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On the diversity of pattern distributions in rational language.

Cyril Banderier Olivier Bodini Yann Ponty Hanane Tafat Bouzid

Abstract

It is well known that, under some aperiodicity and ir-
reducibility conditions, the number of occurrences of
local patterns within a Markov chain (and, more gener-
ally, within the languages generated by weighted regu-
lar expressions/automata) follows a Gaussian distribu-
tion with both variance and mean in Θ(n). By contrast,
when these conditions no longer hold, it has been ob-
served that the limiting distribution may follow a whole
diversity of distributions, including the uniform, power-
law or even multimodal distribution, arising as trade-
offs between structural properties of the regular expres-
sion and the weight/probabilities associated with its
transitions/letters. However these cases only partially
cover the full diversity of behaviors induced within reg-
ular expressions, and a characterization of attainable
distributions remained to be provided.

In this article, we constructively show that the lim-
iting distribution of the simplest foreseeable motif (a
single letter!) may already follow an arbitrarily com-
plex continuous distribution (or cadlag process). We
also give applications in random generation (Boltz-
mann sampling) and bioinformatics (parsimonious seg-
mentation of DNA).

1 Introduction.

Numerous phenomena, in all fields of science, can
be modelled as a graph giving transitions be-
tween finitely many states. A rigorous founda-
tion of this idea is due to Markov in 1906, whose
“Markov chains” were applied by Markov him-
self to study the frequency of groups of letters
in Pushkin’s Eugene Onegin. This idea led to
many applications in information theory (com-
pression and Shannon’s entropy), artificial intel-
ligence (Viterbi’s algorithm, spam detection and
creation), information retrieval (Google pagerank)
chemistry (Michaelis-Menten kinetics), thermody-
namics (Boltzmann equilibrium), language theory
and compilation (regular grammars), computer sci-
ence (automata theory), population ecology (Leslie
matrix), biology (cell division, ion channels pro-
teins), music (creation, or attribution), just to
name a few.
For all these models, it makes sense to “mark” a

specific transition, and study the distribution of the
random variable Xn, giving the number of times

that this marked transition was used, in a walk of
length n. It turns out that, in an overwhelming
majority of cases, Xn has linear mean and vari-
ance, and follows a Gaussian limit law. In fact, this
property is automatically guaranteed whenever the
underlying graph is aperiodic and “strongly con-
nected” (or “irreducible”), and even holds when
several transitions are marked [21]. This is yet an-
other instance of what Philippe Flajolet was call-
ing the Borges Theorem [17]: for non degenerated
models, any pattern appears with non-trivial prob-
ability, and follows a Gaussian limit law (as proven
for automata, grammar, trees, maps, ...).

From a mathematical point of view, several def-
initions lead to objects that are more or less iso-
morphic to Markov chains, such as regular expres-
sions, rational language, linear grammars, recur-
rences with integer coefficients, and finite state au-
tomata. All of these objects can be seen as “word
generating” processes, satisfying some fixed inter-
nal constraints which can be verified using bounded
memory, irrespectively of the word length (e.g., as
opposed to context-free grammars, whose recogni-
tion requires a stack structure of unbounded car-
dinality). The number of words of size n, let us
call it an, and the associated generating functions
A(z) :=

∑

n∈N
anz

n are the fundamental objects
in our approach. This class of functions forms an
important subset Nrat[[z]] (the so-called N-rational
functions) of the rational functions Q(z), an an-
alytic characterisation of this class was given by
Soittola’s theorem, which can be seen as the re-
ciprocal of Berstel’s theorem [6]. Note that many
problems related to this misleadingly simple world
are expected to be computationally intractable
(e.g. the Pisot problem, i.e. the presence of a zero
in a linear recurrence, was proven to be NP-hard [7]
and is even conjectured to be undecidable).

