
HAL Id: hal-00643520
https://hal.science/hal-00643520

Submitted on 22 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A near-linear time guaranteed algorithm for digital
curve simplification under the Fréchet distance

Isabelle Sivignon

To cite this version:
Isabelle Sivignon. A near-linear time guaranteed algorithm for digital curve simplification under
the Fréchet distance. DGCI 2011 - 16th IAPR International Conference on Discrete Geometry for
Computer Imagery, Apr 2011, Nancy, France. pp.333-345, �10.1007/978-3-642-19867-0_28�. �hal-
00643520�

https://hal.science/hal-00643520
https://hal.archives-ouvertes.fr

A near-linear time guaranteed algorithm for

digital curve simplification under the Fréchet

distance

Isabelle Sivignon

gipsa-lab, CNRS, UMR 5216, F-38420, France
isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Abstract. Given a digital curve and a maximum error, we propose
an algorithm that computes a simplification of the curve such that the
Fréchet distance between the original and the simplified curve is less than
the error. The algorithm uses an approximation of the Fréchet distance,
but a guarantee over the quality of the simplification is proved. More-
over, even if the theoretical complexity of the algorithm is in O(n log(n)),
experiments show a linear behaviour in practice.

1 Introduction

Given a polygonal curve, the curve simplification problem consists in computing
another polygonal curve that (i) approximates the original curve, (ii) satisfies a
given error criterion, (iii) with as few vertices as possible. This problem arises
in a wide range of applications, such as geographic information systems (GIS),
computer graphics or computer vision, where the management of the level of
details is of crucial importance to save memory space or to speed-up analysis
algorithms.

This problem has been studied for many years for various metrics : classical
L1, L2, L∞ metrics (see [4] for a survey on simplification algorithms using these
metrics), Hausdorff distance or Fréchet distance. While the L norms and Haus-
dorff distance are relevant measures for many applications, they do not always
reflect the similarity or dissimilarity of two polygonal curves (see for instance
the example given in [10] for the Hausdorff distance). The main reason of this
discrepancy is that these metrics consider the curves as sets of points, and do
not reflect the course of the curves. However, the course of the curve may be im-
portant in some applications, like handwritting recognition for instance [11]. The
Fréchet distance is often used to overcome this problem as it nicely measures the
similarity between two curves. The Fréchet distance can be intuitively defined
considering a man walking his dog. Each protagonist walks along a path, and
controls its speed independently, but cannot go backwards. The Fréchet distance
between the two pathes is the minimal length of the leash required.

1.1 Fréchet distance

Given two curves f and g specified by functions f : [0, 1] → R
2 and g : [0, 1] →

R
2, and two non-decreasing continuous functions α : [0, 1] → [0, 1] and β :

[0, 1] → [0, 1] with α(0) = 0, α(1) = 1, β(0) = 0, β(1) = 1, the Fréchet distance
δF (f, g) between two curves f and g is defined as

δF (f, g) = inf
α,β

max
0≤t≤1

d(f(α(t)), g(β(t)))

where d denotes the Euclidean distance. The polygonal curve simplification
problem was first studied for the Fréchet distance by Godau [7]. Alt and Godau
proposed in [3] an O(mn)-time algorithm to determine whether δF (P,Q) ≤ ε

for two polygonal curves P and Q of size n and m, and a given error ε > 0. The
complexity turns out to be O((m2n+n2m) log(mn)) for the actual computation
of the Fréchet distance between two curves. A recent work [6] proposes a near-
linear time algorithm to compute an approximation of this distance.

