Isabelle Sivignon 
email: isabelle.sivignon@gipsa-lab.grenoble-inp.fr
  
A near-linear time guaranteed algorithm for digital curve simplification under the Fréchet distance

Given a digital curve and a maximum error, we propose an algorithm that computes a simplification of the curve such that the Fréchet distance between the original and the simplified curve is less than the error. The algorithm uses an approximation of the Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if the theoretical complexity of the algorithm is in O(n log(n)), experiments show a linear behaviour in practice.

Introduction

Given a polygonal curve, the curve simplification problem consists in computing another polygonal curve that (i) approximates the original curve, (ii) satisfies a given error criterion, (iii) with as few vertices as possible. This problem arises in a wide range of applications, such as geographic information systems (GIS), computer graphics or computer vision, where the management of the level of details is of crucial importance to save memory space or to speed-up analysis algorithms.

This problem has been studied for many years for various metrics : classical L 1 , L 2 , L ∞ metrics (see [START_REF] Buzer | Optimal simplification of polygonal chains for subpixel-accurate rendering[END_REF] for a survey on simplification algorithms using these metrics), Hausdorff distance or Fréchet distance. While the L norms and Hausdorff distance are relevant measures for many applications, they do not always reflect the similarity or dissimilarity of two polygonal curves (see for instance the example given in [START_REF] Pelletier | Computing the Fréchet distance between two polygonal curves[END_REF] for the Hausdorff distance). The main reason of this discrepancy is that these metrics consider the curves as sets of points, and do not reflect the course of the curves. However, the course of the curve may be important in some applications, like handwritting recognition for instance [START_REF] Sriraghavendra | Fréchet distance based approach for searching online handwritten documents[END_REF]. The Fréchet distance is often used to overcome this problem as it nicely measures the similarity between two curves. The Fréchet distance can be intuitively defined considering a man walking his dog. Each protagonist walks along a path, and controls its speed independently, but cannot go backwards. The Fréchet distance between the two pathes is the minimal length of the leash required.

Fréchet distance

Given two curves f and g specified by functions f : [0, 1] → R 2 and g : [0, 1] → R 2 , and two non-decreasing continuous functions α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] with α(0) = 0, α(1) = 1, β(0) = 0, β(1) = 1, the Fréchet distance δ F (f, g) between two curves f and g is defined as

δ F (f, g) = inf α,β max 0≤t≤1 d(f (α(t)), g(β(t)))
where d denotes the Euclidean distance. The polygonal curve simplification problem was first studied for the Fréchet distance by Godau [START_REF] Godau | A natural metric for curves-computing the distance for polygonal chains and approximation algorithms[END_REF]. Alt and Godau proposed in [START_REF] Alt | Computing the Fréchet distance between two polygonal curves[END_REF] an O(mn)-time algorithm to determine whether δ F (P, Q) ≤ ε for two polygonal curves P and Q of size n and m, and a given error ε > 0. The complexity turns out to be O((m 2 n + n 2 m) log(mn)) for the actual computation of the Fréchet distance between two curves. A recent work [START_REF] Driemel | Approximating the fréchet distance for realistic curves in near linear time[END_REF] proposes a nearlinear time algorithm to compute an approximation of this distance.

Curve simplification problem

In the rest of the paper, we follow the notations used in [START_REF] Agarwal | Near-linear time approximation algorithms for curve simplification[END_REF] or [START_REF] Abam | Streaming algorithms for line simplification[END_REF]. Given a polygonal curve P = p 1 , . . . p n , a curve P ′ = p i1 , . . . p i k with 1 = i 1 < . . . < i k = n is said to simplify the curve P . P (i, j) denotes the subpath from p i to p j .

Given a pair of indices 1 ≤ i ≤ j ≤ n, δ F (p i p j , P ) denotes the error of the segment p i p j with respect to P (i, j). Then,

δ F (P ′ , P ) = max 1≤j≤k δ F (p ij p ij+1 , P )
For the sake of clarity, the simplified notation error(i, j) = δ F (p i p j , P ) will sometimes be used. We also say that p i p j is a shortcut.

