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99, Avenue J.-B. Clément,
F-93430 Villetaneuse

Abstract

The Hamiltonian fX(|(’9tu|2 + |Vul® + m2|u|?) dz, defined on functions on R x X, where
X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon
equation. We consider perturbations of this Hamiltonian, given by polynomial expressions
depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-
Gordon equation. We show that, when X is the sphere, and when the mass parameter m
is outside an exceptional subset of zero measure, smooth Cauchy data of small size e give
rise to almost global solutions, i.e. solutions defined on a time interval of length cye=? for
any N. Previous results were limited either to the semi-linear case (when the perturbation
of the Hamiltonian depends only on u) or to the one dimensional problem.

The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying
on convenient generalizations of para-differential calculus.

0 Introduction

This paper is devoted to the study of solutions of small quasi-linear perturbations of an infinite
dimensional Hamiltonian system. To be more specific, let X be a compact Riemannian manifold,
and define on H*(X,C), for s large enough, Go(U) = [y (Amu)udp, where U = (u,u), dp is
the Riemannian volume and Ay, = vV—Ax + m?. Since H*(X,C) is endowed with a symplectic
form wo(h, k') = 2Im [y hh'dp, one may consider the Hamiltonian equation associated to Gy,
given by

(1) Otu = iVﬁGo(u, ’[L)

Ifu= @ (A,;l/Q@tv—l—iA%%), with v in H51/2(X,R) and d;v in H*~1/2(X,R), this Hamiltonian

equation is nothing but the Klein-Gordon equation

(2) (0} — A+ m?)v =0.

Keywords: Hamiltonian quasi-linear Klein-Gordon equations, Almost global existence, Birkhoff normal forms.
MSC 35L72, 35550, 37K45.



We want to study the solutions of equations of form (1), where Gy has been replaced by a more
general Hamiltonian G, such that G — Gy is small. By rescaling, this is equivalent to the study
of

(3) Bpu = iVaG(u, @),

where G — (G vanishes at least at order three at zero, and where the Cauchy data are small
in H (s > 1), of size ¢ — 0. The question is to determine whether, for ¢ small enough, the
solution exists over a long interval of time, and has Sobolev norm O(e) on that interval.

This problem has been quite extensively studied when the perturbation G — G of the Hamilto-
nian is given by a function of A;nl/ U (while Gy itself may be written as a function of A%QU ).
At the level of the Hamiltonian equation, this corresponds to perturbations of (2) which are
weakly semi-linear, i.e. may be written

(4) (07 = A+ m*)v = f(v),

for a smooth function f vanishing at least at order 2 at zero. In one dimension, i.e. when X is
the circle, this problem has been solved by Bourgain [5] and Bambusi [1] (see also for related
results Bambusi-Grébert [3] and the lectures of Grébert [16]). It has been proved that, if m is
taken outside a subset of zero measure of |0, +00[, for any N € N, for any s large enough, there is
€o > 0, such that equation (4) with Cauchy data of size € < ¢o in H*t1/2(S',R) x H*~1/2(S!, R),
has an almost global solution, i.e. a solution defined on a domain | — T}, T,[xS', with T, > ce™ ",
satisfying an estimate

(5) sup [[o(t, )| grs+172 + sup [|0po(t, )| gs-1/2 < Ce.
|t|<Te [t|<Te

This result has been extended to higher dimensions, i.e. to equation (4) on spheres, or more
generally on Zoll manifolds, by Bambusi, Delort, Grébert and Szeftel [2], after preliminary
results of Delort and Szeftel [8, 9, 10]. The method of proof relies on Birkhoff normal forms, as
in one dimension, to reduce the proof of long time existence and of estimate (5) to the study of
a sequence of homological equations. The resolution of these equations is possible only under a
suitable small divisors property, which holds when the parameter m is outside a subset of zero
measure, because of the very special distribution of the eigenvalues of —A on S%. Actually, the
important property is that two different eigenvalues of \/—Ags are separated essentially by a
fixed distance. When such a property does not hold, for instance when X = T¢, or when —A is
replaced by the harmonic oscillator —A + ]33\2 on X = R? only much weaker results are known
(see [6, 12, 20)).

Let us mention also that normal forms methods have been proved useful to study long time
existence for solutions of equations of the form (4) on RY, for Cauchy data that are smooth and
decaying at infinity. Actually, the use of normal forms in that framework has been introduced
by Shatah [19] to prove global existence of solutions of non-linear Klein-Gordon equations on
R? (an alternative proof has been given at the same time by Klainerman [18]). More recently,

this approach has been made more systematic in a series of papers of Germain, Masmoudi and
Shatah [14, 15] and Germain [13].

Let us go back to our Hamiltonian equation (4). We would like to study a more general version
of (4), with a right hand side depending also on derivatives of v. This corresponds to an equation



of form (3) where the perturbation G — Gg of Gy has the same strength, relatively to the number

of derivatives involved, as Gy itself, i.e. is a function of A%QU instead of A;ll/ 2U. The associated
Hamiltonian equation is like (4), where the right hand side is replaced by a quasi-linear non-
linearity, i.e. an expression depending on second order derivatives of v, which is linear with
respect to (09v)|q=2- This problem has been solved in one dimension in [7]. The goal of this
paper is to obtain a similar almost global existence result on any higher dimensional sphere S%.

Let us describe the main new ideas that have to be introduced in comparison with our previous
paper [7]. As in this work, the key point is to design a Birkhoff normal forms method adapted
to quasi-linear equations. This requires to express the Hamiltonian using para-differential oper-
ators. In one dimension, one may use Fourier analysis on S to define such classes of operators
globally on S!, using symbols which are functions on S' x Z (where Z should be considered
as the dual group of S'). In higher dimensions, one can no longer do so. Instead, we define
para-differential operators using a characterization in terms of commutators with differential
operators, similar to the Beals characterization of pseudo-differential operators [4]. The classes
we need are more general than usual para-differential operators: they depend on some auxiliary
functions, and have to take into account some losses relatively to small frequencies that will
appear because of small divisors. Because of that, we have to rewrite the whole theory (sym-
bolic calculus, principal symbols on compact manifolds,...) in our framework. This is done in
section 2 of the paper. Section 3 is devoted to the computation of Poisson brackets between
functions defined in terms of integrals of type [y (A(U)u)udp, Re [y (A(U)u)udp, where A(U)
is a para-differential operator of order one, homogeneous of some degree k in U. The proof of
the main theorem of long time existence occupies section 4. Let us describe the main new idea
on a toy model.

Consider equation (3) with Hamiltonian

(6) Glu, @) = / (Amu)@ dp + Re / (A(U)u)i dp,
X X
where A(U) is a self-adjoint para-differential operator of order one, homogeneous of degree k in

U = (u,u). Equation (3) reads
(7) Diu = Apmu+ A(U)u+ ---

where the dots represent some contributions which are of a semi-linear nature (opposed to the
main quasi-linear contribution A(U)u). To prove that (7) with H® data of size € has a solution
defined on a time interval of length ce=, one has to find a modified energy O,(u) such that
Os(u) ~ |[ul|%s close to zero and

d
(8) 2 0s(ult, ) = O(llu(t, )| 5%
when u is a solution of (7). The usual normal forms method consists in defining O = 0% o ,
where ©) = ||A$,ul|7 . is the usual H*-energy, and x is a convenient symplectic diffeomorphism on
a neighborhood of zero in H?, defined as the value at time t = —1 of the flow of the Hamiltonian
vector field X of some auxiliary function F. Then equation (3) implies
d _



and the definition of y gives an expansion

(10) {09,Gox '} ~ {eg,z(;l')padppc}
—~ D!

where adF' - G = {F,G}. One looks for F' as given by an expansion in terms of homogeneous
terms F' = >/~ Fp. Then the term of degree of homogeneity p + 2 in (10) vanishes if and only
if

(11) {@27_{Fp7GO}+Hp} =0,
where H), is computed from G and Fjy with p’ < p. One looks for F), as
(12) Fy(u, @) = /X (B,(U)u)adp

where B, (U) is a self-adjoint para-differential operator of order one. One proves moreover that,
if F}y has a similar structure for p’ < p, then

where A; is also a self-adjoint operator of first order, and the dots represent some other contribu-
tions which are of a semi-linear nature. Then {F},, Go} — H, may be written as [ (Cp(U)u)udp

where, if we decompose By(U) =327, Bf;(u, ey Uy U,y ..., u), and make similar decompositions
———
l
of A}, Cyp,
l
C’ﬁ(u, ,u) = Z[Bf;, Am](uy ... u) +1 Z Bf;(u, yAmu, ..., u)
=1 Y
(13) ) ’
—i Z Bf;(u, S Amt, .. ) — A;f(u,...,ﬂ)
j=0+1

J
A way to solve (11) would be to find Bf; so that Cf; = 0. If one replaces in (13) (u,...,u) by

(I, u, ..., Iy, u), where II,, is the spectral projector associated by the n-th eigenvalue A2 of
—A, one gets to show that

(14)  [BY, Aw|(Mn,u, ... T, ) + GBE(0) By (M, . .. Ty, 0) = —i AL (T, u, .., T, ),

where G&l (n/) = Z§:1 m? + A2 — 3%, \/m?+ A2 . One may choose m so that, for some
c>0,Ly >0,
(15) A(Z, GEL (') = eln!|"0 = c(m + -+ mp) 710

as soon as the left hand side does not vanish trivially (i.e. as soon as trivial two by two
cancellations in the expression of Gfﬁe(n’ ) are excluded). If one replaces in the bracket in (14),

Am by A =/—A + (%)2, an approximate solution of (14) may be obtained defining

too e
Bf;(Hnlu, oo My u) = —i/o e_”’AA;e(Hmu, e ,anﬂ)e“AeZtG?“e(" )0(et) dt



where § € C§°(R), 6 = 1 close to zero. Actually, using that the eigenvalues of A are half integers,
we see that t — e*itAA;feitA is 4m-periodic. Decomposing this function of time in Fourier series
and using the small divisor estimate (15), we check that B£ is a para-differential operator, and
that (14) holds, up to some remainders. Of course, this cannot be done when estimate (15)
does not hold i.e. when there is a trivial vanishing of the left hand side. But the contributions
corresponding to this special case are in the kernel of {09, -}, so may be discarded since the
equation we need to solve is (11) and not {Fy, Go} — H, = 0.

Using repeatedly the preceding method, we may eliminate as many terms as we want in the
right hand side of (10), and deduce from (9) the wanted property (8).

Let us point out that several other difficulties have to be dealt with. First, if one really wanted
to define x as the value at time —1 of the flow of Xp, with F'=3" -, F), and F;, given by (12),
one would have to solve an equation & = Xp(u) which is not an ODE, at the difference with
the case of semi-linear equations. This comes from the fact that in (12), B, is of order one, so
that X involves the loss of one derivative. We circumvent this problem defining not x itself,
but only its action by right composition on functions, using iterated Poisson brackets as in (10).

Another complication that appears when solving the “real problem”, instead of the toy model
(6), is that the Hamiltonian one has to study is of the form

(16) Glu, ) = /X (Amu)@du + Re /X (A(U)u)i dp + Re /X (CU)u)udp,

where C(U) is also a para-differential operator of order one, vanishing at U = 0. Before per-
forming the method we outlined above, one has first to reduce oneself to an Hamiltonian of form
(6). One does that in two steps. First, one eliminates the Taylor expansion of U — C(U) at
U = 0 up to a large enough degree. This is done by a Birkhoff normal form method, involving
functions of type (12), but with B, of order zero instead of one. Because of that, this step
is purely semi-linear. When this has been achieved, one obtains still a reduced Hamiltonian
of form (16), but with a C' vanishing at large order at U = 0. One then makes a change of
unknown U — U = U(U), constructed in such a way that the new Hamiltonian is a function
of U of form (6). This part of the reasoning is similar to the usual process of diagonalization
of the principal symbol of a quasi-linear symmetrizable system, that allows one to prove energy
inequalities in such a framework. Actually, the construction of the change of unknown W is made
from a convenient diagonalization of that type.

Finally, let us mention that we limited ourselves to polynomial non-linearities and to spheres
(instead of Zoll manifolds) to avoid some extra technicalities.

1 Statement of the main theorem

1.1 Notations. First statement

We denote by (X, g) the standard d-dimensional sphere (d > 2), endowed with its usual metric,
by A the Laplace-Beltrami operator on X and by du the volume form associated to the metric,



given in local coordinates by du = (det g)l/ 2dz. The eigenvalues of —A are given by \2 =
(n—=1)(n+d—-2),n e N Let f: RxT*X — R be a smooth function, (z,p) — f(z,p),
polynomial relatively to z and to the fiber variable of T*X. Assume that f vanishes at least
at order 3 on {0} x X (where X is considered as the zero section of 7*X). For v : X — R a
smooth enough function, we define from f,v a new function P[v] : X — R in the following way:
If 2 denotes local coordinates on an open set U of X, if p = (z,£) are the corresponding local
coordinates on T*U, f is a function of (z,z,£) on R x T*U, and we set

d
(1L11)  Pll(z) = gf( ()2, 5% (x)) — D (detg) 1/288 [(detg )1/2§g(v(x>,x,22(:3))].
j=1 J

We notice that P[v] is intrinsically defined. Actually, it suffices to check that, for any smooth
function h on X, compactly supported in the local chart U, [y P[v](z)h(x)dp(x) is intrinsically
defined. Denote by {-, -} the Poisson bracket on 7% X, given in local coordinates by

d
N~ (9599 _ Wag)
.93 = Z(a@ 0x;  Ow; 0¢;)
Then it follows from (1.1.1) and the definition of du that

(1.1.2) /XP[v]hd,u:/Xgﬁ(v,dv)hd,u,—i—/X{f,h}(v,dv)du

which is intrinsic (We denote by dv the section of T*X given in local coordinates by =z —

(, 32(2))).

Our main result is the following one. For s in R, we denote by H*(X,R) the Sobolev space of
real valued functions on X.

Theorem 1.1.1 There is a subset N of zero measure in ]0,+o00[ and for any m €0, +oco[—N,
any P € N, there is so > 0 such that, for any s > so, there are €y > 0, ¢c>0,C >0 and, for any
€ €]0, e[, any (vo,v1) m the unit ball of H5+3 2(X,R) x Hs_f(X R), there is a unique solution

vin C°() — T, T, H5ts 2)NCH] - T.,T.], HS_%) of the equation

(0} — A +m*)v = P[u]
(1.1.3) vlt=0 = €vp

Opv)i—0 = €vy
with T, > ce ¥, Moreover, v satisfies the uniform bound

(1.1.4) sup |[v(t, )| gst12 + sup ||Oww(t, )| gs-1/2 < Ce.
|=Te, T |=Te,Te

Remark: The assumption on f, together with (1.1.1), shows that the right hand side of the
first equation in (1.1.3) is a quasi-linear (polynomial) non-linearity, vanishing at least at order
two at zero.



Expression (1.1.1) of the non-linearity will allow us to write equation (1.1.3) as a Hamiltonian
system. Let us introduce the necessary notations.

Denote by J the matrix

(1.1.5) J = [(1) _01]

and for Z, Z' two functions in L?(X,R?), define
(1.1.6) wo(Z,2")=('12,2"y =(Z,7Z"),

where (-,-) is the L?(X,R?) scalar product given by integration against the measure du. Let
s € Ry, Q be an open subset of H*(X,R?), F: Q — R a C' function. We define the symplectic
gradient X (V) of F at V € € as the element of D’(X,R?) defined by wo(Xr(V), Z) = dF(V)-Z
for any Z in C°°(X,R?). In an equivalent way

(1.1.7) Xrp(V)=JVE(V).
If G : Q — R is another C' function, we define the Poisson bracket of F' and G by
(1.1.8) {F,G}(V)=dF - Xg(V)=dF(V) - [JVG(V)]

as soon as the right hand side has a meaning, i.e. when X¢(V') belongs to a subspace of D'(X, R)
to which the linear form dF (V') extends. Of course, this Poisson bracket should not be confused,
though we use the same notation, with the Poisson bracket on 7% X used in (1.1.2).

Let us rewrite equation (1.1.3) in the Hamiltonian framework. Let

(1.1.9) Am = V—A + m?

and define from the function v solving (1.1.3), an element V of H*(X, R?) by

AmPop] V1
(1.1.10) V(t,m):[ A}lﬁ%t = |2

If we set F(v) = [y f(v,dv)dp, and if h € C*(X,R),
dF(v)-h = / Plv]hdp
X

as follows from (1.1.1), taking h supported in a local chart domain. We define for V' in H*(X,R?),
with s large enough

GolV) = 5 [ (hmV) Vi

G(V) = Go(V) — F(Am/?V?2).

(1.1.11)

Then, if H is in C>°(M,R?),

dG(V) - H = /X (AmV) - H djs — /X PlAR V2 (A2 H?) du



which shows that
0

GV)=AnLV _ _
VG(V) + _Am1/2P[Am1/2V2]

Using (1.1.10), we see that v is a solution of the first equation in (1.1.3) if and only if V' satisfies

(1.1.12) YV = Xa(V).

Let us write this equality using complex coordinates. We identify H®(X,R?) to H*(X) aef

H?(X,C) through

(1.1.13) V= [K;l —u= \f(vl +iV?).

More precisely, we identify H*(X, R?) to the submanifold {(U', U?); U? = U} inside the product
H*(X,C) x H*(X,C) through

ol

(1.1.14) V= [“Q] S U= [“ (v Hvz)] .

(VI —iv?)

|
|

If F is a C! function on an open subset of H*(X,R?), we define

duF = ?[d‘ﬂF—idsz], d{LFI ?[dVIF‘FidV?F]
1.1.15
( ) V2 . V2 ,
qu = T[V‘HF — ZVVQF], VﬁF = T[V‘AF‘FZV\NF]-

If {gﬂ (resp. {gi } ), element of H*(X,R?), is identified through (1.1.14) to the element H = [

}

ISalbs o

(resp. H' = Uﬂ) of H%(X), the symplectic form in complex coordinates may be written
wo(H, H') = i(H, JH').

Through identification (1.1.14), the expression of the Hamiltonian vector field in complex coor-
dinates is given by

(1.1.16) Xp(U) = —U[ggﬂ = [T E] = [ ).

If F and G are two C! functions on an open set of H*(X), whose differentials at every point
extend as bounded maps on L?(X), one gets the following expression for their Poisson brackets
in complex coordinates

(1.1.17) {F,G} =dF - Xg(U) = ild F - VigG — dzgF - V,G].
Finally, equation (1.1.12) may be written in an equivalent way

if we consider the function given by (1.1.11) as a function of the complex variable U = (u, u).



1.2 Quasi-linear Hamiltonians and general statements

The goal of this subsection is to introduce a general class of Hamiltonian equations, containing
(1.1.11), such that the associated equation (1.1.12) or (1.1.18) is a quasi-linear first order system.
This class has to be wide enough to be stable under the reductions that will have to be made in
the proof of Theorem 1.1.1.

Let us introduce some notation. We denoted by A, = /(n —1)(n +d — 2), n € N*, the eigen-
values of v—A on X = S% We call II,, the spectral projector associated to \,. In particular,
for any s € R, there is C' > 0 such that, for any u in H*(X),

(1.2.1) CilnsHHnuHLz < ||Mpul|gs < On°|| I, ul|ze2-

Fix ¢ a non-negative real valued smooth function on R, compactly supported in ]0, +oo[, such
that Zj;’ioo ©(277t) = 1 for any t > 0. We define ¥ (t) = 9:_00 ©(277t) and set for u € D'(X),
JeN,

+oo

Aju=Y o277 A\)pu, j>1
n=1
“+o00o
(1.2.2) Agu = Sou =Y (M),

n=1
J
Sju= Y Aju, j=>0.
J'=0
In that way, u is in H*(X) if and only if (277%||Ajul|12); is in £2(N).

We shall study an equation of the form of (1.1.18) where the Hamiltonian G will be expressed
in terms of para-differential operators acting on U = [%]. We introduce several classes of multi-

linear operators. If p € N*, if i = (uq,...,u,) is a p-tuple of complex valued functions defined
on X and if n’ = (n1,...,n,) is an element of (N*)?, we denote
(1.2.3) LU = (I, ur, ... Iy up), 0| = max(ng,...,ny).

We assume given a strictly increasing function v : N — N, such that v(0) = 0, that satisfies a
growth condition of type

(1.2.4) v(p) +v(g) +a<v(p+q), p,g e N,

where a is some positive constant that will be adjusted later.

Definition 1.2.1 Let p € Nym € R,v € Ry. One denotes by 75;””’ the space of p-linear
maps U = (ui,...,u,) — AU), defined on C°(X)P with values in the space of linear maps
from C*>*(X) to D'(X), such that, for any N1, Ny in N, there is C > 0 so that, for any U =
(U1, up), any (no, ... ,npr1) in (N*)PF2

-2 .
e AL UL, [l 22y < Clno — npst) (mln{@, o ;

(1.2.5) AN
Aol (1 50) Tl
1o =1



where (n) = (1 4+ n?)'/2.
Remarks: e The definition implies that for any 7,5’ in N

(126) [ AGA(L ) A | oz < C27 NI g7m ! 074 (14 27| NQHHHnMHm
(=1

The characterization of Sobolev spaces in terms of dyadic decompositions implies that, for any s
in R, any Ny € N, /|2 A(IT,, 1) extends as a bounded linear map from H*(X) to Hs~™ N2 (X),
with estimates

N p)+
(1.2.7) [ AL U) || 2 (s prs—m—n2y < Csnp|n' [+ HHHWWHLZ
=1

In particular, if uy € H°(X), £ =1,...,p, with 0 > v(p) + v + 5, AU) =Y, A(ILyU) defines
an element of £L(H*®, H*~™) for any s in R.

e Estimates (1.2.6), (1.2.7) assert that elements of 751(,)’” are bounded from H*® to H® for any s, and
that in (1.2.6), the coefficients U are spectrally localized essentially for frequencies \p,,..., Ay,
satisfying |n'| = max(n,...,np) < 27. Such properties are to be expected from para-differential
operators. Nevertheless, they do not suffice to give a class of operators enjoying a symbolic
calculus. To define a true class of para-differential operators, we shall not use symbols, but
instead a formulation in terms of commutators with differential operators, similar to the Beals
characterization of pseudo-differential operators [4]. In that way, we can give a global definition
on the manifold.

If A, P are two operators, we set AdpA = [P, A].

Definition 1.2.2 We assume given a real number Mo > 1. For p € Nym € R,v € Ry, we
denote by H\IJZL’V the space of p-linear maps U = (uq, ..., up) = AU), defined on C>°(X)P with
values in the space of linear maps from C*(X) to D'(X), such that, for any family (Py, ..., Py)
of differential operators on X, of respective orders dy, ..., d, for any N1, Ny € N, there is C > 0
and, for any U in C*°(X)?, any n’ = (n1,...,np) € (N*)P, any j,j" in N

187Adp, -+ Adp AL U) Ay gqry < C2 M1 Ky b)) ok
(1.2.8) , N
0 2% [Tl
=1

If we want t to make explicit in the notation the constant My in the above estimate, we use the
notation H\I/ [Mo] for the preceding space.

Remarks: e In comparison with (1.2.6), we see that (1.2.8) gains —1 on the order of the
operator every time we make act a commutator with a P,. This gain is traded against a loss
on the smoothness of the coefficients U, given by the power Myk of |n/|. In general, M, will be
a constant strictly larger than one.

10



m—1,v+1 —— m,v

o It follows from the definition that H ¥, C HV,

elf Aisin ﬁ/?’y, it follows from the definition that for any P, ..., Py asin (1.2.8), any N2 € N,
any s € R, there is C' > 0, and for any ¢ in C*°(X)P, any n’ in (N*)?
(1.2.9)

P
0|2 | Adp, - - Adp, A(TLU)| < O, || PR T, g -

k
—m—Ng— dp+k
L(Hs,H™ 72 2oy ) -1

Conversely, if such an estimate holds for any Pi,..., Pg, s, Na, then A satisfies (1.2.8). This
equivalent characterization shows in particular that, if 6 is in C*°(X) and A is in H \I/ZL’V, then
6 A and A0 are in ﬁ?’y. Moreover, estimate (1.2.9) with Ny = 0,k = 0 shows that if uy is in

H°(X) with o > v(p)+v+1for ¢=1,...,p, then U — A(U) extends as a continuous p-linear
map from H? x --- x H? to L(H®, H*~™) for any s.

e One has an inclusion

Y Sm,v+2 M
(1.2.10) H\I/p C 735"” v 0,

Actually, we may write

(N2 =22 VL AL UL, = My Ada Ada AT U)IT

Np+1 Np+1

so that (1.2.8) implies estimates (1.2.9) with v replaced by v + 2M.

e Note that it suffices to assume that (1.2.8) or (1.2.9) holds when the orders di,...,d; of
Py, ..., P, are zero or one. Actually, any differential operator on X of order r > 1 may be
written as a finite linear combination with smooth coefficients of expressions Xj - -- X/, with
r" < r and X; smooth vector field on X. This allows one to deduce (1.2.9) (and so (1.2.8)) for
general P,’s from the estimates corresponding to operators of order zero or one.

