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Abstract

The Hamiltonian
∫

X
(|∂tu|2 + |∇u|2 + m2|u|2) dx, defined on functions on R ×X, where

X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon
equation. We consider perturbations of this Hamiltonian, given by polynomial expressions
depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-
Gordon equation. We show that, when X is the sphere, and when the mass parameter m

is outside an exceptional subset of zero measure, smooth Cauchy data of small size ǫ give
rise to almost global solutions, i.e. solutions defined on a time interval of length cN ǫ

−N for
any N . Previous results were limited either to the semi-linear case (when the perturbation
of the Hamiltonian depends only on u) or to the one dimensional problem.

The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying
on convenient generalizations of para-differential calculus.

0 Introduction

This paper is devoted to the study of solutions of small quasi-linear perturbations of an infinite
dimensional Hamiltonian system. To be more specific, let X be a compact Riemannian manifold,
and define on Hs(X,C), for s large enough, G0(U) =

∫
X(Λmu)ū dµ, where U = (u, ū), dµ is

the Riemannian volume and Λm =
√

−∆X + m2. Since Hs(X,C) is endowed with a symplectic
form ω0(h, h′) = 2Im

∫
X hh̄

′ dµ, one may consider the Hamiltonian equation associated to G0,
given by

(1) ∂tu = i∇ūG0(u, ū).

If u =
√

2
2

(
Λ

−1/2
m ∂tv+iΛ

1/2
m v

)
, with v in Hs+1/2(X,R) and ∂tv in Hs−1/2(X,R), this Hamiltonian

equation is nothing but the Klein-Gordon equation

(2) (∂2
t − ∆ + m2)v = 0.

Keywords: Hamiltonian quasi-linear Klein-Gordon equations, Almost global existence, Birkhoff normal forms.

MSC 35L72, 35S50, 37K45.
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We want to study the solutions of equations of form (1), where G0 has been replaced by a more
general Hamiltonian G, such that G−G0 is small. By rescaling, this is equivalent to the study
of

(3) ∂tu = i∇ūG(u, ū),

where G − G0 vanishes at least at order three at zero, and where the Cauchy data are small
in Hs (s ≫ 1), of size ǫ → 0. The question is to determine whether, for ǫ small enough, the
solution exists over a long interval of time, and has Sobolev norm O(ǫ) on that interval.

This problem has been quite extensively studied when the perturbation G−G0 of the Hamilto-

nian is given by a function of Λ
−1/2
m U (while G0 itself may be written as a function of Λ

1/2
m U).

At the level of the Hamiltonian equation, this corresponds to perturbations of (2) which are
weakly semi-linear, i.e. may be written

(4) (∂2
t − ∆ + m2)v = f(v),

for a smooth function f vanishing at least at order 2 at zero. In one dimension, i.e. when X is
the circle, this problem has been solved by Bourgain [5] and Bambusi [1] (see also for related
results Bambusi-Grébert [3] and the lectures of Grébert [16]). It has been proved that, if m is
taken outside a subset of zero measure of ]0,+∞[, for any N ∈ N, for any s large enough, there is
ǫ0 > 0, such that equation (4) with Cauchy data of size ǫ < ǫ0 in Hs+1/2(S1,R) ×Hs−1/2(S1,R),
has an almost global solution, i.e. a solution defined on a domain ]−Tǫ, Tǫ[×S1, with Tǫ > cǫ−N ,
satisfying an estimate

(5) sup
|t|<Tǫ

‖v(t, ·)‖Hs+1/2 + sup
|t|<Tǫ

‖∂tv(t, ·)‖Hs−1/2 ≤ Cǫ.

This result has been extended to higher dimensions, i.e. to equation (4) on spheres, or more
generally on Zoll manifolds, by Bambusi, Delort, Grébert and Szeftel [2], after preliminary
results of Delort and Szeftel [8, 9, 10]. The method of proof relies on Birkhoff normal forms, as
in one dimension, to reduce the proof of long time existence and of estimate (5) to the study of
a sequence of homological equations. The resolution of these equations is possible only under a
suitable small divisors property, which holds when the parameter m is outside a subset of zero
measure, because of the very special distribution of the eigenvalues of −∆ on Sd. Actually, the
important property is that two different eigenvalues of

√
−∆Sd are separated essentially by a

fixed distance. When such a property does not hold, for instance when X = Td, or when −∆ is
replaced by the harmonic oscillator −∆ + |x|2 on X = Rd, only much weaker results are known
(see [6, 12, 20]).