P ′ is an ε-simplification of P if δ F (P ′ , P ) ≤ ε. The optimization problem is the following : given a polygonal curve P , find a ε-simplification P ′ of P with the minimum number of vertices. The approach of Imai and Iri [START_REF] Imai | Polygonal approximations of a curve: formulations and algorithms[END_REF] leads to an optimal solution under the Fréchet distance in O(n 3 ).

In [START_REF] Agarwal | Near-linear time approximation algorithms for curve simplification[END_REF], the authors propose an O(n log(n)) algorithm. The base of their algorithm is greedy and very simple: points are added one by one while the error of the shortcut is lower than ε, otherwise the process starts over from the last point processed. The strength of their approach lies in the following property :

Lemma 1. [2, Lemma 3.3] Let P = {p 1 , p 2 , . . . , p n } be a polygonal curve in R 2 . For 1 ≤ i ≤ l ≤ r ≤ j ≤ n, error(l, r) ≤ 2error(i, j)
This means that for any shortcut p l p r such that error(l, r) > ε, there does not exist a shortcut p i p j such that error(i, j) ≤ ε 2 . They derive the following theorem: Theorem 1. [2, Theorem 3.4] Given a polygonal curve P in R d and a parameter ε > 0, we can compute in O(n log(n)) an ε-simplification P ′ of P under the Fréchet metric error with at most the number of vertices of an optimal ε 2simplification.

The O(nlog(n)) complexity is achieved with a dichotomic processs in the greedy algorithm. The question we arouse in this paper is the following : does there exist a linear-time guaranteed algorithm to compute an ε-simplification ? We propose a guaranteed algorithm for digital curves whose complexity is Ω(n log(n)) in theory but behaves in O(n) in practice. The main features of this algorithm are the following: (i) approximation of the Fréchet distance as in [START_REF] Abam | Streaming algorithms for line simplification[END_REF], (ii) restriction to digital curves. In section 2, we present the approximated distance, and give the algorithm outline as a novel way of using the results of [START_REF] Abam | Streaming algorithms for line simplification[END_REF]. Section 3 is the core of the paper and details the approximated distance efficient and online update, with a restriction to digital curves to achieve a near-linear complexity. Section 4 begins with a theoretical study of the complexity and the guarantee of the proposed algorithm, and ends with some experimental results.

2 Guaranteed algorithm using an approximated distance

Approximating the Fréchet distance

In [START_REF] Abam | Streaming algorithms for line simplification[END_REF], Ali Abam et al. study the following problem: given a possibly infinite sequence of points defining a polygonal path, maintain in a streaming setting, a simplification of this set of points with 2k points and a bounded error. The error is measured using the Hausdorff distance or the Fréchet distance. The Fréchet distance being computationally too costly for this framework, they show that error(i, j) can be upper and lower bounded by functions of two values, namely ω(i, j) and b(i, j). ω(i, j) is the width of the points of P (i, j) in the direction p i p j . b(i, j) is the length of the longest backpath in the direction --→ p i p j . Its precise definition requires the following other definitions: Definition 1. Let l be a straight line of directional vector -→ d . α is the angle between l and the abscissa axis. proj α (p) denotes the orthogonal projection of p onto the line of angle α.

If --→ p l p m . - → d < 0, then proj α (p l ) is "after" proj α (p m ) in direction α, and we denote proj α (p l ) >> proj α (p m ) (see Figure 1(a)). Definition 2. --→ p l p m is a positive shift if and only if --→ p l p m . - → d > 0, negative oth- erwise. Definition 3. A backpath in direction α is a negative shift --→ p l p m such that l < m (see Figure 1(b)). p l is the origin of the backpath. The length of the backpath is equal to d(proj α (p l ), proj α (p m )).
Lemma 2 relates ω(i, j) and b(i, j) to error(i, j): --→ prpq is a backpath since it is a negative shift and pr is before pq on the curve P (i, j). However, it is not the longest backpath: --→ p l pm is also a backpath, of maximal length b(i, j).