Faced with such difficulties, a fruitful approach
resides in the constructive characterisation of a
wide class of generating functions, whose limit-
ing can be fully established. In a sense, the
present work proposes a two-way multivariate gen-
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eralisation of the Perron–Frobenius Theorem where
the underlying Markov chain is not irreducible.
This goal is also partly related to the Schur
and Frobenius problems, nice unimodality/log-
concavity questions, and knapsack-like problems or
even polytope volume computations, where one is
interested in counting the number of nonnegative
integer solutions to equations like

∑

aixi = n, for
some fixed integers ai. Going back to the language
theoretic perspective, in an important sequence of
articles [1, 3, 18, 9], Goldwurm, Lonati, Choffrut
& Bertoni have studied the distribution of occur-
rences of a given pattern in the language of a regu-
lar expression. They identified an important influ-
ence of the number of strongly connected compo-
nents in the transition matrix, and of their relative
intrication. In a sense, this article addresses the fol-
lowing reverse and complementary question: what
kind of regular expression/automaton can lead to
a given limit law?

Plan of the article

In Section 2, we constructively show that the dis-
tribution of a letter can be arbitrarily close to any
continuous distribution (or cadlag process), as il-
lustrated by Figure 1. We give several examples
of expressions that give rise to non-Gaussian ele-
mentary distributions (uniform, polynomials, . . . ).
Moreover, we show how any two regular expres-
sions can be combined into a regular expression
whose limit distribution is the (weighted and renor-
malised) sum of its individual components.
In Section 3, we show how a deeper insight into

the distributions arising from regular expressions
can be used to extend and/or delimit the scope
of a multidimensional Boltzmann samplers intro-
duced by two of the authors [11]. The Boltzmann
approach is a strategy for the uniform random
generation of combinatorial objects, developed by
Flajolet et al. [15], which shares some aspects of
statistical approaches in physics (e.g. for gener-
ating self-avoiding walks [5] and importance sam-
pling [26]). We extend here the scope of an effi-
cient multi-parameterised Boltzmann sampling by
giving a precise characterisation of difficult distri-
butions.
In Section 4, we give another application, more

related to bioinformatics. Several people tried to
modelled DNA as a Markov chain of low order (and
it was shown in [24, 4] that order 7 was already
enough for most of the DNA properties). Following

this spirit, we tackle in this section the question of
finding a kind of “minimal complexity regular ex-
pression” mimicking a given distribution. To this
aim, we use the families of basic distributions in-
troduced in Section 2 to address the construction
of a regular expression that explains an observed
distribution in a bioinformatics context. More pre-
cisely, one can take advantage of such a “modular
decomposition” to devise algorithms that attempts
to guess the specification/regular expression of a
language, based on some indirect evidences (occur-
rences of patterns), a situation which routinely oc-
curs in bioinformatics.
In Section 5, we conclude this presentation by

outlining some perspectives.

2 Limit laws.

This section illustrates the wide variety of distri-
butions followed by a parameter in a non strongly-
connected regular grammar. We are going to define
a family of rational languages whose respective dis-
tributions of the parameter will be used as building
blocks to re-compose almost any distribution, as il-
lustrated by the following picture.

Figure 1: This figures gives the distribution of the
letter “b” in words of a languageL ∈ {a, b}∗, gener-
ated by an ad-hoc regular expression of few lines (A
Maple session is available here: http://lipn.univ-
paris13.fr/∼tafat/ANALCO/analco.mws). This
distribution is converging towards a curve,
“ANALCO”. Note that this curve is, at the limit,
a curve of a multivalued functional (as can be seen
in the A, L, C, O letters), however we achieve it for
finite length words via a single valued function, by
interlacing two sequences mod 2. This figure illus-
trates the huge biodiversity of possible limit laws,
even for the distribution of a single letter.

We propose two types of theorems. The first one
proves that there is a class of rational languages for
which some parameter may follow a large class of
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distributions. The second one works on bivariate
rational functions, and shows a very large domain
of accessible distributions.

Theorem 1 For any P (n, k) =
∑

i

λi

(

k
i

)

with λi ∈

R+, there is a rational language such that ∀n ∈ N,
the probability generating function of the distribu-
tion of the parameter u is exactly the probability
generating function of n-th element Xn of the se-
quence of P -distribution (X〈P 〉)n∈N.

The proof of these theorem is essentially based
on the following lemma and its corollary:
In the first lemma, we explicitly give for every

α > 0 a rational language Lα such that its dom-
inant pole is of order α and for every n > 0, the
distribution of parameter u is uniform on the class
of words of size n in Lα.

