e3] ® [ea], a first node can compute [es] ® [es]
another one [e1]® [e4], the two of them can send the result
to a last one that will compute Sy®([e2]®[es])@([e1]®][e4])-

First we define a new set of markings that will allows us
to get a commutative group. Then, to take into account
time properties and potential errors, we extend this opera-
tion on states to obtain a commutative monoid structure.

A. Marking

Let A be an acyclic safe net and P the set of places of
N. We define the set of markings of N' with M = Z7F.
We introduced before two others definitions of the set
of markings: M, = {0,1}¥ and My = {-1,0,1}¥. The
previous definition was useful because in acyclic safe nets
all possible markings are in M. Before explaining why the
new definition is interesting, let us generalize the classical
@ operation on markings in My:

Definition 8 — Addition of marking
We define the operation @ on M as follows: let M and M’
be two markings. For any place p:

(M & M')(p) = M(p) + M'(p)

Definition 9 — Marking of a transition
Let t be a transition. Its associated marking (t) is defined
by, for every place p :

({t)(p) =t*(p) — °t(p)

Intuitively, the idea behind the previous two formal
definitions is the following: if, from a marking M, a fireable
transition ¢ is fired, then the new marking is the result of
the operation M & (t).

As an example, Fig. 2 shows five markings of the same
Petri net: the initial marking, three transitions markings,
and the final marking. It is easy to see that adding in any
order the first four markings results in the final marking,
obtained by the execution of tq,ts,t3 from M,. The two
next properties formalize this idea.

Notice that, in general, adding two unrelated markings
may result in meaningless marking (e.g., every marking
of M\ My is meaningless). Considering such meaningless
computation is required only to provide a group structure.

Property 2 — Group structure
The couple (M, ®) forms an abelian (i.e. commutative)

group.

Proof: The operation & is an internal operation on
M (but was not in My). The commutativity and associa-
tivity are direct consequences of the commutativity and
associativity of the + operation in Z. The neutral element
is the empty marking defined by Vp € P,0g(p) = 0. O

O-{-O-[-O—[FO
O IO IO =@,
O—-{O~-{-o0~-{®
O—{=©~-{-O-{FO

O—-AFO-FO--©

Fig. 2.

Marking addition

Property 3 — Computation of the final marking
Let A be an occurrence net, My a marking of A/ and
t1,...,t, a valid execution of N starting from Mj, then
we have the following property:

n

My 22t Ay @ @ {t;)
i=1
Proof: This is a direct consequence of the fact that

firing a transition ¢ from a marking M results in the
addition of the two markings M and (¢) (by definition of

(t))- O

B. Failure Detector ou

The next step is to define an operation on states to
obtain a commutative monoid. The main issue is that
missing events cannot be determined using only algebraic
properties: the detection of such failures depends on time.
At runtime, to compute the state, the set of received events
is not sufficient to compute the set of missing events (the
exact set can only be computed post-mortem).

To circumvent this issue, we introduce in this section a
failure detector ou. Intuitively, the main goal of the oracle
that compute opu is to determine the set of missing events
€mn that cannot be computed during the execution using
only algebra on a subset of the timed events eq,...,e,
(in this example, ey, ...,e, are observed events, and the
subset corresponds to partial information available at
runtime).

Definition 10 — Failure detector ou
Let £ be an execution and (M, €, €, ¢4, c—) its semantics.
The oracle ou is defined by:

— at any time, op is included in €,,,

— after a known bounded delay, o is equal to €.

Notice that this failure detector definition is similar to
the eventually perfect failure detector oP [5] with two
differences: firstly, the definition holds for missed events
instead of process crashes, and secondly, the delay from
which the failure detector provides accurate results is
bounded, with a known bound.

C. States

Information from markings does not include timing
properties. In this section, we introduce a new notion of
state by refining the definition of markings.

A state is a tuple of S = M x Er x Eps x CT x C~ where
M is the set of markings defined in the previous section,
Er is the set of timing failures, Ej; is the set of missing
events and CT,C~ are the agenda function sets.