1.2 Curve simplification problem

In the rest of the paper, we follow the notations used in [2] or [1]. Given a
polygonal curve P = 〈p1, . . . pn〉, a curve P ′ = 〈pi1 , . . . pik〉 with 1 = i1 < . . . <

ik = n is said to simplify the curve P . P (i, j) denotes the subpath from pi to pj .
Given a pair of indices 1 ≤ i ≤ j ≤ n, δF (pipj , P) denotes the error of the

segment pipj with respect to P (i, j). Then,

δF (P
′, P) = max

1≤j≤k
δF (pijpij+1

, P)

For the sake of clarity, the simplified notation error(i, j) = δF (pipj , P) will
sometimes be used. We also say that pipj is a shortcut.

P ′ is an ε-simplification of P if δF (P
′, P) ≤ ε. The optimization problem is

the following : given a polygonal curve P , find a ε-simplification P ′ of P with
the minimum number of vertices. The approach of Imai and Iri [8] leads to an
optimal solution under the Fréchet distance in O(n3).

In [2], the authors propose an O(n log(n)) algorithm. The base of their al-
gorithm is greedy and very simple: points are added one by one while the error
of the shortcut is lower than ε, otherwise the process starts over from the last
point processed. The strength of their approach lies in the following property :

Lemma 1. [2, Lemma 3.3] Let P = {p1, p2, . . . , pn} be a polygonal curve in R
2.

For 1 ≤ i ≤ l ≤ r ≤ j ≤ n, error(l, r) ≤ 2error(i, j)

This means that for any shortcut plpr such that error(l, r) > ε, there does
not exist a shortcut pipj such that error(i, j) ≤ ε

2 . They derive the following
theorem:

Theorem 1. [2, Theorem 3.4] Given a polygonal curve P in R
d and a param-

eter ε > 0, we can compute in O(n log(n)) an ε-simplification P ′ of P under
the Fréchet metric error with at most the number of vertices of an optimal ε

2 -
simplification.

The O(nlog(n)) complexity is achieved with a dichotomic processs in the
greedy algorithm. The question we arouse in this paper is the following : does
there exist a linear-time guaranteed algorithm to compute an ε-simplification
? We propose a guaranteed algorithm for digital curves whose complexity is
Ω(n log(n)) in theory but behaves in O(n) in practice. The main features of
this algorithm are the following: (i) approximation of the Fréchet distance as in
[1], (ii) restriction to digital curves. In section 2, we present the approximated
distance, and give the algorithm outline as a novel way of using the results of [1].
Section 3 is the core of the paper and details the approximated distance efficient
and online update, with a restriction to digital curves to achieve a near-linear
complexity. Section 4 begins with a theoretical study of the complexity and the
guarantee of the proposed algorithm, and ends with some experimental results.

2 Guaranteed algorithm using an approximated distance

2.1 Approximating the Fréchet distance

In [1], Ali Abam et al. study the following problem: given a possibly infinite
sequence of points defining a polygonal path, maintain in a streaming setting, a
simplification of this set of points with 2k points and a bounded error. The error
is measured using the Hausdorff distance or the Fréchet distance. The Fréchet
distance being computationally too costly for this framework, they show that
error(i, j) can be upper and lower bounded by functions of two values, namely
ω(i, j) and b(i, j). ω(i, j) is the width of the points of P (i, j) in the direction
pipj . b(i, j) is the length of the longest backpath in the direction −−→pipj . Its precise
definition requires the following other definitions:

Definition 1. Let l be a straight line of directional vector
−→
d . α is the angle

between l and the abscissa axis.

projα(p) denotes the orthogonal projection of p onto the line of angle α.

If −−→plpm.
−→
d < 0, then projα(pl) is “after” projα(pm) in direction α, and we

denote projα(pl) >> projα(pm) (see Figure 1(a)).

Definition 2. −−→plpm is a positive shift if and only if −−→plpm.
−→
d > 0, negative oth-

erwise.

Definition 3. A backpath in direction α is a negative shift −−→plpm such that l < m

(see Figure 1(b)). pl is the origin of the backpath. The length of the backpath is
equal to d(projα(pl), projα(pm)).