Lemma 2 For α > 1, let Lα be the language on
the alphabet

{a1, ..., aα−1, b1, ..., bα−1, c}

with 2α− 1 letters defined by the following regular
expression:

∑

i+j=α−2

i+1
∏

k=1

(c.ak)
∗

j+1
∏

k=1

(b2k)
∗ .

The dominant pole of the generating function of Lα

is of order α and the distribution of the number of
c in a word of size 2n is uniform.

Proof 1 The generating function for the words of
Lα (In order to simplify the generating function, we
consider here that the size of word of length 2n is n)
is Cα(u, z) =

∑

i+j=α−1

1
(1−uz)i+1

1
(1−z)j+1 . Now, let

us recall that the distribution of the parameter u for
a word of a given size n, is the distribution which
the law follows the probability generating function
[zn]C(z,u)
[zn]C(z,1) .

A straightforward calculation shows that for α >
1,

[zn]Cα(u, z) =

(

n+ α− 1

α− 2

) n
∑

k=0

uk

and for α = 1,

[zn]C1(u, z) =

n
∑

k=0

uk .

The lemma ensues immediately.

As a direct corollary of this lemma, we can build,
for any β ∈ N, languages with a distribution of the
parameter u following a

(

n
β

)

-distribution sequence.
More precisely:

Corollary 3 For α > 1 and β > 1, let Lα,β be
the language on an alphabet with 2α− 1+ β letters
defined by the following regular expression:

∑

i+j=α−2

(

j + β

β

) (i+1+β)
∏

k=1

(cak)
∗

j+1
∏

k=1

(b2k)
∗,

the distribution of the number of c in a word of
size 2n follows the law of Xn of the

(

k
β

)

-distribution

sequence (X〈(kβ)〉)n∈N. Moreover, the dominant pole
of the generating function of Lα is of order α+ β.

Proof 2 The idea is to obtain a new rational
language by pointing the parameter u. Now, as
for Lemma 2, the lemma follows a straightfor-
ward, but fastidious calculation. The generating
function for the words of Lα,β is Cα,β(u, z) =

∑

i+j=α−2

(

i+β
β

)

1
(1−uz)i+1+β

1
(1−z)j+1 . Now, we can

show that for α > 1,

[zn]Cα,β(u, z) =

(

n+ β + α− 1

α− 2

) n
∑

k=0

(

k + β

β

)

·uk

The lemma ensues immediately.

Now, one can gives the proof of Theorem 1:

Proof 3 The theorem is an easy consequence of
Corollary 3, just by taking a non negative combi-
nation of the language’s L2,β.

Lemma 4 The power series
∑

n≥0

nizn belongs to a

subset of Qrat[[z]] and more precisely

∑

n≥0

nizn =

i
∑

j=0

j!

{

i
j

}

zj

(1− z)j+1
=

i
∑

j=0

[

i
j

]

zj+1

(1− z)i+1
.

Proof 4 The proof is done by induction: first, ap-
ply zdz to the equality and then use the recurrence
defining the Stirling numbers of the second kind
{

i
j

}

=

{

i− 1
j

}

+j

{

i− 1
j

}

and the Eulerian num-

bers

[

i
j

]

= (j + 1)

[

i− 1
j

]

+ (i − j)

[

i− 1
j − 1

]

. Note

that there is also a bijective proof (combinatorial
explanation) of these relations.
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Theorem 5 One can reach any polynomial distri-
bution, i.e. ∀P (n, k) ∈ R+[[n, k]],
∃F (z, u) ∈ Qrat[[z]] such that

Pr(X〈P 〉
n = k) =

P (n, k)
∑n

i=0P (n, i)
=

[uk]fn(u)

fn(1)
.

Proof 5 Let C1 the class of rational languages
obtained by substituting z by zu in Lemma 4
and C2 the class of languages having as ra-
tional generating function

∑

n≥0

∑

k≥0

kαnβukzn =

α
∑

j=0

j!

{

α
j

}

uj

(1−u)j+1

β
∑

j=0

j!

{

β
j

}

zj

(1−z)j+1 .