Let us define a new operation Uy on calendar functions:
(¢ Ug ¢)(p) = min(c(p), ' (p)) (if c(p) is not defined, we
will note ¢(p) = L and Vz, min(x, L) = x). This function
is an associative, commutative one.

Definition 11 — Addition of states
The operation ® on S is defined by Algorithm 1.

Algorithm 1 The ® operation

1: function ®(S, S’)

2: (M, €, €m,ce,c_) + S

3 (M', ¢}, €,,c c) <8

4: M" +— Mo M

5: e < e Ug,

6 e —enUe,

7 cl ey Updy

8 e Uy

9: for p e P do
10: if M(p) > 1 and M'(p) < —1 then

> addition of a positive and a negative token

11: (d,t) « _(p)
12: d <+ cy(p)
13: if d —d ¢ I(p,t) then > timing failure

14: e < e/ U{(p,t,d —d)}
15: end if
16: end if
17: if M'(p) > 1 and M(p) < —1 then
> addition of a negative and a positive token
18: (d,t) < c—(p)
19: d « . (p)
20: if d—d ¢ I(p,t) then > timing failure
21: e — e/ U{(p,t,d—d)}
22: end if
23: end if
24: end for
25: return (M", €/, e, ¢/,)

26: end function

Definition 12 — Marking of a state

Let e = (t,7) be an event. We associate to this event a
state [e] defined by [e] = ((t), 0,0, cy+,c_) with ¢ and c_
defined by Vp € t*, ¢4 (p) = 7 and Vp € °t,c_(p) = (7,1).

Definition 13 — Marking of a missing event
Let m be a missing event. We associate to this failure a
state [m] = (0g, 0,0, {m},0).

Theorem 1 — Computation of the final state

Let N be an acyclic safe net, Sy the initial state of
N, ei1,...,e, a timed event sequence, and ¢, the set of
missing events of this sequence. Then:

So®® 6Z

The previous Theorem uses €,,, which cannot be com-
puted instantaneously at runtime, but rather approxi-
mated by the failure detector ou: after a known bounded
delay, op equals €.

Proof: This result is a direct consequence of Defini-
tion 7 (semantics), Algorithm 1, and the definitions of [e;]
and [m)]. O

A set Eg is said to be generated by the ® operation
and the set E if: 1) E C Eg, 2) if e and ¢’ are in Eg, then
e®¢e’ is in Eg. In other words, Eg is the closure of E with
respect to ®.

@ @ [l

ME€Em,

sem(eq,...,e

Theorem 2 — Monoid Structure

Let £ = e1,...,e, be a timed event sequence and ¢, its
set of missing events. Let S¢ be the subset of S generated
by the ® operation on the set {Sp} U {[e;]|1 < i <n}U

{Im]|m € emn}.
(Se,

It is important to notice that the associativity property
can be achieved only because we restrict ourself to acyclic
safe nets: at most one token can appear in a place. Con-
sider the case where two different tokens appear in a same
place, one at the date 7, with the event ey, and another one
at the date 7 with the event ey. Consider a third event eg
that add a negative token to this place. The computation
of ([e1] @ [e3]) ® [e2] or the one of [e1] @ ([es] P [e2]) will
result in different states (in the first case, p contains one
token that appeared in date 7o, while in the second case,
p contain one token that appeared in date 7).

®) is a commutative monoid.

Lemma 1 — Calendar function consistency

Let £ =e1,...,e, a timed event sequence and ¢, its set
of missing events. Let S¢ be the subset of S generated by
the ® operation on the set {Sp} U {[e;]|1 < i < n}U
{[m]|m € en}. Let 5’1 and S be two states of Sg with
Si = (M, € e m,c+, *); for any place p we have:

if ¢t (p) (vesp. ¢t (p)) and % (p) (vesp. ¢*(p)) are both
defined then ¢! (p) = ¢ (p) (resp. cL(p) = 2 (p)).