Lemma 2. [1, Lemma 4.2] The Fréchet error of a shortcut p i p j satisfies max( w(i,j) 2 , b(i,j) 2 ) ≤ error(i, j) ≤ 2 √ 2 max( w(i,j) 2 , b(i,j) 2 ). p l p m proj α (p l ) proj α (p m ) - → d α (a) b(i, j) p l p m p q p r p i p j (b)

Algorithm 1: Greedy Fréchet simplification algorithm

i = 1, j = 2 while i < n do while j < n and max(w(i, j), b(i, j)) ≤ ε √ 2 do j=j+1 create a new shortcut pipj-1 i = j -1,j = i + 1

Algorithm outline

Algorithm 1 presents the general outline of the ε-simplification. Lemma 3. Algorithm 1 computes an ε-simplification P ′ of a polygonal curve P such that |P ′ | is lower than the number of vertices of an optimal ε Proof. When a shortcut p i p j is created in P ′ , the following two properties are true:

(i) max(w(i, j), b(i, j)) ≤ ε √ 2 and (ii) max(w(i, j + 1), b(i, j + 1)) > ε √ 2 .
From Lemma 2, (i) implies that error(i, j) ≤ ε which proves that P ′ is a εsimplification of P . From lemma 2 again, (ii) implies that error(i, j + 1)

> ε 2 √ 2 .
The hypothesis are then similar to the ones of the proof of [2, Theorem 3.4], and a similar reasoning proves the guarantee.

Note that the complexity of Algorithm 1 has not been adressed yet. Indeed, the difficulty lies in the updates of ω(i, j) and b(i, j) when a new point p j is considered. These two variables depend directly on the direction --→ p i p j . However, when a new point is added, this direction may change drastically: Figure 2 shows an example where the maximal width and maximal backpath are achieved for different vertices of the polyline for --→ p i p j and ----→ p i p j+1 . In the next section, we show how to update efficiently the decisions on ω(i, j) and b(i, j), with a specification for digital curve to reach a near-linear time complexity.

p i p j b(i, j) ω(i, j) (a) ω(i, j) b(i, j) p j+1 p i (b)
Fig. 2. Updating ω(i, j) and b(i, j) can be costly in the general case: for instance, the longest backpath is much smaller in (b) for the direction ----→ pipj+1 than in (a) for the direction --→ pipj.

3 Updating the approximated distance efficiently

In [START_REF] Abam | Streaming algorithms for line simplification[END_REF], where the approximated distance is defined, an actual computation of the variables ω(i, j) and b(i, j) is necessary since the problem is to minimize the error. However, as computing the exact values is too expensive, guaranteed approximations are updated when a new point is added. Contrary to [START_REF] Abam | Streaming algorithms for line simplification[END_REF], in our framework an update of these variables is not necessary, but the decisions "is ω(i, j) ≤ ε √ 2 ?" and "is b(i, j) ≤ ε √ 2 ?" must be exact to ensure the computation of an ε-simplification. This section is devoted to the design of new algorithmic approaches to solve these two problems.