Lemma 2 relates ω(i, j) and b(i, j) to error(i, j):

Lemma 2. [1, Lemma 4.2] The Fréchet error of a shortcut pipj satisfies

max(w(i,j)
2 ,

b(i,j)
2) ≤ error(i, j) ≤ 2

√
2max(w(i,j)

2 ,
b(i,j)

2).

pl

pm
projα(pl)

projα(pm)−→
d

α

(a)

b(i, j)

pl

pm

pq

pr

pi

pj

(b)

Fig. 1. (a) Illustration of Definitions 1 and 2. (b) Illustration of backpathes in direction
−−→pipj : −−→prpq is a backpath since it is a negative shift and pr is before pq on the curve
P (i, j). However, it is not the longest backpath: −−→plpm is also a backpath, of maximal
length b(i, j).

Algorithm 1: Greedy Fréchet simplification algorithm

i = 1, j = 2
while i < n do

while j < n and max(w(i, j), b(i, j)) ≤ ε
√

2
do

j=j+1

create a new shortcut pipj−1

i = j − 1,j = i+ 1

2.2 Algorithm outline

Algorithm 1 presents the general outline of the ε-simplification.

Lemma 3. Algorithm 1 computes an ε-simplification P ′ of a polygonal curve P

such that |P ′| is lower than the number of vertices of an optimal ε

4
√
2
-simplification

of P.

Proof. When a shortcut pipj is created in P ′, the following two properties are
true: (i) max(w(i, j), b(i, j)) ≤ ε√

2
and (ii) max(w(i, j + 1), b(i, j + 1)) > ε√

2
.

From Lemma 2, (i) implies that error(i, j) ≤ ε which proves that P ′ is a ε-
simplification of P . From lemma 2 again, (ii) implies that error(i, j +1) > ε

2
√
2
.

The hypothesis are then similar to the ones of the proof of [2, Theorem 3.4], and
a similar reasoning proves the guarantee.

Note that the complexity of Algorithm 1 has not been adressed yet. Indeed,
the difficulty lies in the updates of ω(i, j) and b(i, j) when a new point pj is
considered. These two variables depend directly on the direction −−→pipj . However,
when a new point is added, this direction may change drastically: Figure 2 shows
an example where the maximal width and maximal backpath are achieved for
different vertices of the polyline for −−→pipj and −−−−→pipj+1.

In the next section, we show how to update efficiently the decisions on ω(i, j)
and b(i, j), with a specification for digital curve to reach a near-linear time
complexity.

pi

pj

b(i, j)

ω(i, j)

(a)

ω(i, j)

b(i, j)
pj+1

pi

(b)

Fig. 2. Updating ω(i, j) and b(i, j) can be costly in the general case: for instance, the
longest backpath is much smaller in (b) for the direction −−−−→pipj+1 than in (a) for the
direction −−→pipj .

3 Updating the approximated distance efficiently

In [1], where the approximated distance is defined, an actual computation of
the variables ω(i, j) and b(i, j) is necessary since the problem is to minimize
the error. However, as computing the exact values is too expensive, guaranteed
approximations are updated when a new point is added. Contrary to [1], in our
framework an update of these variables is not necessary, but the decisions “is
ω(i, j) ≤ ε√

2
?” and “is b(i, j) ≤ ε√

2
?” must be exact to ensure the computation

of an ε-simplification. This section is devoted to the design of new algorithmic
approaches to solve these two problems.

3.1 Decision on ω(i, j)

Instead of deciding wether ω(i, j) is under a given threshold or not, we show that
it is enough to check the distance between any point of P (i, j) and the vector
−−→pipj .

Property 1. Let dmax(i, j) = maxp∈P (i,j) d(p,
−−→pipj). We have ω(i,j)

2 ≤ dmax(i, j) ≤
ω(i, j).

