
HAL Id: hal-00643573
https://hal.science/hal-00643573v1

Submitted on 22 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faithful polygonal representation of the convex and
concave parts of a digital curve

Tristan Roussillon, Isabelle Sivignon

To cite this version:
Tristan Roussillon, Isabelle Sivignon. Faithful polygonal representation of the convex and
concave parts of a digital curve. Pattern Recognition, 2011, 44 (10-11), pp.2693-2700.
�10.1016/j.patcog.2011.03.018�. �hal-00643573�

https://hal.science/hal-00643573v1
https://hal.archives-ouvertes.fr


Reversible Polygon that Faithfully Represents the

Convex and Concave Parts of a Digital Curve

Tristan Roussillona,∗, Isabelle Sivignonb
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Abstract

From results about digital convexity, we define a reversible polygon that faith-

fully represents the maximal convex and concave parts of a digital curve. Such

a polygon always exists and is unique in the general case. It is computed from

a given digital curve in linear-time using well-known routines: adding a point

at the front of a digital straight segment and removing a point from the back

of a digital straight segment. It may helps to extract perceptually meaningful

parts of shape outlines or lines.
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1. Introduction

In [7, 11, 8, 9], Eckhardt and Dorksen-Reiter looked for a reversible polygon

that faithfully represents the convex and concave parts of the boundary of a

connected digital set. We call such a polygonal representation faithful polygon

(FP for short) in this paper. Because of the chosen digitization scheme (Gauss

digitization), they failed to properly define the FP of any open digital curve and

show some digital curves for which it does not exist [7]. Therefore, the problem

of defining and computing the FP of a digital curve remained open. Though,
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this problem is closely related to digital convexity and a lot of progress has been

made on this topic in the last decade [5, 8, 9, 1, 29, 25]. Two recent algorithms

[29, 25] retrieve some kinds of locally extremal points, but the authors did not

notice that their algorithm is also able to compute a polygonal representation

close to the FP.

The FP of a digital curve may lead to many applications. One of them con-

sists in decomposing digital objects into perceptually meaningful parts, which

is of great interest in shape recognition. The concept of convexity plays an im-

portant role because a visual part, which is not necessarily convex, is assumed

to be convex at a given scale [23]. Finding a good scale with respect to a given

purpose or studying the convexity at various scales may solve the problem.

In addition, the convex and concave parts of an object straightforwardly give

the sign of the curvature of its boundary, which is known to be a relevant piece

of information about its shape. For instance, curvature zero-crossings at various

scales lead to an interesting shape representation, known as the curvature scale

space representation [24]. Moreover, at a given scale, the endpoints of maximal

convex (resp. concave) parts correspond to points of minimal negative (resp.

maximal positive) curvature [23].

In Euclidean geometry, a given region R is said to be convex if and only if

for any pair of points p, q ∈ R the line segment [pq] is included in R. However,

in digital image processing, when each pixel is viewed as a point of Z2, the only

convex regions (in the Euclidean sense) are isolated points, which is not satisfac-

tory at all. Many authors defined the convexity of digital sets, i.e. sets of points

of Z2 (see for instance, Sklansky [30], Kim [16, 17], Kim and Rosenfeld [15, 18],

Kim and Sklansky [19], Chassery [2] and Ronse [27]). Most of these definitions

may be proved to be equivalent for simply connected sets [17, 16, 27, 10].

However, they failed to properly define the convex and concave parts of open

digital curves (because a convex open digital curve may also be considered as

a digital set that is not convex). In many applications such as line drawings

processing, dealing with open digital curves is important. That is why we define

in this paper convex and concave parts by means of the slope of the maximal
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digital straight segments, i.e. digital straight segments of a digital curve that

cannot be extended neither at the front nor at the back (see [20] for a review

about digital straightness). This definition was first proposed in [8] and is also

used in [12, 25]. In a practical point of view, this definition enables us to

deal with any digital curve, which may correspond to the boundary of a given

digital set or not, like digital spirals (Fig. 2). In a theoretical point of view,

this definition appears to be quite natural since convexity is closely related to

straightness: convex sets are defined by means of line segments and line segments

are convex sets.

In section 2, we recall some definitions related to digital straightness and dig-

ital convexity. In section 3, we extend some important previous results about

digital convexity and present new ones in order to precisely define the FP of a

digital curve in section 4. We prove its main properties (existence and unique-

ness, reversibility, faithful representation of the convex and concave parts) before

concluding in section 5.

2. Definitions and Preliminaries

Two points P,Q ∈ Z
2 are 4-neighbors (resp. 8 neighbors) if and only if

‖
−−→
PQ‖1 = 1 (resp. ‖

−−→
PQ‖∞ = 1).

For all k ∈ {4, 8}, a k-connected digital curve (also called k-arc), denoted by

C, is a sequence of points C1, C2, . . . , Cn ∈ Z
2 such that for all i ∈ 1, . . . , n−1,

Ci has exactly two k-neighbors, which are Ci−1 and Ci+1. Any sequence of

points Ci, . . . , Cj is conveniently denoted by Ci,j .