We define from the preceding classes operators whose coefficients are given in terms of a single
function U = (u, u) instead of a p-tuple of functions.

Definition 1.2.3 Let m € R,v € Ry,p € N. One denotes by HV;"" (resp. P)*") the space of
functions U — A(U), defined for U = (u,u) in C*°(X), with values in the vector space of linear
maps from C*(X) to D'(X), such that there is a family A; of elements of ItIV\Il;n’V (resp. 75;"’”),
0 <j<p, so that

(1.2.11) AU) = Aj(u,... u, 4, ..., 0).

As in the case of multi-linear operators, we see that if o > v(p) +v + %, any element U — A(U)
of HUWW or Py»" extends as a continuous map from H?(X) to L(H®, H*~™) for any s.

We denote by H\I/;n’”[Mo] the same space as above, when we want to make explicit the constant
My used in the definition of ﬁ’?’y[Mo].
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We may deduce from the definitions of the preceding classes composition results.

Lemma 1.2.4 Let m,m’ be in R, v,/ be in Ry, p,q be in N. Assume that (1.2.4) is satisfied
for some a < v +V'. The following inclusions hold:

—~—m,v —m/ — m+m/ v+ —a
(12.12) HU [Mo] o HU " [Mo] € HU [Mo)]
HYU™ [Mo] o HUTY [Mo] € HU ™" =% M)
when p >0 and g > 0,
—~—m,v —m/ — m+m/ v+’
HY (M) o HU) ™ [Mo] € H 1 [Mo]

(1.2.13) P . e
HU [Mo] o HU [Mo] C HU ™ M)

ifp=0o0rq=0,
ITIEIZL’V[MO] o ﬁ;ﬂl"’/ c ﬁ;r:;m’,y+y’—a+2Mo
(1.2.14) 73;7%1/ o I/-ITI/ZL/’V/ [Mo] C ﬁ;}rzm’,u-&-u’—a—F?Mo
P o B C Pyt e

ifp>0andq>0. Ifp=0 orq=0, one has similar inclusions with a = 0 in the exponents
of the right hand side. Finally, (1.2.14) holds also replacing everywhere HWU (resp. P) by HY

(resp. P ).

Proof: ~ To prove (1.2.12), one notices that if U’ = (ui,...,up), U" = (Upt1,...,Uptq),
Adp, --- Adp, [AU') o B(U")] may be expressed from

(Adp, "'AdpieA(Z/{/)) o (Adp;, ~--Adij,B(U“))

where £+ 0" =k, {i1,..., i} U{j1,...,jor} = {1,...,k}. One has just to apply characterization
(1.2.9) of the HW-spaces, together with (1.2.4), to obtain the first inclusion in (1.2.12), (1.2.13).
The second inclusion in those formulas follows from the first one.

To prove the last inclusion (1.2.14), one writes

I, AL, U") o B(HnuZ/{")anH = Z(HHOA(HWU’)Hn) o) (HnB(HnuZ/{”)anH),

n

and uses (1.2.5). The first and the second inclusions (1.2.5) follow from the third one and from
(1.2.10). This concludes the proof. O

We have defined up to now operators homogeneous of order p in some function U. We shall
need as well similar classes for which the U-dependence will be only C!, with some vanishing
when U — 0. If ¢ is a real number (that will be large enough in practice), we set for R > 0,

(1.2.15) By(R) ={U € H*(X); |U||a- < R}.

12



Definition 1.2.5 Let m € R,v € Ry,p € Nyo > 0, R > 0. One denotes by V" (B,(R)) the
space of maps U = (u,u) — A(U), defined on B,(R), with values in the space of linear maps
from C*(X) to D'(X), satisfying the following conditions:

(i) For any family Py, ..., Py of differential operators of orders dy, ... ,dx on X, for any N € N,
there is C' > 0 such that, for any U € B,(R), any j,j7 € N
(1.2.16)

1A Adp, - - Adp, AUYA Sl orz) < C2NU=197mt i, et (Mok o) +v-0)1 172,

(ii) For any j,j', P1, ..., Py as above, the map U — AjAdp, - - Adp, A(ILyU)Aj is C' on By(R)
with values in L(L?) and, for any o’ with |o'| < o, the differential in U extends as a linear map
from H? (X) to L(L?) such that, for any N € N, there is C > 0 so that, for any U € By (R),
any j,j' € N, any H in H (X)

(1.2.17) ||AjAdp, - Adp, (OUA(U) - H)Aj ||z (12

< C2 N|j—j \2][”“’2@ 1d4 kot (Mok-+v (p)+v—o +]HUH ||H||H0

Remarks: e We may write equivalent formulations of (1.2.16), (1.2.17), asking that for any
s € R, any Py,..., P, as in the statement of the definition, any ¢’ with |o/| < o, any U in
B,(R), any H in H” |

(1.2.18) [Adp, --- Adp AU < ClUI%

[,(HS HE™ (m+z dsz) 7(M0k+u(p)+ufa)+) -
and

(1.2.19) ||Adp, -~ Adp, (OvAU) - H)|| < O|U|5 | HI| o

L(HS,H57(W+Z dsz)f(M0k+V(p)+Vfa’)+)
e In (1.2.18), (1.2.19) it would be enough to assume that these inequalities hold for all & such
that Mok + v(p) + v — 0 < 1. The inequalities for larger values of k will follow from the fact
that P, is bounded from H® to H*~% for any s and the assumption My > 1.

e As in the case of the preceding multi-linear classes, the space ¥"*(B,(R)) is stable by mul-
tiplication at the left or at the right by functions in C*°(X). Moreover, it is enough to assume
conditions (1.2.16), (1.2.17) (or (1.2.18), (1.2.19)) for operators Py of order zero or one.

e It follows from Definition 1.2.5 and from (1.2.8) that if ¢ > p and if v/ is any number with
V' >v+uv(q) —v(p) + 5, HVI™ is contained in \Il;”’”/(BU(R)) for any o > 0, any R > 0 (using
characterization (1.2.1) of Sobolev norms).

Let us state a composition result for the operators of the class we just defined, similar to
Lemma 1.2.4. We shall need later on to control some semi-norms that we introduce before the
statement. If P = (Pp,..., Pg) is a collection of differential operators of orders di,...,dy, if
o € R, we set Adp = Adp, ---Adp,,

(1.2.20) a(P,p,v,0) ng kE+ (Mok +v(p)+v—o)t.

13



If Ais in W"(B,(R)) and o' is in [~0, 0], we define

0,m,s
sn(p,pMU) (4) = Z HAdP’A(U)H[;(Hsﬁsfmfa(?”,p,v,a))
PICP

m%y’;téfy,g/)(A) = Z sup  [|Adp/ (9, A(U) 'H)”L(Hs,Hs—m—a(P’m,v,rr’))
prep o <1

(1.2.21)

where the sums are taken over all sub-families of P.

Lemma 1.2.6 Let m,m’ € R, v,/ € Ry, p,p' € N, R > 0. Let o > 0 satisfying the inequality
o > min(v(p), v(p'))+min(v,v') and let U — A(U) (resp. U — B(U)) be in W (Bs(R)) (resp.
\IJZ,LI’”/(BJ(R))). Then U — A(U) o B(U) is in \Ifﬁ;%ﬁ)ax(y’yl)(Ba(R)). Moreover, for any P =
(Py, ..., Py) as above, there is a constant C > 0, depending only on P, R,p,p',v,v',m,m’,s,0’ €
[—0, 0] such that, if p”" = max(p,p’), V" = max(v, 1)

mo,m+m’,s (A o B) S Cmo,m,s (A)mﬂ,m/,s (B)

(1 9 22) (P,p" V" ,0o) (P,p,v,0) (P.p' Vo)
o ml,m+m/,s (A o B) < C[mo,m,s (A)ml,m/,s (B) + ml,m,s (A)mo,m/,s (B)]
(P.p"v'"0') - (P.p,v,0) (P.p' v o') (P.p,v,0”) (P.p'v,0) ’

Proof:  We may write Adp(A(U) o B(U)) as a linear combination of quantities of the form
(Adp/A(U)) o (AdprB(U)) where (P',P") is a partition of P. If k' (resp. k", resp. k) is
the cardinal of P’ (resp. P”, resp. P), we shall deduce estimates (1.2.18), (1.2.19) for the
composition from the corresponding estimates for each factor, if we have the inequality

a(P',p,v,0) + a(P",p',v/,0') < a(P, max(p, p'), max(v, ), o’)

for |¢'| < o (and the same inequality with o and ¢’ exchanged in the left hand side). This
follows from

(Mok' +v(p) +v—0)y + (Mok" +v(p')+v' —0') 1 < (Mok +max(v(p), v(p')) + max(v,v') — ')+
which is a consequence of the assumptions on o, 0’. Inequalities (1.2.22) follow from the proof.

|

To state a more general version of Theorem 1.1.1, we introduce classes of functions defined on
B,(R), in terms of the preceding classes of operators.

Definition 1.2.7 Letm e R,v e Ry,pe N,og e R, R > 0. Assume
1
(1.2.23) o>v(p)+v+ 2 20 > m.
(i) One denotes by HF, ' (Bs(R)) (resp. HF)Y (Bs(R)), resp. HF)""(By(R))) the space of

functions F defined on B,(R), real valued, that may be written, for some element A, of HYY
as

(1.2.24) F(U):Re/X[Ap(U)u]ud,u
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resp. as
(1.2.25) F(U):Re/X[Ap(U)u]ﬂdu,

resp. as the sum of an element of HF)% (B,(R)) and of an element of HF,y (Bs(R)). One
uses the notation HF,""(B,(R))[Mo] when one wants to keep track of the constant My as in
the definition of H\I/;”’”[MO].

(7i) One denotes by J—";t%”(BU(R)) (resp. FZI’{V(BU(R)), resp. F"(Bs(R))) the space of func-
tions defined on B,(R) by similar expressions as above, but with Ay, in V" (B, (R)).

(iii) One denotes by G (B, (R)) the space of functions defined on B,(R) as ;" (Bs(R)), but
with Ay in Py»".

Remarks: o We shall call elements of HF)' (Bs(R)) (resp. HF, ' (By(R))) elliptic (resp.
hyperbolic) elements.

e Since A,(U) sends H? to H°~™, the second assumption (1.2.23) shows that (1.2.24), (1.2.25)
make sense.

e It follows from Definition 1.2.3 and inequality (1.2.7) that if F' is in G)""(B,(R)) and o is
large enough relatively to m, v, then VF is in H°~™.

Let us define the set N of exceptional values of the mass that have to be excluded. For m €
10, +o0], define if pe N, 0 <l <p, G eRfor 0<j<p+1,

¢ p+1
ngé(foa---,fpﬂ):Z\/mQ—i—f]z > /m?2 4

(1.2.26) - o
GPL(Ey, ..., &) = Z\/m2+£2 > ym2+¢2

J=0+1

Denote by Z*(p) (resp. Z‘(p)) the set of those (ng,...,np11) € (N*)P*2 (vesp. (ny,...,n,) €
(N*)P) such that there is a bijection 7 : {0,...,¢} — {¢+1,....,p+ 1} (resp. 7:{1,..., ¢} —
{€+1,...,p}) with n ;) =nj forany j =0,...,¢ (resp. j =1,...,£). Of course, these sets are
empty if p is odd, or if p is even and ¢ # p/2. Then, Theorem 4.7 of [8] (see also, for similar
results in one dimension, Bambusi [1] and Bourgain [5]) asserts that there is N C]0, +o0[ of zero
measure and for any p € N, Ly > 0 such that, for any m €]0, +o00[—N/, there is ¢ > 0 with

IF2 Ny -+ s Ayt )| = e(ng + -+ mpyg) ~H0

inf ‘Gﬁf(Am,...,A
a€EZ

1.2.27
( | +§|ZC<H1+---+np)‘LO

Tp

for any (no,...,np+1) € (NP2 — Z¢(p) and any (ny,...,n,) € (N*)? — Z%(p) respectively.

We may state a more general version of Theorem 1.1.1.
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Theorem 1.2.8 Let P € N* be given, R > 0,/ € Ry. Let PP e N*, 0 > v(P)+ v + % and let
for any 1 < p < P', G, be an element of H}'Z}”’I(BU(R)). Denote Go(U) = [y (Amu)udp and
GU) = 211,10 Gp(U). Then for any m €)0,+oo[—N, there is so > 0 such that, for any s > so,
there are €y €]0,1[, ¢ > 0,C > 0 and, for any € €)0, €[, for any ug in the unit ball of H?(X),
there is a unique solution u in C°(] — T, T.[, H*(X)) of the equation

(1.2.28) ur = iVyG(u,u), u(0,z) = eup(x)
with T. > ce~*. Moreover

(1.2.29) sup ||u(t, )| s < Ce.
[t)|<Te

In the rest of this subsection, we shall prove that Theorem 1.2.8 contains Theorem 1.1.1. We
do need the more general statement of Theorem 1.2.8 because the structure of G = 3, G, will
be stable along the proof.

We have seen that the proof of Theorem 1.1.1 may be reduced to solving equation (1.1.18) with
a Hamiltonian G given by (1.1.11), with V related to U = (u,u) by (1.1.13). Consequently,
Theorem 1.1.1 follows from Theorem 1.2.8 and the following lemma:

Lemma 1.2.9 Set G(U) = Go(U) — F(Ar_nlmg(u —u)). Then G has the structure of the
assumption of Theorem 1.2.8 for any fized R > 0 if o > V(p)—l—u—{—%, v > %—1—1 and v(p) > p(%—l—l)
foranyp=1,..., P

Before giving the proof of the lemma, we shall establish some properties of F'(v) = [ f(v,dv) dp,
where (z,p) = f(z, p) is a smooth function on R x T* X | polynomial in z and in the fiber variable
of p, and v is in Lip(X), the space of real valued lipschitz function on X. We denote for a while
by {-, -} the Poisson bracket between functions on 7% X | as at the beginning of subsection 1.1. We
consider systematically any smooth enough function on X as a function on 7% X, independent
of the fiber variable. For h a given element in Lip(X), f: R x 7" X — R a smooth function, we
define a new function D(h)f from R x T*X to R by the formula

(1.2.30) D(h )f— h {h, f}.

This new function is no longer smooth in p € T*X, because of the limited smoothness of h.
Nevertheless, a composition D(hy)---D(hy)f is still meaningful, for any hq,...,hy € Lip(X):
for instance

8f

D(h)D(ha)f = Z-ghahs = {1, G ha = {ha, G} R + {2, (I, £}}

never involves more than one derivative acting on each h;. By an immediate computation in
local coordinates, one checks that F'(U) = [y f(v,dv) du is a smooth function on Lip(X), whose
differentials are given by

)4

(1.2.31) d’F(v) - (h1,...,hp) = /X(H D(h;)f) (v, dv) dp.

J=1
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This formula, and the above expression for D(h;), shows that when v stays in a fixed ball of
Lip(X),

p
(1.2.32) |[dPF(0) - (b1, .-, hp)| < C TR lLipeo 1Pl 1]l g1
j=3

We shall need bounds on the commutator between the symmetric operator associated to the
bilinear form (hy,hs) — d2F(v)(hy, hs) and differential operators. We fix some notation: if
w1, ..., wp are smooth functions on X, if k € N, we set

p
(1.2.33) My (wr, ..., wp) = > 1T110%w;lLip(x)-
lovt |+ |ap | =k =1

Definition 1.2.10 Let p e Nyr e NNm € Z. If m < 0, set m;; = {0}. If m > 0, we denote
by 1/1774;'} the space of p-linear maps (vi,...,vp) = A(vi,...,vp), defined on C°(M,R)P, with
values in the space symmetric bilinear forms on C*°(X,R) x C*°(X,R), satisfying the following
condition: for any local chart 0 : V. — U from an open subset V of X to an open subset U of
R, for any 1,72 in N% with |y1| + |y2| < m, there is a map

(1.2.34) Uy iy (2,01, 000, Up) = Gy o (2,01, ., 1))
UxC®MRP —-R
which is p-linear in (vi,...,vp), smooth in x, satisfying for any o € N
(1.2.35) |07 Ay o (T, 015+ 0p) | < C Mg (V15 -+, 0p)
such that, for any hy, he in C§°(V,R),
(1.2.36)
A(vi,...,vp)(h1, ko) = Z Ay o (T, 01,5 -, 0p) (O3 [h1 © 671])(8;2 [hg o 671]) dx.

71 l+ly2l<m
One denotes by HAY'. the space of maps v — A(v) that may be written A(v,...,v) for some A
m ﬁ:él;%r.

We shall use the following lemma:

Lemma 1.2.11 Let P be a differential operator of order £ on X, A be an element of ff?l;rjr.

— m++L—10'
Then (h1,ha) = A(v1, ..., vp)(Pha, ha) — A(vi, ..., v0p) (b1, ' Pha) s in Y_ HA 1.

Proof: If A is in mm

s We may write, according to (1.2.36), the quantity under study from

expressions
[ @nonlevns 0, (O3 [Phy 0 07) (02 2 0071 da
U

N /U @y 90 (2,01, -, 0p) (O [ 0 07 1)) (922[(" Pha) 0 071]) da.
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If we perform integrations by parts in the second integral, we get expressions involving at most

0" derivatives of ay, ~, and |y1| + |y2| — ¢ + £ derivatives of (hj, he) for 1 < ¢ < ¢. This shows

. —— m+L—{'
that we obtain an element of 22/:1 H .A;?T o O

Proof of Lemma 1.2.9: We denote by @ the pseudo-differential operator of order —1/2, @ =

Am/ 2%[1 — 1], acting on complex valued functions U = [%]. The Hamiltonian G of the
statement of the lemma is expressed in terms of

U~ FQU) = [ 1(QU.dQU)du

Using notation (1.2.2), with the convention S_; = 0, we write Id = Z;:S(Sj — Sj-1) so that
+00 +0oo .1
FQU) = Y (FQS,U) = F@S;-U) = Y [ dr(@Qs,()U) - QAU di
j=0

J=0

where S;(t) = tS;+ (1 —1t)Sj_1. Applying the same decomposition to U — dF'(QS;(t)U), which
is possible since dF'(0) = 0, we get
+oo +00 1,1
(1.2.37) Fy=%% / / QS (1, 1)U) - (QA;U, QS;(t)ApU) ddt’
0o Jo

=0 j/=0

with Sj;/(t,t") = S;(t)Sj (t'). We use Taylor formula to decompose
, pue TN
— P+ WP
d“F(W) pE:O !d F(0)-W

where the sum is finite since F' is polynomial. Plugging this expression in (1.2.37) and using the
expression (1.2.31) of dPF', and the fact that F' vanishes at least at order three at zero, we may
write

(1.2.38) F(QU) = +fjoAp(U) (U, U),
p=1

where the symmetric bilinear forms A,(U) are given by
+too +00 .1 1,
(1.2.39) AU)=>" Z/ / AUt ) dtdt, p> 1,
j1=0j1=0"0 /0
denoting
. 1
(1240) ALY H) = [ DQALH)D(QS) (A H)ap(U. ) o)cx dp

with

(1'2'41) gp(Uv 2, P) = [D(Q‘S’jlji (t,t')U)]pf(z,p)
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(The restriction in the right hand side of (1.2.40) means restriction to the zero section {0} x X
of R x T*X).

To finish the proof of the lemma, we have to show that G,(U) = —A,(U) - (U,U) is in
H}'Z}"’I(BU(R)) with o > v(p) + v/ + 3 for any p > 1. This follows from next lemma. O

Lemma 1.2.12 For U = (Uy,...,U,) a family of C*°(X) functions, set
(1.2.42) g U, .t 2, p) HD QS (t, 1)) - f(2,p)

and define Ajhj{ (U, t,t') (resp. Ap(U)) by (1.2.40) (resp. (1.2.89)) with g, replaced by g, and
with U replaced by U. Then, if we identify these symmetric bilinear forms on C’OO(X) x C*(X)

to the corresponding linear maps from C*°(X) to D'(X), A,(U) belongs to H\IJ if V! > u(%—i—l)
and v(p) > p(4 +1).

Proof: Define for p € N*

(1.2.43) BN U ¢ (Hy, Hy) = / D(Hy)D(Ha) (U )] 0y .

o .,
Let us check that B;'”" is in HA,,, with constants in estimates (1.2.35) uniform in jy, j7,¢,¢".

It follows from the definition of D(h) that |D(hy) - - - D(hy) f| is bounded from above by a constant
times C'TT} || lLip(x)- Expression (1.2.42), and boundedness of pseudo-differential operators of
order —1/2 like @S}, 7 /(t,t") on Lip(X), show that 9% derivatives of g,(U,t,t', z, p) are bounded,
when (z,p) stays in a compact set, in terms of My (Us,...,Up) defined by (1.2.33). If in

(1.2.43), Hy, Hy are supported in a chart domain, it follows that B]Ml(u, t,t")(Hy, Hy) is given
by an expression of form (1.2.36) with m = 2, and with 0J-derivatives of the coefficients a, ,

bounded by the right hand side of (1.2.35) with » = 0. This shows that le’h (U, t,t') is in
H.App, uniformly in ji, ji,¢,¢. Moreover, because of the definition of g,, Bgf’jl( wl ) =0
if |n/| > C2min(1:71) for some large enough constant C'.

We have to deduce from these informations on Bgl’ji the conclusion of the lemma for A,(U).
Identifying bilinear forms and linear maps, we deduce from (1.2.40), (1.2.42), (1.2.43) that A}

may be written in terms of Bi}’ji by
(1.2.44) AU 1) = A PQBI U )QS), (1A

Let P = (P, ..., P) be a family of differential operators, and denote Adp = Adp, --- Adp,. By
definition of A,(U) and (1.2.44)

(1.2.45) 11 S / /
ZZ/o /0 AjAdp[A; QB (Iyld, 1, 1) QS;, (1) Ay 1A didt.
e
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The integrand may be written from a sum of terms
(1.2.46) AjAdp (A4, 'Q) - Adpr [BY ' (Tuld )] - Adpin QS (1) A1 A

where 77’ P"UP" is a partition of P. Let ¢ € C5°(R — {0}) with ¢¢ = ¢, and denote by
A = $(2774/—=A) the corresponding spectral cut-off (with the obvious modification for j = 0).
We insert Am Ay, A ;Aj, in (1.2.46) and rewrite this expression as

SO K (o) Mgy Adpn By (Tt 8,8 Mgy K (5, 1, 5)

J2 b
with

K(j)jlaj?) = AjAdP’[A Q]A]w K/(J27]17 ) A AdP”’ [QSJI( ) ]Aj"
By Proposition A.1 of the appendix, for any N € N, there is Cy > 0 such that
1K (j, g1: 2)ll £ (z2) < CNQ*N[U*.Y'I‘+|j1*j2|]7%+jD
HK/(jéajiaj/)Ha(m) < CNQ—NHJ"—J'{|+|ji—jé\]—%+j’D’

with D = Y peps deg(P)—|P’|, D' = " pepm deg(P)—|P™|. These estimates, and an elementary

computation, show that (1.2.45) will satisfy (1.2.8) with m = 1, My = 1 if we may prove that
for any N; € N, there is N such that

1A, Adpn [Bglvji (MU, t, 1) A, e < 9~ Niliz=i5 |+ N1 (l51—d2|+31 —43]) 9d2[2+D"]
A <

(1.2.47) o A
xc|n’[PPHPI A 2 ) N2 T T e 2,

where D" = 3" pcpn deg(P) —|P”|. Note that a commutator [P, B,gl’ji (IL, U, t,t")] is the transla-
tion at the level of linear maps of the quantities studied in Lemma 1.2.11 at the level of bilinear

forms. By this lemma Ac17;nBJ 1’]1( wU,t, ") will be the sum indexed by a in {0,..., D"} of

elements of H .A ‘7;//| +a Expressions (1.2.36) and bounds (1.2.35) imply that the left hand side
of (1.2.47) is 5maller than

CM‘P”H—CL(HTL’U) Z 2]2'72‘4‘]&'75‘
[v2l+ 5 |<D"” —a+2

By (1.2.33) and Sobolev injections, this is smaller than

p
(1.2.48) /| PP 5 41] 92 (D" 42 H(D 420233l (|t g 52 ) T, gl 2
1

We have seen that if B,j;l’ji (ILyU,t, ') # 0, then |n/| < C'min(27t,271). This shows that (1.2.48)
implies (1.2.47) with v(p) = p[% + 1} if we are able to show that we may improve (1.2.48) by a

factor 2N1[\J'1_—J'2|+|ji_jé‘_‘jrjé” for any N7. To do so, we denote by A; a new cut-off such that,
for j >0, AA; = 22jAj. When 0 < j} < ja, write

222 Ay, Adpn By (T U, 1, 1)]A j, = gy AAdpo By (T, 1, )]A,
= Aj, AdaAdpn (B (T, 1, 8)]Ajy + Aj, Adpn [Bo 1 (LU, 1, 1)) A 2%,
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If we apply estimate (1.2.48) to the right hand side of this equality, we get a bound given by
the product of (1.2.48) and of

0|22 4 2% < C[22 I 4 9%0),
Consequently, we gained the factor
oi1—J2  92(3—j2) < (g~ lia—dz2l+lii—jal,

A symmetric reasoning applies if jo < j5, so that we have gained, in the special case N3 = 1,
the missing factor oN1llj1—d2l+1i1 —dal =123 ] Iterating, we get the case of an arbitrary Nj. |

2 Symbolic calculus

The quasi-linear Birkhoff normal forms method, that will be used to prove Theorem 1.2.8,
will rely on properties of commutators of operators belonging to the classes defined in Defini-
tions 1.2.3, 1.2.5. To establish such properties, we need a notion of principal symbol that will
be defined through local models of our operators, acting on functions defined on the Euclidean
space.