Proof of Lemma 1: This result is a direct consequence
of the definition of a timed event sequence. As a positive
token only appears at most once in a place, then there
exists an unique ¢ such that e; created the positive token.
By definition of Sg¢, if a state of this set has ¢4 (p) defined,
then the corresponding date is given by e;. The reasoning
is similar for negative token. 0O

Proof of Theorem 2: To prove this result, we have
to prove that (Sg,®) is an internal, associative and com-
mutative law with a neutral element. The fact that ®
is an internal law of Sg is true by definition of Sg. The

commutativity property is a direct consequence of the
symmetry of the code of Algorithm 1 (the two inputs S
and S’ have a symmetric same role). The neutral element
is (0g,0,0,0,0), and this can be easily checked with the
algorithm. The only difficulty is to prove the associativity.

First of all, with the notation of Algorithm 1, the value
of M" (resp. ¢, ¢ and e),,) depends only of those of M
(resp. ¢4, c— and €,) and M’ (resp. ¢/, ¢ and €],). As
the operations used to compute these values, ®, U and
Uy are associative operations, we can deduce that for any
states Sp, Se and Ss3, the two values S ® (S; ® S3) and
(51 ® S2) ® S3 have the same marking, calendar functions
and missing events set.

To conclude the proof, let m = (p,t,) a timing failure
present in the timing failures set of S; ® (52 ® S3). We will
demonstrate that m is present in the timing failures set of
(S1 ® S9) ® S3. In the following, ¢’ denotes the negative
calendars function of S;.

— First case: if m is in the failure set of Sy, S5 or Ss,

then m is trivially in (51 ® S2) ® Ss.

— Second case: if m was computed during the oper-
ation Sy ® Ss, it means that either My(p) > 1
and Ms(p) < —1 or Ma(p) < 1 and M3(p) > —1
(lignes 10 and 17 of the algorithm). Without loss of
generality we will only consider the first case: at least
one positive token in p for the marking of So and at
least a negative one in p for the marking of S3. There
are still two subcases.

— First sub-cases: My (p) > 0, then the marking of
S1® Sy will associated more than one token in p
and then m will be compute during (51 ® S2) ®
Ss.

— Second sub-cases: Mi(p) < —1, then c! (p) is
defined and thanks to Lemma 1 we know that
ct (p) = 2 (p): thus, m will be compute during
S1® Ss.

— Third case: if m was computed during the operation
S1 ® (52 ® S3) then using a similar reasoning, we can
also prove that m is a missing event of (S ®S2) ® S3

We just proved that the timing failures set of S1®(S2®.53)
is included in the one of (S; ® S2) ® S3. We can prove as
well, using the commutativity property, that the timing
failures set of S3 ® (Sy ® Sp) is included in the one of
(S3® S53) ®S1. We have the equality of the timing failures
sets of 51 ® (52 ® S3) and (5] ® S2) ® S3. Hence we can
conclude that S; ® (S2 ® S3) = (51 ® S2) ® Ss. 0

V. A DISTRIBUTED MONITORING PROTOCOL

Section IIT defined the semantics (i.e., the final state)
of an observed timed event sequence. Section IV showed
how this semantics can be computed in an unordered and
distributed way (Theorem 1 and 2).

In this section we will show how we can use these two
theorems to implement an efficient distributed monitor.
We will describe in a first part the distributed model we
consider and in a second part the distributed protocol.

A. System & Network Model

We assume we have a distributed system of monitors
M = {mq,...,my}. Some of the monitors can catch
events, while some others are used for computation and
routing only. Typically this system can be based on a pre-
existing network that runs the distributed application we
want to monitor. To simplify routing we will assume that a
covering tree has already been computed and will be used
for communication.

In our model, each event is caught by only one monitor.
The event/monitor association is given by a function
LOCATION from MT. The next figure gives an example
of such an network. In the example, events associated to

a monitor appear next to it.
OF

t4 @\
- @

Fig. 3. The Monitor Network

This part will describe a protocol where events are
caught by monitors that will forward information up to
the root of the covering tree.