This property is actually implicitely used in the proof of Lemma 2 in [1,
Lemma 4.2]. The authors use the following inequalities to define the approxi-
mated distance (the parameters (i, j) are ommited for the sake of lisibility):

max(
ω

2
,
b

2
) ≤ max(dmax,

b

2
) ≤ error ≤

√
2max(dmax, b) ≤

√
2max(ω, b)

In our framework, it is much easier to use dmax instead of ω thanks to the
algorithm of Chan and Chin [5, Lemmas 1 and 2]. Given an origin point pi and
a set of points P (i, j) we construct the set Sij of straight lines l going through

pi such that maxp∈P (i,j)(p, l) ≤ r. To do so, we use the following simple fact:
d(p, l) ≤ r ⇔ the straight line l crosses the disk of center p and radius r (see
Figure 3(a)). Sij is a cone computed incrementally in O(1) time considering for
a point pk two new rays defined by pi and the disk of center pk and radius r

(see Figure 3(b)). As a result, deciding wether dmax(i, j) is lower than r or not
is equivalent to checking wether the straight line (pi, pj) belongs to Sij or not.

< r

(a) (b)

Fig. 3. (a) A line which is at a distance lower than r from a point p crosses the disk of
center p and radius r. (b) The cone Sij (dark gray) is computed incrementally as the
intersection of the light gray cones.

3.2 Decision on b(i, j)

We first show that some particular points, named occulters, play a special role
in the decision on b(i, j). Then, we restrict the framework to digital curves to
get a better complexity thanks to the following two facts: the computation of
the occulters can be mutualized, and the number of occulters is bounded by the
error.

General considerations

Definition 4. A occulter for the direction
−→
d is a point pk such that for all

l < k, projα(pk) >> projα(pl). Moreover, an occulter is said to be active if
there is no occulter p′k with k′ > k.

Property 2. There is one and only one active occulter for a given direction
−→
d .

In other words, the active occulter of a curve P (i, j) in the direction
−→
d is

the point equal to argmax(projα(p)). Figure 4 (a) illustrates this definition.

Property 3. The origin of the longest backpath of P (i, j) is an occulter for the
direction −−→pipj .

Proof. Let −−−→pkpm be the longest backpath of P (i, j) in the direction −−→pipj . Suppose
that pk is not an occulter. Then there exist a point pl of P (i, j) such that l < k

and projα(pl) >> projα(pk). Thus −−→plpm is a backpath too, and ||projα(−−→plpm)|| >
||projα(−−−→pkpm)||, which is a contradiction with the fact that −−−→pkpm is the longest
backpath.

Property 4. Consider the set of occulters {occj , j = 1 . . . n} of P (i, k). Let occmax

be the active occulter. Consider all the backpathes −−−−→occjpk ending at pk, if any.
Then ||projα(−−−−−−→occmaxpk)|| > ||projα(−−−−→occjpk)|| for all j.

Proof. By definition, projα(occmax) >> projα(occj) for all j, and the result
follows straighforwardly.

Putting together the previous properties, we see that updating the active
occulter is the key point of the computation of the longest backpath.

−→
d

(a)

5

0

1 2 6

4
3

−→
d

(b)

Fig. 4. (a) Occulters for the direction
−→
d . The only active occulter is circled. (b) Back-

pathes in the direction
−→
d : the origin of all the backpathes is an occulter, but only the

double-squared backpathes need to be considered in the algorithm.

Suppose that we are computing the backpathes in direction
−→
d for the curve

P (i, j). Suppose that all the points of P (i, k) have been processed, and that the
point pk+1 is added. If pkpk+1 is a positive shift then nothing needs to be done:

– pk+1 cannot be the origin of a backpath since it’s the last point processed.
– pk+1 is not the end of the longest backpath since projα(pk+1) >> projα(pk).