Moreover, C is open if C1 and Cn have one k-neighbor only, and closed if C1

and Cn also have exactly two k-neighbors, which are respectively Cn and C2,

Cn−1 and C1.

In the sequel, we define convex and concave digital curves by means of the

slope of the maximal digital straight segments. That’s why we need to define

digital straightness first.
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2.1. Digital Straightness

The digital straight line (DSL for short) D(a, b, µ) of slope a
b
and intercept

µ is the set of points (x, y) ∈ Z
2 verifying µ ≤ ax − by < µ + ω with a, b, µ,

ω integer and gcd(a, b) = 1[26]. The DSL is a 4-connected sequence of points if

ω = |a|+ |b| and a 8-connected sequence of points if ω = max (|a|, |b|).

We choose to work in this paper with the concept of 4-neighborhood, so

that ω = |a| + |b| and k = 4. The results derived in the rest of the paper are

applicable for 8-neighborhood but with few changes.

The points lying on the upper (resp. lower) leaning line verifying ax−by = µ

(resp. ax − by = µ + ω − 1) are called the upper (resp. lower) leaning points.

In the sequence, upper leaning points alternate with lower ones.

A digital straight segment (DSS for short) S(a, b, µ, ω) of slope a
b
and in-

tercept µ is a connected part of the DSL D(a, b, µ, ω) containing at least three

consecutive leaning points in a clockwise orientation when upper leaning points

(in sequence order) are taken before the lower leaning points (in sequence order

too). As shown in Fig. 1, the same set of points does not have the same pa-

rameters when scanning forward or backward. Actually, the upper (resp. lower)

leaning line always lies on the left (resp. right) side of a little man walking along

the DSS. As we will see in the next sections, this invariant is key to compute

the FP of a digital curve from the leaning points of DSSs.

A upper (resp. lower) digital edge (also called pattern and reversed pattern

in [3]) is a DSS whose first and last points are upper (resp. lower) leaning points.

The DSS of Fig. 1 is actually a upper digital edge when scanning forward (a),

but a lower digital edge when scanning backward (b).

Due to its definition, any part of a DSS is obviously a DSS. As a corollary,

a part that is not a DSS cannot be contained in longer parts that are DSSs.

Therefore, any DSS S of C can be defined as maximal iff all the parts C ′ of C

containing S, i.e. such that S ⊂ C ′, are not DSSs.

The set of all maximal DSSs (MSs for short, also called fundamental seg-

ments in [8]) that lie on a given digital curve is unique. The first point of any
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(a) S(2, 5, 0, 7)
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-1 -3 -5

0

(b) S(−2,−5,−6, 7)

Figure 1: The same set of points may be viewed as two DSSs of different parameters when

scanning forward or backward. The upper leaning line is depicted with blue, whereas the lower

one is depicted with green. The three leaning points are always in a clockwise orientation when

upper leaning points (in sequence order) are taken before the lower leaning points (in sequence

order too).

two distinct MSs cannot be identical because if it is, the shortest MS is neces-

sarily contained in the longest one and is thus not maximal. Consequently, the

MSs can be ordered without any ambiguity according to the position of their

first point on the contour. Let us then denote by (Si)i∈1,...,m the sequence of

the MSs lying on C. For the sake of clarity the indices are taken modulo m for

closed digital curves.

There exists an elegant algorithm that computes the set of MSs of a digital

curve in linear time [13, 22]. An illustration of the output of this algorithm is

depicted in Fig. 2.

Figure 2: MSs of a digital curve. Each MS is depicted with a red bounding box.

The mechanism can be coarsely described as follows: given a MS, the next

one is computed first by removing points from the back of the segment until

it can be extended at the front and then by adding points at the front of the
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segment until it is maximal.

The key tasks are adding [6, 21] and removing [22] a point at one extremity

of a DSS in constant time and space.

2.2. Digital Convexity

Let us focus now on the definition of digital convexity for open digital curves.

The usual definition is based on the convex hull of a set of points and as a

consequence is only satisfactory for closed digital curves or some classes of open

digital curves like the monotonic ones in [8, Definition 8.4]:

Definition 1 (Digital convexity from convex hull). Let the points C1, C2,

. . . , Cn ∈ Z
2 of a digital curve C have increasing x-coordinates. The digital

curve C is upper (resp. lower) convex if and only if there is no point P ∈ Z
2

between the polygonal line linking the points of C and the upper (resp. lower)

part of the convex hull of C.

In order to extend this definition to arbitrary digital curves, the usual ap-

proach consists in decomposing the digital curve into monotonic pieces (as done

for instance in [25]). However, this approach does not address special cases oc-

curing in junctions. That is why we propose below a local definition based on

the slope of the MSs. It extends the definition of [8, Definition 8.6] only stated

for digital curves having points of increasing x-coordinates.

Definition 2 (Digital convexity from MSs). Two consecutive MSs Si(a, b,

µ, ω) and Si+1(a
′, b′, µ′, ω′) make a convex turn iff ab′ − a′b > 0, but make a

concave turn iff ab′ − a′b < 0.