2.1 Operators on R? and their symbols

In the same way as we defined dyadic cut-offs acting on functions on the compact manifold X
in (1.2.2), we define for u in S’(R%), j in N

Afu=FHp27Ea), j =1
Afu = Syu = FH(v(l¢])a)

(2.1.1) ;
E E
7'=0

where @ (resp. F~1) denotes the Fourier transform (resp. the inverse Fourier transform) on R,
and where ¢, 1 are the functions introduced at the beginning of subsection 1.2.

m,v

Definition 2.1.1 Let m € R,v € N,p € N. One denotes by ‘ﬁp,loc the space of p-linear maps
U= U,...,Uy) = AlU), defined on C>*(X)P, with values in the space of linear maps from
C§°(RY) to D'(RY), such that the distribution kernel of A(U) is supported in a compact subset
of R x R (independent of U) and such that for any family of differential operators Py, ..., P
of order dy, . ..,dg, for any U in C°(X)P, any n' = (n1,...,np) in (NP, any j,j" in N, any
Ny, Ny in N,

|APAp, - Adp, AL LA £uo

is bounded from above by the right hand side of (1.2.8)
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As in the case of global operators on X, X, one can give an equlvalent definition in terms of estimates

of the form (1.2.9). We define from H\Ilp IOC the space HU" 100 as in Definition 1.2.3

Definition 2.1.2 Let m € R,v € N;p € N,o > 0,R > 0. One defines \Iiploc(B (R)) as the
space of maps U — A(U) defined on By (R), with values in the vector space of linear maps from
C§°(RY) to D'(RY), such that the distribution kernel of A(U) is supported in a compact subset
of R? x R? independent of U, and such that for any family of differential operators P, ..., P
of order dy, ..., dy, for any N € N, for any o’ € [—0,0], any U € By(R), any H € H° (X), any
j,j/ e N, HA?’Adpl s AdpkA(U)AjE/Hg([;) (resp. HA?‘Adpl s Adpk(aUA(U) : H)A?/||£(L2)) 18
bounded from above by the right hand side of (1.2.16) (resp. (1.2.17)).

As in the case of the global definition, one may give an equivalent characterization in terms of
estimates like (1.2.18), (1.2.19).

We introduce classes of symbols that will allow us to give alternative descriptions of the preceding
classes of operators.

Definition 2.1.3 Let m € R,v € N,p € N. One denotes by HS

ploc the space of functions

a:C®X)P xT*R?— C
(ut,..., up, z, &) = alug, ..., up, z,§)

which are p-linear in (u1,...,u,), smooth in (v,€), and satisfy for any a,3 € N, any U =
(u,...,up) in C®(X)P, any n' = (ni,...,n,) in (N*)P, any (z,€) € T*R?, any N € N

p
(2.1.2) |0900a(lltd, z,€)] < O (€)™ W' +”+M°<'“'+5'+d+”<1+‘g>|> [T e 2
1

We define also a class of symbols that are not homogeneous in U.

Definition 2.1.4 Let m € Rjv € N;p € N,o > 0,R > 0. One denotes by
space of maps

plOC<B (R)) the

a:By(R) x T"R? = C
(U,z,&) = a(U,z,§)
which are smooth in (x,€), C' in U, and satisfy the following conditions:
(i) For any o, B € N%, there is C > 0 and, for any U in B,(R), any (z,&) in T*R?

(2.1.3) ‘8$8§6a<U,$,§)‘ < C<§>m—|ﬁ|+(Mo(|a\+\ﬁ|+d+1)+u(P)+u—a)+HU”P i
(ii) For all o, B,x,&, U, H — (8;‘8?8Ua)(U,x,§) - H extends as a continuous linear form on
H' (X) for all o with |0’'| < o and satisfies

(2.1.4) |(aga§aUa)(U7x,g).H| < O(g)mIBIHMo(al B D) =0 | |12 H 0.
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We quantize the preceding classes of symbols in the following way. If v is in C§°(R?) and a is
in S"7” (B,(R)), we set

p,loc

(21.5) Op(all )0 = o [ a(U.a. )00 e

We use a similar formula to quantize elements of H Sp 1OC

If x is in C§°(R%), a belongs to HSp loc, we set

(2.1.6) ay (U, 7,€) = X(Do /() aUl, 2, )] = F,* [x(n/(€))aW,n, )]

Where a(U,n, &) is the z-Fourier transform of a(U, z, ). We use a similar notation for elements of
p,loc " (Bs(R)). The definition immediately implies that a, belongs to the same space of symbols

as a.

If x is supported in a small enough neighborhood of zero, on the support of ay (U, 7, &), |n| < €],

so that (£ + 1) ~ (£). For technical reasons, we shall have to consider symbols for which a weaker
m,v

ploc or Sp loc(B (R))

such that for any A € R, (D, + £)*(¢) *a is still in the same class. We shall use eventually the

following lemma:

version of this spectral localization is satisfied, namely symbols a in H HS,

Lemma 2.1.5 Let a be an element of ﬁTSZ{OVC (resp. S;nl;/c( »(R))) such that (Dy + &) (€)™

is in the same space for any X € R. Let 0 in S(R? x RY) and b(U, x,y,&) = 0(z,y)ald,z,&)
(resp. b(U,x,y,&) = 0(z,y)a(U,x,£)). Then, for any n’ in (N*)P, any X in R,

10200 [(Dy + E)ME) b(Iuld, 2, y, €)]]

resp.
1090, 07[(Da + &) (U, 2, 3, I,
resp.

020¢ 0} [(Da + (&) N Oub(U, 2,,6) - H))|
is bounded from above by the right hand side of (2.1.2) (resp. (2.1.3), resp. (2.1.4)).

Proof: It is enough to prove that the operator (D, + £)*0(D,, + €)™ —8 is bounded on L>(dz),
uniformly in &, y, for any A € R. The distribution kernel of this operator, at fixed £, y, is

emilame [ e NGy 4 ) — (1) 6(C. ) dln,

Kﬁ’y(% x/) = (27.‘.)2d

where é({ ,y) is the Fourier transform relatively to the first variable. Integrating by parts, one

checks
T~ @ — 2y

x—a') N

|[Key(x,2')| < Cnlw -z z)

for any N, from which the £(L*)-bound follows. a

We relate the symbols we just defined to the local operators.
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Proposition 2.1.6 Let m € R,y € N;o > 0,R > 0.

(i) Let A be an element of HTI/;”I(')’C (resp. ¥, ¥ (By(R))). There is a (unique) symbol a in

I/{TSZI’ZC (resp. S)'o.(Bs(R))) such that for any A € R, (D, +MEYa s still in the same

space, and such that A(U) = Op(a(U;-)) (resp. A(U) = Op(a(U;-))).

»(R))) such that for any X € R, (D, + €)*(€)a
—— m,v+2Mo(d+1)
p,loc

(ii) Let a be a symbol in HSp loc (resp. ploc(

is still in the same space. Let 01,09 in C§°(R?). Then 6;0p(a)fy belongs to HY

(resp. WL MY (B (RY))).

(iii) Let a be a symbol in Iﬁ;nlgc (resp. SV (B,(R))). Let x be in C(RY) with small

p,loc
enough support, x = 1 close to zero. Then, for any j > 0, a — a, is in HSZﬁOﬁ Mo (resp.
M
Spioe (B (R)))-

Proof: (i) Let A be an element of HU v
A(U) and define

ploc Denote by K(U,z,y) the distribution kernel of

a,§) = [ K@Uz g)e e dy

so that Op(a(U;-)) = A(U) and Op(92(id¢)Pa(U;-)) = (Adp,)*(Ad,)’ AU). Since K is com-
pactly supported, we may choose 01,6 in C§°(R?) such that K = 61 (z)K62(y). We compute

aU,n, &) = / e E G () K (U, ,y)e 4 02(y) dydSd
- / e E Y, (2) AU)[6)0(-)] dar.
This implies, for any A € R,

02070l ] < e 00| 11(Ady,)*(Ade) AL L) 03] .

Using that He*i«"mj‘ "~ (¢)* when |¢| = 400 and inequality (1.2.9), we obtain

— p
2O a(Tll, 1, €)| || < C(€ + ) NNt m I8l e MG D TT o)
1

By Sobolev injection, we get the same estimate for

2 ((Dy + MO (Ll 2,€))|

if we replace in the right hand side v by v + My(d + 1) and discard (£ + n>_’\<§> This gives
the wanted estimate (2.1.2), showing that for any A, (D, + &)M(€)*a is in HSp loc-

The proof of the analogous statement for operators in U'}” (B,(R)) is similar, using (1.2.18)

and (1.2.19).

P, loc
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(ii) Let a be in H Sp loc Since 610p(a)fy ,satisfies the support property, we just need to check
estimates (1.2.8) for the operator Adp, --- Adp, [010p(a(Il,/U;-))02]. By the last remark follow-
ing Definition 1.2.2, we may assume that Py is of order zero or one, so either of the form b(z) or
b(:c)% for some function b in C§°(R?). Let o (resp. ) be the number of those ¢ such that P

is of order 1 (resp. 0). The kernel of [b(x)%,@lop(a(u; ))02] (resp. [b(z),010p(a(ld;-))b2]) is

1
(2m)

[ e a ) de

with

S

al, z,y, &) = Z (2,9)01 (2 ()aa

e 0. O]+ H(x) 3 0y ()alh 2. )0a(0)

+a‘;[b(y)al(x)a(u,w,f)%(y)]

with by, a smooth function on R? x R? (resp. with

d

WU, 2,9,€) = i 3 byl ) () o

¢ (u7 T, g)HQ(y))
k=1 k

Computing in the same way iterated commutators, and using Lemma 2.1.5, we conclude that
Adp, ---Adp,[61O0p(a(Ud;-))b2] = Op(b(U;-)), where, for any A € R, any N € N,

(2.1.7)
0 07 07 (D + O LU, )] < €)= g WM Pl )

Wy
(1+7g) LIl

and where Op(b) is the operator with kernel (27)~% [ e'@=9Eh(Uf, z,y,€) dE. Let us estimate
[A;0p(b(In s ) Ayl (z2). We decompose b(U, z,y,&) = 3= bjn (U, x,y,§) with the notation
bjn = bp(277"|€]) for j > 1, by = bip(|€]). The kernel K;u(U,z,y) of A;Op(bjn)A; may be
written by a direct computation

1

Ky Wwy) = 5o /ei(x*y)'écj,,(u,%y,é) dg

with

Cj"(u7 z,Y, 5) =

[ o270 — o2 e = e i)
X bU,x — z,y — 2, &) dzdz'd¢d(’

(27r)2d

when 7”7 > 0,7 > 0,5’ > 0, and similar expressions when j, 7' or j” is zero. If we write

bU,x — 2,y —2,6) = (D, — &) NDy + E bU,x — 2,y — 2, €)
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and integrate by parts in 2z, we get the expression
(2.1.8)
¢ (Tl 7,,€) = (273)% @2 [ =g, 71 = (el I - ¢ lg)
XbU,x — zy —2,&) dzdz'd¢d(’

where b is the symbol in the left hand side of (2.1.7), and where ¢; has the same support
properties as o, with estimates of its derivatives uniform in j. Let us show that, for any N, N’

(219) |a§/6j// (Hn’ua x,Y, g)‘ < 023,,(7”_5) [maX(Q_j, 2_.7/’ 2_j//)]|Bl|2—N/(|j_j/|+|j/_j”|)

/ 7 p
% |n/|l/(p)+1/+M0(a+,3+d+1+|5 \)(1 + 97 |n/|)—N HHUZHL2'

1

To do so, we perform N integrations by parts in (2.1.8) using the vector field L = (14|¢’|*)~1(1+
¢'- D.)). The estimate (2.1.7) show that we gain in that way a (/)™ factor. Next, perform
Ny integrations by parts using Ly = (1+|2'|*)"1(1 +2'- Der). We gain a factor (z/\"N2_ Finally,
we integrate by parts using Lg = (1 + 2% |2|*)~1(1 + 2% 2 . Dy) to gain a factor <2jz>_N3. We
obtain for the modulus of 8? /cju a bound given by the product of

! 97 p
23" (m=p) [max((277, 2—3” 2—3”)]\B’|‘n/|V(p)+V+Mo(a+B+d+1+IB \)(1 + 977 |n/’)—N HHWHLZ
1

and of
1 _N —N- . —N:
20 / Lie¢lmai Lie_grimar Ligani (¢) ()2 (272) 7 dadz'dCd(.

If we integrate for |¢'| > c2lI"=3" for some ¢ > 0, we get, choosing A conveniently and N;
large enough, a factor O(2~N'I7=7'It1"="ll) " whence the upper bound (2.1.9). If we integrate
for |¢'| < 219"73"l| the cut-offs show that |j’ — j”| has to stay smaller than a fixed constant, so
that we get also the wanted estimate (2.1.9). If we go back to the kernel Kj», perform d + 1
integrations by parts in £ and use (2.1.9), we get a bound

Ko (I, )| < C20"[1 + min(27, 27, 27" — | =412~V =7 117"~

p
x 2]”(m—ﬂ)|nl’V(P)+V+M0(a+5+2(d+1))(1 + 2—]”|n/’)—N HHufHLQ'
1

The £(L*)-norm of A;Op(b)A; is bounded from above by the sum in j” of the L'(dz) (or
L'(dy)) norm of K;»(ILyU,x,y), so by

p
C2J(m—6)|n/|V(P)+V+M0(a+ﬁ+2(d+1))(1 + 2—j|n/’)—N2—N’\]—j/| H”ufHLQ
1

—— m,v+2Moy(d+1)

for some new value of N’. This shows that 6;Op(a)fs is in H¥,, . as claimed.

The proof of the corresponding statement in the framework of the Z?{OVC (Bs(R)) class of symbols
is identical.
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(iii) This statement follows from the formula

o-oier = [(5) -0 ()] (F)

for any 7 > 0. O

We have already obtained, in the global framework, results of composition of operators (see
Lemma 1.2.4 and Lemma 1.2.6). Nevertheless, to see that a commutator between two operators
is one order less than the sum of the orders, we need to study, for local operators, the symbol
of the composition.

Theorem 2.1.7 Let m,m’ be real numbers, v,v in Ry, o > min(v(p),v(q)) + min(v,v') +
My(2d + 3). Assume that

(2.1.10) v(p) +v(q) + v + Mo(2d+3) < v(p+¢q), p>0,q > 0.

Let A be in HU

ploc (T€SD- \I’ploc( +(R))) and B be in H\I’qloc (resp v, loc( U( ))). Denote

by a and b the element ofHSpJOC (resp. Sﬁ;’c( +(R))) and HSq 1OC (resp. S’q oo ( +(R))) given

by (i) of Proposition 2.1.6. Let x € C$*(RY) be equal to one close to zero, with small enough
support. Then, if 0 € Cgo(Rd) is equal to one on a large enough compact subset of R%, we may

write for any U in C°(X)P, U" in C°(X)?

(2.1.11) AU o BU") = 60p[(ad’,)bU",-)),]0 + CU" . U"),
resp. for U in Bs(R),
(2.1.12) A(U) o B(U) = 600p[(a(U,-)b(U, )0 + C(U),

—— m+m'—1,v+My(2d+3)

where C' is an element of HV, . .. (resp. \I’nmhb;;z;)ligncax(mylHMo(2d+3)(BU(R))) if
—— m+m'—1,v+v'+2My(2d+3)

m~+m’—1,max(v,v')+Mo(2d+3 .
paoc : (RS (B (R))) if

p > 0,9 >0 and of HV max(p,g).loc

p=0o0rq=0.

(resp. W

Remark: Of course, if one assumes instead of (2.1.10), v(p) +v(q) + v+ Mo(2d+3) < v(p+q)
for p > 0,q > 0, one gets the same conclusion with v and v/ exchanged.

Proof: Let A be in H\Ilp 1OC and B in H\Ilq loc . Let 0,6, be in C*(R?), with 6;60 = 0 and
0A0 = A,0BO = B. By (iii) of Proposition 2.1.6, for any A € R, (D, +&)*(€) ™ (a — ay) is in

fITS’ZLlOi Mo and we have a similar statement with b. Applying (ii) of Proposition 2.1.6, we
may write

A= 91Op(ax)«91 + Ay, B= 910p(bx)01 + B
with A; € H\P;lloi VMo and B € Ir{TI/ZI(;LV M2, Using (2.1.10) and Lemma 1.2.4,
we write
(2.1.13) AB = 0,0p(a,)070p(by )01 + C4
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where (1 is a contribution to C'in (2.1.11). The first term in the right hand side may be written
6:10p(c(U, )01 where

1
(2m)
if U € C°°(X)P+4 has been split in U = (U',U") € C*°(X)? x C>®°(X)4. Then

cU,x,§) =

/e—iz-Cax(ul7$7£ - C)G%(I‘ — Z)bx(u”a T — va) dzd¢

(2.1.14)
cU,x,8) — ayby U, x,£)01(x)? =

1 )
(2 /e—zz-c[ax(ul,x’g —¢) — ay (U, 2,6))0F(x — 2)
xby, (U, x — z,£) dzdC.

The right hand side may be written, performing an integration by parts, as

I :
(2.1.15) @i /0 / e (eay ) U 1, & — 1) Dy[0F (x — 2)by (U, — 2,€)] dzd(dt.

We perform d + 1 integrations by parts using the vector field L = (14 ¢?)~'(1 — ¢ - D) to get
an absolutely convergent integral in (. If we replace in (2.1.15) U’ by IL,U', U" by T1,,»U", each
D, derivative acting on b, makes lose a power |n” 1Mo We decompose 62 as

(2.1.16) 61 (w) = (X\(D/(€)6}) (w) + B(w, &)

where [97.0(w, )| = O((€) N (w) ™) for any N,~. Let us study first the contribution to (2.1.15)
coming from the first term in the right hand side of (2.1.16). If Supp x is small enough, the
support properties of 5;(1/{”, n, &) imply that, in (2.1.15), we may assume || < [£| on the domain
of integration. This integral, computed at II,U instead of U, is thus bounded from above in
modulus by
1\ =N
O [£ P v Mo(42)) (@) + Mo (2a+) <§>m+m’1<1 +|<72>|> (1 N Izz >

— 1+ M
Using (2.1.10), we get estimates (2.1.2) of an element of HS;:_ZTOC v

—— m+m/—1,v+v' +Mo(2d+4)
HSp+q,10c

the symbol obtained making act (D, + &)*(€)™ on (2.1.15) satisfies similar estimates, again
because the z-Fourier transform of (2.1.15) is supported for |n| < €] if Supp x is small enough.
If we consider the contribution of 6 in (2.1.16) to (2.1.15), and use that 93,0 = O((&) ™" (w) ™)
for any N, and the fact that L-integrations by parts allow one to gain any <§)7N (f}N factor,

//|>N p+q

[T el -
1

if p,g > 0 and of

if p or q is zero. The derivatives are bounded in the same way, and

one sees that the corresponding contribution to (2.1.15) is in HS for any N, as well as the

p+q’,loc
action of (Dy + &)*(€)™ on on that function for any A. It follows from (2.1.13) and from (ii) of
Proposition 2.1.6 that

(2.1.17) AB = 0,0p[0ia, by )61

modulo an operator C' satisfying the conclusion of the theorem. Since AB = 0ABI, we may
write as well, modulo such a C, AB = 0Opla,b,|0. Write a,b, = (ab), — r with

= [(axby)y — (ayby)] + ((a — ax)b)y + (ay (b — by))x-
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L+ M,
By (iii) of proposition 2.1.6 and (2.1.10), r belongs to HS;T;TOC v

— m+m/—1,v+Mp(d+2)

if p> 0,9 > 0 and to

HS, g 1oc if p or ¢q is zero. The associated operator contributes to C' in (2.1.12).
This concludes the proof in the case of homogeneous operators. The case of operators in
\IIZLI’ZC(BU(R)), \IJZI(;Z (Bs(R)) is treated similarly. O

Let us finish this subsection with a similar result for transpose and adjoint.

Theorem 2.1.8 Let m € R,v € Ry,p € NNR > 0,0 > 0. Let A be an element of the space
—~— m,v .

HWV, o (resp. U, " (Bo(R))) and let a be a symbol in HSp loc (resp. S;nlé'c( +(R))) given by
(i) of Proposition 2.1.6. If x is in C§°(R), has small enough support, and is equal to one close
to zero, if 0 is in Cgo(Rd) and is equal to one on a large enough compact set, then, denoting by

tA and A* the transpose and the adjoint of A for the L*>(R?, dx)-scalar product,

(2.1.18) 'A =00p(ay)0 + C1, A* = 00p(ay)0 + C»

—— m—1,v+My(3d+5)

ploc (resp. WLV AMOBIE) (B (RY)) and where oV (z, &) =

where C,Cy are in HY piloc

a(x, *5)

Proof: Because of the support assumption on the kernel of A and of (iii) of Proposition 2.1.6,
we know that we may write A(U) = #Op(a, ) modulo a remainder of form Cy,Cy. Moreover,
'Op(ay) = Op(b1), Op(ay)* = Op(bz) with

bi(2,€) = (er)d [yt — 25—+ Q) ded

(2717) / ey (x — 2,& — ¢) dzdC.

(2.1.19)
by(x,§) =

Because of the support of ay (¢, —£ + (), (:z;(C,ﬁ — (), we may insert a cut-off x1({/(§)) inside
the integrals in (2.1.19) if x; = 1 close to zero, Supp x1 small enough. Then

bi(@.) — ax(w,—€) = o3 [ e (/€D e = 2, —¢ +0) — ay(w, =) dedc.

1
(2m)?
Since the term between brackets vanishes at (z = 0, = 0), we see, performing d+ 1 integrations

by parts using L = % that b1(x,&) — ay(z, —&) may be written as ¢y, (z,§) for some

Ly+Mo(d+3 _
symbol ¢ in HSZLIOC Mol (resp. \Ilzllog’wrMo(dH) (Bs(R))). Using (ii) of Proposition 2.1.6,
we get that C1 = Op(c,, ) satisfies the conclusion of the theorem. One treats in the same way

the case of the adjoint. O

2.2 Principal symbols

In this subsection, we shall define principal symbols for para-differential operators on the mani-
fold X, and use them to study commutators between such operators. We first study the action
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of a change of variables on local operators. If X, X’ are two manifolds and x : X — X' is a
diffeomorphism, we denote by 7. : T*X — T* X'’ the canonical transformation induced by . In
local coordinates

(2.2.1) Tr : (2,8) = Te(2,8) = (/ﬁ(x),td/{(x)_lé).

We denote by k* : C§°(X') — C§°(X) the map defined by £*u = u o k.

Proposition 2.2.1 Letm € R,~1/~€ Ry, R>0,0 >0, V,f/ be two open sets of R, k:V =V be
a Coo—diﬁeomorphism let 0,0',0,0" be in C5°(V) with 66 =6, 0’6’ =0'. Let A(U) (resp A(U))
be an element of H\Ilp loc ploc( »(R))). Then B = (k= 1)*0A0k* is in H\Ilp loe (TeESD.

\Ilelo'jc( +(R))). Moreover, if x1 € C§°(R) equals one close to zero and has small enough support,

if a is the symbol in HSpJOC (resp S)Yy.(Bo(R))) associated to A by (i) of Proposition 2.1.6, we
may write

(resp. W

(2.2.2) B=(0orHOp[(00aor 1), ](0 o™t +C

K

Mo(3d .
where C' is in H\I/;@bi Mo (resp. \I/;:loi’ Jr]V[O(gdH)(Bc,(]%))).

Since §'k* = ¢ /{*(él o k1), this operator preserves Sobolev spaces. The characterization of

HV," and ¥ (By(R)) in terms of estimates of type (1.2.9), (1.2.18), (1.2.19) thus shows

that B is in the indicated space of operators. We just have to show the statements concerning
symbols.