The case when pkpk+1 is a negative shift is detailed in Algorithm 2. Figure
4(b) illustrates the difference cases of Algorithm 2. Only the double-squared
backpathes are considered in the algorithm. Indeed, the backpathes number 2
and 5 are not taken into account because of Property 4. The backpath number 4
is not considered either because the end of the backpath follows a positive shift:
we know for sure that the backpath number 3 is longer. However, note that the
backpath number 0 is considered: the length of this backpath may be greater
than the threshold.

According to Algorithm 1 we see that Algorithm 2 must be applied for any
direction −−→plpm where pl and pm are any two points of the curve, with l < m.
In the general case, for a polygonal curve of n points, there are O(n2) such
directions, that can be computed as a preprocessing of the curve. In the case of
a digital curve embedded in an image of size n × n, the possible directions are
known a priori but O(n2) directions must still be considered. However, we see
in the following that the computation of the backpathes can be mutualized in
the case of digital curves.

Digital curves specificities In the following, we consider 8-connected digital
curves, but the algorithm also works for 4-connected curves.

Algorithm 2: Active occulter update and backpath computation for a
direction

−→
d

Let occmax be the active occulter for P (i, k) in direction
−→
d .1

if −−−−→pkpk+1 is negative then2

if −−−−→pk−1pk is positive then3

if projα(pk) >> projα(occmax) then4

occmax = pk5

The vector −−−−−−−−→occmaxpk+1 may be a backpath.6

An elementary shift is a vector −−−−→pkpk+1. For a digital curve, there are only
8 elementary shifts, given by the chain codes, and denoted −→ei , i = 0 . . . 7 in
the following. We also classify the directions

−→
d = (dx, dy) into 8 octants as

illustrated in Figure 5.

0

12

3

4

5 6

7

−→
d

(a) (b)

Fig. 5. (a) Clustering of the directions into octants: for instance, the direction
−→
d

belongs to the octant 0. (b) Illustration of the elementary positive shifts for each
octant.

Lemma 4. Consider any elementary shift −→ei . Then, the sign of
−→
d .−→ei is the

same for all the directions
−→
d of a given octant.

Proof. An octant clusters all the directions with a fixed sign for dx and dy, and
such that the order on dx and dy is the same. For instance, in the octant 0, we
find all the directions such that 0 ≤ dy < dx. Since the components ei,x and ei,y

of −→ei lie in {−1, 0, 1}, the sign of
−→
d .−→ei only depends on the signs and order of

dx and dy, which ends the proof.

As a consequence, for all the directions of a given octant the elementary
positive and negative shifts are the same. In Figure 5(b), all the elementary
positive shifts are depicted for each octant. Thus, the tests of Algorithm 2 lines
2-3 are the same for all the directions of a given octant. Nevertheless, on line
4, the projections of two points on a direction

−→
d are compared, and this test

is not so easy when an octant of directions is considered. In the following the
octant 0 is considered, but a similar reasoning can be done for the other cases.
Consider the Figure 6(a), where the plane is divided into four areas according
to the position of a point p:

– for any point q in the gray area, we have projα(q) >> projα(p) for any
direction of the octant 0;

– for any point q in the dashed area, we have projα(p) >> projα(q) for any
direction of the octant 0;

– in the white area, the order of the projections changes, as illustrated in
Figure 6(b-d).

Thus, we do not have only one active occulter to update anymore, but a set
of occulters for each octant. Any active occulter is associated to an interval of
angles for which it is actually the active occulter. From Property 2, we derive that
these intervals are disjoint and that there union is the interval [0, π

4]. Algorithm
3 describes how to update the active occulters for the directions of octant 0.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

p

(a)

q

p

β

α < β

(b)

q

p

β

α = β

(c)

q

p

β

α > β

(d)

Fig. 6. When the point q in the the white area (a), the order of the projections of p
and q on the line of angle α changes according to the angle β (b-d).

The complexity of Algorithm 3 depends on the number of active occulters.
The following lemma is used in the complexity analysis in Section 4 to prove
that the number of occulters per octant is bounded by the approximation error
in the case of digital curves.