A digital curve C is locally convex (resp. concave) everywhere if and only if

any two consecutive MSs make a convex (resp. concave) turn.

This last definition is valid for any open digital curves. For instance, the

spiral-shaped digital curve of Fig. 2 is locally convex everywhere because the

slope of any two consecutive MSs make a convex turn.
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For sake of clarity, we merely say that a digital curve is convex (resp. con-

cave) when it is locally convex (resp. concave) everywhere.

Note that a convex digital curve C is concave if the points are scanned in

the reverse way and conversely.

Definition 1 and Definition 2 are perfectly equivalent for digital curves having

points of increasing x-coordinates as proven in [8, Theorem 8.1]. Due to the

importance of this equivalence in the next sections, we recall this result in the

following lemma:

Lemma 1 ([8, Theorem 8.1]). Let the points C1, C2, . . . , Cn ∈ Z
2 of a

digital curve C have increasing x-coordinates. Any two consecutive MSs of C

make a convex (resp. concave) turn if and only if C is upper (resp. lower)

convex.

In the rest of the paper, we refer to this lemma several times, because we

always consider small parts of digital curves having no more than two MSs.

Two consecutive MSs intersect in at least two distinct points P,Q ∈ Z
2 so

that |xP − xQ| = 1 or |yP − yQ| = 1. Since the coordinates of the points of any

DSS monotonically increase or decrease, the x-coordinates (resp. y-coordinates)

of the points of two consecutive MSs increase or decrease if |xP − xQ| = 1

(resp. |yP − yQ| = 1). Due to symmetries, we can assume that the points have

increasing x-coordinates. As a result, we can arbitrarily use Definition 1 or

Definition 2 in such cases due to Lemma 1.

Lemma 2 is intuitive and its proof straightforwardly stems from Definition 1

for the class of monotonic digital curves. Writing a proof for any digital curve is

however not trivial and the simplest way to achieve this requires using Lemma 1.

Lemma 2. Any part of a convex (resp. concave) digital curve is convex (resp.

concave).

Proof

Let C be a convex digital curve of n points (n > 1). The concave case is

symmetric. If we can prove that the sequence of points C1,n−1 is a convex digital
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curve, we can similarly prove that the sequence of points C2,n is a convex digital

curve. By induction, we can thus prove that any part of a convex digital curve

is convex.

Let us now focus on C1,n−1. Its sequence of MSs is hardly the same as the

one of C1,n. More precisely, all the MSs, except the last one, are equal. As a

consequence, we can focus on the part Ck,n covered by the second-to-last and

the last MS of C1,n. If Ck,n−1 contains only one MS, we are done, otherwise

Ck,n−1 contains only two MSs and it remains to show that they make a convex

turn. This step is not trivial because the slope of the last MS of Ck,n−1 may be

smaller of greater than the second-to-last MS of Ck,n.

Let us assume without loss of generality that the points of Ck,n have increas-

ing x-coordinates. The two MSs of Ck,n make a convex turn because C1,n is

assumed to be convex. Due to Lemma 1, Ck,n is thus upper convex. It is then

obvious from Definition 1 that Ck,n−1 is also upper convex, which means that

Ck,n−1 is convex due to Lemma 1. �

Due to the previous lemma, any part of a convex (resp. concave) digital

curve is convex (resp. concave). As a corollary, a part that is not convex (resp.

concave) cannot be contained in a convex (resp. concave) part. Therefore, as

for DSSs, we can define any convex (resp. concave) part P of C as maximal if

and only if all the parts C ′ of C containing P , i.e. such that P ⊂ C ′, are not

convex (resp. concave). The set of all maximal convex or concave parts that lie

on a given digital curve is unique and provides a decomposition into maximal

convex and concave parts that is studied in the following section.

3. Local convexity properties

In this section, we recall important local convexity properties that may be

found in [5, Theorem 9], [22, lemma 1] and [29, Lemma1]. They are crucial for

either showing the existence and uniqueness of the FP or designing a linear-time

algorithm that computes such a polygon, which is done in the next section.
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3.1. Local criterion for checking convexity

In order to decide if two consecutive MS Si and Si+1 make a convex (resp.

concave) turn it is actually enough to consider the point of Si+1 following the

last point of Si, without considering the whole MS Si+1:

Theorem 1. Let Si(a, b, µ, ω) and Si+1(a
′, b′, µ′, ω′) be two consecutive MSs

lying along a digital curve C. Let P (xP , yP ) be the point of Si+1 following the

last point of Si. The MSs Si and Si+1 make a convex (resp. concave) turn iff

axP − byP > µ+ ω (resp. axP − byP < µ− 1).

Proof

Let Ck,l be the sequence of points covered by Si and Ck′,l′ be the sequence of

points covered by Si+1. Note that P = Cl+1. Let us assume without loss of

generality that the points of Ck,l′ have increasing x-coordinates (see Section 2.2).

⇒ If axP − byP > µ+ω, Ck,l+1 is not lower convex due to the results of [6].

The whole part Ck,l′ is thus not lower convex either. Due to Lemma 1, Si and

Si+1 does not make a concave turn, but necessarily a convex one.

