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MINIREVIEW

Calpain involvement in the remodeling of cytoskeletal
anchorage complexes
Marie-Christine Lebart and Yves Benyamin

UMR5539, EPHE-CNRS-UM2, cc107, Université de Montpellier II, France

Introduction

The importance of cytoskeletal anchorages and their
renewal is evident in both physiological and pathologi-
cal situations. During fast processes, such as cell shape
modification, adhesion to extracellular matrix, cell
migration, and growth factor-induced signaling path-
ways, the turnover of anchorage complexes is involved
in the rapidity of the response to cell polarization and
directional movements. On the other hand, adhesive
contacts of muscle cells need stabilization of the
cytoskeleton to resist long-term forces induced by
acto–myosin interactions. Coupling between actin
microfilaments and organized integrin complexes must
also include a regulatory mechanism able to disassem-
ble these structures with minimal inertia, thus with a
limited number of participants, to ensure convenient
timing during motile progression. Calcium-dependent
proteolysis is this ubiquitous mechanism, based on

calpain 1 and calpain 2, designed to modulate key
aspects of adhesion and migration phenomena, inclu-
ding spreading, membrane protrusion, integrin cluster-
ing, and cytoskeleton detachment.

Transitory adhesion complexes

Motile cells (for review see [1]) assemble transient
adhesions at the leading edge, called focal complexes
[2]. In fibroblasts, focal complexes are highly transient
structures and some of them mature into more stable
adhesions called focal adhesions (FAs) [3]. FAs are
clustered integrins that mediate cell adhesion and sign-
aling in association with numerous proteins (! 50) [4],
some of which participate in anchorage of actin stress
fibers. These structures are the sites of multiple interac-
tions (Fig. 1) of low affinity [5], which may facilitate
protein exchange dynamics. FAs have been shown to
be motile in stationary cells, whereas the vast majority
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Cells offer different types of cytoskeletal anchorages: transitory structures
such as focal contacts and perennial ones such as the sarcomeric cytoskele-
ton of muscle cells. The turnover of these structures is controlled with dif-
ferent timing by a family of cysteine proteases activated by calcium, the
calpains. The large number of potential substrates present in each of these
structures imposes fine tuning of the activity of the proteases to avoid
excessive action. This phenomenon is thus guaranteed by various types of
regulation, ranging from a relatively high calcium concentration necessary
for activation, phosphorylation of substrates or the proteases themselves
with either a favorable or inhibitory effect, possible intervention of phos-
pholipids, and the presence of a specific inhibitor and its possible degrada-
tion before activation. Finally, formation of multiprotein complexes
containing calpains offers a new method of regulation.

Abbreviations

FA, focal adhesion; FAK, focal adhesion kinase; MARCKS, myristoylated alanine-rich C-kinase substrate; MAP, microtubule-associated

protein; PKC, protein kinase C.
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of FAs in migrating cells do not move [6], consistent
with a role for these sites as traction points (associated
with the presence of myosin in stress fibers). As the cell
moves forward, FAs are located inside the cell and dis-
appear from the rear.
The formation of FAs obeys a consensus model

according to which integrin engagement with extracel-
lular matrix initiates the activation of focal adhesion
kinase (FAK), recruited from the cytosol, followed by
one of the actin and cytoskeletal proteins. In the past
two years, there have been a large number of studies
of the regulation of FA dynamics. In particular, from
live cell imaging of fluorescently labeled FA compo-
nents, it appeared that the cytoskeletal protein, talin
[7], in addition to kinases and adaptor molecules,
including FAK [8], Src, p130CAS, paxillin, extracellu-
lar signal-regulated kinase and myosin light-chain kin-
ase (MLCK), are critical for adhesion turnover [9].
Moreover, FAs have been shown to be sensitive (disas-
sembly) to calcium increase [10,11].
Calpain involvement in FA originates with a study

showing that inhibitors of calpain are responsible for a
decrease in the number of FAs with stabilization of the
peripheral contacts [12,13]. These studies were con-
firmed with calpain null cells (regulatory subunit),
which also showed a decreased number of FAs [14]. The
calcium-activated protease was in fact first identified in
FAs by Beckerle et al. [15], with colocalization of talin
with the catalytic subunit of calpain. More recently, the
mechanism necessary to recruit calpain 2 to peripheral
adhesion sites was shown to involve FAK [16].