Lemma 2.2.2 (i) Let W be a neighborhood of the diagonal in X x X. Let (0;)icr be a smooth
partition of unity on X such that 6;(x)0;(y) # 0 implies (z,y) € W. Let J = {(i,5) € I x
I;Supp 6; N Supp; # 0}. For any A in H\IJZL’V (resp. V(B (R))), A — 3 (i j)es 0:A0; is in

m—r,v+rMoy

ﬁp (resp. W= trMo(B_(R))) for any r > 0.

(ii) Let W be a neighborhood of the diagonal in R? x R?, K a compact subset of RY, x €
CgO(le), X = 1 close to zero, with small enough support. Let (0;);cr be a smooth partition of

unity on a neighborhood of K. For any A in H\I/Zlfgc (resp. ¥, ¥ (By(R))) with support in

K x K, there is a symbol a in I/—ITS';anC (resp. Sﬁ;’c( +(R))), compactly supported in x, such
Mo (r+2d+2 _

that A — 37 jyes 0iOp(ay)b; is in ! P rt2d) (resp. W' T’V+M0(T+2d+2)(BU(R))) for

any r > 0.

p,loc

Proof: (i) We notice that if 81,60y are smooth functions with disjoint support, 61 A6, is in

—— m—r,v+rMy

HVY, " (resp. W?‘T’”+TMO(BU (R))) for any r > 0: actually, if § is in C*(X) and 06, = 6,

665 = 0, we may write for any r € N

01 A0y = Ady - - - Ad(6,A6,).
——
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We just have to apply the characterization of f{\ﬁ/?’y (resp. W""(B,(R))) to get the conclusion.

(ii) The same proof as above, together with the fact that A is supported in K x K, shows that
A=32065) eJ 6;A0; is in the wanted space. By (i), (ii), (iii) of Proposition 2.1.6, there is a symbol
—— m—r,v+Mo(r+2d+2)

a in H\IJP 100 (resp. ¥, 2 ioc(Bs(R))) such that ;A6 —6;0p(ay)6; belongs to HW,, ...
(resp. \I/;:loz v+Mo(r+2d+2) (Bs(R))) . We may assume moreover that a is compactly supported
in a neighborhood of K. This concludes the proof. O

Lemma 2.2.3 Let x be as in the statement of proposition 2.2.1. Let a be in f—[TS’ZZC (resp.
Sﬁ(l)’c( »(R))), compactly supported in x in a compact subset of V. Let x € C(R?), x = 1
close to zero, with small enough support. Let (z,z) — v(x,2) be a smooth function, such that
(z,y) = v(z,z —y) is compactly supported in V x V, and such that (z,z) — ~(x, 2) is supported

for |z| < p < 1. Define ford = (Un,...,Up) € C®(X)P (resp. for U € B,(R))
1 o1 —1 .
(2.2.3) bU,x,&) = W/e’[“ (@)=r (“”_Z)K_”f’y(as,z)ax(u, k(x), ¢) dzdC¢

(resp. b(U,x,&) given by the same formula with U replaced by U). LetT' € C§°(R—{0}) be equal
to one on a large enough compact subset of R — {0}. Then one may write

1 1 N/ / —1(7 1N 1
WU, z,8) = —— /el[(w—x Yo' 42+ =€)+ (5~ (2 =) "]
(2.2.4) U.2.0) = Gy

cU, 22", 2,0\ ", ¢, €) da'da" dzd'dn"d¢" + b1(U, z, €)
where, for any A € R, (Dy + EME by is in HY DY for all v > 0 (resp. b(U,x,£) may be

Jloc

written as (2.2.4) with U replaced by U and (Dy + )M€) by belonging to W """ (By(R)) for

p,loc

any r >0, A € R), and where ¢ is a function supported for

(2.2.5) | < () ~ (§) ~ (& +1)
and satisfies estimates

o 5 58 58" 56" rooa A,
(2.2.6) |09 8 (9 8 0 ,,84,6( w2 "z n" (L8|
-N p
"—18" v+Mo[|o |+’ |+]6 d+1 n
< C{gymI8118 118 1=l @)+ Molle [+l 4181+ 1<1+|<€>|> TTlwell .

resp. ¢ satisfies the estimates

(2.2.7) |09 0% 020200, 05, e(U, ' o, 2,1 0" €

& Mo[|o!|[+]a’ |+ d+1]—
< cEm —181=18"1=18" |—= ¥+ (v (p)+v+Mo |/ |+ | |4+|8|+|y|+d+1] U)JFHUH%M
and the estimate

(2.2.8) |09 0% 020708 05, 0L [oue(U, a2, 2, ", ¢, €) - H]|

| R!M| M, / 1" 6 + d—‘rl ) -1
< Cem =1BI=18"=18" =7+ w(p)+v+Mo[| |[+|a” [+|5|+]v|+d+1] U)+||U||%a HHHHo
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for any o' € [—0,0], any H in H .
Moreover, the restriction of ¢ at z =0 is given by

1
(2

(@', 0)ldet (k™" (2))[x(n"/{'dr (s~ (2")) - (')

X F<<<§>>)F<<§<i/>n/>)a(u,x”,tdli(li1(33/)) e

(resp. by the same formula with U replaced by U ).

(2.2.9) c|seg =

Proof: Let us prove the lemma in the case a € HS ;nlsc We may write the definition (2.2.3) of
b
1 ; / / -1 ! -1 / -1 / 1 11
b(U,z, ) = 7/6%[(1—36 (T @) =T @ =) (T @) =" =2y (o Yy
(2.2.10) U;z.¢) (2rr)3d v, 2)x(n"/{C)

xaU, 2", ¢) dx’'dz" dzdn'dn" d¢.

On the support of y(z', 2) [ ((Vy (k712" — 2) - €))/(£)), the quotient (()/(¢) stays between two
uniform constants (since ' — z stays in a compact subset of V'), and the function I'y (2’ — z, (, §) =

(1 =TD)(Var (v (2" = 2) - ())/(€)) satisfies
(2.2.11) % (' — 2,¢,€) = O(1).

Define b} as the function given by formula (2.2.10) with I'; inserted inside the integral, and
define

1V —2)- 0~ ) Vs
L4 [ Var (571 (' = 2) - Q) = €]
Performing integrations by parts using L;, and denoting by ® the phase function in (2.2.10), we
write

1 . ! 17 ! 1
(2.2.12) bll(u,a;’g) — Wl/e@(x,x 2z " CE)

x (L) [y(@', 2)x (" [{OITa (@ = 2,¢, E)aUd, 2", Q)] da’ da” dzdn'diy'" d .

We note that, if the domain over which I' = 1 is large enough, on the support of I'y =1 - T,
either ({) > (§) or (¢) < (&), so that every Lj-integration by parts will provide a gain of
(1+[¢]+ €))L, Consequently, the symbol in the integral in (2.2.12) satisfies the same estimates
as a, as well as its derivatives, with a gain in (1 + [¢| + |¢])™". If we insert inside the integral
another cut-off w(n'/(1+£24-¢%)1/?), with w in C§°(RY), and use that the integrand is compactly
supported in (2/, 2", z), we obtain for the corresponding contribution to b} a bound in
—N'|_1 V(p)+1/( ’n/>_N/

(2.2.13) Cn(&)™ |n] 1+ =

()
if N > N’. Similar estimates hold for derivatives. Moreover, if we make act on b} the operator
(D, + M€Y, and use that (' + €) is controlled by the gain coming from the integrations by
parts, we still get a bound of type (2.2.13).
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Consider now the contribution to b} given by (2.2.12) in which we insert (1—w) (7' /(14+£24-¢2)'/?),
with w = 1 on a large enough compact set. We consider

_1—i(Ve (@) - (" + Q) — (' +8)) - (Vo + V)
L Vo (571 (a) - (" +C) = (i + )

and perform N integrations by parts using Lo. We get

Loy

1 1®(z, 2’ 2" zm " () (t N ( 77/ )
bl b biad) b A L 1 J—
(27-[-)3d /6 ( 2) {( w) (1 + 52 + 42)1/2

< (LON [y (0 [T = 2,¢ €altd, 2", Q)))| da'da dzdn dif"dC.

Since on the support of the integrand, |”| < (¢), |n'| > (1+1&|+ |{]), the integrations by parts
gain a (14 |n'| + 0" +|¢| +1€))~Y factor. We obtain again a quantity bounded by (2.2.13), with
similar estimates for the derivatives or for the action of (D, 4 £)*(€)™ for any A. Consequently,
b} contributes to by in (2.2.4). Let us study next b, which is given by (2.2.10) where we insert
the cut-off T((Vy (k=1 (2 — 2) - €))/(€)). In particular, (¢) ~ (¢) on the domain of integration.
We decompose b = by + b" with

; ’o ’ o (=12 -
(2.2.14) bo(U,x,€) = (%1)%/6@@@ & e ,c,g)F<<Va: (g +(7976I>) C)>>

(Vo (71 (2" = 2) - Q)
(€

and b{" being given by the same integral, with the first " replaced by 1 — I'. We study first b},
performing N integrations by parts using Lo. We get

1 eifb(:p,z/,m”,z, ' CEtT N B (vl/(’{_l(a?/) ) C)>

o | oo ( €+ ) )

(Var (571 (2" = 2) - Q))
()

On the support of the domain of integration, |n"| < (¢), ({) ~ (£) and either (¢) < ({+7') or
(¢) > (¢ +n'). This implies that the integrations by parts gain a factor (1 + |¢| + |€ +7'|)~Y,
and that (2.2.15) has a bound of form (2.2.13), as well as the action of (D, + &)*(¢) ™ on this
integral. Since derivatives are estimated in the same way, we conclude that b}’ contributes to by
in (2.2.4).

x (e, z)x(n”/<<>>r( )a(u, 2, ¢) da’da” dzdn dr"d¢

(2.2.15)

% (e, z)x(n”/<<>>F( )a(u, " cﬂ da'da" dzdn dry'dc.

Finally, we are left with showing that by may be written as the first term in the right hand side
of (2.2.4). Since the cut-off v is supported for |2’'| < p < 1, we may write, if p is small enough,
kN2 — kY2 — 2) ='B(2', 2) 712z, where B(a2/,0) = tdr(k~1(2')) and B(2, 2) is an invertible

matrix for any z with |z| < p. Setting ¢ = B(2/, z) - ¢’ in (2.2.14), we rewrite

1 il(z—z!)-m 2 (! — k=L =)
bo(U, , ):(27)2‘1/6[( Yo 2-(C =€)+ (51 (@)~ ) ]

X C(Z/{7 :B,7 x”’ z? 77,’ 77”7 C/7 5) dx/dw/,dzdn/d/r/”dcl
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with

IR VAN (CF)) n’ (Vo (r~(2")) - B(a',2) - (')
cU,x', 2", z,n'\n", (€ = (27)d X< : >F< Er ) )

<vx’(’€_l(x, —2))- (B(xlv z) - CI)> " ’ /
XF( © )a(u,x ,B(2',2)- (')

for another smooth function 4, compactly supported in (z/, z) in |z| < p < 1, such that

(a',0) = y(a’,0)|det dr (k™ (a"))].

We note that (2.2.5) and estimates (2.2.6) hold true, and that ¢|,—¢ is given by (2.2.9). This

concludes the proof of Lemma 2.2.3, as the case of symbols in S (B, (R)) is identical. ]

Proof of proposition 2.2.1: 'We consider A in ﬁ/;??f;jc
a C§° (R4 x RY)-function, (x, z) — v1(z, 2), supported for |z| < p < 1, satisfying 60’ (x)¥;(z,0) =

’ L. .. ——m—ryv+Mo(r+2d+2)
00'(x) and such that A(U) is given, up to an operator in in HW¥ .

the operator A(U) with kernel

According to Lemma 2.2.2, we may find
for any r, by

1
(2

KU, x,y) = / Dy (2,2 — y)ay U, v, €) dE

m

where a is an element of HS compactly supported in z. The distribution kernel of the

K7
. p,locy
operator (k= 1)*0 A0 x* will be

[T OO a7 @), d ok )
where
Y(z,2) =00k )y (k) s (z) — kT (z = 2))0 o k™ (z — 2)|det ds ™ (2 — 2)|.

Consequently, (= 1)*0AU)0'k* = (0o k= )Op(bU,-))(#' o k~1) where b is given by (2.2.3). We
apply Lemma 2.2.3. By (2.2.4) and (ii) of proposition 2.1.6, we may replace b by the first term

. . . . = m—r,v+2Mo(d+1 .
in the right hand side of (2.2.4), up to an operator in H\I!;:LIO:V ol ) for any » > 0. Write
¢ = ¢p + ¢1 where ¢y = ¢|,—¢ is given by (2.2.9). The contribution corresponding to ¢y to the

first term in the right hand side of (2.2.4) is

(2.2.16) r(<D<§>

+g>) [ (ar, 0)|det (™" (2))ay (U ™" (2), s~ () - )

~r( w@i@ Y600 a0 n 7 @), ) ).

We write
(00/ay) o 1 = (66 (ax — @) o 7 + [(09'a) 0 7o — ((00'a) 0 7)) + (99'a) 0 7).,

with x1 € C§°(R?), x1 = 1 close to zero. By (iii) of Proposition 2.1.6, the first two terms in the

—— m—r,v+rMy

right hand side belong to HS), .. for any » > 0. If one makes act on them the spectral
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cut-off T'( 7 Dfi@) of (2.2.16), one obtains elements of the same space, that stay in it if one applies

(D, + €)M€)™ for any A € R. Consequently, since F(%)Xl(D/(Q) = x1(D/(§)) if Supp x1
is small enough, we may write

({1)*621«9’;4;* = (é o nfl)Op(((QG/a) o Tﬁ)xl)(él o /ﬁfl) + (o mil)Op(g)(él o nfl) + Ch

where C) contributes to C' in (2.2.2) and b is given by the first term in the right hand side of
(2.2.4), with ¢ replaced by ¢1 = ¢ — ¢|,—9. We may write ¢; = z¢}, where ¢} satisfies estimates
(2.2.6), with v replaced by v + M.

Then

b 1 il(x—z")n +2z-(¢'— k=Y (2 =2")-n"
(2.2.17) b(U,x,ﬁ):W/eK )0 42 (=) (@)= )]

X i(gﬁ’cll)(uv xla lﬂa 2 77,7 7]/,’ Cla 5) d$/d$”d2d77/d7l”dc-

Consider the vector fields

1—i(&)*(k (') — a”) - Vo
Ly = 2 3
L+ ()7 [x 1) — 2|
Lo Lo i(6)*(x —a') - Vyy
14 (&)*|z — '
L—i(&)?n'| 20z - v
s =

L+ [*(€)% || 720

If we perform N integrations by parts using Ls, L4, L5, use (2.2.6) and the support condition
(2.2.5), we estimate (2.2.17) by

Ja+ @) =)@+ @l = o)A+ 2@ M)
X Ly (1l d dzliy iy dC

1N —N
% <£>m—1|n/"/(p)+u+MO(d+3) (1 + |7’L’)

9]
1, nv(p)+v+Mo(2d+3) \n’] -
< Oy [ Mo (1+<£>> .
——m—1,v+My(d+2)

Since the derivatives are estimated in the same way, we get an element of HS), .. ,

which stays in that space if we apply any (D, + §>)‘ <§>_/\ because of the support condition
—— m—1,v+Mo(3d+4)

(2.2.5). The corresponding operator is in HW¥ . by (ii) of proposition 2.1.6. This
concludes the proof, as the case of operators in \Ilgzl’gc(Bg(R)) is similar. O

Let us define a principal symbol.
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Definition 2.2.4 Letm e R,y e R, ,pe N,o >0, R > 0. One denotes by JEITS’?V(T*X) (resp.
Sy (B (R), T* X)) the space of maps (U, p) = (U1, ..., Up, p) — alld, p) (resp. (U, p) — a(U,p))
which are defined on C°(X)P x T*X (resp. By(R)x T*X ), with values in C, which are p-linear
inU (resp. C* in U), smooth in p, and such that for any local coordinate system k deﬁned on
an open set V of X, with values in R, for any 6 in C§°(V), (fa) o7t is an element of HSp loc
(resp. S5 (Bo(R))).

Definition 2.2.5 One says that an element A of P/I\\i/m’y (resp. W (Bs(R))) admits an el-

ement a of ﬁTS’;n’V(T*X) (resp. S} (Bs(R),T*X)) as a principal symbol modulo H\Ilm tt
(resp. \I/Z%l”’H(BU(R))) if and only if, for any x in C§°(R?), x =1 close to zero, wzth small

enough~ support, for any local chart k : V. C X — R%, for any functions 0,0'.0,0' in Ccse(V),
with 00 =0, 60’ = ¢/,

(2.2.18) (K~1)*0A0'Kk* — (0 0k 1)OD[((00'a) o 7, 1) (0" 0 k1)

——m—1,v+{

is in HV, . (resp. \I/;nloi V+€(BO'(R)))'

Remark: If ¢ > My(3d + 4) the above definition is coherent. Actually, consider two local
coordinate systems & : V3V, k1 : W S W, where V, W are non disjoint ~open subsets of X,
and V, W are open subsets of Rd Let 6,6',0,0' be in C3°(V N W), with 0 = 6, #6' = ¢’ and
set O =k(VNW), O1 = k1 (VNW). Then

(71 0A0' K] = (ko Ky Yoy)" (57 A0 K (k1 0 ko)
= (o1 lo,)" (0o x™1)OP[(00'a) o 7 (0" 0 571 (k1 0 K7 o)*

v+l

(resp. @ Lrtt

p,loc

(00 w7 )OP[(68'a) 0 7'y, (0" 0 w71

modulo H¥ (Bs(R))). By proposition 2.2.1, this is equal to

D, loc

——m—1,v+Mo(3d+4)

\I,mfl,lz+Mg (3d+4)
p,loc

modulo HV ploc (Bs(R))). Of course, using (iii) of Proposi-

tion 2.1.6, we may replace x1 by any other function x in Cgo(Rd), x = 1 close to zero, with
small enough support.

(resp

Proposition 2.2.6 Let m e R,v e Ry, v/ € Ry,p,q €N, o > 0.

(i) Every element of ﬁm,u (resp. Wi (Bs(R))) has a principal symbol a in ETS’ZW(T*X)
(resp. Sy (Bos(R), T* X)) modulo H\I'm b3 (resp. \Ilzr,nfl’wrMo(SdJA)(Bg(R))).

(ii) Let a be an element of fﬁ;nﬂj(T*X) (resp. Sy (Bos(R),T*X) ). There is an operator

A in ﬁ;’w (resp. W (By(R))) whose principal symbol modulo H\Ilm Ly+Mo(3d+4)
\Il;n_l’V+M0(3d+4) (Bo (R))

(resp.
) is a.

(iii) Assume o > min(v(p),v(q)) + min(v, ') + My(3d +4), and, when p > 0 and g > 0, assume
moreover that (2.1.10) holds.
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Let A be in Iﬁm’y (resp. W (Bs(R))) and B be in ﬁ;ﬂ " (resp. \I/Z”/’”/(BU(R))). Denote
FIAARC (resp. \Ilpmfl’V+M°(3d+4)(Ba(R))) and by

(resp. \Ifgll_l’V/JrMO(?’dH)(BU(R))). Then
—— m+m’—1,v+Mo(3d+4)
ptaq

by a a principal symbol of A modulo H\I’

b a principal symbol of B modulo H\y —Lv'+Mo(3d+4)

ab is a principal symbol for A o B modulo HY when p > 0,q > 0, modulo

—— m+m'—1,v+v'+2My(2d+3)

H‘I/p_"_q m+m’—1,max(1/,1/’)+M0(3d+4) (BO.(R))),

if p or q is zero (resp. modulo \I/max(%q)

(iv) With the notations of (iii), a¥ (resp. a) is a principal symbols of 'A and A* modulo
T gy MBI (g (Ry) ).

Proof: (i) We consider (6;);er a finite partition of unity on X, such that, for each couple (i, )
of J = {(i,j) € I x I;Supp®; N Supp®; # 0}, there is a chart x;; : Vj; = V;; from the open

set V;; of X to the open set Vw of R?% such that Supp 6; U Supp 6; C V;;. We have seen already

in the proof of Lemma 2.2.2, that 3 ; ;¢ 0;A0; is in H\I'm Lt (resp. W=t (B (R))).

For each i in I, choose 6; a smooth functlon such that 6; 0 = 0; and that Supp6; is a compact
subset of Vj; for any j such that (¢,j) € J. We consider

(ki )" 0: 405 (ig)" = (0 0 w35 [(3)" B0 (w35)"1(0; 0 m3;1).

The characterization of ﬁm’y (resp. W (B, (R))) in terms of Sobolev spaces given in (1 2. 7)
(1.2.18), (1.2.19) and Definition 2.1.1 imply that the term between brackets 1s in HU |

(resp. ¥, " (By(R))). By Proposition 2.1.6, we may find a symbol a;; in HSp loc (resp. in
" (By(R))) such that

p,loc

D, loc

(2.2.19) (/-{i_jl)*eiAHj(mj) (0i o k;; 1Op(aijy)(0; o K; 1)
modulo H\I’mloi Mo +) (resp. \1;;”1001 V+M°(2d+3)( B,(R))). We define a symbol on C*°(X)? x
T*X (resp. on B,(R) x T*X) by

(2.2.20) a= Y (6ibjai) oy,
(i.d)elx1

Let & : V' 5 V be a local coordinate system, 6,0, 6,6’ be in C§°(V) with 66 = 6, /6’ = #'. Let us

RZ d
show that (2.2.18) holds with the symbol we just defined. We write, modulo HU v, locl FMo(2d+3)
(resp. WL u+Mo(2d+3)(BJ<R)))7

(K1)*0A0 K" = D (k71)*00,A0,6'x"

(4,9)€J

= > (5 (ki) (i ) (0:A05) (ki) " (k7 ) 0’ *
(i,9)€J

= ( Z): (k0 K s (vawiy)) ™) (068:) 0 K5 Op(aij ) (0'0;) 0 ki (K 0 kit (veviy))*
1,7)€J
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where the last equality comes from (2.2.19). By formula (2.2.2) of Proposition 2.2.1, the last

. —— m—1,u+Mo(3d+4 -
term may be written, modulo H\I/Z?k)c VMo (3 (resp. ‘I’Z’LIOCLVJFMO(MH)(BU(R))) as

> (8o r™)Op[(80'0:6;a5;) 0 Tieyy 0 Ty (6 0 k7).
(1,9)eJ

Using (2.2.20) (and that 6,0; = 0 if (4, ) & J), we obtain (§ o ks 1)Op[(a o7 1)y,](0 0 1) i.c.
the right hand side of (2.2.18).

(ii) Let (6;)ier be a partition of unity on X such that Supp6; is contained in an open set V; so
that there is a local chart x; : V; = V; C R%. Take 6; in C5°(V;) with 6,0; = 6; and define A by

A=Yk (0; 0 57 1)OD[(05a) 0 7 ]y (63 0 157 1) (k771
el

where x € C5°(R?), x = 1 close to zero, Supp x small enough. By (ii) of Proposition 2.1.6, A

—— my+2Mo(d+1 _
is an element of H \Ilz1 vEaMoldt) (resp. W?’V+2M0(d+1)(BU(R))). Let us check that a satisfies

(2.2.18). If , 6,0 are as in the statement of Definition 2.1.5,

(2.2.21) (K 1)*0A0 K"

= Z(é o ﬁfl)[(ni o /171)*(09} o /ii_l)Op[(Hia) o Tl;,l]X(HIQNi o Ri_l)(/i o /1;1)*](9’ o f@fl)
i€l

if 6,0 are in C°(V) with 00 = 0, #6' = ¢'. We apply Proposition 2.2.1, to get modulo

—— m—1,u+Mo(3d+4 _ ‘
H\IJZIOC v+Mo(ad4) (resp. \If;’flog’wrMO(gdH)(Bg(R))) the expression

> (00 x7HOP[((00'0:a) 0 771)3,](0 0 571) = (00 k7 H)OP((0'a) 0 77 1), J(8" 0 7).

el

(iii) We just need to check the property locally. We may always assume that the distribution
kernels of A and B are supported in a small neighborhood W of the diagonal. Let x: V 5V
be a chart and 6,6 in C§°(V). If W is small enough, we may find 6; in C5°(V) with 66, = 0,
0’0, = 0’ so that

(k" 1)*0ABO k* = [(k1)*0 A0, x*][(x7 1) 01 BO k).
By Definition 2.2.5, Lemma 1.2.4 and Lemma 1.2.6, the last expression may be written, modulo

= mAm/—1,v+Mo(3d+4) +m/—1, )+ Mo (3d+4
HYp g oc (resp. Wit~ LnexIHGHD (B (R))) as

(2.2.22) (00 57 1)OP[((Ba) o 7 )3)(B1 0 57 1)?Op[((8D) 0 77 )] (0' 0 71)

where 0,0, = 61, 00 = 0, 00’ = ¢, when p > 0 and ¢ > 0. When p = 0 or ¢ = 0, the

—— m+m'—1,v+v'+My(3d+4 r_ 4
equality is valid modulo H \I/erqTOC v Mo (resp. \I/"ml;rgj q)l’lglax(y’y HMO(MH)(B,,(R))).