Let us mention also that normal forms methods have been proved useful to study long time
existence for solutions of equations of the form (4) on Rd, for Cauchy data that are smooth and
decaying at infinity. Actually, the use of normal forms in that framework has been introduced
by Shatah [19] to prove global existence of solutions of non-linear Klein-Gordon equations on
R3 (an alternative proof has been given at the same time by Klainerman [18]). More recently,
this approach has been made more systematic in a series of papers of Germain, Masmoudi and
Shatah [14, 15] and Germain [13].

Let us go back to our Hamiltonian equation (4). We would like to study a more general version
of (4), with a right hand side depending also on derivatives of v. This corresponds to an equation

2



of form (3) where the perturbation G−G0 of G0 has the same strength, relatively to the number

of derivatives involved, as G0 itself, i.e. is a function of Λ
1/2
m U instead of Λ

−1/2
m U . The associated

Hamiltonian equation is like (4), where the right hand side is replaced by a quasi-linear non-
linearity, i.e. an expression depending on second order derivatives of v, which is linear with
respect to (∂αv)|α|=2. This problem has been solved in one dimension in [7]. The goal of this

paper is to obtain a similar almost global existence result on any higher dimensional sphere Sd.

Let us describe the main new ideas that have to be introduced in comparison with our previous
paper [7]. As in this work, the key point is to design a Birkhoff normal forms method adapted
to quasi-linear equations. This requires to express the Hamiltonian using para-differential oper-
ators. In one dimension, one may use Fourier analysis on S1 to define such classes of operators
globally on S1, using symbols which are functions on S1 × Z (where Z should be considered
as the dual group of S1). In higher dimensions, one can no longer do so. Instead, we define
para-differential operators using a characterization in terms of commutators with differential
operators, similar to the Beals characterization of pseudo-differential operators [4]. The classes
we need are more general than usual para-differential operators: they depend on some auxiliary
functions, and have to take into account some losses relatively to small frequencies that will
appear because of small divisors. Because of that, we have to rewrite the whole theory (sym-
bolic calculus, principal symbols on compact manifolds,. . . ) in our framework. This is done in
section 2 of the paper. Section 3 is devoted to the computation of Poisson brackets between
functions defined in terms of integrals of type

∫
X(A(U)u)ū dµ, Re

∫
X(A(U)u)u dµ, where A(U)

is a para-differential operator of order one, homogeneous of some degree k in U . The proof of
the main theorem of long time existence occupies section 4. Let us describe the main new idea
on a toy model.

Consider equation (3) with Hamiltonian

(6) G(u, ū) =

∫

X
(Λmu)ū dµ+ Re

∫

X
(A(U)u)ū dµ,

where A(U) is a self-adjoint para-differential operator of order one, homogeneous of degree k in
U = (u, ū). Equation (3) reads

(7) Dtu = Λmu+A(U)u+ · · ·

where the dots represent some contributions which are of a semi-linear nature (opposed to the
main quasi-linear contribution A(U)u). To prove that (7) with Hs data of size ǫ has a solution
defined on a time interval of length cǫ−N , one has to find a modified energy Θs(u) such that
Θs(u) ∼ ‖u‖2

Hs close to zero and

(8)
d

dt
Θs(u(t, ·)) = O(‖u(t, ·)‖N+2

Hs )

when u is a solution of (7). The usual normal forms method consists in defining Θs = Θ0
s ◦ χ,

where Θ0
s = ‖Λs

m
u‖2

L2 is the usualHs-energy, and χ is a convenient symplectic diffeomorphism on
a neighborhood of zero in Hs, defined as the value at time t = −1 of the flow of the Hamiltonian
vector field XF of some auxiliary function F . Then equation (3) implies

(9)
d

dt
Θs(u(t, ·)) = {Θ0

s ◦ χ,G}(u(t, ·)) = {Θ0
s, G ◦ χ−1} ◦ χ(u(t, ·))
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and the definition of χ gives an expansion

(10) {Θ0
s, G ◦ χ−1} ∼ {Θ0

s,
∑

p

(−1)p

p!
adpF ·G}

where adF · G = {F,G}. One looks for F as given by an expansion in terms of homogeneous
terms F =

∑
ℓ≥1 Fℓ. Then the term of degree of homogeneity p+ 2 in (10) vanishes if and only

if

(11) {Θ0
s,−{Fp, G0} +Hp} = 0,

where Hp is computed from G and Fp′ with p′ < p. One looks for Fp as

(12) Fp(u, ū) =

∫

X
(Bp(U)u)ū dµ

where Bp(U) is a self-adjoint para-differential operator of order one. One proves moreover that,
if Fp′ has a similar structure for p′ < p, then