Similarly, if axP − byP < µ− 1, Si and Si+1 make a concave turn.

⇐ If Si and Si+1 make a convex turn, Ck,l′ is convex due to Definition 2.

The part Ck,l+1 is thus convex too, due to Lemma 2. Since Ck,l+1 is not a DSS,

either axP − byP < µ − 1 or axP − byP > µ + ω [6]. The first case leads to a

contradiction due to the forward implication. As a result, only the second one

is true, i.e. axP − byP > µ+ ω.

If Si and Si+1 make a concave turn, we can similarly show that axP −byP <

µ− 1. �

Close results may be found in [5, Theorem 9] and [22, lemma 1]. A corollary

of Theorem 1 is that each maximal convex or concave part of C is exactly

covered by a sequence of consecutive MSs of C, i.e. its first and last point are

respectively the first and last point of MSs of C.

In Fig. 3, the MSs of the maximal convex parts are depicted in blue and

yellow, whereas the MSs of the maximal concave parts are depicted in green
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and yellow. The yellow MSs belong to both a maximal convex part and a

maximal concave part.

Figure 3: Decomposition of a digital curve into maximal convex and concave parts. A MS is

depicted by a bounding box: blue if the MS belongs to a convex part only, green if it belongs

to a concave part only, yellow if it belongs to both.

In practice, the maximal convex and concave parts of a digital curve are

retrieved in the course of the MSs computation. Let Ck,l be the last MS

S(a, b, µ, ω) and let Cl+1 = P be the next point on the digital curve. If S belongs

to a convex (resp. concave) part and axP−byP < µ−1 (resp. axP−byP > µ+ω),

then S is the end of a maximal convex (resp. concave) part and the beginning

of a concave (resp. convex) part (and would be depicted with a yellow bounding

box).

Furthermore, Theorem 1 answers to Eckhardt’s question [11]: how far one

can decide whether a part of a digital curve is convex or not by a method that is

as local as possible? The answer is actually that the smallest part required for

checking convexity is given by a MS, plus at least one of the two points located

just before and after this segment. Any smaller part of any digital curve is a

DSS, and thus both convex and concave, which is useless.

To sum up, looking at the location of the two points M and P that respec-

tively bound a MS S(a, b, µ, ω) from back and front, is a way of classifying the

local geometry of the digital curve:

• if axM − byM > µ+ ω and axP − byP > µ+ ω (resp. axM − byM < µ− 1

and axP − byP < µ − 1 ), S belongs to a convex (resp. concave) part as

shown in Fig. 4.a (resp. Fig. 4.b).

• if axM − byM < µ− 1 and axP − byP > µ+ ω (and conversely), S makes
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the transition between a convex and a concave part (Fig. 4.c).

M

P

(a) convex

M

P

(b) concave

M P

(c) inflection

Figure 4: Three different local configurations: MS in a convex part (a), in a concave part (b),

in an inflection part (c).

3.2. Local criterion for extracting dominant points

We go further and consider local digital convexity at a thinner scale in order

to retrieve some local dominant points, defined as follows:

Definition 3 (dominant point). Any point Ck that cannot be strictly con-

tained in a upper (resp. lower) digital edge Ci,j (i < k < j) is a convex (resp.

concave) dominant point.

Note that the first and last points of an open digital curve are by definition

both convex and concave dominant points.

Dominant points are the keystones of the faithful polygon definition, as

shown in Section 4. We show below that the study of subsets of MSs is sufficient

and necessary to detect local dominant points.

Theorem 2. Let Ci,j be a convex (resp. concave) digital curve and let Ck,l be a

DSS S(a, b, µ, ω) included in Ci,j (i ≤ k < l ≤ j) that is not contained in a longer

DSS having the same parameters. Let M and P be the points that respectively

bound S from back and front (if they exist), i.e. M = Ck−1 and P = Cl+1. The

first and last upper (resp. lower) leaning points of S are convex (resp. concave)

dominant points iff axM − byM ≥ µ + ω (resp. axM − byM ≤ µ − 1) or k = i

and axP − byP ≥ µ+ ω (resp. axP − byP ≤ µ− 1) or l = j.

One of the possible configurations involved in Theorem 2 is depicted in

Fig. 5.a.
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Figure 5: Illustration of Theorem 2. The part Ck,l is equal to the DSS S(2, 5, 3, 7). The

upper leaning point of Ck,l, i.e. Ch, is a convex dominant point because axM − byM > µ+ω

(12 > 10) and axP − byP = µ + ω (= 10). For all (x, y) ∈ Ck−1,l+1, the quantity ax − by is

given in (a). Case (ii) of the proof is depicted in (b).

Proof

Let us assume that Ci,j is convex. A similar reasoning leads to the proof about

concave digital curves. Let us assume that Ck,l is strictly included in Ci,j , i.e.

i < k < l < j. The special cases i = k or l = j shorten some parts of the

proof given below. Moreover, let us focus on the last upper leaning point of

Ck,l, denoted by Ch, because the same applies for its first upper leaning point.