B. Deploying a Property

We saw in previous section that the computation of the
final state can be done in an unordered and distributed
way. We will show in this section how the computation
can be mapped to the monitor tree. The main difficulty
in our approach is not to compute the final state, but to
find the timed event sequence. A part of the execution is
known thanks to the monitor: events corresponding to e-
transitions are caught by monitors, but the other part, i.e.,
events corresponding to /-transitions, must be computed.

To compute such transition, we will assign to each
{-transition a monitor that will be in charge of firing
this transition. We have already a location function that
associates to each e-transition a monitor, we will now
extend this function to associate to each f-transition a
monitor: this monitor will be then responsible of the firing
of this logical transition.

We will present for that a distributed algorithm that
starts from a monitor node and deploy from this node
the set of transitions between the different nodes of the
tree. This algorithm is a recursive algorithm: the root node
shares the Petri net between itself and its children. Then
the children start over with sharing with their own children
the Petri net they received. The recursive algorithm end
when leaves are attained. To explain the algorithms, let us
first introduce a few new notions.

The notion of dependency is defined to allow us to
answer the following question: “what is the minimal set of
events d(t) needed to know if a transition ¢ can be fired?”.
To know if a transition ¢ must be fired, we need to know

if there is a token in places just before this transition, i.e.
in places p € *t. Similarly, to know if there is a token in
a place, we need to know if a token enters this place, i.e.
a transition of ®p was fired, or if a token leaves this place,
i.e. a transition of p® was fired. In the following definition,
d(t) is the set defined by d(t) = {t' € *pUp® | p € *t}.
Definition 14 — Events Dependencies

Let t be a transition of a Petri net A/, we define the set of
events dependencies of t in T as:

{t} if t is an e-transition
dep(t,T) = U dep(t', T\ {t}) otherwise
t'ed(t)

From now on, we will denote dep(t) the set dep(t,T)
where T' is the complete set of transitions of the Petri net.
For example dep(ts) = {t5,ts}-

The previous definition describes the dependency of /-
transitions on e-transitions. The next definition shows how
to extract a sub Petri net from another Petri net. The main
idea is, as a node will only be responsible of the firing of
some transitions, it only needs a subpart of the original
net.

Definition 15 — Sub-Petri net

Let N = (P, T,*(),*(-), My, I) be an acyclic safe net and
T’ a subset of T. We define the sub-Petri net induce by
T by Nipw = (P, T',°(-),*(-), Mo, I) where P' = {p €
P|3teT st.petUt*}.

Based on dependancy definition (Definition 14) and
sub-Petri net (Definition 15), Algorithm 2 computes an
efficient partitioning of the Petri net.

The algorithm assumes to be executed on a given cov-
ering tree. On the current node, we denote cy,...,c, the
trees whose root are children of the current node. For
example, if the current node is mg, then we will have
c1 ={m1}, co = {ma} and c3 = {my, ms5, mg}.

The partitioning procedure waits for the reception of
an executable net and splits the transitions of this net
in n + 1 sets, with n the number of children. For this
purpose, two arrays events and logical are computed such
that the transitions of events[i]| Ulogicalli] will be fired by
monitors of the subtree ¢; if ¢ # 0, i = 0 corresponding
to transitions to be fired by the current node. The net
that will be executed by the current node is stored in the
variable local net.

Let us explain this algorithm. It starts when a message
START N is received, where N is the Petri net that
the current node has to partition between itself and its
children.