Lemma 5. For a digital curve and for a given octant, there is at most one active
occulter per line and per column of Z2.

Idea of the proof. When two points p and q are on the same row or the same
column, then for all the directions of a given octant, either p is an occulter for
q or q is an occulter for p.

List of forbidden directions From Algorithm 1, we see that the length of the
longest backpath is tested for each point, which defines a new direction. More-
over, we see from Algorithm 2 line 6 that for each negative shift, we can have as
many backpathes as active occulters. All in all, testing individually all the pos-
sible backpathes when a new point is added is too costly. To solve this problem,
we propose to maintain a “set” of the directions for which there exist a backpath
of length greater than the error ε.

This set actually consists of a list of intervals defined as follows. Consider a
backpath −−−→pkpm of length l. Then the length of the projection of this backpath
on the direction

−→
d is a function of l and the angle between −−−→pkpm and

−→
d . This

Algorithm 3: Update of the list of active occulters for the octant 0

Let p be the last point added, we want to check if p is an active occulter.1

forall the active occulters pi(αimin
, αimax) do2

v = −→pip3

if −→v .(1, 0) < 0 and −→v .(1, 1) < 0 then4

p is not an active occulter5

if −→v .(1, 0) > 0 and −→v .(1, 1) > 0 then6

pi is not an active occulter anymore7

p is an active occulter on [0, ?] with αimin
<? ≤ π

4
8

if −→v .(1, 0) > 0 and −→v .(1, 1) < 0 then9

compute the angle β ; /* see Figure 6 */10

if αimin
≤ β < αimax then11

p is an active occulter on [0, β]12

pi is an active occulter on [β, αimax]13

if β < αi
min

then14

pi is still an active occulter15

if β ≥ αimax then16

pi is not an active occulter anymore17

p is an active occulter on [0, ?] with αimax ≤? ≤ π
4

18

+similar process for symmetrical cases (roles of pi and p inverted)19

is illustrated in the Figure 7: for a given backpath of length l and angle α, and a
given error ε, the interval of directions for which the projection of the backpath
has a length greater than ε is computed easily. Eventually, such an interval is
computed for each backpath of length greater than ε, and the list of all these
intervals is called the list of forbidden directions.

At the end, we have the following equivalence: b(i, j) is greater than ε if
and only if the direction −−→pipj belongs to the list of forbidden directions. This
equivalence enables to test efficiently b(i, j) in O(log(ni)) for ni intervals (see
Algorithm 1).

4 Theoretical and experimental results

4.1 Complexity and guarantee analysis

Theorem 2. Algorithm 1, combined with Algorithm 2 and Algorithm 3, compute
in O(n log(ni)) an ε-simplification of a digital curve P under the Fréchet distance
with at most the number of vertices of an optimal ε

4
√
2
-simplification.

Proof. The proof of the guarantee is given by Lemma 3. The complexity of
the algorithm lies in: (i) the number of active occulters no and (ii) the size of
the list of intervals of forbidden directions ni. Indeed, the general complexity is
O(n(no + log(ni))). Nevertheless, putting together Lemma 5 and the fact that

β α
|l co

s(β
− α)

|

l

α

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

-1.5 -1 -0.5 0 0.5 1 1.5α

ε

l =

|l cos(β − α)|
l
ε

(b)

Fig. 7. (a) Illustration of the function defining the length of the projection of a back-
path. (b) Plot of this function: when a threshold ε is fixed, the interval of angles for
which the length is greater than ε is defined.

the width is bounded by the error, we get that no is also upper bounded by the
error, which ends the proof.

ni is more difficult to bound since one interval may be added after each nega-
tive shift, but we see in the following section that experimentally, the algorithm
runs in linear time.

4.2 Experimental behaviour

Figure 8 illustrates the results of our algorithm for a noisy flower with 5 extrem-
ities, for three different values of the ε parameter. The images were generated
with the Imagene toolkit [9].