It is easy to see that the set of rational languages
having P (n, k) as distribution limit is described by
a linear combination of rational languages defined
by C1 and C2.

The second part of this section is organized
around two propositions which allow us to extend
the field of reachable distributions (the proof being
simple, we omit them). The first proposition shows
which generating function would give the “transla-
tion” of a given distribution.

Proposition 6 Let A(z, u) the generating func-
tion of the combinatorial structure A which admits
a distribution of parameter u equal to DA with sup-
port [0, n[, then the generating function B(z, u) =
A(uz, u) admits a distribution of parameter u such
that for k ∈ [0, n[, DB(X = n+ k) = DA(X = k).
So, the support of DB is [n, 2n[.

In particular, this proposition and Theorem 1
allows us to find a rational language such that
the distribution of one of its letters simulates the
ANALCO spelling (see figure in the introduction).

Another very simple proposition consists to ob-
serve that if a distribution D is realizable by a ra-
tional language, then its mirror is also realizable:

Proposition 7 Let A(z, u) the generating func-
tion of the combinatorial structure A which admits
a distribution of parameter u equals to DA, then the
generating function B(z, u) = A(uz, u−1) admits a
distribution of parameter u such that for k ∈ [0, n[,
DB(X = n− k) = DA(X = k).

Uniform: Gaussian:

Seq(a).Seq(c) Seq(a).Seq(c | a | c)

Poisson: Affine:

Seq(a | b).Seq(c) Seq(c).Seq(a).Seq(c)

Table 1: Basic regular expressions and their asso-
ciated limit distributions for the number of occur-
rences of the distinguished letter c.

3 On the robustness of multi-

parameterized Boltzmann

sampling around a phase

change.

Knowledge of the limit laws for parameters is cru-
cial in multi-parameterised random generation. In-
deed, it plays a central role in assessing the com-
plexity of the multi-parameterised generators un-
der Boltzmann model.
Let us remind briefly the context of random gen-

eration under Boltzmann model: In 2004, Duchon,
Flajolet, Louchard, Schaeffer [15] introduced the
Boltzmann samplers for the uniform random gen-
eration of decomposable objects. Contrasting
with the so-called recursive method, the key idea
here was to draw objects of any size within a
Boltzmann-induced distribution of parameter x,
and reject those of unsuitable sizes. A careful
fine-tuning of the parameter x allowed for Θ(n2)
exact-size and Θ(n) approximate-size samplers for
a large number of operators [15], later extended by
subsequent efforts [16, 14, 12, 13]. In particular,
two of the authors generalized this idea to multi-
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dimensional objects [11] and proved the effective-
ness of the Boltzmann generator for the regular
and context-free languages when the limit law of
the parameters is a multidimensional Gaussian law.
Nevertheless, in many situations (as illustrated in
Section 2) the limiting law of the parameter is not
Gaussian. A detailed analysis of the complexity of
the Boltzmann generators requires a general under-
standing of the effect of the limit laws on it.
Let A(Z,U) be a parameterised combinatorial

class (usually Z represents each atom of the struc-
ture, e.g. the length of our words, and U marks
some auxiliary parameter, e.g. the letter c in the
previous section of this article) then a probabilis-
tic algorithm is called a free multi-parameterised
Boltzmann sampler if it depends on two tuning pa-
rameters that returns an object γ of A(Z,U) of
size n and parameter k with probability Px,u(γ) =
xnuk

A(x, u)
, where A(x, u) is the bivariate generating

function of A(Z,U). Such a sampler is denoted by
Γx,uA(Z,U). The constructions introduced in [15]
extend easily to the multi-parameterised frame-
work. However, the analysis of the complexity
of approximate-size Boltzmann sampler, denoted
by Γx,u,ε,δuA(Z,U), where there is two rejection
phases, one to select the size to be in a window of
type [(1− ε)n, (1 + ε)n] and one to enforce the fre-
quency of the parameter U to belong to a window
of type [(1− δu)k, (1 + δu)k] is much more compli-
cated.
In this section, we first prove in the framework of

rational languages that the size-rejection phase of
Boltzmann generators is extremely robust in terms
of efficiency to the change of nature of the limits
laws (see Theorem 8). On the other side, The-
orem 9 shows that the frequency-rejection phase
can be completely inefficient if the choice of the
frequency tolerance is unrealizable. This is coher-
ent with the wide variety of distribution that can
take the parameter U . More precisely, we prove the
following results:

Theorem 8 Let A(Z,U) be a parameterised regu-

lar language and C(z, u) = P (z,u)
Q(z,u) the rational frac-

tion corresponding to its bivariate generating func-
tion. Let P be a compact set of values of the pa-
rameter u. Let us denote by ρ(u) the modulus of
the smallest pole of C(z, u) (which is a real number
according to Pringsheim’s theorem). For any fixed
tolerance ε > 0, the approximate-size Boltzmann
sampler Γρ(u0)(1−1/n),u0,εA(Z,U) generates, in av-

erage, in O(n) independently in u0 ∈ P, an object
of size N in the interval [(1 − ε), (1 + ε)n].

Theorem 9 For any fixed frequency-tolerance
0 ≤ δu < 1, there is a parameterised
regular language A(Z,U) with bivariate gen-

erating function C(z, u) = P (z,u)
Q(z,u) such that

the approximate-frequency Boltzmann sampler
Γρ(u0)(1−1/n),u0,ε,δuA(Z,U) is able to generate an
object with a frequency of U in the interval [(fu −
δu), (fu + δu)].

Before proving these theorems, let us consider
the following two examples:

• We are interested in generating a word in
Seq(Z) × Seq(UZ). In this case, the bivari-
ate generating function is 1

(1−z)(1−uz) . The

question of what happens for the complex-
ity of a Boltzmann sampler when the param-
eter u becomes close to 1 which is a phase
change for the distribution of the parameter.
Indeed, in this case, the nature of the limit dis-
tribution of the parameter U changes from a
Gaussian law to a uniform law. The previous
Theorem 8 entails that up to a constant fac-
tor independent of u, the Boltzmann complex-
ity for the size-rejection stage is not changed.
The following graphic shows for various choice
of u, the mean number of rejections effectu-
ated by the approximate-size Boltzmann sam-
pler Γρ(u0)(1−1/n),u0,εA(Z,U). We can observe
that, the worst situation is when u0 = 1.
But, in every case, the number of rejections is
bounded by the common limit when n tends
to the infinity. Our proof will follow these ob-
servations.

• Let us consider the rational language L of
specification

Seq(Z3)×Seq(UZ3)+Seq(U2Z3)×Seq(U3Z3).

The previous theorems show that there is no
word of size n having a frequency of U in the
range ]1/3, 2/3[. For instance, the distribu-
tion of the parameter U for a word of L of size
300 is given in the following graphic. So, this
example illustrates what Theorem 9 explains:
a generator of Boltzmann cannot generate an
object which does not exist. Such a phenom-
ena can be anticipated, for instance by looking
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Figure 2: The number of rejection in Boltzmann
sampling when the control parameter u0 is close
to the change of phases u = 1. The red curve
corresponds to the parameter u0 = 1, the green
one to the farthest value of u0. The x-axis is in
logarithmic scale.

at the variance of the parameter U . In a previ-
ous work, Bodini and Ponty showed that under
concentration conditions of the distribution U
that Boltzmann generators are totally efficient
to generate objects (see Theorem 3 in [11]).

Figure 3: Distribution of the number of U in a word
of size 300 in Seq(Z3)×Seq(UZ3) +Seq(U2Z3)×
Seq(U3Z3).

Proof 6 (Sketch of the proof of Theorem 8)
The proof follows closely that of Theorem 6.3 in
the seminal paper [15]. The proof is in two steps:
First, we prove that asymptotically, the mean num-
ber of rejections during the size-rejection of the
approximate-size sampler Γρ(u0)(1−1/n),u0,εA(Z,U)
is bounded by a constant which does not depend
on u. Secondly, we show using the compactness of
the parameter that the mean number of rejections
is bounded by a constant independent of u.