Due to Definition 3, the point Ch is a convex dominant point iff there exists

no upper digital edge Cp,q strictly containing it (p < h < q). Since Ck,l cannot

be contained in a longer DSS having the same parameters, the part Ck−1,l+1 is

not a DSS [6]. Since Cp,q is a DSS, only three cases are possible: both Cp and

Cq belong to S (i), Cp belongs to S but not Cq (ii), Cq belongs to S but not Cp

(iii). Since the last two cases are similar, let us focus on the first two cases.

⇒ We have to prove that there does not exist any upper digital edge Cp,q

that strictly contains Ch if axP − byP ≥ µ+ ω.

Let us assume without loss of generality that the points of Ck,l have increas-

ing x-coordinates. In case (i), the upper leaning point Ch is obviously located

above the straight segment [CpCq] because Cp and Cq are both located strictly

below the upper leaning line of S. As a consequence, Cp,q is not an upper digi-

tal edge. In case (ii), the upper leaning point Ch is located below the straight

segment [CpCq] if its slope is greater than the one of S. The point P = Cl+1,
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which belongs to Cp,q, is such that axP − byP ≥ µ+ω, i.e. is located below the

lower leaning line of S. As a result, Cp,q is clearly not convex due to Lemma 1

and is therefore not an upper digital edge (Fig. 5.b).

⇐ We have to prove now that axP − byP ≥ µ+ω if there does not exist any

upper digital edge Cp,q that strictly contains Ch.

If Cp and Cq both belong to Ck,l, there does not exist any upper digital edge

Cp,q that strictly contains Ch, for any value of axP − byP . Let us assume now

that Cp belongs to Ck,l while Cq does not. Since Ck,l cannot be contained in a

longer DSS of same parameters, axP −byP ≤ µ−1 or axP −byP ≥ µ+ω [6], but

the first inequality cannot be true without raising some contradictions. Indeed,

if axP − byP = µ − 1, Ch is contained in a digital edge [6], which raises a

contradiction. Finally, if axP − byP < µ − 1, Cp,q is not convex due to [6] and

Lemma 1, which raises again a contradiction. �

A similar result (but not as general as Theorem 2) may be found in [29,

Lemma1]. These results show that MSs are not enough to extract convex or

concave dominant points of respectively convex or concave digital curves. A

smaller part is often required. In convex (resp. concave) digital curves, it is

actually enough to consider parts corresponding to DSSs S(a, b, µ, ω) bounded

by two points M and P such that axM−byM ≥ µ+ω (resp. axM−byM ≤ µ−1)

and axP − byP ≥ µ+ ω (resp. axP − byP ≤ µ− 1):

• common parts of two consecutive MSs that have two bounding points M

and P such that axM − byM = µ + ω (resp. axM − byM = µ − 1) and

axP − byP = µ+ ω (resp. axP − byP = µ− 1) [3, lemma 2] (Fig. 6.a).

• DSSs maximal at the back only that have two bounding points M and P

such that axM −byM > µ+ω (resp. axM −byM < µ−1) and axP −byP =

µ+ ω (resp. axP − byP = µ− 1) and conversely for DSSs maximal at the

front only (Fig. 6.b).

• MSs that have two bounding pointsM and P such that axM−byM > µ+ω

(resp. axM−byM < µ−1) and axP−byP > µ+ω (resp. axP−byP < µ−1)

(Fig. 6.c).
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(a) common part (b) maximal at the back (c) maximal

Figure 6: DSSs S(a, b, µ, ω) that necessarily contain at least one convex dominant point: (a)

common parts of two consecutive MSs, (b) DSSs maximal at the back or at the front, (c) MSs.

The points (x, y) marked by a square are such that ax − by = µ + ω, whereas those marked

by a cross are such that ax− by > µ+ ω

During the computation of the MSs of a convex (resp. concave) digital curve,

all the DSSs that are either maximal, maximal at the front, maximal at the back

or that are the common part of two consecutive MSs are sequentially scanned.

Since all the convex (resp. concave) dominant points of C are contained in such

DSSs due to Theorem 2, they all can be retrieved in the course of the MSs

computation.

A brief sketch of the algorithm for a convex digital curve is given below.

Let Ck,l = S(a, b, µ, ω) be maximal at the back, i.e. the point M = Ck−1

is such that axM − byM > µ + ω. If the next point P = Cl+1 is such that

axP − byP ≤ µ − 1, the first and last upper leaning points of Ck,l are convex

dominant points due to Theorem 2. If they are not confounded, only the last

upper leaning point of Ck,l is stored as a new convex dominant point because

the first upper leaning point is assumed to be already stored. In addition, if

axP − byP = µ − 1, Ck,l+1 is a DSS and its first and last upper leaning points

are confounded with the last upper leaning point of Ck,l [6].

A similar process is performed when points are removed from the back of

the current DSS.

It turns out that either during the adding step or the removing step, any two

consecutive retrieved points are the first and last point of a digital edge, which

guarantees that the points of C lying between two convex dominant points are

not retrieved.
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Fig. 7 shows what are the convex dominant points of the digital curve of

Fig. 2. Note that if the points are scanning in the reverse way, the digital

curve would be considered as concave and its concave dominant points would

be similarly retrieved from the lower leaning points due to the orientation of the

DSSs (see Section 2.1).