By Theorem 2.1.7 (see (2.1.13) and (2.1.17)), we may write (2.2.22) as

(0 0k~ 1)OD[((80'ab) o T 1), ] (01 0 k1)
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—— m+m’—1,v+v'+Mo(2d+3)
modulo an element of HY,, | ..

——m+m’—1,v+v +2Mo(2d+3
H\II;nJquOC o o(2d+2) if p=0or ¢ =0 (resp. modulo ¥

This shows that ab is a principal symbol of the composition.

when p > 0,q > 0 and modulo an element of

m+4m/—1,max(v,v')+Mo(2d+3)
max(p,q),loc ’ (BU(R)))

(iv) With the same notations as above, we need to study ![(xk~!)*0 A0'k*] (where we denote by the
same notation transpose of maps from L?(X,du) to L?(X,du), from L?(RY, dz) to L?(R?, dx),
from L?(X,du) to L?(R%,dz) and from L?(R? dx) to L?*(X,du). Denote by a the density of
the measure du relatively to Lebesgue measure in the coordinate patch i.e. du(y) = a(z)dz if
y=r"Y(z). Then }(x*) = (v H*(aok), {(k~1)* = (e 0 k) ~!xk*, so that

(k10" A0'K*] = (k™ 1)*0 (v 0 K) A(x 0 K) 1 OK™].
We apply (2.2.18) and (2.1.18) to write this quantity as
(6.0 x~1)Op|(86'a") ] (@ o )

v+ Mo (3d+5 1w :
modulo H\I/;nloc M) (resp \I/Z?loi’ +M()(?’d+5)(BU(R))). This concludes the proof, the case

of the adjoint being similar. O

3 Quasi-linear Birkhoff normal forms method

3.1 Description of the method

Our goal is to prove Theorem 1.2.8. We fix some integer P € N* and take G a function as in
the statement of the theorem. We fix also m €]0, +oo[—N, where AV is the zero measure subset
of ]0, +oo[ introduced before the statement of Theorem 1.2.8. Then inequalities (1.2.27) hold.

To prove the theorem, i.e. to show that the solution of (1.2.28) extends to a time interval
| = T.,T.[ with T, > ce=F, for all ug in the unit ball of H*(X) (s > s9) and any small enough
€, it is enough to construct a function O, defined on a neighborhood of zero in H*(X), real
valued, such that there is C' > 0, R > 0 with

(3.1.1) C |3 < O4(u) < Clu||%s for all u in By(R)

and for any solution u of uy = iVyG(u,u), defined and smooth on | — T, T[x X for some 7', the
estimate

(3.1.2) O, (ult,-)) < O,(u(0, -))+C‘/0t||u(7', P+2dT]+ceP]/ lur, )3 dr|

holds for all ¢ in | — T, T such that u(t,-) € Bs(R). Actually, (3.1.1) and (3.1.2) imply an

estimate

Jut, e < 10, W+ [ r i ar|+ €] [ e, W ]
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as long as u(t,-) stays in Bs(R) N C*°. This shows that for u(0,-) smooth and |[u(0,-)| s < €
small enough, the solution extends up to a time 7. > ce~* for some small ¢ > 0. When u(0, -)
is only in H*(X), with small enough H®*-norm, we may always approximate the Cauchy data
by C*°(X) functions, solve the equation for these approximations on | — T¢, T,[ and pass to the
limit to get the solution of (1.2.28) for any ug in the unit ball of H*(X) and any ¢ > 0 small
enough.

The construction of © will be made in three steps, given by the following three theorems.

Theorem 3.1.1 Thereisv € Ry, sg > 0, R > 0 and for any s > sg, a canonical transformation
X defined on Bs(R), with x(0) = 0,%x’(0) =1d, and there are

o Llements Ay, of H\II}D’”, 1<p<P -1, self-adjoint,

e Elements Ap, Bp of \IJ}D’V(BS(R)), with Ap self-adjoint,

e Functions Grp in G " T°(By(R)), 1<p< P -1,

such that for any C function ©}, defined on Bs(R), vanishing at order 2 at the origin, one has,
for any U in Bs(R) N C*>

(3.1.3) {61 o x,GYU) = {BL,GL + Gu + Gp} o x(U) + O(|ul| 5?), U — 0
with
P-1
(3.1.4) GLU) =Y Grp(U)
p=1
P—1 i
(3.1.5) Gu(U) = Go(u) + pzl /X (Ap(U)u)a du
and
(3.1.6) Gp(U) = /X (Ap(U)w)idp + Re /X (Bp(U)u)udp.

Remarks e We write the preceding statement for functions U = (u,u) in Bs(R) N C so that
the Poisson brackets in (3.1.3) are well defined. Actually, since (3.1.5), (3.1.6) involve operators
of order one, X¢y, X, arein H* 1(X)if U isin H*. On the other hand, dO}(U) is in L(H*,R),
so that dOL(U) - X Gp+Gy+Gp 18 nOt necessarily well defined if U is assumed to be only in H*.
Of course, at the end of the proof, ©! will be defined in such a way that the right hand side of
(3.1.3) will extend even to function U that belong only to H*.

e The conclusion of the theorem asserts that we may choose x in such a way that the new
Hamiltonian in the right hand side of (3.1.3) contains contributions homogeneous of lower degree
0 < p < P—1 that are hyperbolic (in the sense of Definition 1.2.7), which form Gy, “lower order”
contributions giving G, and a term G p, which has no special structure, but vanishes at high
order when U goes to zero.

The second step in the proof of theorem 1.2.8 will eliminate the elliptic part of Gp.
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Theorem 3.1.2 Let v € Ry be given. There is sg > 0 such that if s > sqg, there is a local
diffeomorphism 1 from a neighborhood of 0 in H*(X) to a neighborhood of zero in H*(X), with
¥ (0) = 0, such that, for any function ©2 which is in @5:_01 (Hfj’%”(BS(R)) + G2~ 1(By(R))),
for any U in C*°(X) belonging to a small enough neighborhood of zero in H*(X),

(3.1.7) {8204, Gp + Gu + Gp}(U) = {©2,GL + Gu} o (U) + O(|U|I512).

The last step of the proof will be to choose ©2 so that the first term in the right hand side of
(3.1.7) vanishes essentially at order P + 2 at zero.

Theorem 3.1.3 There are v € Ry, so > 0 and, for any s > sg, a constant Cy > 0 and, for any
€ €]0,1[, any R > 0, an element ©2 = O2() in @0 H]-";SIJIV(BS(R)) + G2 Y(By(R)), with
estimates uniform in € €0, 1[, satisfying (3.1.1) uniformly in € €]0, 1], such that

(3.1.8) {3, Gr + Gu}(U)| < GolllU 15712 + " U |3:]

for any U in C*(X) N Bs(R).

Proof of theorem 1.2.8: As already seen, we just need to construct a function O, such that
(3.1.1) and (3.1.2) hold (actually, O, will be a family of functions, depending on ¢, and for which
(3.1.1), (3.1.2) hold with constants independent of € €]0,1[). We take v large enough so that
Theorems 3.1.1 and 3.1.3 hold, and sy large enough so that Theorems 3.1.1, 3.1.2 and 3.1.3
apply. We use Theorem 3.1.1 to determine Yy, Gy, Gp. Then, Theorem 3.1.3 determines 6?2
and Theorem 3.1.2 determines 1. We set ©! = ©2 0 and ©, = Ol o y. Then, (3.1.3),
(3.1.7) and (3.1.8) show that [{O,, G}| is bounded from above by the right hand side of (3.1.8).
Since it follows from equation (1.2.18) that %@s(u(t, ) ={0,,G}(u(t,-)), this gives (3.1.2) by
integration. Inequality (3.1.1) holds by construction. This concludes the proof of Theorem 1.2.8
from the three results in this subsection. |

The proofs of Theorems 3.1.1 to 3.1.3 will depend on the study of Poisson brackets between
functions of the classes of Definition 1.2.7. We shall study such Poisson brackets in the following
subsection.

3.2 Computation of Poisson brackets

Let U — A(U) be a C! function defined on an open set {2 of H°(X), with o large enough, with
values in L(H?®, H*~™) for some m and any s with s > o and m < 2s. Consider the functions

H{W.0) = [ (AW)ywudy

X
(3.2.1) HAW,U) = /X (A(W)u)a du
HAW,0) = [ (AW dy

41



defined for W € Q, U = (u,u) € H*(X). If U is in QN H3(X), set FANU) = HAU,U),
a = —1,0,1. Let B be another C' map from € to E(HS,HS_m/) for some m’ and any s > o,
m’ < 2s. Assume moreover m +m’ < 2s. By formulas (1.1.17), (1.1.16)

(FAFPY = {HAW, ), HE(W, )V} lwv + i(dw H2)(U,U) J(Vy HE) (U, U)

(322) —i(dw H) (U, U) T (Vu H)(U,U) + {H (- U), HY (- U) Y w-u

where the first (resp. the last) term in the right hand side is the Poisson bracket of the functions
U — HAW,U),U — HE(W,U) (vesp. W — HAW,U),W — HE(W,U)) at fixed W (resp.
U). Let us compute explicitly the first Poisson bracket. According to formula (1.1.17)

{H{'(W,-), Hy (W, )} = i/X((A(W) +TA(W))u) (B(W)u) dp
(3.2.3) {H{'(W, ), HE\ (W, )} = i/X((A(W) +IAW))u)(B(W) +"B(W))a) dp

(S (W) HE (W) = i [ (CAGW)@)(BOV) +"BOV))a) dn

and
{HlA(VVv )7HlB(VV7 )} =0, {Hfl(Wf)vH?l(W?')} =0

24
a2 (W), POV, ) = [ (14, BIOV )y

Consequently, the first term in the right hand side of (3.2.2) may be written as HS (U, U) for
some C' that may be computed from compositions of A, B,'A,!B or from a commutator [A, B].
On the other hand, the second term in the right hand side of (3.2.2), has the following structure
fora=1,0,—1
i / (v A(W) - (IV o HE Yu]u dps
X
(3.2.5) i [ ldw AGW) - IV uladn
X
i / ldw A(W) - (* TV HE )i dp.
X

By definition of H, ég )

Vo HE (W,U) = [(B(W) +0tB(W))u] Vo WU) = [tg <(VVVV>)§]
(3.2.6) !
VuHE (W,U) = [(B(W) + tB(W))ﬂ]

so that (3.2.5) will be computed from quantities of the form
3:2.7)  dwAW) - (C(W)u), du AW) - (C(W)a), deAW) - (C(W)u), degAW) - (C(W)u)
where C' (W) will be an operator of the same form as A(W), B(W).

We introduce an auxiliary class of multi-linear operators.
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Definition 3.2.1 Letm € R,v € Ry, p € N*. We denote by ﬁ.ﬂ;ﬂy the space of p-linear maps

(ut, ..., up) = M(uq,...,up), defined on C(X)P, with values in the space of linear maps from
C>(X) to D'(X), that may be written as a sum >_0_; M;(uq,...,up,), where M; satisfies the
following estimates: for any Ni, Ny in N, there is C > 0 and for any ng,...,npt1 in N*
(3.2.8)
n;  Mpil M
1L, M; (I, ug,y - . anup)ﬂnp+1 HE(LQ) <C {min( L L) max(ng, ..., M, ... ,np)”(p)+”
Np+1 Ny
~ —N2 p
max(ng, . . . ,ni,...,np)>
x(n; +n m (1 + 11,,u .
(1) T il

We shall denote by HM™" the space of operator valued maps U — M(U) that may be written

(3.2.9) ZMe 50

vV

with My in mm

Lemma 3.2.2 Let A be an element of P,"" and set for j € N
HAYSI(W,U) = / (A(W)S;w)udp or / (A(W)S;u)a dp or / (A(W)S;a) dp.
X X X

Then Vo HYSI (W, U)|lw=v and Vg HAYSI(W,U)|w=u may be written as a linear combination
of Mo(U)Sju, Mo(U)S;ju for elements My, of HMZ™".

Proof: ~ We consider for instance the first expression of H 45J We decompose A(W) =
r—o Ae(w, ..., w,w,...,w) with Ay in P, Then dHYSI(W,U) - h may be written as a

sum

ZZ/ (Ag(w ..,w,w,...,w)sju)udﬂ,

(=0 1i=1 i

Consequently, V, H4<(W,U)|yy—y may be written as a sum

p /L
ZZM%(U,...,u,ﬁ,...,ﬁ)Sju
0=0i=1 M

4
with

/X(Méi(ulw~~aup)up+1)hd:u:/X(Aé(ulw~~auiflahaui+1w~-aup)up+1)uid:u-

The fact that |[I1n, Me;(In u1, . . ., i, up)y, o || 222y is bounded by the right hand side of (3.2.8)
follows from (1.2.5). O

The goal of this subsection is to prove the following;:
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Proposition 3.2.3 Let m,m’ in R, v,/ in R, p,q in N, 0 € R. Assume
(3.2.10) v(p) + v(q) + max(v, V") + My(3d +4) < v(p+q) ifp>0,q>0

and that o is large enough so that condition (1.2.23) holds for all the spaces of multi-linear forms
below. Then, with the notations introduced in definition 1.2.7, one has the following inclusions

(3211) {HF (Bo(R). HF" (Bo(R)Y{HF 5 (Bo(R), HF,5" (Bo(R))}
U{HF (Bo(R), HF " (B (R)))

m,m/, +min(v,v")

c HF" ) (By(R)) + HE, (Bo(R)) + HF ™) (B, (R)

if p>0and ¢ > 0. If p or q is zero, one gets the same inclusion with min(v, ') replaced by
v+

m,v m’ v’ m~+m’—1,min(v,v’)+ Mo (3d+4
(3.212) {HFJW (Bo(R), HF}y" (Bo(R))}C HF () MBI (B (R))

i ]¥]:,m,m’Jr +min(v,v’)

il (Bo(R)) + HF e ) (B(R))

p+q,H

if p>0and ¢ > 0. If p or q is zero, one gets the same inclusion with min(v,v") replaced by
v+ v and My(3d + 4) replaced by 2My(2d + 3). Moreover, one has also the inclusions

(3.213) {G"(Bo(R)), Gy (Bo(R))}
m,m/, +min(v,v")

c g;r;m ,min(v,v )(Ba' (R)) + gp+q (B,(R)) + g;f_li_zzm++min(u,u )(BU(R))

if p>0and ¢ > 0. If p or q is zero, one gets the same inclusion with min(v,v") replaced by
v+v'. One has also

(3.2.14) {Hf;?ﬁ”(Bg(R)),g;"'W’(Bg(R))}

m,m/, +min(v,v")

m~+m/ min(v,v’)+2 M, m’ m4+min(v,v’
< HF, o (Bo(R)) + Gy M0 (B (R)) + Gy ) (B, (R))

if p>0and ¢ > 0. If p or q is zero, one gets the same inclusion with min(v, ") replaced by
v+ (resp. v+ +2My) in the first (resp. last) term in the right hand side.

Finally, one has the inclusion

(3.2.15) {HFy™"(Bo(R)), 65" (Bo(R))}

- gm+m/,min(u,zx’)+2Mo (B (R)) n gm,mgr+min(u7y’)+2M0
+q g

, oy (Bo(R)) + Gy tminte)12Mo (g (Ry)

p+q

if p>0and ¢ > 0. If p or q is zero, one gets the same inclusion with min(v,v") replaced by
v+

The main step to prove the proposition will be to study expressions of type (3.2.7) where A will
be an element of HWVJ"”. We consider the different possible situations in the following lemma.
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Lemma 3.2.4 Assume, for some a > 0,
(3.2.16) v(p) +v(q) + max(v,v') +a <v(p+q) if p >0 and g > 0.

Let A be an element of ]EI\\i'pm’V (resp. 75;”””) and B be an element of 752”,’”””1. Define

(3.2.17) C(ut, ..., uptrq) = A(B(u1, ..., Ug)Ugt1, Ug+2, - - - s Uptgq)-
Then C is in H\IIZZ_I;m(VV yhml ifp>0,qg>0 and in H\IJ;]+I;+V il ta ifp=0orq=0. (resp.

~m mln(u v )+m+ ~m V+V +m++a

in Py, ifp>0,9>0 andin P,

ifp=0o0rq=0).

Proof: Let Pi,..., P be differential operators as in Definition 1.2.1. When A is in ﬁ/;n’y
denote A = Adp, ---Adp A and C = Adp, ---Adp C. Compute

(3.2.18) A;C(Hp,ut, ..., My, upiq) Ay
= ZA (I, B(Iy g, - Ty ug) My Ut gy Ugeas - iy Uy ) A
By symmetry, we may assume np > --- > ng, Ngp2 > -+ > Npiq. By (1.2.8) and (1.2.5),

the £(L?)-norm of the general term of the sum is bounded from above by a constant times
HlloJrqHHneueHLz times

(3.2.19) 27W=IINi(n o) PIHVEMokQIM (1 4 97T (1 4y y0)) N2
y [min<"ﬁq+1)

/ ! niy _N// _
m nll’(l])"rl/ +a(1 + ) <n - nq+1> 2
n n n
q+1

where m = m + YV dy — k. We write

n + Ng4o n+ Ng42 +n1
(3.2.20) (1 + 2]) (1+ ) T

S <1 + Ng+1 + Ng+2 + n1> min( n nq+1>
- 2] nq+17 n )

so that (3.2.19) is bounded from above by

Ng+1 + Ngr2 + 11
2
N{'—Nj—v(p)—v—m! —Mok

(3.2.21) 9dmo—|j—j'IN{ (Mgt + ngra + nl)V(P)+V(Q)+V+V’+a+m’++Mok (1 +

n_ Ngtl )
)
Ng+1 n

X (1 —ngr1) > [min(

if N{, Ny are large enough relatively to Ny, v, m/ , k. If we sum this in n, we get estimate (1.2.8)
—— m,min (v, )+m’

of an element of HY,, * when p > 0,¢q > 0 and (3.2.16) holds. If p =0 or ¢ = 0, we

—— my+v'+m/_+a L. =
*7. When A is in PyY, we bound

get an element of HV,,

HHHOC(HTH Uy, ... ?an+qup+tI)an+q+1 Hﬁ(LQ)
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using (1.2.5), by the product of a constant times [T¥+%||TT,,, || 2 times

N/ /
_ . no np+q+1 1 v+v ( ) n + nq+2 7N2
3.2.22 — 2 , v(p 14—
(38:222) {0 = nprgun) *min( " L) [ ) O (14 )
X (n—mn 1>_2 [min(n an) N{,nm’n”(q)ﬂ" (1 + nl)_N”
a* Ngt1 N ! n '
The rest of the computation is similar as above. a
Lemma 3.2.5 Let p,q € N*. Assume for some a > 0,
(3.2.23) v(p) + v(q) + max(v,v') +a+ 1 <v(p+ q).
— V4a
Let A be in H\I’ (resp Pm V) and M = >1_| M; be in H./\/lm . Consider
oo g
(3.2.24) C’(ul, ey up+q Z Z A ul, ce q)Sj//uq+1, Ug+2, - - up+q)A i,
j"=01i=1
Then C' is in H\IJZ:_ZHH(V VEmy (resp. P min(v Hm*).

Proof: We consider the contribution to (3.2.24) of the term corresponding to i = 1. We write
M instead of M. Let Pi,..., P, be differential operators on X of orders di,...,d;. We may
express Adp, --- Adp, C from

Z Adp/A(M(ul, ey uq)Sj//uq+1, Ug+2, - - - ,up+q)Adp//Aj//
j//

where P = P'UP” is any partition ofP (Py,...,Py). Denote by k' (resp. k) the cardinal of P’

(resp. P") and set d' = Y p,cp dy, d" = X p,epr dp. Then |AjAdp, - - - Adp, Oy U)Ajrl| £(12)
will be bounded from above by the sum for P = P' U P” of

(32.25) > N > ||AjAdp AT, M (T, - . . Ty ug) Sl ugrt,

no§no g

an+2uq+27 ) an+qup+q)A5" HE(LQ) ||AJ~” (Ad'P”Aj”)Aj' HE(LQ)

where A;,, is a cut-off such that AjnAju = A;u. By symmetry, we may assume that no > ng >

- > Ng, Ngg2 > -+ > Nyppq. Moreover, in the sum, ngq < C27" for some C' > 0. By (1.2.8)
and (3.2.8) with ¢ = 1, the first factor in the general term of (3.2.25) is bounded from above by
the product of [T5 ||, u¢| 2 and

(3.2.26) 27177 INT (1 4y )V @) HVHMOK i(mtd =K)) (1 4 973 (5 4 1y, )) Ve

" "

N -

in( L Tatl ' v(g)+v' m’ ( . ) 2

X | min n+n niy +n, 1+ 1 e
( (nq+1 T om )) ( 2) (m at+1) ni + Ngr1 ng+1<C27
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We notice that

ny  Ngt1
Ng+1 ’ niy
> c(1+ 277 (ngra + ngr1 +n2 +n1))

oli—i"l

s n -+ ng
3.2.27 1+2779(n+n (1+> max
3:221) (1427 mye)) (14 2

since ng41 < C27". Moreover, for £ =2 or { = q+2

n 4+ n9

-1
_ < C(ngyo + ngr1 + no +nq).
)< Clngra + g )

(n+ng)<1+

If N, NI are large enough, we bound the sum in n of (3.2.26) by
(3.2.28) €2 Nili=T"lgitmtd =K) (o 4y |y E)F @b Mok
x (14 2_j(n1 Lt np+q))_N§2Né|j—j"\_

We use Proposition A.1 of the appendix to bound the last factor in (3.2.25) by the expression
COn2~ NI =3"1+15" 3" 123 (d"=K") " If we take N > N{ > N} > Nj, Ny and use (3.2.23), we bound
(3.2.25) by

(3‘2'29) 02—N1|j—j/|2j(m+z de—k) (nl 4t np+q)V(p+q)+min(u,u’)+m’++Mok

p+q
X (L4277 (g + - - + 1)) 2 T I we 2
1

This is the wanted estimate.

The case when A is in 7312”’” is treated in the same way. O

Proof of Proposition 3.2.3: Let A (resp. B) be an element of HW}" or P (resp. H\Pg‘,7”/
or 73;”’7”/). Denote by H}, H}, —1 < a,b < 1, the functions given by any of the formulas (3.2.1).
We have to compute {HN(U,U), H?(U,U)}. According to (3.2.2), the first quantity to study is
given by (3.2.3) or (3.2.4) with W = U. They may be written as expressions of type

(3.2.30) /X (C(U)w)a dp, /X (C(U)w)udp, /X (C(U)a)a dp.

Consider first the contribution to the left hand side of (3.2.11) given by (3.2.3), (3.2.4). Then C
may be expressed from the composition of an element of H W} and of H \I/;"/”’ " By lemma 1.2.4

with @ = max(v,7/) and (3.2.10), we obtain that C is in H\Il;fqm/’mm('/’yl) if p>0,¢g >0 and
H\Ilzl+zm/’y+y/ if p =0 or ¢ = 0. This shows that (3.2.30) belongs to the right hand side of
(3.2.11). If we consider the contribution of (3.2.4) to (3.2.12), we get expressions of form (3.2.30)
with C' = [A, B]. We apply Proposition 2.2.6 (iii), which is possible under assumption (3.2.10),
and see that C is in H\IJ;T;ml_l’mm(y’ylHMO(3d+4) if p>0,qg>0and H\I/;i;ml_l’HV/HMo(szrg)
ifp=0orqg=0.

Let us study as well the contributions of (3.2.3), (3.2.4) to the left hand side of (3.2.13), (3.2.14).
For the first of these inclusions, C' may be expressed from the composition of an element of P""
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and 73]1”,’”/, so belongs to P;T;m/’min (w2) (if p> 0,q > 0) and ngqm/’”+”/ ifp=0or g=0 by
(1.2.14), so that (3.2.30) contributes to the right hand side of inclusion (3.2.13). The inclusion
(1.2.10) shows that the contributions of (3.2.3), (3.2.4) to the left hand side of (3.2.14) belong
to g;fj;m omin(v)+2Mo (Bs(R)) when if p > 0,¢ > 0 and to gg}@m"”*”/”Mo(Bg(R)) if p=20or
q=0.

We consider now the contributions of type (3.2.5) to the inclusions (3.2.11)—(3.2.14) (as well as
the symmetric ones obtained exchanging A and B). According to (3.2.7), we must study

(3.2.31) /X Aty A(W) - C(OW Y Yuadpa s,

where u1,us stand for u or @, C(W) stands for B(W) or !B(W) or B(W) + ‘!B(W), and the
symmetric expressions obtained exchanging A and B.