So, for a fixed u0, we have C(z, u0) ∼ c(u0)(1−
z/ρ(u0))

−α(u0) with α(u0) an integer smaller than
degx(Q(x, u)). Taking x = ρ(u0)(1 − 1/n) and u0

as parameter, the probability to draw an object of

size ⌊βn⌋ is

P(N = ⌊βn⌋) ∼
c(u0)

Γ(α)
ρ(u0)

−βn(βn)α−1 (xβn)

C(x, u0)
.

By replacing x by ρ(u0)(1 − 1/n) and C(z, u0) by
c(u0)(1− z/ρ(u0))

−α(u0), we get

P(N = ⌊βn⌋) ∼
e−ββα(u0)−1

Γ(α(u0))

1

n
,

uniformly for β in a compact subinterval of [0,∞[.
Cumulating the estimates in the formula above, we
find by Euler–MacLaurin summation:

P((1 − ε)n < N < (1 + ε)n) ∼

2ε
Γ(α(u0))

1+ε
∫

1−ε

e−xxα(u0)−1dx.

So, as α(u0) is bounded by the degree in x of
Q(x, u). Asymptotically, we proved that P((1 −
ε)n < N < (1+ ε)n) is greater than a strictly posi-
tive real number µ which does not depend on u but
only the degree in x of Q(x, u).
So, ∀u0 ∈ P, and ∀ν > 0 there is a nν,u0

such
that for n > nν,u0

, P((1 − ε)n < N < (1 + ε)n)
is ν-closed to µ, and by compactness of the do-
main P, sup

u0∈P
(nν,u0

) = Nν < ∞. So, ∀ν > 0

there is a Nν such that ∀u0 ∈ P and ∀n > Nν ,
P((1 − ε)n < N < (1 + ε)n) is ν-closed to µ.
Now, again by compactness of P, for n ≤ Nν ,
P((1−ε)n < N < (1+ε)n) reaches its lower bounds
m. Thus, P((1−ε)n < N < (1+ε)n) is greater than
a strictly positive real number µ1 = max(µ+ ν,m)
which does not depend on u. Consequently, the the-
orem is proved.

Proof 7 (Sketch of the proof of Theorem 9)
We only have to build a specification with
an arbitrary large gap in the distribution of
the parameter U . The following specification
Seq(Zk)×Seq(UZk)+Seq(Uk−1Zk)×Seq(UkZk)
meets our expectations. The reachable frequencies
for the parameter U are in [0, 1/k[ and ]k−1

k , 1].

4 Parsimonious structural

segmentation of DNA se-

quences.

In Section 2, we presented a family of regular
expressions, giving rise to families of elementary
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distributions. Here we propose a simple algorithm
that combines these expressions in order to ap-
proximate an observed distribution in an additive
model, motivated by bioinformatics applications.

4.1 Motivation: A computational

genomics perspective

One of the goals of computational genomics is to
reverse-engineer the mechanisms of life, or to re-
late constraints and motifs observed at the DNA
level to functional mechanisms. A fruitful frame-
work to study this relationship postulates a prin-
ciple of parsimony, which dictates that, among the
set of models whose induced behavior matches the
observables, the simplest one should be preferred.
This principle, usually referred to as the Occam’s
razor in a broader context, is one of the pillar of
the scientific method.

Regular expressions and their probabilistic coun-
terpart, the hidden Markov models, have long
been used to model the modular architecture
of genomes [24]. For instance, the PROSITE
database [19] uses simple regular expressions,
called patterns, to encode sequential signatures as-
sociated with functional domains of proteins. Such
patterns can then be used for multiple tasks such
as the search, within sequenced genomes, of new
occurrences of functionally similar genes. One of
the underlying computational challenge is that of
grammatical induction/inference, namely the con-
struction of a formal grammar which recovers all
existing examples, while being general enough to
describe novel instances [2]. In the context of bioin-
formatics, such efforts will ideally unravel some
structural property weighing on a set of sequences,
and will offer in any case testable hypotheses for a
putative common mode of action.

Here we address a natural probabilistic variant of
the grammatical inference problem, which we call
the grammatical segmentation problem. Namely,
given an observed discrete distribution of occur-
rences for a (local) motif, our goal is to construct
a weighted rational expression whose (asymptotic)
distribution has minimal distance to the observed
distribution. Furthermore, the parsimony principle
will be implemented as a limit on the complexity
of the regular expression.