First (lines 5 to 11), it splits the set of event transitions
in n+1 subsets, where n is the number of children. For each
event transition, if this transition is caught by a monitor
of the subtree ¢;, then this transition is added to events|i]
(line 7). If there is no such child, it means that the events
corresponding to the transition must be caught by the

Algorithm 2 Partitioning a Petri net

1: procedure PARTITION

2 wait reception of START N/

3 events < [0,...,0]

4: logical < [0, ..., 0]

5: for any ¢ in T, do

6 if Ji s.t. LOCATION(t) € ¢; then
7 events[i] < events[i| U {t}

8 else

9: events[0] « events[0] U {t}
10: end if

11: end for

12: for any t in T, do

13: if 3i s.t. dep(t) C eventsli] then
14: logicalli] < logical[i] U {t}

15: else

16: logical[0] < logical]0] U {t}
17: end if

18: end for

19: local _net « Mevent[o]ulogical[o]
20: for i € {1,...,n} do
21: send START N|cyentfi|ulogicalli] tO ROOT(c;)
22: end for

23: end procedure

current node and thus, the transition is added to events[0]
(line 9).

Then (lines 12 to 18) it splits the set of logical tran-
sitions in n + 1 sets as above. If an (-transition can be
computed in a child ¢; (if every event transitions that
are dependency of the ¢-transitions are in events[i]), then
this transition must be added to logical[i]. If no child can
compute this transition, the the current node can and will
compute it (line 16).

The last part of the algorithm consists in sending the
Petri net that will be monitor by the child ¢; to the root
of ¢;. The restriction of the Petri net to Ncyent[ijuiogicalfi]
allows us to be sure that, in the children’s execution of the
algorithm, if the line 9 or 16 is reached, then the children
root will be responsible to the current transition.

C. The Monitoring Protocol

We describe here the runtime part of the monitoring
protocol that performs its computation in a recursive way.
The algorithm assumes that the monitoring system has
a tree structure, and that logical transitions have been
partitioned and assigned to monitors by Algorithm 2.

The main idea of the runtime evaluation is the following:
each node computes a partial state s with the transition
it is responsible of and the partial state computed by its
children in the tree. When this partial state is computed,
the current node sends this value to its father if it is not
the root. If it is the root, then the computed state is the
final state.

The op failure detector, described in Definition 10, is
an independent thread that sends messages MISSING(m)
as soon as a missing event m is observed. Notice that
the implementation of ou is omitted in this paper, but a
simple implementation using timeouts can be used here: if
a timeout expires too early, then the corresponding event
will be ignored.

To compute its partial state in the monitoring protocol
of Algorithm 3, each node initializes a variable s to 0g and
updates it with the partial state received from its children
(line 6 of Algorithm 3), the events and missing events it
received (line 7 and 8), and updates the corresponding
partial state. When all messages have been received (this
property is indicated by the reception of a a STOP message,
line 5), it sends its state to its father (lines 15 and 16) if
the current node is not the root.

Every time the current state s is changed, the protocol
searches if some logical transitions can be fired. The
FIRABLE; function gives for every node the subset of
logical transitions it is responsible of and that are fireable.
As a token in a place p € °*t cannot be fired before
¢+ (p)+min(I(p,t)) (with min the function that returns the
lower bound of an interval), the date when this transition
is fired is the maximum of the different ¢4 (p)+min(I(p,t))
values. In other words, a logical transition is fired as soon
as it is fireable. Notice that this date is not computed using
a local clock, but only using events dates.

We will assume that there is a timeout mechanism that
can be triggered as soon as the first message, be it an
event, a missing event or a state, is received. The main
goal is to avoid waiting infinitely because of a failure on
the network that will make impossible for a monitor node
to receive a message that it is supposed to received. This
timeout mechanism is hidden behind an oracle that sends
a message STOP when all timeouts have been reached. In
this case, the monitor will simply stop waiting for new
messages.

D. Efficiency, Fault Tolerance € Robustness

A classical drawback of Petri nets is that events are
defined in a sequential way: a transition can only be fired
when all preceding transitions have been fired; if a single
event is missing, it is not possible to execute the net.
As our approach allows to fire a transition even if this
transition is not enabled, then (1) every event transition
will be fired, and (2) every ¢-transition that can be fired
will be fired, as soon as the e-transitions it depends on
have been fired.