Let us study first contributions of type (3.2.31) to the left hand side of (3.2.11), (3.2.12). Then
Ais in HUW and C is in H\If;”/”/ C 73;”/”’/*'2]‘40. It follows from Lemma 3.2.4 that (3.2.31)

is in HF, (Bo(R)) it p > 0,q > 0 and to HF,,o "B (R)) it p = 0

or ¢ = 0. Consider now (3.2.13). Then A (resp. C) in (3.2.31) is in PJ™ (resp. 73;”/’”/)
so that Lemma 3.2.4 shows that (3.2.31) is in o fmin(vy )(BJ(R)) if p> 0,9 >0 and in

m,m/, +min(v,v’)

pt+q
g;iZuJFVJFV (Bs(R)) when p = 0 or ¢ = 0. For inclusion (3.2.14), we use that in (3.2.31), A is in
HU™ and B in P+ 5o that Lemma 3.2.4 shows that (3.2.31) is in HE oo+ (B, (R))

when p > 0,¢ > 0 and in HF. "+

ptq (Bs(R)) when p=0or g =0.

Those contributions coming from the symmetric version of (3.2.31) with A and B exchanged
belong to the space of functions obtained exchanging (m,v) and (m’,v'), except for inclusion
(3.2.14). In this case, we have to consider (3.2.31) with A replaced by an element of 77;”/’”/
and C' by an element of HV™" C P?’””MO. Again, by Lemma 3.2.4, we get a contribution

belonging to gﬁ&m++min(y’yl)(Bg(R)) if p>0,¢g >0 and to gﬁ;,m++”+”'+2M° (Bs(R)) if p or q

is zero.

Finally, we have to study the last contribution to (3.2.2), namely {H2(-,U), HZ(-,U)}. We
decompose

+o00
HZ (W, U) =" HM (W, U)

=0
where
HM (W, U) = / (A(W)Ajuy)up dps
X
with (u1,u2) = (u,u) if a = 1, (u1,u2) = (u,u) if @ =0, (u1,u2) = (4,u) if a = —1. We use a

. . . . 192 . .y
similar decomposition for H and set H<J = doir<i HM' HAS) = > i< HZ'. Then

(32.32) {(H(,U), HP (U)} = DOAHES (L U), B (U)o 30 {HG (L U) HyY (- U))
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We study the first sum in the right hand side. The general term in that sum may be written
—i(dw HP?) - (*JVw HM) so is equal to

(3.2.33) i /X ([dw BOW) - (T HA (W, U] A jur Yz dplyw—u.

5 V+2Mo

We apply Lemma 3.2.2 considering A as an element of P;" This allows us to write

(3.2.33) as a linear combination of quantities
/X (dyB(U) - M(U)S;u3) A jur)uz du

where u3 = u or w and M is in HM™" +2Mo_ The sum in j of these quantities may be computed
from expressions

ZL(B(Ulv'--)UZaM(UZ-Hv---,u€+p)sju€+p+lau€+p+23--~vup+q)Ajup+q+1)U0 dp
J
where u; has to be replaced by u or w. This is an expression of the form

/X(C(m, s Uptq)Upyqr1)uo dp

—— m/,;m4++min(v,’)

with C' given by (3.2.24) (up to a change of indices). By Lemma 3.2.5, C'isin H¥,,,
(resp. ﬁﬁ&mJ’erin(V’V/)) if B is in H\Il’q“/”/ (resp. 77(’1”/’”/). This gives to (3.2.32) a con-

tribution belonging to Hfﬁ&m++mm(y’yl)(Bg(R)), when we consider (3.2.11), (3.2.12) and to

grlmetmin) (g (R)) for (3.2.13), (3.2.14).

The second contribution to (3.2.32) belongs to the same classes with (m,v) and (m/,) ex-
changed in the case of (3.2.11), (3.2.12), (3.2.13). For (3.2.14), we get a contribution in
m,m/, +min(v,v")

HF,/, (Bs(R)) (Note that when studying (3.2.32) we may assume p > 0 and ¢ > 0,
as otherwise the corresponding contribution is zero).

Inclusion (3.2.15) follows from (3.2.13) and the inclusion HF)"*(B,(R)) C Q}T’””MO(BU(R)).
O

We shall need a version of inclusion (3.2.12), when one of the functions involved in the bracket
is not homogeneous, and with a weaker conclusion.

Lemma 3.2.6 Letv,v/ inRy, pinN, ¢ in N*, R > 0. Assume (2.1.10). There is sg, depending
only on v,V p,q such that if s > so, if © is in Hf;%V(BS(R)) + G2 (By(R)) and F is in

FI(By(R)), then {0, F}(U) = O(|U|%2), U — 0.

Proof: 1f © is in ggs_lv”(Bs(R)), {©,F}(U) = dO - Xp(U) is well defined and is O(HU||%,+S2)
since, by the last remark following Definition 1.2.7, Xz (U) is in H*~! while d© belongs to
L(H*~ R) because of the definition of ggs_l’V(Bs(R)) (if s is large enough).
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Assume from now on that © is in Hij‘?ly (Bs(R)). Using notation (3.2.1), we may write O(U) =
H U,U), F(U) = HP(U,U) with A in HP?*" and B in ¥} (B,(R)). We have seen, in the

last remark following Definition 1.2.5, that we may consider A as an element of \IlgS’D(BS(R))

with 7 > v+ v(p) + 1. In particular, by (iii) of Proposition 2.2.6, [4, B] is an element of

\Ifgs’max(ﬁ’y/)JrMO(gdH) (Bs(R)). We use (3.2.2) to express {O, F'}. The first term in the right

hand side of this equality is given by the last formula in (3.2.4). Since [A, B] is of order 2s, we

do get, for s > sg large enough, a O(||UH‘§§2) contribution.

We consider next the second term in the right hand side of (3.2.2). By (3.2.6), tJVyHE(U,U)
is in H*71, and is O(HUH‘}};I) (if s > so large enough) using (1.2.18). The term under study,
given by the second formula in (3.2.5), is thus O(||UH?};1), since dy A(W) - LIV HE (U, U)) is
L(H®,H %) by (1.2.18).

Take now the third term in the right hand side of (3.2.2). By (3.2.6), *JVyH{(U,U) is in H™*,
with norm in that space O(||U||gs). We apply (1.2.19) to B, with m =1, ¢/ = —s. We get, if
s is large enough relatively to v(q), /, that dB(U) - (*JVyH§")u is in H~*, with norm in that
space O(||U||%"). The corresponding contribution to {©, F} is again O(||U||%:").

Finally, the last contribution to (3.2.2) will be expressed from
[ AV - IV HE V. V)w)a -
and from the similar expression exchanging A and B. We need to check that
dw AW) - ("IN wHE (W, U)), dwBW) - ("TVw Hg (W, U))

are in L(H®, H™*). This will follow from (1.2.19) with m = 2s (resp. m = 1) if we show that
Vw HE (W,U) (resp. Vy Hg(W,U)) belongs to H” for some o’ > & (resp. to H™*) and if s is
large enough. In other words, we have to check that

H = [ (@wBOV) - Hywiduw=u, H— [ (dwAOV)- Hyu)aduly—y
X X

are linear continuous on H~7" (resp. H®). This follows again from (1.2.19). O

4 Proof of the main theorem

We have seen that Theorem 1.2.8 follows from Theorem 3.1.1, Theorem 3.1.2 and Theorem 3.1.3.
This section is devoted to the proof of these results.

4.1 Elimination of elliptic terms of lower degree

This subsection will be devoted to the proof of Theorem 3.1.1: we shall construct a canonical
transformation y such that (3.1.3) holds, i.e. such that we may reduce the Hamiltonian G to
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another Hamiltonian G + Gy + G p, where all elliptic terms of degree strictly smaller that P
have been eliminated. Let us introduce a class of smoothing operators.

Definition 4.1.1 Letm € R, pe N, p>2, vy € Ry,s >, R > 0. One denotes by R7',(Bs(R))
the space of maps U — R(U), defined on B(R), with values in H**~™~7 satisfying the follow-
mg:

(i) The map U — R(U) is C from Bs(R) to H**~™=7 and there is C > 0 such that, for any U
in Bs(R)

(4.1.1) IRU) || r2s-m— < ClIU |-

(ii) For any 0,6 in R satisfying
(4.1.2) s—m>|0], s—m>10|,s+0+60 >m+r,
for any U in Bs(R), OyR(U) extends as an element of L(H? , H=%) with estimates

(4.1.3) 100 RW)| g0 -0y < CINT I

The main example of remainders satisfying the conditions of the preceding definition is given
by the following lemma:

Lemma 4.1.2 Let m e R,v € Ry, p < q in N*. Let s, such that
1
(4.1.4) sZ’y>1/(q)+y+§, 2s > m+ 7.

Let A be in HU™ and define H(W,U) = [x(A(W)w1)wa dp where w1, wa stand for u or .
Then R(U) = Xpylw=v = " IVwH(W,U)|w=u is in RY,,1(Bs(R)) for any R > 0.

Proof: Decomposing A(W) = >1_, A¢(w,...,w,w,...,w) with A, in ﬁzw’ we may assume
that A is one of the terms in that sum. If K = (k, k) is a smooth function on X, we may write
by duality [y R(U) - K du from expressions of type

(4.1.5) /X(A(Jh,uQ,...,uq)uqH)uo du

where h stands for k or k and w, is u or @, and from similar expressions where the Jh term
replaces any other argument of A. In the same way, [y (O0yR(U)- K')K dp may be written from
expressions of type

(4.1.6) /X(A(Jh,h’,ug,...,uq)uq+1)uodu
(4.1.7) /){(A(Jh,uz,...,uq)h’)uodu
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and from similar expressions, where Jh replaces any other argument inside A, or b’ = k" or k’
replaces any other argument of A, or where h’ and ug are exchanged in (4.1.7). To prove (4.1.1),
we must bound the modulus of (4.1.5) by

q+1

(4.1.8) C|1h| gr—2s+vsm uoll s [ Ilueellers-
=2

In the same way, to show (4.1.3), we have to bound the modulus of (4.1.6) and (4.1.7) respectively
by

q+1
(419)  Cllbllgs ¥l o LT Nllelollae, Gl 11 gor LT el ol
(=3 (=2

To obtain (4.1.8), we apply (1.2.9) with Ny = 2s — m. We obtain a bound of (4.1.5) by the
product of Cllug||grs||ug+1|| s and of

q
(4100) 3 Pt g OB bl [Tl
=2

q
< CZ Z p@r ’yel_[nszC Hh||H—25+'y+m£1_[||U(HH5’
2 =2

where (cf ,Jng are ¢%-sequences, and where we used that the exponent in the left hand side of
(4.1.10) is negative by (4.1.4). The assumptions on 7, s show that the series converges, which
gives (4.1.8).

To estimate (4.1.6) by the first term in (4.1.9), we bound the modulus of (4.1.6) by

ZZZ ZHA (JILhy Ty Tpqus, . .. Ty ug) g || s [|uol| s

n/ N3

We apply (1.2.9) with No = 2s — m to get a bound given by the product of the factor
CllP o [P or TTEE5 el s and of

q
Z Z Z Z n4n +ng+--+ nq)V(q)+u_28+mn_9n/_0,cncn, H ng_scﬁg
n’ N3 /=3

with £2-sequences (cp)n, (¢h)n, (ct

ngJng- Since the first exponent is negative and s > 1/2, this
sum is finite as soon as

(4.1.11) /R2 14+ X+ X) 1+ X))+ X) (X)) (X)dXdX' < +00

+

where c(-), ¢/(+) are L? functions, a = 2s —m — v(q) — v. One checks that (4.1.11) holds as soon
as

1 1 N /1 1
(4.1.12) a>max{<§—9)++(§—9>,(§—9)+(5—9>J

which follows from assumptions (4.1.2), (4.1.4).
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Let us study (4.1.7). We bound the modulus of this quantity by

Z Z e ZHA(Jth, My, g, ..., o ug) R || g—s|uol are.

n n2 ng

We apply estimate (1.2.9) with Ny = s+6"—m > 0 and s replaced by #’, and get a bound given
by the product of C||h|| go||h'|| e TT4|lwel s |uo|| s and of

q

(4.1.13) Z Z e Z(n +ng 4+ nq)’/(q)-i-l/—s—e’—i—mn—acn H nf_scﬁe
n ng ng 3
for £2-sequence (cn)n, (ch,)n,. By symmetry, we may assume ng > --- > ng. This reduces the

verification of the finiteness of (4.1.13) to the study of an integral of form (4.1.11) with («, 6, 6’)
replaced by (s+ 60 —m —v(q) —v,0,s). One checks that condition (4.1.12) follows from (4.1.2),
(4.1.4). This concludes the proof. O

To prepare the proof of Theorem 3.1.1, we have to study the Hamiltonian flow of some auxiliary
functions. Let A, be an element of H\I/gv”, 1 <p< P-1,forsomev € R,. Define A = 25:—11 Ap,
and set

F(U) = Re /X (AU )u)u dp.

By (1.1.16) and Lemma 4.1.2

(4.1.14) Xp(U) = +R(U) = AU)U + R(U)

where A(U) = %{—(Ag-tA) A"{;’ﬂ and R is an element of RY »(B(R)) if v > v(P — 1) +v + 1,

o > «. By the Cauchy-Lipschitz theorem, the equation

(4.1.15) 2(0.U) = U

where ®(t,U) = mggﬂ, has a unique solution defined for ¢ € [—1,1], for U in B,(R), with R

small enough. Moreover, ®(¢,U) stays in a bounded subset of H® if U stays in Bs(R) for some
s>ocandte[-1,1].

Let us notice that if s > ¢ and U is in Bs(R), D®(t,U) extends as an element of L(H*® | H*') for
any s’ with |s'| <'s, any ¢ in [—1,1]. Actually, consider the solution W (¢,U) of the linear ODE

(4.1.16)

W(t,U) = At U)W (t,U) + [DA@®(t,U)) - W(t, U)®(t, U) + DR(®(t,U)) - W(t,U)
W(0,U) = Id.

We just need to check that the right hand side of the first equation in (4.1.16) is, as a function
of W, a bounded linear map from L£(H*, H*) to itself, for any s’ with |s'| < s, when U is taken
in Bg(R). The boundedness of W — DR(®(t,U)) - W follows from (4.1.3), since ®(t,U) stays
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in a bounded subset of H® and (4.1.2) holds by the conditions imposed to o,~. The continuity
of W — A(®(t,U))W is a consequence of (1.2.9) and the fact that o > v(P —1) + v+ 1. We
are left with examining the middle term in the right hand side of the first equation (4.1.16).
Let # = v+ v(P —1) — v(1) + 5 + 0. By the last remark following Definition 1.2.5, A is in
UV (B, (R)) © Ma(R). We write for H in H¥

IDA(@(L,U)) - (W - H)®(t,U))l g < CIDA@REU)) - (W - H))ll oo gy 98 U) [ s
< CIW - Hi| gor (|9, U) | s,

where the last inequality comes from (1.2.19) applied with o = s, ¢/ = &/, and noticing that
s— (v(1)+ v —¢); > s because if the assumptions on s,s’. We get the wanted inequality

I(DA(@E,U)) - W)t U o sy < CUIW 2 arsr oty
This gives the fact that D®(t, U) is bounded in £(H* , H*') uniformly for t € [—1,1], if |§'| < s.
We deduce from this and from (1.2.18), (1.2.19):

Corollary 4.1.3 Ifs >y > v(P—1)+v+3 and v = v+v(P—1)—v(1)+1+0, (A(®(t,")))-1<t<1
is a bounded family of matrices of elements of \Il?’V(BS(R)).

Let us describe the structure of ®(t,U).

Proposition 4.1.4 Let Pe N*, s > o>y >v(P—-1)4+v+ % Let A be in 25:_11 H\Ilg’” C
U (B, (R)) with v = v+v(P—1) —v(1)+3540. Let ® be the solution of (4.1.15), defined for U
in Bs(R) for some R > 0. If R is small enough, there is a bounded family (B(t,-))-1<t<1 (resp.
(R(t,-))_1<i<1) of 2x 2-matrices of elements of W27 (B,(R)) (resp. of elements ongg(Bg(R)))
such that, for any t € [0,1]

(4.1.17) ®(t,U) = U + B(t,U)U + R(t,U).

Proof: By (4.1.15), (4.1.14),
1 1

(4.1.18) O(L,U) = U +1 / A(®(nt, U)D(ant, U) day + 1 / R(B(ant, U)) da.
0 0

If R > 0 is small enough, there is C' > 0 such that ||®(¢,U)|gs < C||U||gs for any U in Bs(R),
any t € [—1,1]. Iterating (4.1.18), we get

N N+1
(4.1.19) o(t,U)=U+ Y t*" A, ) U + " Flon(t,U) + Y t*il¥(1,0)
k=1 k=1
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where

(4.1.20)

1 1.k k-1 -

ALt 1) :/ / H.A(q)(tozlu-aj,U)) a; 7 day - doy
0 0 ;g i
1 1N+1 N Neb1—i

CN(t,U) :/0 / th'”Oéj,U)) Haj Jq)(tal-"OJN_,_l,U)dOél--'daN_i_l

j=1

1 1k 1 k o

nl(t,U) :/ / O(tay -, U)) [ of 7R(®(tes - - - ap, U)) devy - - - do.
0 .

<
I
—

We apply Lemma 1.2.6 with m =m/ =0, p=p' =1, v =1 = 1. For some P = (Py,..., Px)

as in the statement of this lemma, we set for short 9% = ‘ﬁfgi 7o) Then, if |[0']| < 0, s € R,
there is C' > 0 such that for any U in B,(R), any ¢ € [0, 1]
Ck;
No* (AM (1, 1)) < o — [0 (A))*
S C S — S
N (AN U)) < ST 0 (A9 (A)

so that Y12 t* AK(¢, U) converges to an element Bi(t,-) of U7 (By(R)). Since N2S(Cy(t,U)) =

O((%iﬁl),mo $(A)N*+1) | the last but one term in (4.1.19) goes to zero.

Let us check that the last series in (4.1.19) converges in the space jog(Bs (R)).

Note first that by (4.1.1) and (1.2.18) ||RF(t, U)|| g2sr < %:CHUH%{S for U in Bs(R), whence
an estimate of type (4.1.1) for >, t*Fl (¢, U), uniformly for t € [—1,1]. Let us study the
norm ||0pMRMH (¢, Ul zezor -0y for 0,0" satisfying (4.1.2). If, when computing oy from its
expression (4.1.20), the derivative Jy falls on R(P(a ... axt,U)), it follows from (4.1.3), the
boundedness of dy® on H? for |¢'| < s, and (1.2.18) that the corresponding contribution
to ||opF (¢, U)HE(HQCH,Q) is bounded from above by %]\U\|Hs On the other hand, if the

derivative falls on A(®(a; ... t,U)), we have to estimate for H' in H?
(4.1.21) 100 A)(®(ten - -, U)) - (Qu®(tan -~ oy, U) - H') || p(przs— -0

since R(P(t,-)) is in H?*77 by (4.1.1). We apply (1.2.19) with o = s, o/ = #. This allows us
to estimate (4.1.21) for H' € H? if 25 —y — (v(1) + 7 — #') > —6, which follows from (4.1.2),
the definition of 7 and the assumptions of the proposition. Again, we get convergence of the
corresponding series. This concludes the proof. O

Proof of Theorem 3.1.1: We consider a function G(U) = 5;0 Gp(U) as in the statement of

Theorem 1.2.8. Forp=1,..., P —1, G, is an element of H]-"I}’”/(BU(R)) for some /. We shall
construct the canonical transformation y through a standard Birkhoff normal forms method.
We use an auxiliary function F(U) = ZP ' F,(U) with

(4.1.22) F,(U) = Re /X (A (U)w)udp
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with A, element of H \IIS’V for some v > v/ to be chosen. Let us assume that the increasing
function p — v(p) satisfies

(4.1.23) v(p)+v(q) + v+ My(3d+4) <v(p+q) if p>0,q>0.

We denote by @ the flow of (4.1.15) defined from F on B,(R) where s > v(P —1) + v+ 3. We
set x(U) = ®(—1,U): this is a canonical transformation close to zero, with x(0) = 0, x'(0) = Id.
For U in Bs(R) N C*, we compute

Pl k 1 P-1 gP
(4.1.24) = %%(Goé(t U))le= 0+/ %iP(GOQ(t U)) dt
1. Kl ]
> (_kll)kadkF G (}__Df). /01<1 ~ )P M @d"F - G)(@(t, U)) dt,
k=0 ’ :

using the notation adF - G = {F,G} and ad’F - G = {F,ad? ' F - G}. We decompose

P— P-1

(4.1.25) Z adkF G=Go— > {F,Go}+> Hy
k=0 /=1 >1

where the last sum is finite, and where Hy is a linear combination of quantities of the form
(4.1.26) adFy, ---adF; G,

with 1 <i; <l,p>0,91+ --+i,+p=~Land r > 2if p=0. Assume

(4.1.27) F, € HF"(B,(R)) and {F,,Go} € HF}" (B,(R)) 1<p< P—1.

Then, by inclusion (3.2.11) and assumption (4.1.23), (4.1.26) belongs to HF;’VI(BU(R)) +
H}"OV "(By(R)) C H]:;’V,(BU(R)) if o is large enough so that (1.2.23) with p = ¢ is satis-
fied. Consequently, for any £ > 1, Hy is in H]-"él’”/ (By(R)), and depends only on Fj for ¢/ < /.

Lemma 4.1.5 Let v > V' + 2My, o satisfying (1.2.23), and denote

g;nfoo,l/+OO(Bo_(R)) — m g;an,quN (BU(R))
NeN
(with the notations introduced in definition 1.2.7). For each p = 1,...,P — 1 there is F), in
HFY(By(R)) such that {F,, Go} — Hy is in HF, % (Be(R)) + G0 +2Mo+oo(B_(R)) and that
(4.1.27) holds.

Proof: We decompose H, = Hyg + Hyu with Hy, g in HFy ¥ (Bo(R)), Hpx in HFH (Bo(R)).
We may write H, 5(U) = Re [ (Bp(U)u)udp with B, in H\I/};”/. By definition of this space

P
:Zprg(u,...,u,ﬂ,...,ﬂ)
/=1

——
L
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where B, is in Iﬁ;’y . We decompose B,y = B(z) + B( ) where for any n’ € (NP, U =
(ul, cee 7up)7

1
BY ) = S Byu(luUh)A,

p7 .
Jsln'|<c27

—1,
with ¢ > 0 a small enough constant. By formula (A.1) of the appendix, B}glg) isin H \I/py
Moreover, if ¢ is small enough,

(4.1.28) Iy BY) ()L, 0= \/m2 + 22 (Z /m? + A;LZ)

and by construction (and the inclusion (1.2.10)), BI%) is in GLmoow +2Motoo(B_(R)). To prove
the lemma, we just need to find F, in H./TI?’E(BU(R)) such that

(4.1.29) {F»,Go} =Re Z/X(B(lg)(u, e U Uy W) W)U A
L

D,

We look for Fj, under the form
P
= ZRe / (Cpe(u,...,u,u,..., u)u)udu
(=0 X

N07 . .
with Cpp in HY,, " To solve (4.1.29), it is enough to find C) ¢ such that

4

(4130) Zij(ul,...,Amug/,.. Z Cpg ul,...,Amug/,...,up)
=1 ={+1

+ AmCpelut, ... up) + Cpe(ur, ... up)Am = —iBL) (u, ... up).

We replace in the formula u; by II,,;uj, compose at the left (resp. at the right) with Il (resp.
IL,,,,). We get
F2 N« s Myt g Cp o (Mgt - oy Ty up) I,

(4.1.31) S
= —illy B, j (U, ua, . . o I up)IT

Np+1

with

l
FRf(Cos - &pn) = ym2 + &+ /m2 + 2 + > \Jm? 4+ & — Z ym? + &
=1

=/+1

We define

Cpulus,. .. u :—ZZ 37 B g+ Anges) g BY) (Mun, - T )T

Np+1
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By inclusion (1.2.10), HnOB](),lZ) (I U)II,,,, satisfies estimate (1.2.5) with v = v/ + 2My, m = 1.