Figure 7: Sequence of convex dominant points linked into a red polygonal line.

4. Faithful Polygon

In [7, 11, 8, 9], Eckhardt and Dorksen-Reiter looked for a reversible polygon

Σ that faithfully represents a connected digital set S.

They looked for polygons such that:

• The vertices of Σ belong to S,

• S is the Gauss digitization of Σ,

• Σ respects the convex and concave parts of S.

It turns out that even if some digital sets admit such polygons (Euclidean

convex hull of convex digital sets for instance), it is impossible to meet the three

requirements at the same time for all sets S [7]. However, we show in this section

that if we replace the second requirement by a weaker one, a faithful polygonal

representation always exists. Moreover, we provide an online and linear-time

algorithm that computes such a polygon.

Before considering arbitrary digital curves, we first focus on strictly convex

or strictly concave digital curves.
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4.1. Faithful Polygon of Convex or Concave Digital Curves

In a convex (resp. concave) digital curve C, the set of convex (resp. concave)

dominant points is unique because the set of configurations involved in Theo-

rem 2 is unique. Moreover, the points can be ordered in a sequence because they

all belong to the sequence of points C. Our approach consists in linking these

convex (resp. concave) dominant points by straight line segments as shown in

Fig. 7. The resulting polygon is interesting because of the following theorem:

Theorem 3. In a convex (resp. concave) digital curve C, the sequence of con-

vex (resp. concave) dominant points C1 = Ck0
, Ck1

, . . . , Ckm
= Cn defines a

sequence of upper (resp. lower) digital edges Ck0,k1
, . . . , Ckm−1,km

such that any

two consecutive digital edges make a convex (resp. concave) turn.

Proof

Let us assume that C is a convex digital curve. A similar proof can be derived

for concave digital curves.

We have to prove that:

(i) for all i ∈ 0, . . . ,m− 1, the part Cki,ki+1
is a digital edge.

(ii) for all i ∈ 1, . . . ,m−1, the parts Cki−1,ki
and Cki,ki+1

make a convex turn.

However, (i) straightforwardly comes from the algorithm given at the end of

Section 3 for retrieving the convex dominant points of a convex digital curve.

It therefore remains to show (ii).

For all i ∈ 1, . . . ,m−1, let us assume without loss of generality that Cki−1,ki

lies in the first quadrant, i.e. xCki
≥ xCki−1

and yCki
≥ yCki−1

. The point

Cki+1
cannot be located above the straight line passing through Cki−1

and Cki

without raising contradictions. Indeed, either Cki−1,ki+1
is a upper digital edge,

which implies that Cki
is not a convex dominant point, or Cki−1,ki+1

is not

convex due to Definition 1 and Lemma 1, which also raises a contradiction. As

a consequence, Cki+1
is located below the straight line passing through Cki−1

and Cki
, i.e. Cki−1,ki

and Cki,ki+1
make a convex turn. �

16



Any convex (resp. concave) digital curve C admits a convex (resp. concave)

polygonal line that is obtained by linking the convex (resp. concave) dominant

points of C by straight line segments (Fig. 7). Furthermore, this polygonal

representation is reversible because any part of C lying between two consecutive

convex (resp. concave) dominant points is a upper (resp. lower) digital edge,

which can be retrieved in the first octant by the floor (resp. ceil) digitization of

the straight line segment joining the two points.

If C is not convex, we can independently compute the convex (resp. concave)

dominant points of each maximal convex (resp. concave) part. Tricky issues

occur in inflection parts, which belong to both a maximal convex part and a

maximal concave part. Though, such parts are MSs and are thus arithmetically

well defined. We will see below that a convex and a concave dominant point of

two consecutive maximal convex and concave parts can be linked by a straight

line segment joining the first upper (resp. lower) and last lower (resp. upper)

leaning points of the MS of inflection.

4.2. Faithful Polygon of Arbitrary Digital Curves

We can now precisely define the FP of a digital curve and prove its main

properties.

Definition 4 (Faithful polygon). Let C1
i,j , C

2
i,j , . . . , C

Λ
i,j be the sequence of

the maximal convex or concave parts of a digital curve C. The faithful polygon

(FP) of C is defined by the concatenation of a subsequence of the convex or

concave dominant points of the maximal convex or concave parts of C (see

Fig. 8 for an illustration):

⊙λ∈1,...,Λ(C
λ
kµ
, Cλ

kµ+1
, . . . , Cλ

kν
)

such that:

• If Cλ
i,j is convex, Cλ

kµ
, Cλ

kµ+1
, . . . , Cλ

kν
are the convex dominant points of

Cλ
i,j located between:
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– Ci if λ = 1 and the last upper leaning point of the first MS of Cλ
i,j

otherwise.

– Cj if λ = Λ and the first upper leaning point of the last MS of Cλ
i,j

otherwise.