4.2 Statement of the problem

Let p = [(xi, yi)]
n
i=1 be a discrete distribution, i.e.

a sequence of n points indexed by increasing x-
ordinate. Let us define a segmentation of p as a
pair (s, f), where s = (s1, . . . , sk) is a partition of
[1, n] into k integral intervals, and f = (f1, . . . , fk)
is a k-tuple of functions. A segmentation can also
be seen as a piecewise function, whose restriction to
the x-ordinates of p approximates p. Let us use
the usual squared Euclidean distance, defined
as

(1) ∆(p, s, f) =

k
∑

i=1

∑

j∈si

(yi − fi(xj))
2,

as a quality measure for the approximation of p
induced by (s, f).
Let us consider regular expressions r ∈ R having

asymptotic distribution fr, and denote by sr the
minimal interval of the indices of p that contains all
of the non-null values in the distribution. Given a
discrete distribution p, the optimal grammatical
segmentation of p consists in computing the reg-
ular expression, made of k non-overlapping parts,
that best approximates p. In other words, one
needs to compute {r1, . . . , rk} ⊂ R such that:

1. Cardinality: |r| = k

2. Non-overlap: ∀r, r′ ∈ R, sr ∩ sr′ = ∅

3. Optimality: ∀{r′1, . . . , r
′
k} ⊂ R such

that (1) and (2) hold, one has
∆(p, (sr1 , . . . , srk), (fr1 , . . . , frk)) ≤
∆(p, (sr′

1
, . . . , sr′

k
), (fr′

1
, . . . , fr′

k
)).

4.3 A dynamic programming algo-

rithm for the optimal grammat-

ical segmentation problem

The minimal distance αk,p between a subset of R
of cardinality k and a sequence p follows

α0,p =

{

+∞ (p 6= ε)
0 (p = ε)

(2)

and αk,p = minp′.p′′=p
p′ 6=ε

(βp′ + αk−1,p′′) , ∀k > 1

βp := min r∈R
s.t. sr=p

(∆(p, [1, |p|], fr)).

These equations can be computed using dynamic
programming in O(k · |p|2) time and memory, since
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the subsets involved in the subsequent calls are al-
ways intervals.

This algorithm can be easily extended to the case
of parameterised regular expressions/distributions.
By substituting a least-square fitting procedure
to Equation 4.3, one can then optimize over
infinite enumerable families of regular expres-
sions/distributions.

Proportion of occurrences of gccgccgcc
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Figure 4: Distribution for the normalized number
of occurrences of the GCCGCCGCC motif.
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Figure 5: The best segmentation of the GCCGC-
CGCC motif using 4, 6, and 8 affine segments re-
spectively.

4.4 Grammatical model for mini-

satellites

To illustrate our algorithm, let use consider the dis-
tribution of occurrences of the CGGCGGCGG mo-
tif DNA sequences, as retrieved from the GenBank
database [8]. The resulting distribution, shown in
Figure 5 (Left) does not strictly follow a normal
law, as an outcome of both the highly autocorrelat-
ing nature of the motif, and of the existence of du-
plicated essential motifs called mini-satellites [25].
Remarking that Section 2 implies the existence of a
regular expressions for any affine positive targeted
distribution, we can replace Equation 4.3 with a

least-square fitting procedure, and obtain the best
segmentations shown in Figure 5 (Right).

5 Conclusion and perspec-

tives

In this article, we gave examples of distributions
which can be reached as a pattern occurrence dis-
tribution. In the full version of this article, we
plan to give a tighter characterization of the class
of functions which can be reached (exactly, and not
in a ε-approximation sense).
In a forthcoming work, we will tackle the ques-

tion of limit laws in non strongly connected context
free-grammars, and foresee an implementation (in
SageMath) of the following algorithmic questions:
Taking as input a language and a pattern (e.g. de-
scribed by a regular expression), output the asso-
ciated limit law and a Boltzmann (multivariate)
sampler. This also incidentally forces us to investi-
gate several intriguing phenomena related to mul-
tivariate Boltzmann sampling (coalescence of sin-
gularities [10], computational impact, etc).
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