It now seems clear that calpains not only act on the
destabilization of adhesion to the extracellular matrix
which is necessary at the rear of the cell to allow
migration, but also play an important function in the
formation and turnover of adhesion complexes. The
importance of these proteases at this particular place
is highlighted by the impressive list of potential sub-
strates of calpains found in adhesive structures
(Table 1).

Assembly ⁄disassembly of FAs

The importance of FAs in assembly was highlighted
by integrin-containing clusters, which are present at
the very early stages of cell spreading [17]. These struc-
tures, which have been proposed to precede the focal
complexes that mature into FAs, were shown to form
in a calpain-dependent mechanism and are character-
ized by the presence of b3 integrin subunit and spec-
trin, both cleaved by calpain [17,18]. The authors
suggest that such cleavages could have active roles,
such as regulation of the recruitment of other proteins
in these clusters and decreasing the tension associated
with microfilament contacts to allow better clustering
of the integrins [18]. Furthermore, it has been sugges-
ted that talin cleavage by calpain may contribute to
the effects of the protease on the clustering and activa-
tion of integrins [19,20]. The importance of calpain in
FA assembly during myoblast fusion has also been
proposed [21]. As inhibition of calpains following cal-
pastatin overexpression is responsible for a decrease in

Fig. 1. Schematic representation of the various contacts established by calpain substrates in adhesion structures. Contacts are indicated by

double arrows. Proteins with kinase or phosphatase activity are noted in bold; those that have been demonstrated to interact with calpain

are circled in black; calpain regulators appear in grey boxes. Phosphorylation (and dephosphorylation) events are indicated by dashed arrows.
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adhesiveness, the authors propose that, in such situ-
ation, the formation of new FAs could be altered.
They also observed, as a consequence of calpain inhi-
bition, a marked decrease in myristoylated alanine-rich
C-kinase substrate (MARCKS) proteolysis, adding a
new substrate to the list of potential calpain substrates
(Table 1).

The proposition of calpain participation in the dis-
assembly of FAs is more straightforward and origi-
nates with the studies of Huttenlocher et al. [12]
showing that inhibiting calpain stabilizes peripheral

adhesive complexes. Then, using live cell imaging,
Huttenlocher’s group further demonstrated that cal-
pain action on the disassembly of adhesive complex
sites could be the result of influencing a-actinin–zyxin
colocalization [22], as inhibition of calpain disrupts
a-actinin localization to zyxin-containing focal con-
tacts. Finally, considering that microtubules promote
the disassembly of adhesive contact sites [23], the
group analyzed the effect of the protease in the context
of nocodazole treatment. They observed that recovery
of focal complex turnover after nocodazole wash-out

Table 1. Calpain substrates found in adhesion structures (focal adhesion, focal complexes, podosomes or integrin containing clusters).

Comments References

Structural proteins of cytoskeleton

a-Actinin Difference site of cleavage depending on the isoforms generating [39,86]

cleavage in the COOH terminal

Filamins For the c isoform (specific for muscle), cleavage in the hinge 2 region [32]

phosphorylation of the filamin C-terminus domain by PKCa protects the ABP against proteolysis

L-Plastin The cleavage separates the N-terminal domain from the core of the molecule Lebart et al.

(unpublished)

Vinculin In platelets, the major fragment is 95 kDa, corresponding to the head of the molecule [87]

Talin The cleavage separates the talin N-terminal from the C- terminal domains and unmasks the

integrin-binding site

[20]

Paxillin In vivo proteolysis inhibited by ALLN; [7,88]

Proteolysis inhibited by siRNA of calpain 2

MARCKS Phosphorylated MARCKS is a good substrate for calpains, [30,89]

The cleavage reveals an actin-binding site

Cortactin Cleavage by calpain 2 regulates cell migration [29,90]

Phosphorylation increases its sensitivity to calpain

Spectrin Phosphorylation decreases spectrin sensitivity to calpain in vitro [18,31]

Exclusive presence of the cleaved form in integrin-containing clusters

P130Cas Cleavage appears in vitro [91]