The protocol presented above is optimal in two ways.
First, it is easy to see that the number of sent messages is
equal to the number of edges in the monitor tree; if this
tree is directly mapped to the communication infrastruc-
ture, then this solution is clearly optimal. Second, the final
state is not computed at the root of the monitor tree, but
the computation is distributed on the monitor network:
a failure will be detected as soon as a node has enough

Algorithm 3 The monitoring protocol

1: procedure MONITORING

2 S < 0®

3 while waiting do

4 wait reception of a message msg

5: if msg =sToP then waiting < FALSE
6 if msg = STATE(0) then s+ s®oc

7 if msg = EVENT(e) then s < s® [e]

8 if msg = MISSING(m) then s+ s ® [m]
9 while 3t € FIREABLE,(s) do

10: (M, €t €m,Cpyc) 8

11: 7 + max{c4(p) + min(I(p,t)) | p € *t}
12: $ 4+ s®[(¢,7)]

13: end while

14: end while

15: if root then return s

16: else send STATE(s) to father

17: end procedure

information to compute it. This property is ensured by
Algorithm 2, that assigns logical transitions to the first
monitor that that receives the necessary information to
fire such transitions (as defined by the events dependencies
function of Definition 14).

Interestingly, this last property can be used to imple-
ment an efficient recovery process: as soon as a failure
is detected, the treatment to manage this failure, e.g.
a degraded mode of operation, can be done locally. In
other words, the treatment will only imply monitors in
the subtree whose root detected the failure.

With regards to quality of the detection mechanism,
notice that the quality of the result is a growing function
of the quality of both observation of the execution and
monitor network. If all events that can be detected are
detected and if the monitor network satisfies real time
properties, then the final state computed will be the real
final state of the system and will be computed in real
time. On the other hand, if many events are not detected
and if timeouts are chosen in a very pessimistic way, then
the result will be computed more slowly and will be less
accurate (i.e., detection of failures includes too many false
positive ones).

Finally, one can notice that the underlying structure
of our detection mechanism, a tree, is in no way a fault-
tolerant data structure. To circumvent this issue, which is
independent from the problem we are solving, traditional
fault-tolerance mechanisms should be used to increase
robustness of the tree. Two main strategies can be used: (1)
a replication strategy applied to monitoring nodes of the
tree (e.g., leader-follower replication or active replication),
and (2) a classical node failure detection mechanism to
monitor nodes healthiness and trigger a reconfiguration of
the underlying tree in case of a failure.

VI. RELATED WORKS

As it was explained in this paper, our approach consists
in transforming a Petri net execution in an algebraic
computation that allows, thanks to the commutativity
and associativity properties, to compute the execution in
a distributed way, and thus, to implement a distributed
monitor of real-time properties.

Some research works propose centralized monitoring
of real-time properties [2] expressed using LTL formulae.
Unfortunately, logics formulae are inherently centralized
and cannot be easily adapted for distributed monitoring.

Some other works are compatible with the distribution
of the monitoring as [6] or [3]; however, the way the
distribution is done is different from ours. In our approach,
a distributed property can be monitored in a distributed
way while their strategy associates to each property a node
of the network that will be in charge of this property:
in other words, each property has a centralized monitor
assigned. These approaches have a major drawback: the
expressivity of the specification language used in [3] only
allows conjunction of simple properties, while our model
of Petri nets can express general logics formulae.

Interesting works on centralized monitoring of asyn-
chronous [7] or real-time [8] distributed systems, are those
of C. Jard et al.. There are three main differences with our
work. First of all, the monitoring consists in finding from
an events sequence a corresponding Petri net execution
to “explain” the observation. In our formalism, executable
nets, at most one transition is associated to each event and
this problem is trivial, but those works consider Petri net
where a simple event can correspond to many transitions.
The second difference is that there are no /-transitions:
every transition is associated to an event.

The algebraic view of execution can be seen as a spe-
cialization and generalization for the case of acyclic safe
nets of the algebraic view of Petri Nets defined in [9].
We first added the notion of negative tokens that enables
commutativity and associativity of operations. We also
generalized this algebraic structure for arc-timed Petri net
by reasoning on states and not only on markings.