Decision on ω(i, j)

Instead of deciding wether ω(i, j) is under a given threshold or not, we show that it is enough to check the distance between any point of P (i, j) and the vector --→ p i p j . Property 1. Let d max (i, j) = max p∈P (i,j) d(p, --→ p i p j ). We have ω(i,j)

2 ≤ d max (i, j) ≤ ω(i, j).
This property is actually implicitely used in the proof of Lemma 2 in [1, Lemma 4.2]. The authors use the following inequalities to define the approximated distance (the parameters (i, j) are ommited for the sake of lisibility):

max( ω 2 , b 2 ) ≤ max(d max , b 2 ) ≤ error ≤ √ 2 max(d max , b) ≤ √ 2 max(ω, b)
In our framework, it is much easier to use d max instead of ω thanks to the algorithm of Chan and Chin [5, Lemmas 1 and 2]. Given an origin point p i and a set of points P (i, j) we construct the set S ij of straight lines l going through p i such that max p∈P (i,j) (p, l) ≤ r. To do so, we use the following simple fact: d(p, l) ≤ r ⇔ the straight line l crosses the disk of center p and radius r (see Figure 3(a)). S ij is a cone computed incrementally in O(1) time considering for a point p k two new rays defined by p i and the disk of center p k and radius r (see Figure 3(b)). As a result, deciding wether d max (i, j) is lower than r or not is equivalent to checking wether the straight line (p i , p j ) belongs to S ij or not. 

Decision on b(i, j)

We first show that some particular points, named occulters, play a special role in the decision on b(i, j). Then, we restrict the framework to digital curves to get a better complexity thanks to the following two facts: the computation of the occulters can be mutualized, and the number of occulters is bounded by the error.

General considerations

Definition 4. A occulter for the direction -→ d is a point p k such that for all l < k, proj α (p k ) >> proj α (p l ). Moreover, an occulter is said to be active if there is no occulter p ′ k with k ′ > k.

Property 2. There is one and only one active occulter for a given direction -→ d .

In other words, the active occulter of a curve P (i, j) in the direction -→ d is the point equal to arg max(proj α (p)). Figure 4 (a) illustrates this definition. Property 3. The origin of the longest backpath of P (i, j) is an occulter for the direction --→ p i p j .

Proof. Let ---→ p k p m be the longest backpath of P (i, j) in the direction --→ p i p j . Suppose that p k is not an occulter. Then there exist a point p l of P (i, j) such that l < k and proj α (p l ) >> proj α (p k ). Thus --→ p l p m is a backpath too, and

||proj α ( --→ p l p m )|| > ||proj α ( ---→ p k p m )||
, which is a contradiction with the fact that ---→ p k p m is the longest backpath.

Property 4. Consider the set of occulters {occ j , j = 1 . . . n} of P (i, k). Let occ max be the active occulter. Consider all the backpathes ----→ occ j p k ending at p k , if any.

Then ||proj α ( ------→ occ max p k )|| > ||proj α ( ----→ occ j p k )|| for all j.
Proof. By definition, proj α (occ max ) >> proj α (occ j ) for all j, and the result follows straighforwardly.

Putting together the previous properties, we see that updating the active occulter is the key point of the computation of the longest backpath. Suppose that we are computing the backpathes in direction -→ d for the curve P (i, j). Suppose that all the points of P (i, k) have been processed, and that the point p k+1 is added. If p k p k+1 is a positive shift then nothing needs to be done:

p k+1 cannot be the origin of a backpath since it's the last point processed.

p k+1 is not the end of the longest backpath since proj α (p k+1 ) >> proj α (p k ).

The case when p k p k+1 is a negative shift is detailed in Algorithm 2. Figure 4(b) illustrates the difference cases of Algorithm 2. Only the double-squared backpathes are considered in the algorithm. Indeed, the backpathes number 2 and 5 are not taken into account because of Property 4. The backpath number 4 is not considered either because the end of the backpath follows a positive shift: we know for sure that the backpath number 3 is longer. However, note that the backpath number 0 is considered: the length of this backpath may be greater than the threshold.

According to Algorithm 1 we see that Algorithm 2 must be applied for any direction --→ p l p m where p l and p m are any two points of the curve, with l < m. In the general case, for a polygonal curve of n points, there are O(n 2 ) such directions, that can be computed as a preprocessing of the curve. In the case of a digital curve embedded in an image of size n × n, the possible directions are known a priori but O(n 2 ) directions must still be considered. However, we see in the following that the computation of the backpathes can be mutualized in the case of digital curves.