Tensin Cleavage in vitro and inhibition of protein cleavage in vivo by calpain inhibitor [92]

Gelsolin Cleavage between the G1-3 and the G4-6; localization in podosomes C. Roustan (personal

communication)

WASP

family proteins

WASP (essential component of podosomes) and WAVE are substrates [93–95]

Signal transduction proteins

Pp60Src Possible cleavage by calpain as demonstrated in vivo using calcium ionophore and inhibition

of proteolysis using calpeptin as inhibitor

[96]

FAK In vivo and in vitro cleavage, responsible for the loss of [88]

association of FAK with paxillin, vinculin, and p130cas

PKC In vitro proteolysis of three isoforms, a, b, c; [97–99]

Phosphorylated PKCl translocates to the membrane where there is a distinction between PKCa
and d and the calpain isoforms (l versus m) involved in the cleavage

RhoA Cleavage (in vivo and in vitro) responsible for the creation of a dominant negative form of RhoA;

identification of the cleavage site

[100]

PTPs The phosphorylated form of SHP-1 is protected against proteolysis by calpain [101]

PTP-1B is cleaved by calpain in spreading platelets [102,103]

MLCK Proposed cleavage by calcium-activated protease depending on the presence of CaM [104]

Tubulin Possible cleavage of a tubulin [105]

Better action of the protease before microtubule formation [106]

MAPs MAP1 and 2 are substrates [106]

Phosphorylation of MAP2 protects from calpain 2 cleavage [107]

Dynamin Isoform 1 (synaptic vesicles) would be cleaved [108]
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was inhibited in the presence of calpain inhibitors, sug-
gesting that calpain is required for this mechanism.
More recently, another study, also based on live cell
imaging, proposed a role for calpain in disassembly of
adhesive structures. The very elegant work using a
mutant of talin in the calpain cleavage site shows that
direct talin proteolysis is the key mechanism by which
calpain influences the disassembly of talin from adhe-
sion and by doing so regulates the dynamics of other
adhesion components, such us paxillin, vinculin and
zyxin [24]. The authors discuss the eventual role of the
proteolytic fragment in intracellular signaling. The idea
of a calpain fragment having specific functions is very
interesting. It underlies the fact that the protease has a
very small number of sites in the target molecule with
a particular way to generate complete structural
domains. In favor of this hypothesis are the results
that we have obtained with an actin crosslinking pro-
tein, l-plastin, found in FAs and podosomes [25]. We
have found that this actin-binding protein is a new
substrate of calpain 1 separating the core domain,
able to bind actin and the N-terminal domain which
supports the protein regulation (calcium and phos-
phorylation) (unpublished work). As synthetic peptide
containing the N-terminal sequence of l-plastin (fused
with a penetrating sequence) has been shown to acti-
vate integrins [26,27], it is tempting to speculate that
the N-terminal domain, being free from the rest of the
molecule, has a specific role.

Regulation of cleavage activity

Because the calcium concentration necessary to acti-
vate these proteases does not exist normally in the cell,
except under pathological conditions, researchers have
focused on the idea that other regulatory mechanisms
may lower this requirement. They identified phos-
phorylation and phospholipids as possibly having an
important role in adhesion. The latter were proposed
after in vitro demonstration that certain combinations
of phospholipids considerably lower the calcium con-
centration required for calpain activation [28], but this
field of investigation is poorly supported by in vivo
experiments.
Phosphorylation of the substrates has been shown to

regulate both positively and negatively the proteolytic
activity of calpain. The first example found in the lit-
erature concerns cortactin for which the phosphoryla-
tion of several unidentified Tyr residues by pp60Src
would accelerate the cleavage by calpain 1 [29]. Simi-
larly, it was recently shown that MARCKS proteolysis
by calpain is positively influence by its phosphoryla-
tion [30]. On the other hand, another French group

identified a Tyr residue located in the calpain cleavage
site of a II-spectrin as an in vitro substrate for Src kin-
ase and further demonstrated that phosphorylation of
this residue decreases spectrin sensitivity to calpain
in vitro [31]. Finally, in our laboratory, Raynaud et al.
[32] showed that phosphorylation of the filamin C-ter-
minus domain by protein kinase C (PKC) a protected
c-filamin against proteolysis by calpain 1 in COS cells.
They further illustrated their idea using myotubes,
showing that the stimulation of PKC activity prevents
c-filamin proteolysis by calpain, resulting in an
increase in myotube adhesion.