A work that must not be mistook with ours is the one on
distributable nets [10]. This approach executes the Petri
net in a distributed network and the execution should
follow a location function: a transition can only be fired on
a specific node. The resulting execution is still a sequential
execution — if an event happens before an other, then
the corresponding transitions must be fired in the same
order — while our approach is by nature a concurrent
evaluation, and hence easily distributable.

VII. CONCLUSION

This paper presented a new algebraic approach for out-
of-order evaluation of timed Petri nets: the verification
of the correctness of an execution is reduced to a sim-
ple computation in an associative and commutative set.
This approach allows to implement distributed monitoring

protocols in a simple way; thanks to the algebra, local
computations are sufficient to compute the global state
and to detect potential deviations from the specification.

Results presented in this paper represent a first im-
portant step towards the development of an efficient
and realistic distributed and real-time monitoring tool.
A major next step consists in generalizing our model to
more expressive versions of arc timed Petri nets. There is
also room for improvement in the definition of the state
algebra. Currently, the final state contains in the two
calendar functions the dates of all transitions firings. A
future version of this algebra will simplify the two calendar
functions: if two states are added and if the addition results
in the firing of a transition, then the date of this firing
could be removed from the resulting state, thus reducing
states complexity.

Another important point is to precisely evaluate effi-
ciency of the distributed verification algorithm. The one
presented here is very efficient in terms of the number
of exchanged messages, but can be slow with regards to
the latency of detection. We are currently working on
providing a true real-time and distributed protocol.

Last, the aim of our monitoring protocol is to detect
failures; another line of research for future works is to
make this protocol compatible with classical recovery
mechanisms [11]. The main idea is to detect and recover
failure locally, i.e. in the smallest possible subtree.

ACKNOWLEDGEMENTS

The authors want to thank Jean Fanchon for his insight-
ful comments during the writing of this paper.

REFERENCES

[1] T. Robert, J. Fabre, and M. Roy, “On-line monitoring of real
time applications for early error detection,” in 2008 14th IEEE
Pacific Rim International Symposium on Dependable Comput-
ing. IEEE, 2008, pp. 24-31.

[2] P. Meredith and G. Rosu, “Runtime verification with the rv
system,” in Proceedings of the First international conference on
Runtime verification. Springer-Verlag, 2010, pp. 136-152.

[3] F.Jahanian, R. Rajkumar, and S. Raju, “Runtime monitoring of
timing constraints in distributed real-time systems,” Real-Time
Systems, vol. 7, no. 3, pp. 247-273, 1994.

[4] M. Boyer and O. H. Roux, “On the compared expressiveness of
arc, place and transition time Petri nets,” Fundamenta Infor-
maticae, vol. 88, no. 3, pp. 225-249, 2008.

[5] T. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM (JACM),
vol. 43, no. 2, pp. 225-267, 1996.

[6] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee, “DMaC: Dis-
tributed Monitoring and Checking,” Lecture Notes in Computer
Science, vol. 5779, p. 184, 2009.

[7] E. Fabre, A. Benveniste, S. Haar, and C. Jard, “Distributed
monitoring of concurrent and asynchronous systems,” Discrete
Event Dynamic Systems, vol. 15, no. 1, pp. 33-84, 2005.

[8] T. Chatain and C. Jard, “Time supervision of concurrent sys-
tems using symbolic unfoldings of time petri nets,” Formal
Modeling and Analysis of Timed Systems, pp. 196-210, 2005.

[9] J. Meseguer and U. Montanari, “Petri nets are monoids,” Infor-
mation and computation, vol. 88, no. 2, pp. 105—-155, 1990.

[10] R. Hopkins, “Distributable nets,” Advances in Petri Nets 1991,
pp. 161-187, 1991.

[11] B. Randell and J. Xu, “The evolution of the recovery block
concept,” Software Fault Tolerance, pp. 1-22, 1994.