• If Cλ
i,j is concave, Cλ

kµ
, Cλ

kµ+1
, . . . , Cλ

kν
are the concave dominant points of

Cλ
i,j located between:

– Ci if λ = 1 and the last lower leaning point of the first MS of Cλ
i,j

otherwise.

– Cj if λ = Λ and the first lower leaning point of the last MS of Cλ
i,j

otherwise.

last MS of Cλ
i,j

Ckλν

Ckλµ

Ckλ−1
ν

Ckλ+1
µ

= last MS of Cλ−1
i,j

first MS of Cλ
i,j

= first MS of Cλ+1
i,j

Figure 8: Illustration of the definition of the FP.

The FP of the wave-shaped digital curve of Fig. 3 is shown in Fig. 9.

Figure 9: FP of a digital curve in red.

The FP of a digital curve has several interesting properties that are listed

and proven below.
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Property 1. Any digital curve C that is not a DSS has a unique FP.

Proof

The decomposition into maximal convex and concave parts is unique and in

each maximal convex (resp. concave) part, the set of convex (resp. concave)

dominant points is also unique. �

As shown in Fig. 10, note that a DSS has two different FPs depending on

whether the DSS is considered as convex or concave.

(a) convex (b) concave

Figure 10: Two possible representations of a DSS

Property 2. The vertices of the FP of any digital curve C belong to C.

Proof

Straightforward from Definition 3 and Definition 4. �

Property 3. The maximal convex parts, maximal concave parts and inflection

MSs of C respectively contain the sequences of edges of decreasing slopes, se-

quences of edges of increasing slopes and inflection edges of the FP of C.

Proof

It is enough to show that the inflection MSs of C contain the inflection edges

of the FP of C because the maximal convex or concave parts contain the edges

of the FP of C having decreasing or increasing slopes due to Definition 4 and

Theorem 3.

Let us assume that Cλ
i,j is a maximal convex part and Cλ+1

i,j is the maximal

concave part that follows for some λ ∈ 1, . . . ,Λ−1. The converse case is similar.

Moreover, let S(a, b, µ, ω) be the MS of inflection, i.e. the last MS of Cλ
i,j and
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the first one of Cλ+1
i,j . Without loss of generality, we assume that it has points

of increasing x-coordinates. The points Cλ
kν

and Cλ+1
kµ

are respectively the first

upper and last lower leaning point of S (Fig. 11).

Ckλ
ν

Cλ+1
kµ

(a)

Ckλ
ν

Cλ+1
kµ

Ckλ
ν+1

Ckλ
ν−1

Cλ+1
kµ+1

Cλ+1
kµ−1

(b)

Figure 11: Illustration of the proof of Property 3. The MS of inflection is depicted with a red

bounding box in (a). The points Cλ
kν−1

and Cλ+1

kµ+1
are located in either side of the dashed

line passing through Cλ
kν

and Cλ+1

kµ
, the first upper and last lower leaning points of the MS

of inflection (b).

Due to Theorem 3, the two upper digital edges Cλ
kν−1,kν

and Cλ
kν ,kν+1

make

a convex turn. By definition, the slope of the straight segment joining Cλ
kν

and

Cλ+1
kµ

is smaller than the one of the straight segment joining Cλ
kν

and Cλ
kν+1

and

thus, the one of the straight segment joining Cλ
kν−1

and Cλ
kν

(Fig. 11). Similarly,

the slope of the straight segment joining Cλ
kν

and Cλ+1
kµ

is smaller than the one

of the straight segment joining Cλ+1
kµ

and Cλ+1
kµ+1

(Fig. 11). As a consequence,

[Cλ
kν
Cλ+1

kµ
] is an edge of inflection contained in the MS of inflection S. �

Property 4. Any digital curve C can be retrieved from its FP (stored as a

sequence of points).

Proof

For all λ ∈ 1, . . . ,Λ, for all κ ∈ µ, . . . , ν − 1, Cλ
kκ,kκ+1

is easily retrieved from its

two end points because it is a upper digital edge in convex parts and a lower

digital edge in concave parts.

It remains to show that for all λ ∈ 1, . . . ,Λ − 1, the part of C bounded by

Cλ
kν

and Cλ+1
kµ

can be retrieved from the end points Cλ
kν

and Cλ+1
kµ
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Let us assume that Cλ
i,j is a maximal convex part and Cλ+1

i,j is the maximal

concave part that follows for some λ ∈ 1, . . . ,Λ−1. The converse case is similar.

For the sake of clarity, let us rename Ckλ
ν
and Cλ+1

kµ
into M and P respectively.

Due to definition 4, M and P are respectively the first upper and the last

lower leaning points of the same MS, assumed without loss of generality to have

points of increasing x-coordinates (Fig. 12.a).

Ckλ
ν
= M

Cλ+1
kµ

= P

(a)

Ckλ
ν
= M

Cλ+1
kµ

= P

S

L

(b)

Figure 12: Illustration of the proof of Property 4: M (resp. P ) is the first upper (resp. last

lower) leaning point of the MS of inflection depicted with a red bounding box in (a). The DSS

S, which is depicted with a red bounding box in (b) is the floor digitization of the straight

line segment joining M and L (L excluded), where L is derived from P .