An alternative mode of regulation of protease activ-
ity in the adhesive context may involve phosphoryla-
tion of calpain itself. Again, both activating and
inhibiting roles of calpain phosphorylation have been
reported with an isoform-specific action. In particular,
this was discovered using different effectors, namely
epidermal growth factor and a chemokine (IP-9), both
inducing loss of FA plaques [33]. The significant
result comes from the fact that when these effectors
are used on the same cells, they induce different acti-
vation of calpain 1 and 2 [33,34]. In this context, epi-
dermal growth factor was shown to utilize the
microtubule-associated protein (MAP) kinase signaling
pathway with phosphorylation of calpain 2 by extra-
cellular signal-regulated kinase and activation of the
protease in the absence of calcium [34,35]. On the
other hand, calpain inactivation can be achieved when
calpain 2 is phosphorylated by protein kinase A [36].

Activation of the protease activity, as followed by
FAK cleavage and FA disruption, can also be associ-
ated with the degradation of the specific inhibitor of
calpain, calpastatin. Indeed, Carragher et al. [37] have
identified a positive feedback loop whereby activation
of v-Src promotes calpain 2 synthesis, which in turn
promotes calpastatin degradation, further enhancing
calpain activity. Moreover, a new way of activating
calpain was proposed with the discovery of the pres-
ence of an ion channel (TRPM7) in adhesion com-
plexes. This channel may be able to activate calpain 2,
although independently of an increase in the global
calcium concentration [38].

Finally, one should keep in mind that calpain may
interact with a potential target without proteolysis.
This introduces the notion of recognition without pro-
teolysis. This concept emerged in our laboratory in
2003, with the discovery that a-actinin could interact
in vitro with calpain 1 in the absence of any proteolysis
[39]. We have observed the same phenomenon with
l-plastin (our unpublished data). Moreover, it is now
clear that multimeric complexes containing calpain can
exist, which is particularly true in the adhesion context

Calpain in cytoskeletal anchorage complex modeling M.-C. Lebart and Y. Benyamin
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[16,40,41]. These complexes may be an alternative way
of recruiting calpain to FAs, thereby positioning the
protease at the very place needed for action.

In conclusion, calpains have much to do (and do
much) in adhesive structures. Control of their activities
is guaranteed by a high calcium concentration asso-
ciated with a multitude of factors varying from
phospholipids to phosphorylation, including phos-
phorylation of potential substrates (with either a favo-
rable or inhibitory effect) or even phosphorylation of
the protease itself. Association with a specific inhibitor,
possible control of degradation of the inhibitor, and
association with a potential substrate are security
measures to avoid anarchic action of the proteases.

Perennial structures

Role of calpain in myofibril disassembly

Muscle cell renewal involves elimination of useless
myofibrils before replacement during growth or after
tissue damage [42–44]. The role of ubiquitous calpains
has been highlighted in the disassembly of sarcomeres
upstream of proteasomal degradation [45,46]. Investi-
gations on muscle wasting [47] induced by hindlimb
unloading [48], food deprivation [49], or during various
pathologies [50] showed cleavage and dissociation of
proteins to be essential preliminary steps in sarcomeric
cytoskeleton stability. The involvement of calpains 1
and 2 in this muscle damage was clearly demonstrated
by overexpressing calpastatin in transgenic mice, which
reduced muscle atrophy by 30% during the unloading
period [48,51]. On the other hand, calpain 3 (p94), the
muscle-specific isoform which is insensitive to calpasta-
tin inhibition and is affected in atrophy processes,
should also be considered [52].