In Figure 9(a), runtime results are depicted for noisy synthetic data of in-
creasing size: a circle, a flower with 5 extremities, and a phase accelerating flower
with 5 extremities. We see that the general behaviour is clearly linear in time.
In Figure 9(b), we study the runtime for different values of ε for noisy synthetic
flowers of increasing size. Once again, we see a linear behaviour for any value of
ε. A more detailed study of the evolution of the slope would give some hints to
refine the theoretical complexity analysis.

Lastly, in Figure 10 we compare the result of the approximated Frechet sim-
plification algorithm (where the width and the backpathes length are taken into
account) with the result of a simplification algorithm with a width criterion only
(points are added while w(i, j) is lower than the error). We see that for the same
error, even if the polygons returned by the two algorithms roughly have the
same number of vertices (56 in (a), 60 in (b)), the sharp features of the shape
are better preserved with the approximated Frechet distance.

(a) (b) (c)

Fig. 8. Results of our algorithm on a noisy flower for a parameter ε equal to 3 in (a),
8 in (b) and 15 in (c).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5000 10000 15000 20000 25000 30000

tim
e

in
 s

ec
.

size of input

Flower
Circle

Acc. flower

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

in
 s

ec
.

size of input

error = 3

error = 6

error = 9

error = 12

(b)

Fig. 9. Runtime results for noisy synthetic shapes. In (b), a noisy flower with five
extremities is used.

5 Future works

The first perspective is to refine the theoretical complexity from O(n log(n))
to O(n) since the experimental results show a linear behaviour. Another per-
spective is to extend this algorithm (and its complexity) to general polygonal
curves. Indeed the main idea of the algorithm is to cluster the directions used
for the projection according to the directions of elementary shifts. This cluster-
ing is possible if the minimal angle between two elementary shifts directions is
known, which is trivial in the case of digital curves, but could be computed as a
preprocessing for polygonal curves.

References

1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming algorithms for
line simplification. In: SCG ’07: Symp. on Comput. geometry. pp. 175–183. ACM
(2007)

2. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear time approxi-
mation algorithms for curve simplification. Algorithmica 42(3-4), 203–219 (2005)

(a) (b)

Fig. 10. Comparison of the simplification results on a leaf, with an error equal to 8
with a criterion on the width only in (a), and approximated Frechet distance - width
and backpath length - in (b).

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry 5(1), 75–91 (1995)

4. Buzer, L.: Optimal simplification of polygonal chains for subpixel-accurate render-
ing. Comput. Geom. Theory Appl. 42(1), 45–59 (2009)

5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number
of line segments. In: ISAAC ’92: Symp. on Algorithms and Computation. pp. 378–
387. Springer-Verlag (1992)

6. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the fréchet distance for re-
alistic curves in near linear time. In: SoCG ’10: Symp. on Comput. geometry. pp.
365–374. ACM, New York, NY, USA (2010)

7. Godau, M.: A natural metric for curves—computing the distance for polygonal
chains and approximation algorithms. In: STACS 91: Symp. on Theoretical aspects
of computer science. pp. 127–136. Springer-Verlag New York, Inc. (1991)

8. Imai, H., Iri, M.: Polygonal approximations of a curve: formulations and algorithms.
In: Computational Morphology. pp. 71–86. Elsevier Science (1988)

9. Lachaud, J.O.: ImaGene. https://gforge.liris.cnrs.fr/projects/imagene/
10. Pelletier, S.: Computing the Fréchet distance between two polygonal curves. web-

site : http://www.cim.mcgill.ca/ stephane/cs507/Project.html
11. Sriraghavendra, E., K., K., Bhattacharyya, C.: Fréchet distance based approach

for searching online handwritten documents. In: ICDAR ’07: Int. Conference on
Document Analysis and Recognition. pp. 461–465. IEEE Computer Society (2007)