Let S(a, b, µ, ω) be the DSS lying between Ckλ
ν
= M and Cλ+1

kµ−1 (Fig. 12.b).

If P is the only lower leaning point of the MS of inflection, axP − byP = µ+ ω,

otherwise axP −byP = µ+ω−1 [6]. Let L be the image of P after a translation

by the vector (−1, 1) (Fig. 12.b). The quantity axL − byL is equal to a(xP −

1)− b(yP + 1) = (axP − byP )− (a+ b) and is thus either equal to µ or µ− 1.

From the algorithm of Debled and Reveilles [6], we can therefore conclude

that S ∪L is a DSS and even more precisely an upper digital edge, because M ,

the first point of S, is also the first upper leaning point of S.

As a consequence, the part of C bounded by Cλ
kν

= M and Cλ+1
kµ

= P can be

retrieved from M and P : S is indeed the floor digitization of [ML], but without

L and it remains to add P to end the drawing. �

In practice, computing the FP of a digital curve C requires to check whether

a given convex (resp. concave) part Ci,j is maximal or not and to retrieve its

sequence of convex (resp. concave) dominant points. This can be done online
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in linear-time during the MSs computation as shown in Section 3. A detailed

algorithm may be found in [28, Algorithm 3]. It has been implemented in C++

and the code is available on the web site of the LIRIS lab1. Fig. 3, Fig. 7 and

Fig. 9 are the outputs of the program.

5. Conclusion, discussion and perspectives

In this paper, we have shown that any digital curve C has a reversible faithful

polygon (FP) such that:

• Each vertex of the FP of C belongs to C.

• The FP exactly reflects the maximal convex and concave parts of C.

• C may be retrieved from its FP stored as a sequence of points.

An online and linear-time algorithm exists in order to extract the FP of a

digital curve. It only uses well-known routines: adding a point to the front of a

DSS [6] and removing a point from the back of a DSS [22]. It is thus really easy

to implement once these routines are available. Moreover, retrieving a digital

curve from its FP can also be achieved in linear-time.

A small translation of each vertex of the FP of a digital curve C is enough to

compute the well-known minimum-perimeter polygon (MPP) of the dilatation

of C by the closed unit square {(x, y) ∈ R
2|max (|x|, |y|) ≤ 1

2
}. The FP is

reversible and exactly reflects the convex and concave parts of the digital curve,

whereas the MPP minimizes the number of inflection points required to repre-

sent the digital curve and is known to provide good estimators of tangent and

length. The MPP derived from the FP of Fig. 9 is depicted in Fig. 13. Further

details may be found in [28, Section 5.3].

As a consequence, the proposed arithmetical algorithm (dedicated to the

FP computation) can also compute the MPP and conversely, the combinatorial

algorithm of Provençal and Lachaud [25] (dedicated to the MPP computation)

1http://liris.cnrs.fr/m2disco/index en.html?softwares
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Figure 13: MPP (in red) of a dilated digital curve (in blue).

can also compute the FP. The combinatorial approach of [1] has been shown to

be about ten times faster than the arithmetical one [5] in checking the convexity

of a digital curve [1, Fig.6]. We can thus expect the same difference in the

FP or MPP extraction between the two approaches. However, our approach

has the advantage of being purely local, contrary to the one of Provençal and

Lachaud [25]. Thus, it may lead to an algorithm solving the dynamic problem:

update the polygonal representation during the displacement of a point of the

digital curve.

Eventually, note that the parts of the digital curve highlighted in its FP or

MPP does not reflect the visual parts of the original shape if the resolution is to

high with respect to the scale of its main features or if some stochastic noise is

introduced in the digitization. Several ways of copying with this problem can be

followed while keeping an arithmetic approach that leads to fast algorithms with

integer-only computations: (i) find a deformation process of the digital curve so

that it sticks to the expected shape, like in digital deformable models [4], (ii) find

a discrete simplification process of the digital curve in the manner of [23] or (iii)

work on sub-sampled versions of the initial digital curve as done in [14]. This

work and its perspectives lead to think that digital convexity will help to design

an efficient and accurate method dedicated to the extraction of perceptually

meaningful parts.
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christoffel = digitally convex. Pattern Recognition, 42(10):2239–2246, 2009.

23



[2] J.M. Chassery. Discrete convexity: Definition, parametrization, and com-

patibility with continuous convexity. Computer Vision Graphics and Image

Processing, 21(3):326–344, 1983.

[3] F. de Vieilleville and J-O. Lachaud. Revisiting digital straight segment

recognition. In 13-th International Conference on Discrete Geometry for

Computer Imagery, volume 4245 of Lecture Notes on Computer Science,

pages 355–366. Springer, 2006.

[4] F. de Vieilleville and J-O. Lachaud. Digital deformable model simulating

active contours. In 15-th IAPR International Conference on Discrete Ge-

ometry for Computer Imagery, volume 5810 of Lecture Notes in Computer

Science, pages 203–216. Springer, 2009.
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