Myofibril organization appears as a dense bundle of
three classes of filaments (thin, thick and elastic) in the
long axis associated with desmin filaments and con-
necting proteins in the transverse direction [53]. The
early dissociation events in which calpains participate
[54] pointed to the I–Z–I complex of sarcomeres and
the costameric region (Fig. 2A). Sarcolemmal invagina-
tions (transverse tubules) and sarcoplasmic reticulum
(terminal cysternae) are closely associated with the
I–Z–I structure [53,55] to trigger muscle contractions
in a Ca2+-dependent fashion [56]. The first signs of
degradation are nebulin disappearance and emergence
of a large titin fragment of 1200 kDa, which covers
the region I-band to the A–I junction, followed by
continuous release of a-actinin (Z-filament) and degra-
dation products from cleavages of desmin, filamin
and dystrophin [57,58]. During this early stage, no

solubilized myosin or its related degradation products
are observed. Electron microscopic observations show
a decreased density of the I–Z–I region associated with
detachment of sarcolemma from the myofibril core
[59,60]. The kinetics of these degradations are closely
related to muscle type: red versus white muscle [61,62].

Calpain location in the I–Z–I structure

Similar amounts of calpains 1 and 2 were generally
found in mammal skeletal muscle, mainly associated
with subcellular elements [54,63]. Previous immunoloc-
alizations have shown that the two proteases are essen-
tially concentrated in the myofibrils near the Z-disk
and, to a lesser extent, in the I-band [64–66]. Their
presence has also been reported under the sarcolemma
membrane [43] closer to the cytoskeletal anchorage
sites [59], which roughly corresponds to the calpastatin
position [66]. Furthermore, calpain 3 was detected in
the I-band at the N2-line, in the M-band, and also at
the Z-line [67,68]; for more details, see Dugnez et al.
[68a] in this minireview series. Recently [32], calpain 1
was located between the Z-line and N1-line on each
side of the Z-disk and in the N2-line vicinity (Fig. 2B).
At least three proteins in this region, titin, a-actinin
and c-filamin, are able to bind calpain 1 with increas-
ing affinity in the presence of calcium [32,39,69]. Speci-
fic binding sites have been identified in the C-terminal
EF-hand part of a-actinin [39], the Z8–I5 N-terminal
titin region [69], in the titin I-band section near the
PEVK region [69], and in the C-terminal region
(hinge 2) of c-filamin [32].

Sequence of I–Z–I disorganization

The role of calpain has been mainly explored during
the postmortem stage of progression or on isolated
myofibrils [43,58–60]. Analysis of protein cleavage, tis-
sue imaging and the involvement of calpain isoforms
have been explored simultaneously [57,59,70]. Muscle
ischemia leads, in a few hours in fish white muscle
[71] and in 1–2 days in red muscle models, to ATP
depletion and Ca2+ ion release into the cytosol, fol-
lowed by a decrease in pH to 5.5, which induces
intense myofibril contraction (rigor mortis). Early cal-
cium-dependent proteolysis affects the cytoskeletal
anchorages at the costameric junctions, where filamin
isoforms and dystrophin are quickly cleaved
[57,61,62], as well as desmin filaments [58], leading to
dissociation of the myofibril network with loss of
register and delamination of the sarcolemmal mem-
brane [59,61]. In contrast with mammalian red muscle
[59], Z-disks are quickly dissociated in fish white

M.-C. Lebart and Y. Benyamin Calpain in cytoskeletal anchorage complex modeling
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muscle with a concomitant release of a-actinin [61,72].
The fact that white muscle represents a simpler organ-
ization, with a single sheet of Z-filaments (a-actinin)
which connects elastic and thin filaments [73], prob-
ably explains the different observations. During rigor
mortis in red muscles, myofibril fractures are often
observed in the I-band at the N1-line and N2-line
close to calpain positions [69]. This was attributed to
the intense muscle contraction associated with calpain
cleavage. At the end of this calcium-dependent proteo-
lysis process [59,61], myofibrils appear dissociated and
fragmented into pieces mainly composed of A-bands
with large blank spaces (I–Z–I structures).