Digital curves specificities

In the following, we consider 8-connected digital curves, but the algorithm also works for 4-connected curves.

Algorithm 2: Active occulter update and backpath computation for a direction -→ d

Let occmax be the active occulter for

P (i, k) in direction -→ d . 1 if ----→ p k p k+1 is negative then 2 if ----→ p k-1 p k is positive then 3 if projα(p k ) >> projα(occmax) then 4 occmax = p k 5
The vector --------→ occmaxp k+1 may be a backpath.

6

An elementary shift is a vector ----→ p k p k+1 . For a digital curve, there are only 8 elementary shifts, given by the chain codes, and denoted -→ e i , i = 0 . . . 7 in the following. We also classify the directions -→ d = (d x , d y ) into 8 octants as illustrated in Figure 5. Proof. An octant clusters all the directions with a fixed sign for d x and d y , and such that the order on d x and d y is the same. For instance, in the octant 0, we find all the directions such that 0 ≤ d y < d x . Since the components e i,x and e i,y of -→ e i lie in {-1, 0, 1}, the sign of -→ d .

-→ e i only depends on the signs and order of d x and d y , which ends the proof.

As a consequence, for all the directions of a given octant the elementary positive and negative shifts are the same. In Figure 5(b), all the elementary positive shifts are depicted for each octant. Thus, the tests of Algorithm 2 lines 2-3 are the same for all the directions of a given octant. Nevertheless, on line 4, the projections of two points on a direction -→ d are compared, and this test is not so easy when an octant of directions is considered. In the following the octant 0 is considered, but a similar reasoning can be done for the other cases. Consider the Figure 6(a), where the plane is divided into four areas according to the position of a point p:

for any point q in the gray area, we have proj α (q) >> proj α (p) for any direction of the octant 0; -for any point q in the dashed area, we have proj α (p) >> proj α (q) for any direction of the octant 0; -in the white area, the order of the projections changes, as illustrated in Figure 6(b-d).

Thus, we do not have only one active occulter to update anymore, but a set of occulters for each octant. Any active occulter is associated to an interval of angles for which it is actually the active occulter. From Property 2, we derive that these intervals are disjoint and that there union is the interval [0, π 4 ]. Algorithm 3 describes how to update the active occulters for the directions of octant 0. The complexity of Algorithm 3 depends on the number of active occulters. The following lemma is used in the complexity analysis in Section 4 to prove that the number of occulters per octant is bounded by the approximation error in the case of digital curves.

Lemma 5. For a digital curve and for a given octant, there is at most one active occulter per line and per column of Z 2 . Idea of the proof. When two points p and q are on the same row or the same column, then for all the directions of a given octant, either p is an occulter for q or q is an occulter for p.

List of forbidden directions

From Algorithm 1, we see that the length of the longest backpath is tested for each point, which defines a new direction. Moreover, we see from Algorithm 2 line 6 that for each negative shift, we can have as many backpathes as active occulters. All in all, testing individually all the possible backpathes when a new point is added is too costly. To solve this problem, we propose to maintain a "set" of the directions for which there exist a backpath of length greater than the error ε.

This set actually consists of a list of intervals defined as follows. Consider a backpath ---→ p k p m of length l. Then the length of the projection of this backpath on the direction -→ d is a function of l and the angle between ---→ p k p m and -→ d . This

Fig. 1 .

 1 Fig. 1. (a) Illustration of Definitions 1 and 2. (b) Illustration of backpathes in direction --→ pipj: --→prpq is a backpath since it is a negative shift and pr is before pq on the curve P (i, j). However, it is not the longest backpath: --→ p l pm is also a backpath, of maximal length b(i, j).

Fig. 3 .

 3 Fig. 3. (a) A line which is at a distance lower than r from a point p crosses the disk of center p and radius r. (b) The cone Sij (dark gray) is computed incrementally as the intersection of the light gray cones.