Hp(u, ū) =

∫

X
(A′

p(U)u)ū dµ+ · · ·

where A′
p is also a self-adjoint operator of first order, and the dots represent some other contribu-

tions which are of a semi-linear nature. Then {Fp, G0} −Hp may be written as
∫
X(Cp(U)u)ū dµ

where, if we decompose Bp(U) =
∑p
ℓ=0B

ℓ
p(u, . . . , u︸ ︷︷ ︸

ℓ

, ū, . . . , ū), and make similar decompositions

of A′
p, Cp,

Cℓp(u, . . . , ū) = i[Bℓ
p,Λm](u, . . . , ū) + i

ℓ∑

j=1

Bℓ
p(u, . . . ,Λmu︸ ︷︷ ︸

j

, . . . , ū)

−i
p∑

j=ℓ+1

Bℓ
p(u, . . . ,Λmū︸ ︷︷ ︸

j

, . . . , ū) −A′
p
ℓ(u, . . . , ū).

(13)

A way to solve (11) would be to find Bℓ
p so that Cℓp = 0. If one replaces in (13) (u, . . . , ū) by

(Πn1u, . . . ,Πnp ū), where Πn is the spectral projector associated by the n-th eigenvalue λ2
n of

−∆, one gets to show that

(14) [Bℓ
p,Λm](Πn1u, . . . ,Πnp ū) +Gp,ℓ

m
(n′)Bℓ

p(Πn1u, . . . ,Πnp ū) = −iA′
p
ℓ(Πn1u, . . . ,Πnp ū),

where Gp,ℓm (n′) =
∑ℓ
j=1

√
m2 + λ2

nj
− ∑p

j=ℓ+1

√
m2 + λ2

nj
. One may choose m so that, for some

c > 0, L0 > 0,

(15) d(Z, Gp,ℓ
m

(n′)) ≥ c|n′|−L0 = c(n1 + · · · + np)
−L0

as soon as the left hand side does not vanish trivially (i.e. as soon as trivial two by two

cancellations in the expression of Gp,ℓm (n′) are excluded). If one replaces in the bracket in (14),

Λm by Λ̃ =
√

−∆ +
(
d−1

2

)2
, an approximate solution of (14) may be obtained defining

Bℓ
p(Πn1u, . . . ,Πnp ū) = −i

∫ +∞

0
e−itΛ̃A′

p
ℓ(Πn1u, . . . ,Πnp ū)eitΛ̃eitG

p,ℓ
m

(n′)θ(ǫt) dt
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where θ ∈ C∞
0 (R), θ ≡ 1 close to zero. Actually, using that the eigenvalues of Λ̃ are half integers,

we see that t → e−itΛ̃A′
p
ℓeitΛ̃ is 4π-periodic. Decomposing this function of time in Fourier series

and using the small divisor estimate (15), we check that Bℓ
k is a para-differential operator, and

that (14) holds, up to some remainders. Of course, this cannot be done when estimate (15)
does not hold i.e. when there is a trivial vanishing of the left hand side. But the contributions
corresponding to this special case are in the kernel of {Θ0

s, · }, so may be discarded since the
equation we need to solve is (11) and not {Fp, G0} −Hp = 0.

Using repeatedly the preceding method, we may eliminate as many terms as we want in the
right hand side of (10), and deduce from (9) the wanted property (8).

Let us point out that several other difficulties have to be dealt with. First, if one really wanted
to define χ as the value at time −1 of the flow of XF , with F =

∑
p≥1 Fp and Fp given by (12),

one would have to solve an equation u̇ = XF (u) which is not an ODE, at the difference with
the case of semi-linear equations. This comes from the fact that in (12), Bp is of order one, so
that XF involves the loss of one derivative. We circumvent this problem defining not χ itself,
but only its action by right composition on functions, using iterated Poisson brackets as in (10).

Another complication that appears when solving the “real problem”, instead of the toy model
(6), is that the Hamiltonian one has to study is of the form

(16) G(u, ū) =

∫

X
(Λmu)ū dµ+ Re

∫

X
(A(U)u)ū dµ+ Re

∫

X
(C(U)u)u dµ,

where C(U) is also a para-differential operator of order one, vanishing at U = 0. Before per-
forming the method we outlined above, one has first to reduce oneself to an Hamiltonian of form
(6). One does that in two steps. First, one eliminates the Taylor expansion of U → C(U) at
U = 0 up to a large enough degree. This is done by a Birkhoff normal form method, involving
functions of type (12), but with Bp of order zero instead of one. Because of that, this step
is purely semi-linear. When this has been achieved, one obtains still a reduced Hamiltonian
of form (16), but with a C vanishing at large order at U = 0. One then makes a change of
unknown U → Ũ = Ψ(U), constructed in such a way that the new Hamiltonian is a function
of Ũ of form (6). This part of the reasoning is similar to the usual process of diagonalization
of the principal symbol of a quasi-linear symmetrizable system, that allows one to prove energy
inequalities in such a framework. Actually, the construction of the change of unknown Ψ is made
from a convenient diagonalization of that type.