Since, by (4.1.28), \F,’;{Z(Ano, ooy Anper )| = ¢(no + npy1) when the right hand side of (4.1.31) is
not zero, we get

Ny
_ . no  Np+1
Mg Cp,e(Mnyuns - Iy up ), ||L(L2) < C(no — np+1) ? (mln{a 22 })
Np+1 1O

(4.1.32) ’n/‘ Ny p
X|n/l/(p)+l/(1 + ) HHHnZUg”LQ
"o -1

for any Ni, Nao. To prove similar estimates for commutators with differential operators, we
consider P; a differential operator of order d; and deduce from (4.1.30)

4 p
(4.1.33) Z [P, Cpl(uty ..., Amugr, ... up) — Z [P, Cpel(ut, ..., Amugr, ..., up)
=1 0'=0+1

+ AmlPr, Cpgl (un, ... up) + [Pr, Cpgl (un, - up) A = —iBY) (un, .. )
where
E(})(ul, s tp) = —i[Pr, Am]Cpe(ut, . .., up) — iCpy(ut, . . ., up)[P1, Am]
P BN (u, ).
We need to prove

(4.1.34) [Ty, [Pr, Cp o) (Mg uas - oo T up) M, |l 222

Ny
—2 di1—1 . no Np+1 nv(p)+v+Moy
< C(ng —npy1)” gt (mln[, —} |n'| 2

Np+1 To
|TL/’ —Na p
(140 Tl e
"o (=1

e ) ¢ ——d ) "+ M,
for any N7, Ny. Since BI(J}Z is in H\II;V , [PhBSg)] is in H\I'p1 vt by Definition 1.2.2, so in

75;,11’” +Mo by inclusion (1.2.10). Consequently
1
(4.1.35) [Ty [Pr, B (Mt Ty )T, Nl 22)

Ny
_ L[ o Mpgl M
< C(np — np41)”“nf! (mm[,m D /|

Np+1 1o
‘TLI’ —Ny p
X [14+ — II .
(1+5)  TImals

Since [P1, Am] is a pseudo-differential operator of order d;, we have estimates
(4.1.36) ML, [Py, AT, [l £(22) < Cn{na — no) V!

for any N. Combining this with (4.1.32), we conclude that the right hand side of (4.1.33) is such
that HHnoBEg (I (U))p, , [| £(z2) is bounded from above by the right hand side of (4.1.35).
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If we use (4.1.36) for P, instead of [Pi, Am] and (4.1.32), we conclude that P,C, ¢, Cp Py and
S0 [Pl, Cp,¢| satisfy estimate (4.1.32) in which we replace, in the right hand side, \n’|y(p)+y by

In/|"P*pdt We decompose [P1,Cpy] = C(l) + C(e) where

Ol = 3 [P Cpd (T, .

[n'|<cnpi1

Then C Z) satisfies (4.1.35) with nd' replaced by nd'~" in the right hand side, because of |n/| >
CNpy1, so that

MNp+1 MNp+1

I, Am 0(2) (TL,.U)T Hnoc;(fe) (L U) A 1T
1L, C( g)(Hnlul’ - 7HnZ/AmUE’, - ,anup)ﬂ

Tp+1

satisfy (4.1.35). We obtain in that way from (4.1.33) an equation

I p+1
(4.1.37) chg,lé)(ul""’AmW”' Z 71 (ut, ..o, Amugp, ... up)
=1 =0+1

+ AmCZ()’lZ) (ur, ... up) + C}(:Z) (ut, ..., up)Am = —zézg?g (ur,...,up),

where HHnoB,(fg) (W U)p,,, [|£(z2) is bounded by the right hand side of (4.1.35) and where, if
(1)

the constant ¢ in the definition of C is small enough, this operator satisfies a condition of

type (4.1.28). We may thus solve (4. 1 37) in the same way as (4.1.30) and find C(Z) and Cj, ¢
such that (4.1.34) holds. It follows from this inequality and from (4.1.32) that C, ¢ satlsﬁes the
bounds (1.2.8) (or (1.2.9)) for m = 0,k = 0, 1. Iterating the reasonning, we conclude that Cj,

. NO)V
is in H\I/p as wanted. O

End of proof of Theorem 3.1.1. We consider the expression (4.1.24) of G o x~!. The first term
in the right hand side is given by (4.1.25). If o is large enough, the contributions H, with ¢ > P
belong to H]:el"/(Bg(R)) which is contained by the last remark following Definition 1.2.5 in
FpY(Bs(R)) if v > v/ 4+ v(f) — v(P) + 3. Since there are only finitely many H,’s, this gives a
contribution of the form of ép given by (3.1.6) to Gox~!. For1 < ¢ < P—1, we have constructed
F; in Lemma 4.1.5 so that {Fy, Go} — Hy belongs to Hfgl’f{’(Bg(R)) + ggl‘oo’”“(Bg(R)), if v
is taken large enough relatively to /. These terms give a contribution to G 1. + Gy defined by
(3.1.5), (3.1.4). To prove (3.1.3), we write, since y is canonical,

{©lox,G} ={0;,Gox '} ox

1

and since the sum in the right hand side of (4.1.24) gives to G o x™" a contribution of the form

G + Gu + Gp, we are left with showing that, if

1\t B
§ = (}_)I). | =07 (@ F) - )@ v)) ar
then
(4.1.38) {61,8} oy = {01, Gp}ox +O([ul542)
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for some (new) contribution Gp of form (3.1.6). The term S may be written as a sum of
expressions

1
(4.1.39) /0 (1— )P~V H,((4, 1)) di

where p > P and H,, is an expression of form (4.1.26), so belongs to H]-";VVI(BU(R)), ie. (4.1.39)
may be written from

1
Re / (1— )P / (Ap(®(t, U)b(t, U))(t, U) dpdt
0 X

(4.1.40) ,
Re [ (=07 [ (4,06, 0))o(t.U)OET) duuds

with A, in H\I/}D”’/. The first component ¢ of ® is given, according to (4.1.17), by
o(t,U) =u+ Bi(t,U)u+ Ba(t,U)u+ R(t,U)

where (Bj(t,)):e[o,1] are bounded families of elements of \Il(l)’D(BS(R)) for j = 1,2 and where
(R(t,))tefo,1) is a bounded family of elements of RY ,(Bs(R)) (for s large enough). Plugging
this expression inside (4.1.40), and using Corollary 4.1.3 and Lemma 1.2.6, we see that (4.1.40)
may be written as a linear combination of elements of ]:IIJ’V(BS(R)) (for some large enough v
and some large enough s) and of quantities of type

(4.1.41) /0 1 /X (C(t, Uyu) R(t, U)dpudt, /O 1 /X (C(t, U)R(t, U))R(t, U)dudt

with (C(t,))efo,1) in \Ile;”(Bs(R)), (R(t;°))iep,1) in R9/72(BS(R)), as well as similar expressions
with u, R replaced by 4, R. We just need to check that the Poisson bracket between ©! and
(4.1.41) is O(|U||5+?) to get (4.1.38). By assumption, |DOL(U)| zmsg) = O(|U| m=), so that
it is enough to check that if H(U) is any of the expressions (4.1.41), VH belongs to H®, with
He-norm O(||U|| ). In other words, we have to study, for K in H~*,

/ (C(t, U)K)R(t, U) dp, / (dyC(t,U) - KYu)R(t,U) dy

X X

/X (C(t, UYu)(dy R(,U) - K) dp, /X (C(t, VR, U))(du R(4,U) - K) du
[ (@uC) - )R V)R V) dy

(and similar expressions involving transposes). By (4.1.1), R(¢,U) is in H*~7 C H**! (if s > s¢
large enough), by (1.2.19), (dyC(t,U)-K)u € H~*®)~V ¢ H=5=! (dyC(t,U)-K)R(t,U) € H™*,
by (4.1.3), dyR(t,U) - K € H—*T!. This shows that all the above integrals are meaningful and
vanish at least at order P + 2 at zero. This concludes the proof. O
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4.2 Diagonalization of the remainder term

The goal of this subsection is to prove Theorem 3.1.2. Theorem 3.1.1 has reduced ourselves to
the study of a new Hamiltonian G! = G, + Gu + Gp, that may be written

421) G'=GLU)+ /X((Am +AU))u)a dp + ;/X(BP(U)u)udm ;/X(BP(U)u)udp

where A(U) = le A;(U). By the last remark following Definition 1.2.5, we may assume
that A is in \IJ}’V(BS(R))(increasing the value of v given by Theorem 3.1.1). Moreover, Bp
is in \IJ}D’”(BS(R)), and we may assume A(U)* = A(U), ‘Bp(U) = Bp(U). We denote by
Au(U) = 25:_11 Ap(U) the part of A made of homogeneous terms. Consider the matrices of
para-differential operators

| Bp(U) Am+'AD) B 0 Am +"Ax(U)
w22 M@ =1 ) Bew) ] Ma) = |y vag@y 0|
so that
N 1 1
(4.2.3) (G +Gr)(U) = 5 [ QW)U du, Gu(U) = 5 [ (Ma(©) - UV dp.

Let us start with a diagonalization lemma.

Lemma 4.2.1 There are s large enough, v > v large enough, R > 0 and for s > sg, operators
Q in \II(IJD’V(BS(R)) @ Ma(R), C in \II}D’V(BS(R)), with C' self-adjoint and symmetric, such that, if
we set

(4.2.4) (U) =

Am + A(U) + C(U) 0
0 A — TA(U) — C(U) ]

one has the relations

NI+ QU))'J(I+QU)) —"J € Up""(By(R)) @ Ma(R)

4.2.5 ;
29 (I + QU(TMU))JHI +QU))'T = £(U) € U (Bs(R)) ® Ma(R).

Proof: Define.
11 i 2 1 11 P 2 1 D
A= §(A+A), A= i(A_A)’B = i(BP + Bp), B* = —(Bp — Bp).
The assumptions on A, B imply
(Al)* — tAl — Al, (A2)* — A2 — —tAZ,(Bl)* _ 31’ (B2)* _ 32
so that

Am + Al + A2 B! —iB?
t _ m
(4.2.6) JM(U) = UBU_iB A ALy 2|
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By (i) of Proposition 2.2.6, there are principal symbols a',a? in Sll’V(BS(RZ, T*X), b',b? in
SpY(Bs(R), T*X) of A', A%, B!, B? respectively, modulo ¥9"”(B,(R)) and ¥%"(B,(R)) for 7 >
v+ My(3d + 4). Since A', A%, B!, B? (resp. A', B!, B?) are self-adjoint (resp. symmetric) we
may assume by (iv) of Proposition 2.2.6 that a',a?,b',b? are real valued and that a' = (a'),
bt = (b)Y, b2 = (b?)V (increasing eventually 7). We denote by A € Sy°(T*M) the principal
symbol of Ap,, given in local coordinates by (m? + g, (&, €))Y/? where g is the metric, and set

b

b=">b'+ib?, c= .
/\+a1+\/()\+a1)2+|b|2

If R is small enough, the definition is meaningful since a', b vanish at U = 0, and we get that ¢
is in S%V(BS(R),T*X). We define

(4.2.7) Id+q = (1—|¢[*)~1/? [2 ﬂ
By a direct computation using that ¢V = ¢, we get
(4.2.8) fId+¢V)Jdd +q) =T

and, if we define the matrix of symbols m by

9

tIm — A+ al + a2 bl — ib?
T =0+ A —al +a?

we obtain

\/()\+a1)2— 10> 4 a? 0
0 — O+ al)? — b + a2

(4.2.9)  (Id+q)("Jm)J (1d +¢")"J =

Actually, the eigenvalues of (‘Jm) are a? + \/()\+a1)2 —|b)* and {_10} (resp. {‘1’3]) is an

eigenvector associated to the first (resp. second) eigenvalue. If we set
2v-12 | 1 —¢
(a+p)=(1—lep) 2| 17,

(Id + p) "1 (*Jm)(Id + p) equals the right hand side of (4.2.9). One has just to define (Id + q) =
(Id + p)~! and to use (4.2.8) to get (4.2.9).

By (ii) of proposition 2.2.6, we may find operators E, F' in \I’%D(Bs (R)) whose principal symbols
modulo \Iflgl’y(Bs(R)) are (1 — |¢|*)"Y2 and (1 — |¢[*)~1/2 respectively (taking again 7 large
enough). Since ¢V = ¢, we may assume, using (iv) of Proposition 2.2.6, that £ ='E, F = F.
We define Q by

F E

(4.2.10) T+Q(U) = [E F] .
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Then (4.2.8) and the properties of symbolic calculus of (iii) of Proposition 2.2.6 imply that
U+ QW)U +QU)) =T € Wp(By(R)).

Let C be an element of \Il}g’ﬁ(Bs(R)), self-adjoint and symmetric, whose principal symbol modulo

U%7(B4(R)) is given by \/()\ +a')2 — |b]> = (A + a'). Then (4.2.6), the definition (4.2.4) of %,
the equality (4.2.9) and (iii) of proposition 2.2.6 imply that the second equality (4.2.5) holds
(for 7 large enough). O

Before continuing the proof of Theorem 3.1.2, we write some properties that will be used re-
peatedly below. Consider P an element of \Il;”’D(BS(R)) for m = 0,1. We apply (1.2.19) with
o = s, 0/ = —s and the smoothness index denoted by s in (1.2.19) taken to be s or s — 1. We
get that if H € H=*, dyP(U) - H belongs to L(H*, H5*!) and to L(H*~!, H~*), if s is taken
large enough relatively to v(p), . Moreover, the estimate

(4.2.11) ldu P(U) - Hl| g5 11-5+1) + ldu PU) - Hl| gz, 1-+) < CIH |-+ U 5"

holds. In the same way, again for s large enough, if H is in H*~!, dy P(U)-H is in L(H®, H5™™),
with

(4.2.12) ldy P(U) - Hl| g5, 115y < CIH | s [ U5

If P(U) = P(u,...,u,a,... ,u) with P in 75;”717 for some p € N*,p < P — 1, estimates (1.2.7)
show that (4.2.11), (4.2.12) hold. Actually, we shall also use similar estimates for the difference
(dyP(U) —dyP(U")) - H, replacing in the right hand side of (4.2.11), (4.2.12) HUH}EI_S1 by the
quantity ([Ullzs + U |)P~2|U = U'l| 1=

Lemma 4.2.2 There is so > 0 and for any s > so, the map U — Y(U) = (I + Q(U))U defines
a local diffeomorphism from a neighborhood of zero in H?® to a neighborhood of zero in H?,
coming from a real diffeomorphism in real coordinates. If we define, for V in a small enough
neighborhood of zero in H?,

(4.2.13) S(V) = S (V)), G(V) = ;/X(JE(V)V)Vdu,

then for any U in a small enough neighborhood of zero in H®

(4.2.14) 1 (U) - Xigya(U) = Xgpuany lms = OUU ), U — 0.

Proof: We shall call a “good term” any function U — S(U) defined on a neighborhood of zero
in H*, such that |S(U)||lgs = O(|U||5E"), U — 0. Tt follows from (4.2.3) that XiGutGp] =
itJV(Gy + Gp) is given by

(4.2.15) /X Xigyyacy (U) - Hdp = id(Gy + Gp)(U) - (JH)

:i/ (tJM(U)-U)Hdqui/ (dM(U) - (JHU)U dy
X 2 Jx
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for any H in C*°(X). We may write
(4.2.16) Xiayrap(U) =1 IMU)U + Z(U)

where Z(U) is defined by the equality
1

(4.2.17) /X Z(U)H dyu = /X (dM(U) - (JHYU)U dp for any H.

By (4.2.11), the right hand side is defined and continuous if H is in H~*, so that Z is in H® and
1Z(U)|lgs = O(||U||3:). By the inverse function theorem, ¢ is a local diffeomorphism at 0, and

the form (4.2.10) of @ shows that v sends a vector [}j} on a vector [%] i.e. that it is induced
by a local diffeomorphism in real coordinates. Compute

(4.2.18) dp(U) - Xy 46 (U) = (I + QU IMU)U + (I +Q(U))Z(U)
: HAQU) - Xigys ) (U

The fact that (4.2.16) belongs to H*~!, and (4.2.12) with m = 0, show that the last term in
(4.2.18) is a good term. Since Z(U) is in H*, Q(U)Z(U) is also a good term, so that

(4.2.19) dp(U) - Xigyrap(U) = I+ QU))I'TMU)U + Z(U) + S(U)
where S(U) is a good term. By the first equality (4.2.5), we may write
U=JYI+QU)JI+QU)U + S, (U)

where ||S1(U)||gst1 < C||U||5T!. Inserting this into the right hand side of (4.2.19) and using
the second formula (4.2.5), we get

(4.2.20) dp(U) - X gy 46y (U) = S0 (U) + Z(U) + S(U)

for a new good term S(U). We define 3 by (4.2.13). By (1.2.19), dQ(U) - H is in L(H®, H") for
any s with |¢'| <'s, any H in H¥' | if s is large enough. Consequently, diy(U) and dy(U)~! are
bounded linear maps on H*', for any s’ with |s'| < s, if U stays in a small enough neighborhood
of zero. Moreover, the operator norm of di)(U) —1Id in these spaces is O(||U||5;s). A consequence

of this and the definition of ¥ is that S(V) — {A(;“ _Rm} belongs to U7 (Bs(R)) ® Ma(R) for

R > 0 small enough. Let us define M\(V) = JS(V). By (4.2.13), we may write
(4.2.21) XA(V)=iS(V)V + Z(V)

where Z (V) is defined through the equality

(4.2.22) /X Z(V)-Hdy = ;/X(dM(V) (JH)V)V dy for any H.

To obtain (4.2.14), we must check that dy(U) - X, . ¢,)(U) — Xg(¥(U)) is a good term. By

(4.2.20), (4.2.21), this difference is given by Z(U) — Z(¢(U)), modulo a good term. To conclude
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the proof, we have to show, taking (4.2.17) and (4.2.22) into account, that, for any H in H ™%,
the modulus of

(1223) [ (2(U) = Z@(U))H du

= ;/XWMW ) - (JH)U)U — (dM((U)(JH))$(U))(U)] dpa

is bounded from above by C||H ||y ||U|| 5. By (4.2.11), dM(p(U))(JH) is in L(H*, H*) and
|(U) — Ullgs = O(||U|| ). Consequently, we are reduced to the study of

(4.2.24) J (M) = af@())) - (U dp.

By definition of & and the second relation (4.2.5)
M@U)) = JSU) = J(I + QU))' IM(U)JHI + QU)'J + R(U)
with R(U) in U%”(B,(R)) © Ma(R). We decompose
(AM(p(U)) —dM(U)) - (JH) =1+ IT + IIT

where

—~

I = ((dM(U)) — d[M((U))]) - (JH) = (dM)((U))[1d - dy(U)] - JH
IT = JdQU) - (JH))'JMU)JHI + Q(U))'J
+JI + QU IMU)J(d'QU) - (JH))'J +dR(U) - JH

IIT = JI+QU)J(dMU) - (JH))JI + QU))'J —dM(U) - (JH).

To finish to prove that (4.2.24) is O(| H||z—-||U||5T?), it remains to show that the L(H®, H*)
norm of I, IT and I is O(||H || s ||U||55).

Since ||dip(U) =1d|| g g+ -5y = O(| U] 7+), the estimate of I follows from (4.2.11). The bound of
IT follows from (4.2.11) applied to P = @, and from the fact that dR(U)-(JH) is in L(H?®, H™?)
with norm O(||H|| g7-s ||U||Z§1). Finally, the estimate of III follows again from (4.2.11), and from
the fact that ”Q(U)Hg(ﬂs’,Hs’) = O(|U]|55) for any s'. This concludes the proof of the lemma.

O

End of the proof of Theorem 3.1.2: The left hand side of (3.1.7) is

(4.2.25) {0204, GL+ Gu+Gp} = dOI(¥(V)) - dv(U) - [Xe, (U) + X gy (U)].
The contribution of G, to the right hand side may be written

(4.2.26) {62, GL}(w(U)) + dOZ (W (U))[dy (U) Xe,, (U) = Xe, (v (U))].

Since dO2 € L(H?,R), it is enough, to show that the last term is O(||U]|5?), to prove that

(4227)  dp(U)Xe, (U) - Xa, (0(U)) = Xy (U) — Xa, (0(U)) + (d(U) — 1) - Xei, (U)
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is in H® and has H*-norm O(||U||51"). Since G may be written 25;11 GrLp, with G in
Ny Q; Nv+N(B(R)) C gg v+1(B,(R)), we may write

GL,p:Re/(ALJJ(U)u)deu—i—Re/(BL,pu)udu
b'e X

with Az ,Brp in Pyt If we use (4.2.11), (4.2.12) applied to such operators (see the state-
ment following these formulas), and the fact that ||[¢(U) — Ullgs = O(|U|51), |dy(U) —
Wd|| (s, mesy = O(|U||5s), we get the wanted conclusion for (4.2.26).

Let us study the contribution of Gy + Gp to (4.2.25). We must prove that

dO3 (Y (U)) - dY(U) - X(gyy 1) (U) — dOZ(W(U)) - Xy (0(U)) = O(JU || 2).

According to Lemma 4.2.2, and to the boundedness of d©? (resp. di) from H® to R (resp. to
H?), this will follow from the estimate

(4.2.28) dO3(Y(U))[X5((U)) = Xay (W (U))]) = O(|U|| 1), U = 0.
Using expressions (4.2.3), (4.2.13) of Gy, G, and setting Sy = *J My we write
(4229 G(V) = Gu(V) = 5 [ (IS (1) = Sa(VIIV)V dn
and
(4.2.30)
B~H(V)) = Zu(V)
_|A@TH(V) = Au(V) + C(v= (V) 0
0 —("A@H (V) = Ar(V) + C(pH(V)))

By definition of Ay (which is the sum of contributions to A homogeneous of order up to P — 1),
A— Ay is in Up"(Bs(R)). Moreover, C is in U3”(Bs(R)). Since we have seen that ||dy~! (V) —
1|z e ety 8 O(|V||5s) for any s' with |s'| < s, we deduce that Ay (V) — Ag(yv~1(V))
is in Wp"(B,(R)) and that C(¢p~1(V)) is in Wp"(B(R)). Consequently, (4.2.29), (4.2.30)
show that G — G belongs to .FIID:%(BS(R)). The left hand side of (4.2.28) may be written

{02,G — Gu}((U)). It follows from Lemma 3.2.6, and the assumption that ©2 is a sum of
elements of H.F;’SI&”(BS(R)) + G2 1Y(By(R)) for some v and 0 < p < P — 1, that this last term

is O(|U151?) as wanted. O

4.3 Elimination of hyperbolic terms

This section is devoted to the proof of Theorem 3.1.3. We prove first several helpful lemmas.

Remember that we denoted by (A2),cn+ the eigenvalues of —A on X = S? and that the mass
parameter m has been chosen so that (1.2.27) holds. We set A= /-A+ (T) so that

AlL, = (n -1+ %)Hn for n € N*. In particular, ¢t — et is a 4m-periodic function. Moreover,

Am—Aisa pseudo-differential operator of order —1.
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—1,
Lemma 4.3.1 Letv € Ry, pe N*, £ € {0,...,p} and A’ be an element of the space H\IlpV[Mo]
introduced in Definition 1.2.2. Assume that A’ satisfies the following condition (using the nota-
tions introduced before the statement of Theorem 1.2.8):

(4.3.1) (0, - - ., npr1) € Z8(p) = My A/ (I UL, ,, = 0.

Tp+1

Denote My = 2My(2d + 3), v1 = 2M;. There is a family (Co(U))acz of linear operators from
C>®(X) to D'(X), such that, for any t € [0,4n]

(4.3.2) eTIAA W) = 3 20, (1)
Q€

and, for any family of differential operators Pi,..., P, of orders di,...,dx, and N1, N in N,
there is a constant C > 0 such that, for any o € Z, any j,j" in N, any n’ in (N)P, any u1, ..., up
in C*°(X)

”AjAdPl S AdeCa(Hn’u)Aj’”L(LQ) < 11a2 2—N1|j—j'|2j(1+z de—k)|nl’V(P)+u+l/1+M1k

(4.3.3) . P
x (14277 |n/|) =N T, uel| 2.
1

Moreover Co(IlyU) = 0 if n' is in Z'(p) C (N*)P. Equation (4.3.3) implies in particular that
— 1l,v+uv1

>-a Ca defines an element of HV,, [M;].

Proof: Using the 4r-time periodicity of the left hand side of (4.3.2), we write its Fourier series
decomposition, with coefficients

am o
Ca(u) 1 / efztAA/(u)eztAefzta/2 dt.

Denote by Py (t) = e”APk/e*“A, 1 < k' < k. By the Egorov theorem, this is a family of pseudo-
differential operators of order dj, with uniform estimates for ¢ € [0,47w]. We may write, using
two integrations by parts in ¢,

1 47 L

(4.3.4) a?Adp, - -- Adp,Co(UU) = = / e M Adp, (1) - AdpyAdG A’ (U)e e /2 dt.
™ Jo

By (iii) of Proposition 2.2.6, each commutator with Py (t) (resp. A) makes gain dp — 1 (resp.

0) units on the order of the operator, and makes lose My = 2My(2d + 3) on the second index of

this order. It follows that (4.3.3) holds, with the preceding value of M; and with v; = 2M;.