Regulation of calpains during I–Z–I
disorganization

As in the case of adhesion complexes, Ca2+ concentra-
tions above 10 lm are nonphysiological but can be
reached during severe ischemia, calcium channel
deregulation, or cell membrane injury [56,74]. The
intracellular pH, which falls to acidic values in post-
mortem conditions, only partially (40%) decreases cal-
pain 1 activity [57]. It has also been shown using p94
knock-out mice that, in these extreme conditions, cal-
pain 3 would not play an active role, in contrast with
calpain 1 [75]. On the other hand, lower Ca2+ concen-
trations (1–5 lm), reached during excessive exercise
[42,76] or experimentally applied to skinned fibers [77],
induce a loss of the excitation–contraction coupling
associated with a decrease in the passive force produc-
tion related to titin proteolysis [77]. This response can
be inhibited by leupeptin, a powerful cysteine protease
inhibitor, but not by calpastatin, which neutralizes ubi-
quitous calpains and not p94 [77]. Thus, damage
observed during a Ca2+-rigor period would be a dele-
terious effect of calpain 3.

The presence of phospholipids in the sarcolemma
and reticulum membranes [63,78] or in Z-disks [79]
could decrease the Ca2+ concentration requirements

for autolysis of calpain 1 to levels found in the rigor
state [80]. Such regulation implies release of calpain 1
from its potential inhibitor molecule, calpastatin [81],
or cytoskeletal proteins such as titin [69] and c-filamin
[32] which can bind calpains as stable complexes. A
recent study [82] has highlighted a possible regulation
of the ubiquitous calpain system by p94, which is able
to cleave calpastatin and also titin and c-filamin
[68,83] in regions close to calpain 1-binding sites
[32,69]. Thus, activation of p94 may lead to the release
of calpain 1 from its regulators and phospholipid acti-
vation [84]. Validation of such a model would involve
identification of p94 in the activation process [47].

Conclusion

A growing body of evidence indicates that the two
calpain isoforms perform vital operations in cell
motility and tissue renewal. However, this potential is
sometimes deviated from the normal physiological
benefits to pathological behaviors such as invasive
properties of cells [85] or ischemia and genetic dis-
eases which affect calcium homeostasis [50]. Control
of calpain activity by treatment with inhibitory drugs
may limit the invasive properties of metastasis and
tissue injury. Such investigations involve searching for
efficient competitive inhibitors of cellular substrates as
well as modeling of the domain II active conforma-
tion in calpain 1 and calpain 2 to optimize specifici-
ties. The concept of a cell-diffusive molecule able to
tie up calpains in their inactive conformation, as cal-
pastatin does, would be another option. The numer-
ous possible targets in cells (Table 1), the broad
spectrum of the cleaved sequences, and the fact that
the two ubiquitous isoforms can substitute for each
other in differentiated cells are serious problems. A
way of perturbing communication between domains
IV and III or maintaining domain I anchorage within
domain VI, thus locking the open conformation
regardless of the calcium concentration, would be an

Fig. 2. Location of calpain 1 and its targets in the myofibril. (A) Schematic representation of a peripheral myofibril [53] in skeletal muscle (I–

Z–I part), representing calpain 1 location (pink area) as well as several of its main targets (red double arrow) assumed to be essential for cell

adhesion and membrane stability (b-integrin, dystrophin), thin filament cohesion (nebulin, capZ), myofibril–cytoskeleton linkage (c-filamin, des-

min) and the passive tension in sarcomeres (titin). Connections between myofibrils and the sarcolemma were drawn by using peripheral

actin cytoskeleton anchored in a costameric structure. The triad complex including transverse tubule (tt) and terminal cysternea (tc) was

located near the Z–line in the interaction with T-cap [55]. Intermediary filaments (desmin) that maintain sarcomere alignment are suggested

by a dashed line towards the myofibril core. (B) Immunofluorescent (a,b) and immunoperoxidase (c,d) patterns of calpain 1 in longitudinal

(a,c,d) and transverse (b) sections of mouse (a,b) and bovine (c,d) muscle fibers. The Z-line was expanded and scanned for density (e,f) to

compare the control muscle strip treated with the secondary peroxidase-labeled antibody alone (c,e) with the one treated with calpain 1 anti-

body (d,f). Note the increased intensity of the N2-line (d) and the doublet (arrowhead) at the Z-line edges (f). S, sarcolemmal membrane;

Z, Z-line; N, nucleus; TC, triad complex; M, M-line; N2, N2-line. Experimental conditions for calpain 1 location were previously described

[32,69].
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exciting breakthrough in pharmacological investiga-
tions.
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