Finally, let us mention that we limited ourselves to polynomial non-linearities and to spheres
(instead of Zoll manifolds) to avoid some extra technicalities.

1 Statement of the main theorem

1.1 Notations. First statement

We denote by (X, g) the standard d-dimensional sphere (d ≥ 2), endowed with its usual metric,
by ∆ the Laplace-Beltrami operator on X and by dµ the volume form associated to the metric,
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given in local coordinates by dµ = (det g)1/2dx. The eigenvalues of −∆ are given by λ2
n =

(n − 1)(n + d − 2), n ∈ N∗. Let f : R × T ∗X → R be a smooth function, (z, ρ) → f(z, ρ),
polynomial relatively to z and to the fiber variable of T ∗X. Assume that f vanishes at least
at order 3 on {0} × X (where X is considered as the zero section of T ∗X). For v : X → R a
smooth enough function, we define from f, v a new function P [v] : X → R in the following way:
If x denotes local coordinates on an open set U of X, if ρ = (x, ξ) are the corresponding local
coordinates on T ∗U , f is a function of (z, x, ξ) on R × T ∗U , and we set

(1.1.1) P [v](x) =
∂f

∂z

(
v(x), x,

∂v

∂x
(x)

)
−

d∑

j=1

(det g)−1/2 ∂

∂xj

[
(det g)1/2 ∂f

∂ξj

(
v(x), x,

∂v

∂x
(x)

)]
.

We notice that P [v] is intrinsically defined. Actually, it suffices to check that, for any smooth
function h on X, compactly supported in the local chart U ,

∫
X P [v](x)h(x) dµ(x) is intrinsically

defined. Denote by {·, ·} the Poisson bracket on T ∗X, given in local coordinates by

{f, g} =
d∑

j=1

(
∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj

)
.

Then it follows from (1.1.1) and the definition of dµ that

(1.1.2)

∫

X
P [v]h dµ =

∫

X

∂f

∂z
(v, dv)h dµ+

∫

X
{f, h}(v, dv) dµ

which is intrinsic (We denote by dv the section of T ∗X given in local coordinates by x →(
x, ∂v∂x(x)

)
).

Our main result is the following one. For s in R, we denote by Hs(X,R) the Sobolev space of
real valued functions on X.

Theorem 1.1.1 There is a subset N of zero measure in ]0,+∞[ and for any m ∈]0,+∞[−N ,
any P ∈ N, there is s0 > 0 such that, for any s ≥ s0, there are ǫ0 > 0, c > 0, C > 0 and, for any
ǫ ∈]0, ǫ0[, any (v0, v1) in the unit ball of Hs+ 1

2 (X,R) × Hs− 1
2 (X,R), there is a unique solution

v in C0(] − Tǫ, Tǫ[, H
s+ 1

2 ) ∩ C1(] − Tǫ, Tǫ[, H
s− 1

2 ) of the equation

(∂2
t − ∆ + m2)v = P [v]

v|t=0 = ǫv0

∂tv|t=0 = ǫv1

(1.1.3)

with Tǫ ≥ cǫ−P . Moreover, v satisfies the uniform bound

(1.1.4) sup
]−Tǫ,Tǫ[

‖v(t, ·)‖Hs+1/2 + sup
]−Tǫ,Tǫ[

‖∂tv(t, ·)‖Hs−1/2 ≤ Cǫ.

Remark: The assumption on f , together with (1.1.1), shows that the right hand side of the
first equation in (1.1.3) is a quasi-linear (polynomial) non-linearity, vanishing at least at order
two at zero.
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Expression (1.1.1) of the non-linearity will allow us to write equation (1.1.3) as a Hamiltonian
system. Let us introduce the necessary notations.

Denote by J the matrix

(1.1.5) J =

[
0 −1
1 0

]

and for Z,Z ′ two functions in L2(X,R2), define

(1.1.6) ω0(Z,Z ′) = 〈tJZ,Z ′〉 = 〈Z, JZ ′〉,

where 〈·, ·〉 is the L2(X,R2) scalar product given by integration against the measure dµ. Let
s ∈ R+, Ω be an open subset of Hs(X,R2), F : Ω → R a C1 function. We define the symplectic
gradient XF (V ) of F at V ∈ Ω as the element of D′(X,R2) defined by ω0(XF (V ), Z) = dF (V )·Z
for any Z in C∞(X,R2). In an equivalent way

(1.1.7) XF (V ) = J∇F (V ).