To get the statement concerning Cj, we compute

1

Iy Co(ILyl)y ;= -

Np41 Y-

4m .
/0 e—zt(no—np+1)Hn0A/(Hn’u)H dt

This quantity vanishes if ng # npi1. If ng = npt1, the condition n' € Zé(p) is equivalent to
(no,n',np+1) € Z4(p), so that assumption (4.3.1) implies that the integrand vanishes. This
concludes the proof. O
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Lemma 4.3.2 Let pc R, veR, PeN,peN, 1<p<P-1,0€/{0,...,p}, N €N. There
are positive numbers v(N), Mo(N) = Mo(4d + 6)N such that the following holds:

(i) For any A’ in I/{\\f/;’y[Mo] satisfying (4.3.1), one may find operators B (resp. S, resp. R)

belonging to ﬁ;’y+D(N) [Mo(N)] (resp. ﬁ;_NW—W(N) [My(N)], ﬁ;’erD(N) [My(N)]), such that
l p
(4.3.5) [B(U),Am] + Z B(ui, ..., Amuj, ..., up) — Z B(ui,...,Amuj, ..., up)
=1 j=lt1

= A U)+ SU) + L RU).
Moreover, S satisfies (4.3.1).

(ii) Let A" be an element of 755’”, satisfying (4.53.1). There is B in 75]‘)”%’” such that

4 p

(43.6) [BU),Am]+ > Blui,...,Amuj,...,up) — > Bluy,...,Amuj, ... up) = A'U).

j=1 J=L+1
The same conclusion holds for the equations
(4.3.7)

L p
+[AmBU) + B(U)Am] + ZB(ul, B O T N T Z B(u, ..., Amuj,...,u,) = A'(U).
j=1 j=0+1

Proof: (i) Take 6 € C§°(R), 6 =1 close to zero, and define

too e
(4.3.8) By (I, U) = —i / e~ ith A/ (ILy10) B e CR () g (et dt
0

where we denoted for short by G5 (n’) the function Gﬂ’f()\m, ..+, An,) defined in (1.2.26). Using
expansion (4.3.2), we write

Bi(ILyU) = —i Y aa(n’,€)Co(ILyU)
Q€L
with .
au(n', ) = /0 (it ($+GH M) g ep) at.
By (1.2.27), we know that ‘% +GEL() /|~ Lo
excluded since, by assumption and Lemma 4.3.1, Co(I1,,1) = 0 when n’ € Z*(p). Consequently,

an integration by parts shows that |aq(n,€)| < C|n/[*°. Combining this with (4.3.3) and
. . . . o Lvtri+L
summing in «, we see that B; satisfies the estimates of elements of H \I/py Vl O[Ml], where

M; = 2My(2d + 3). Let us compute

unless @ = 0 and n’ € Z%(p). This last case is

> c|n

(4.3.9)  — [A, Bi(ILyU)] + GBL(n') By (I U)
+oo i I ,
= —/ 4 {e_”AA’(Hn/u)e”Ae’tG%‘Z(" )}H(Gt) dt
0 dt
= A (ILyU) + " R (T U)
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with

too e
Ry (I, U) = / e_’tAA'(Hn/L{)e”Ae’tGﬁ“e(” ) e~ P10/ (et) dt.
0

Let 0; € C§°(]0, +00[) such that 6; = 6’ on [0, +o00[. Using again decomposition (4.3.2), we write

R (Il U) = az;z Co(ILU)eTh, (—e—l (Ggf (n') + ;‘)) .

By (1.2.27), efplél(—efl(Gﬁ’le(n’) - %))‘ < Cn/[* so that (4.3.3) shows that R} belongs to

the space ﬁ;’wuﬁp% [M;]. We deduce from (4.3.9) that
4 p+1
- [Am, Bl(U)} + Z Bl(ul, - ,Amu]‘, - ,up) - Z Bl(ul, - ,AmUj, - ,up)
j=1 j=t+1
= A'U)+ "Ry (U) — [Am — A, B1(U))].
Since Am — A is of order —1, [Am — A, By(U)] is in fﬁg’wuﬁ% [M;], by Lemma 1.2.4, and

satisfies condition (4.3.1), because II, commutes to Ay — A, and because B satisfies (4.3.1),
as follows from its expression (4.3.8) and the assumption on A’. We see that we have solved
an approximate version of (4.3.5), where S is replaced by an operator [/~\ — Am, B1(U)] of order
0 instead of 1 — N. Since condition (4.3.1) is satisfied by this operator, we may repeat the
construction of Bj, defining successively By, Bs,... until B = B; + Bg + --- satisfies (4.3.5)
with an error S of the wanted order 1 — N. At each step, we have to increase the number of
derivative losses on small frequencies v, and multiply the constant M; of estimate (4.3.3) by
2(2d+3). We call v(N) the total loss at the end of the process, and get the wanted conclusion.

(ii) We compute (4.3.6) at II,,U, and compose at the left with II
We get

and at the right with II,,,.

Np+1

(4.3.10) F2 N« 3 Ay )y o BILy UL,y =11

» MMp1

A (I U) Ty, .

Tp+1

Since A’ satisfies condition (4.3.1), |F§{Z()\n0, .oy Any.1)| is bounded from below by the right
hand side of the first estimate (1.2.27). Going back to the estimate (1.2.5) defining P}"", we see
that we may find a solution B to (4.3.10) in P;,”‘LO’” . This concludes the proof since the same

reasoning applies to (4.3.7). O

Before proving Theorem 3.1.3, we recall some notations and results of [7]. Let F' = Zg;ll F,
H = 25;01 H, be two functions defined on a neighborhood of zero in H*(X), which are sums
of components homogeneous of order p 4+ 2. Assume also that F, H have enough smoothness so
that all Poisson brackets below are meaningful. We define a truncated Poisson bracket at order

P by

(4.3.11) {(F,.HYp= Y {F,Hy}.
p+p'<P-1
p>1,p'>0
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The iterates of {-, -} p

(4.3.12)

are defined by

adpF'H: {F,H}p
adp’ F - H = adpF - (adp’~'F - H).

If T is some indeterminate, we define

(4.3.13)

exp(TadpF) - H =) —adp’F - H.
— 7]
7=0

Notice that the sum in the last series is finite, as all terms with j > P vanish. Let © be another
multi-linear expression in U = (u,u). It is proved in Lemma 5.1.3 of [7] that

(4.3.14) {ex

p(TadpF)-O,H}p = exp(TadpF) - {©,exp(—TadpF) - H}p.

We define from © (resp. H) and from F new functions, denoted formally by © o x£& (resp.

H o (xE)™1), given by

(4.3.15)

Oo X]I:: = (exp(adpF)) - ©
Ho (xp) ™" = (exp(—adpF)) - H

so that (4.3.14) may be written, taking 7' =1,

(4.3.16)

{©oxP, Hyp=1{0,Ho (xF)1poxk.

The main remaining steps in the proof of Theorem 3.1.3 will be to apply (4.3.16) with © replaced
by ©%(u,u) = [y (AZu)udu, H replaced by the Hamiltonian G, + Gy found in Theorem 3.1.2,
and to construct a function F so that {09, (GL + Gu) o (xE) 1} p o xE = O(e”||ul|%s) (for s

large enough).

Let us fix some notations. We fix P € N* and N large enough relatively to P. We shall need
several constants indexed by p = 1,..., P — 1, growing quickly enough. We take elements of
[1,+OO[, (Mi(p))lgpgpfl, (ﬁi(p)))lgpgpfl, 1= 1, .. .,4. We assume for p,q € {1, .. .,P — 1}
such that p+ ¢ < P — 1, and for some large Cj, depending on P, N,

(4.3.17)

where M is the const

M (p) > CoMa(p) > C§Ms(p) > CgMa(p) > Ci Mo
My(p + q) > max(Mi(p), M2(q))
min(71(p), 72(q)) + Co[Mi(p) + M

Q)] < u(p+q)
vj(p) > Ujr1(p) + CoMjti(p), j=1,2,3

)
27 )

ant introduced in Definition 1.2.2 We assume moreover that, if p — v(p)

is the function of the definition of classes ﬁl, it satisfies, for p,q in {1,..., P — 1},

(4.3.18) v(p) + v(q) + v + max(71(p), 72(q)) + Co max(Mi(p), M2(q)) < va(p + q).

Finally, we take two other functions p — N;(p), i = 1,2, such that Ny(1) + My = No(1) = N
and that, for any p,q € {1,...,P—1} withp+¢< P —1,

(4.3.19)  Na(p+q) < Na(q) — Mo — 1, Na(p+q) < Ni(p) — Mo — 1, Ni(p) < Na(p) — Lo
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(where Lg is the exponent in (1.2.27)). If N = Ny(1) > P, we may find such N;(p)’s, which are
moreover larger or equal to P for p=1,..., P — 1. We may assume as well that 74(p) > Na(p)
for any p=1,..., P —1, since it is always possible to increase the 7;(p) in such a way they will
continue to satisfy (4.3.17).

We use inclusions (3.2.12), (3.2.14) and (3.2.13) (with the constant My of (3.2.10) replaced by
M (p) or M2(q)) to get, taking into account assumptions (4.3.17), (4.3.18), (4.3.19), the inclusion
(43.20) {HF P (BU(R) M (p)] + G~ 070 (B,(R)),
1,v+v — v
HF, 31" (By(R)[Ma(a)] + GO+ 20 (B, (R))

- H.F1:;§4(p+Q)( (R))[M4(p + q)] + gl N2 (p+q)—Mo,v+04(p+q) (BS(R))

for any p > 0,¢ > 0 such that p,q,p + ¢ are smaller than P — 1. Let us prove:

Lemma 4.3.3 Foranyp=1,...,P —1, there is an element

(4.3.21) Fy € HFy i P/(By(R))[My(p)] + G~ N0+ (B(R))
satisfying

(4.3.22) {Fp, Go} € HF ("W (BL(R))[Ma(p)] + Gy~ 2@ +720) (B (R))

such that, if F' = ZP 1F
(4.3.23) {02, (GL+ Gu) o (xp) }p = "{04, R},

with R in @ HF 7P (B,(R))[Ma(p)).

Proof: By the definition (3.1.5), (3.1.4) of G, Gy, we may write G + Gy = G0+Z HGrLp+

Gu,p) and Grp + Guyp € H]-";ﬁ(B (R))[Mo] + Ny G2~V (Bs(R)) for some v. In particular,
Grp+ Gu,yp belongs to

(4.3.24) HF, 1P (By(R)[Ma(p)) + Gy~ N0+ (B (R)).
We compute (G, + Gy) o (x£)~!. By (4.3.15), (4.3.13), this may be written
Go — Z {Fp,Go} + Z H
p=1 p=1

where H), is a linear combination of quantities

(4.3.25) {Fore Fpas o AFp Gy + G} )

where py + -+ pyy1 =p, pg > 1if 1 < B < v, pyy1 > 0 (with by convention the notation
Gro+ Guo = Go) and where v > 2 if p, 41 = 0. Since G, , + Gu is in (4.3.24) with

yPy+1
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p = py+1 and F),_ satisfies (4.3.21) with p = p,, successive applications of inclusion (4.3.20) show
that (4.3.25) belongs to (4.3.24) when p,41 > 0. If pyy1 = 0, we use that v > 2, so that we
make use of (4.3.22) to reach the same conclusion. Consequently, H, belongs to (4.3.24), and
the lemma will be proved if we construct Fj, satisfying (4.3.21) and (4.3.22) and such that

(4'3-26) {@27 HP - {Fpa GO}} - EP{@87 RP}

with R, in H.F;:ﬁﬂ;z(p)(Bs(R))[Mg (p)]. We decompose H, = H, r + H, g according to (4.3.24)
and write

H,7U)=Re [ (C)(U)n)ad
(4.3.27) " /X g

H,g = Re /X (Eyo(U)u)adu + Re /X (Ep1 (U)u)u dp,

with C, in HUY TP (M, (p)], Epo, Epy in Py 20 7). o pl=fo@rt2s(®) - coming back
to the definition of these spaces, we decompose

P
Cp(U) :ZCg(u,...,u,ﬂ,...,ﬂ)
/=0

—_———
(4.3.28) ) ¢
E,i(U) =Y Ef(u,...,u,@,...,u),i=0,1
=0 /
with Cﬁ in ﬁl;’wrh(p) [My(p)], Eﬁ,i in ﬁ;_NZ(p)’VJrﬂ?’(p). We may assume that, for a fixed large
enough C,
(4.3.29) I, Co (T U)My,, ,, # 0 = 1o, pr1 > Cl|.

Actually, to ensure that condition, we may replace C;; by
(4330) Z Z Z ]1{2]Zc‘n/m]/Zc‘n/”A]Cﬁ(Hn/U)AJ/
,n/ ] jl

since, using formula (A.1) of the appendix, one checks that (4.3.30) is an element of the space
Iﬁ;’wrwl(p) [My(p)] satisfying (4.3.29). The difference between Cj and (4.3.30) may be incorpo-

rated to F,o: taking into account that this difference belongs to

——1-N’ U N’ ~ ’ ~ ’
H\Il; V+4(p)+ [M4(p)]C'P;7N w404 (p)+N'+2My(p)

for any N’, we take N’ = Na(p), and obtain that the perturbation of E, will be in the class

75;1,7N2(p )t s () (using the last inequality (4.3.17) with a large enough Cj).

Let us refine the decomposition of C’g, E;;i. When ¢ # p/2, we set Eﬁ;g = 0. When ¢ = p/2, we
define

(4.3.31) Eyi= Y Bl oau,... Ty, up)II

{no,...,ne}=
{nes1,mpt1}

Np+1°
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In the same way, if £+ 1 # p/2, we set Ep’l =0. If{+1=p/2, we set

B = 3 I, B (T, . o, Ty up)IT

{no,...,ne;npt1}=
{nes1,np}

Mp+1°

Then Eé are elements of Py~ N2(P)75P) e define Ef;’,]? =E,; — Ef;lz In that way, Eﬁ:g’
satisfies (4 3.1) and Ee 1 satisfies

(4.3.32) {no,...,ne,npy1}t = {neg1,...,npt = HnoEp 1 (Hmul, ooy My up) iy, = 0.

We perform a similar decomposition of C}f = Cg,z + Cg’B using formula (4.3.31). Let us show

that C’e Z belongs to H \Ifl V@) [M3(p)]. Actually, because of condition (4.3.29), the property
{no,...,ne} = {nes1,.. an} in the sum of type (4.3.31) defining C’;;’Z from Cg, is equivalent
to (ng = npt1) and {nl,...,ng} = {ng41,...,np}. The definition of Cf# may be written
equivalently as

1 4 —ith A
Cg’z(ul, CeUp) = Z py /0 e tAC’If(Hn/L{)e tA gt
{n1,...ne}=

{neg1smp}

—1
We have seen in the proof of Lemma 4.3.1 that this time average belongs to HU v, V) [M3(p)]

(This follows from the fact that by (4.3.17), Ms(p) > CoMu(p), 73(p) > va(p) + COM4(p), which
are the requirement that the new constants (v1, M7) in the right hand side of (4.3.3) have to
satisfy). Set

P P

:ZC&Z(U...uE...a) EZ(U):ZEE’AZ(u...uE...ﬂ)

P ) ) ) ) ) ) D, D, ) Y Y ) )
=0 7 =

0
Cp(U) = (Cp = CHWU), Bi(U) = Epi(U) — B y(U)

H? - (U) = Re /X (CEUYw)ady, H:4(U) = Re /X (EZo(U)u)idp + Re /X (B2, (U)u)u dy

and define similarly H ;3 F(U), H, B.(U). By construction and the definition of the Sobolev energy
O%u,u) = [y (AZ5u)udu, {69, HZ H]%g} = 0, so that equation (4.3.26) is equivalent to

(4.3.33) {0, H}x + H}g — {F,,Go}} = €"{09, R}

Let us show that there is an element R, in H.?’:1 V+V2(p)( Bs(R))[M2(p)] and F), satisfying (4.3.21),
(4.3.22) such that

(4.3.34) {Fp,Go} =H}r+ Hpg — €' Ry,
We look for F), as

(4335  F,(U) = Re /

(ByU)widu+Re [ (Dyo(U)u)adp +Re [ (Dpa(U)uyudy
X X X
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where B,(U) = Y0_ OB;;( Uy T, 1), Dypi(U) = Y5 o D j(u, ... u, i, . . ., w), with BY in
I;TV\II;’V+V1(p) [Mi(p)], D ,pi in Pl Na(p), V+V1( 25 Plugging (4.3.35) inside (4.3.34), we see that BY

may be computed from CeB solving an equation of type (4.3.5). Applying (i) of Lemma 4.3.2,
Y p g q Y ymng

we obtain Be in H\IJ1 V+V1( )[Ml (p)], using (4.3.17), and assuming that Cj is larger than the loss
v(N) of Lemma 4.3. 2 We get the wanted property for Bf;.

The remainder S in the right hand side of (4.3.5) belongs to

——1-N,v+3(p)+v(N)

Y, [My(p)] © PL-Nw a7 (N)+2Ms(p),

Since N > Nj(p), we get an element of 731 Na(p)v+72(p) , if the constant Co in (4.3.17) has been
taken large enough with respect to N. The contrlbutlons E belong to the same space. By
(ii) of Lemma 4.3.2, we may construct D, (resp. D, 1) in 771 No(p)+Low+72(p) solving (4.3.6)

(resp. (4.3.7)) when the right hand side A’ is given by EZB + S (resp Eﬁ:]f). If we assume
Ni(p) < Na(p) — Lo as in (4.3.19), we get the wanted conclusmn

1,v+03(p)+v(N)

Finally, the term ¢ R in the right hand side of (4.3.5) belongs to epﬁ'p [Ma(p)] C
e Iﬁ;’ww(p) [M2(p)]. The contribution of this term to an integral of the form of the first one
in (4.3.27) gives the last term in (4.3.34). O

Proof of Theorem 3.1.3: We set ©2 = ©% o x£. This is linear combination of quantities
(4'3'36) { p17{Fp27-~-7{Fp47®g}"'}}; (< P-—1,
with F), satisfying (4.3.21), 1 < p < P — 1. Since we assume Ni(p) > P, we have

(4.3.37) F, € HF {{(Bs(R)) + Gp 7" (Bs(R))

for some large enough value of v. Moreover, Y is in H ]-"gjf(Bs(R)). If s > P, it follows from
inclusions (3.2.12), (3.2.13) and (3.2.14) that (4.3.36) is in HF. 3 (Bs(R)) + G2+~ 1(By(R))
for p=p1 +--- + py and a new value of v, independent of s. Consequently ©2 is in

P-1

(4.3.38) P (HFW (B(R)) + 6> (Bs(R)))
p=0

for some v. By(4.3.16)

(4.3.39)
{07,GL+ Gu} ={0%,GL+Gulp+ ({03,GL+Gu} — {©2,G + Gulp)

= {627 (GL + GH) © (X?)il}P o X? + ({637 GL + GH} - {@gﬂ GL + GH}P)

The first term in the right hand side may be written according to (4.3.23) as ¢7{0%, R} o x&
with R in @52_11 Hf;’ﬁ—i_VQ(p)(B (R)). Since ©Y is in Hf2s 0( Bs(R)), it follows from (3.2.12) that
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{0 R} isin @P ! H}'zs i (Bs(R)) for some v independent of s. Using (4.3.37) and again inclu-
sions (3.2.12), (3.2.14), (3.2.13), we conclude that {09, R}ox £ belongs to @ (Hf2s "(Bs(R))+
QIQ,S’”(BS(R))). This implies that {02, R} o x£(U) = O(||U||%) if s is large enough.

The last term in (4.3.39) may be written as a sum of expressions
(4.3.40) {0p, GLq+ Gug}

where 0, is in H]-"QS’”(B (R)) + G2 1¥(Bs(R)), and where G4 + Gu,q belongs to the space
H}"qlﬁ (Bs(R))+GY ¥(By(R)) for some v,/ depending on P but not on s, and with p+¢ > P. By

(3 2.12), (3.2.13), (3.2.14), we obtain elements of H]-";quH(B (R)) +Q§ig (Bs(R)) for some new

V" independent of s. This implies that (4.3.40) is O(||U||%1?), which is the wanted conclusion.
g

A Appendix

This appendix is devoted to an estimate that is used several times in the paper.

Proposition A.1 Let Pi,..., P, be differential operators of order di,...,ki on the manifold
X. Let Q,Q" be two pseudo-differential operators of order m,m’. For any N in N, there is
C >0 and for any j,5',7" in N

(A1) 1Ay (Adp, ~--Adpk(QAjQ’))Aj//HL(Lz) < CQ‘N“J'—J"HIJ'—J"’HQj(m+m'+25:1d/f—’“)'

If we prove

s , k
(A2) 187 Adp, -+ Adp, (QAQ) gz < €2 Nl b3, =)

we may deduce (A.1) from (A.2) by duality. To prove (A.2), we introduce, with the notations
(1.2.2), @1(t) = o(V1), ¥1(t) = P(V1), so that Aj = 1 (=272 A), for j > 1, Ag = 1 (—A). We
use the same letters 1,11 to denote almost holomorphic extensions of this functions to C (see
Dimassi-Sjostrand [11], Chapter 8). Then 1,1 are smooth functions on C, ¢ (resp. 1) is
supported in a domain [a,b] 4 i[—c,c] with 0 < a < b, ¢ > 0 (resp. a < 0 < b, ¢ > 0), and Jyy,
Oy vanish at infinite order on R. The Helffer-Sjostrand formula [17], [11] Theorem 8.1 implies
that

(A.3) 8= =27 [ @)@ ¥0)(c+A) ! dcdg

s

when j > 1, and a similar expression for Ag, with ¢; replaced by ;. We shall prove (A.2)
when, more generally, Pi,..., P, are pseudo-differential operators of order di,...,d;. Writing
[P}, (C+A) 1 = —(C+A)"P;, Al(¢ + A)~1, we see that Adp, --- Adp,A; may be written as
a linear combination of expressions

i

(A.4) 272 [ (G0 20)| TL(C+8)7Qu] (¢ + 8) dcd

=1

75



where 0 < K < k, Qu, ¢/ = 1,...,K are pseudo-differential operators of order Dy + 2 and
SH Dy =S Fdy — k.

Lemma A.2 For any s € R

(A5> supHAdpl R AdeAJH < +o0.
J L

(HS,Hsizllg d£+k)

Proof: We note that for any 0 € R

C(+ <D

Tmel 1€+ A et my < Cllm ™

(¢ + A)_1||£(H”,H”+2) <

We deduce from (A.4), the above inequalities, the fact that on the support of 01(27%¢), [¢| <
C2% and the vanishing of Oy at infinite order on R, that (A.5) is bounded from above by the
supremum in j of quantities of the form

25k’
’Imqk’-l-l

for 0 < k' < k. This gives the lemma. O

c27 [ o120 dcaC < O [ i (Y dcdc < 0

(<022

Proof of Proposition A.1: For k € N, a € R, denote by E(a) the family of operators which
may be written as a finite sum of terms Qo(Adg, ---Adg,,A;)Qr 41 where ' < k and Q,

¢=0,...,k"+1 are pseudo-differential operators such that Z’Z:Bl degQy — k' = a. Let Q,Q’ be
a pseudo-differential operator of order m,m’/. Then

k
(AG) Adp1 tee Adp]C [QAJQI] = Q(Adpl cee AdpkAj)Q/ modulo Sk,l(m + Zdz —k+ m’).
1

Actually, if (A.6) holds at order k, and if we consider another operator Py of order dy

AdpAdp, -+ Adp [QA; Q] = Q(Adp, - Adp,Aj)Q' + [P, QI(Adp, - - - Adp, Aj) Q'
k

+Q(Adp, - Adp,Aj)[Po, Q] modulo [Py, E—1(m + Y de — k+m)].
1

We have just to notice that the second and third term in the right hand side are in & (m +
Skdy— (k4 1) +m'), as well as the elements of [Py, E_1(m + SN dp — k +m/)].

Let us prove estimate (A.2). Assume first j* > j > 0 and write
(A7) AjyAdp, - Adp, (QA;Q') = 22N Ay Adp, - Adp, (QA; Q)
where Q = QAN and A; = ¢(—2"%A) for a new ¢ € C§°(]0, +-00[). By (A.6), we may write

(A.7) as the product of 227V times operators of the form AjQo(Adg, -+ Adg,, Aj)Qr41, where
K <kand SF T degQp — k' = —2N +m + ¥ dy +m’ — k. By Lemma A.2

12/ Qo(Adg, -~ Adg,, Aj)Qu+1ull 2 < C2777Qu(Adg, - - Adg,, Aj)Qu1ull e

—q!
S Cz ’ o—H@LHI_I¢772N+'m+zllC dz+m’7k'
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We take 0 = —m — Zlf dy —m' 4+ 2N + k to conclude that

1) Adp, - - Adp, (QA;Q) | 12y < Cn 22— N (nt Ly detm' =)

for any N. When j < j/, we perform the same computation taking Q = QAY. This concludes
the proof. O
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