Fig. 4 .

 4 Fig. 4. (a) Occulters for the direction -→ d . The only active occulter is circled. (b) Backpathes in the direction -→ d : the origin of all the backpathes is an occulter, but only the double-squared backpathes need to be considered in the algorithm.

Fig. 5 .

 5 Fig. 5. (a) Clustering of the directions into octants: for instance, the direction -→ d belongs to the octant 0. (b) Illustration of the elementary positive shifts for each octant.

Lemma 4 .

 4 Consider any elementary shift -→ e i . Then, the sign of -→ d . -→ e i is the same for all the directions -→ d of a given octant.

Fig. 6 .

 6 Fig. 6. When the point q in the the white area (a), the order of the projections of p and q on the line of angle α changes according to the angle β (b-d).

√ 2 -simplification of P.

Algorithm 3: Update of the list of active occulters for the octant 0 Let p be the last point added, we want to check if p is an active occulter. is illustrated in the Figure 7: for a given backpath of length l and angle α, and a given error ε, the interval of directions for which the projection of the backpath has a length greater than ε is computed easily. Eventually, such an interval is computed for each backpath of length greater than ε, and the list of all these intervals is called the list of forbidden directions. At the end, we have the following equivalence: b(i, j) is greater than ε if and only if the direction --→ p i p j belongs to the list of forbidden directions. This equivalence enables to test efficiently b(i, j) in O(log(n i )) for n i intervals (see Algorithm 1).

Theoretical and experimental results

Complexity and guarantee analysis

Theorem 2. Algorithm 1, combined with Algorithm 2 and Algorithm 3, compute in O(n log(n i )) an ε-simplification of a digital curve P under the Fréchet distance with at most the number of vertices of an optimal ε 4 √ 2 -simplification.

Proof. The proof of the guarantee is given by Lemma 3. The complexity of the algorithm lies in: (i) the number of active occulters n o and (ii) the size of the list of intervals of forbidden directions n i . Indeed, the general complexity is O(n(n o + log(n i ))). Nevertheless, putting together Lemma 5 and the fact that the width is bounded by the error, we get that n o is also upper bounded by the error, which ends the proof.

n i is more difficult to bound since one interval may be added after each negative shift, but we see in the following section that experimentally, the algorithm runs in linear time.

Experimental behaviour

Figure 8 illustrates the results of our algorithm for a noisy flower with 5 extremities, for three different values of the ε parameter. The images were generated with the Imagene toolkit [START_REF] Lachaud | ImaGene[END_REF].

In Figure 9(a), runtime results are depicted for noisy synthetic data of increasing size: a circle, a flower with 5 extremities, and a phase accelerating flower with 5 extremities. We see that the general behaviour is clearly linear in time. In Figure 9(b), we study the runtime for different values of ε for noisy synthetic flowers of increasing size. Once again, we see a linear behaviour for any value of ε. A more detailed study of the evolution of the slope would give some hints to refine the theoretical complexity analysis.

Lastly, in Figure 10 we compare the result of the approximated Frechet simplification algorithm (where the width and the backpathes length are taken into account) with the result of a simplification algorithm with a width criterion only (points are added while w(i, j) is lower than the error). We see that for the same error, even if the polygons returned by the two algorithms roughly have the same number of vertices (56 in (a), 60 in (b)), the sharp features of the shape are better preserved with the approximated Frechet distance. 

Future works

The first perspective is to refine the theoretical complexity from O(n log(n)) to O(n) since the experimental results show a linear behaviour. Another perspective is to extend this algorithm (and its complexity) to general polygonal curves. Indeed the main idea of the algorithm is to cluster the directions used for the projection according to the directions of elementary shifts. This clustering is possible if the minimal angle between two elementary shifts directions is known, which is trivial in the case of digital curves, but could be computed as a preprocessing for polygonal curves.