If G : Ω → R is another C1 function, we define the Poisson bracket of F and G by

(1.1.8) {F,G}(V ) = dF ·XG(V ) = dF (V ) · [J∇G(V )]

as soon as the right hand side has a meaning, i.e. when XG(V ) belongs to a subspace of D′(X,R)
to which the linear form dF (V ) extends. Of course, this Poisson bracket should not be confused,
though we use the same notation, with the Poisson bracket on T ∗X used in (1.1.2).

Let us rewrite equation (1.1.3) in the Hamiltonian framework. Let

(1.1.9) Λm =
√

−∆ + m2

and define from the function v solving (1.1.3), an element V of Hs(X,R2) by

(1.1.10) V (t, x) =

[
Λ

−1/2
m ∂tv

Λ
1/2
m v

]
=

[
V 1

V 2

]
.

If we set F (v) =
∫
X f(v, dv) dµ, and if h ∈ C∞(X,R),

dF (v) · h =

∫

X
P [v]h dµ

as follows from (1.1.1), taking h supported in a local chart domain. We define for V in Hs(X,R2),
with s large enough

G0(V ) =
1

2

∫

X
(ΛmV ) · V dµ

G(V ) = G0(V ) − F (Λ
−1/2
m V 2).

(1.1.11)

Then, if H is in C∞(M,R2),

dG(V ) ·H =

∫

X
(ΛmV ) ·H dµ−

∫

X
P [Λ

−1/2
m V 2](Λ

−1/2
m H2) dµ

7



which shows that

∇G(V ) = ΛmV +

[
0

−Λ
−1/2
m P [Λ

−1/2
m V 2]

]
.

Using (1.1.10), we see that v is a solution of the first equation in (1.1.3) if and only if V satisfies

(1.1.12) ∂tV = XG(V ).

Let us write this equality using complex coordinates. We identify Hs(X,R2) to Hs(X)
def
=

Hs(X,C) through

(1.1.13) V =

[
V 1

V 2

]
→ u =

√
2

2
(V 1 + iV 2).

More precisely, we identifyHs(X,R2) to the submanifold {(U1, U2);U2 = U1} inside the product
Hs(X,C) ×Hs(X,C) through

(1.1.14) V =

[
V 1

V 2

]
→ U =

[
u =

√
2

2 (V 1 + iV 2)

ū =
√

2
2 (V 1 − iV 2)

]
.

If F is a C1 function on an open subset of Hs(X,R2), we define

duF =

√
2

2
[dV 1F − idV 2F ], dūF =

√
2

2
[dV 1F + idV 2F ]

∇uF =

√
2

2
[∇V 1F − i∇V 2F ], ∇ūF =

√
2

2
[∇V 1F + i∇V 2F ].

(1.1.15)

If
[
H1
H2

]
(resp.

[
H′

1

H′
2

]
), element ofHs(X,R2), is identified through (1.1.14) to the elementH =

[
h
h̄

]

(resp. H ′ =
[
h′

h̄′

]
) of Hs(X), the symplectic form in complex coordinates may be written

ω0(H,H ′) = i〈H,JH ′〉.

Through identification (1.1.14), the expression of the Hamiltonian vector field in complex coor-
dinates is given by

(1.1.16) XF (U) = −iJ
[

∇uF
∇ūF

]
= itJ

[ ∇uF
∇ūF

]
= i

[ ∇ūF
−∇uF

]
.

If F and G are two C1 functions on an open set of Hs(X), whose differentials at every point
extend as bounded maps on L2(X), one gets the following expression for their Poisson brackets
in complex coordinates

(1.1.17) {F,G} = dF ·XG(U) = i[duF · ∇ūG− dūF · ∇uG].

Finally, equation (1.1.12) may be written in an equivalent way

(1.1.18) ∂tu = i∇ūG(u, ū)

if we consider the function given by (1.1.11) as a function of the complex variable U = (u, ū).
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1.2 Quasi-linear Hamiltonians and general statements

The goal of this subsection is to introduce a general class of Hamiltonian equations, containing
(1.1.11), such that the associated equation (1.1.12) or (1.1.18) is a quasi-linear first order system.
This class has to be wide enough to be stable under the reductions that will have to be made in
the proof of Theorem 1.1.1.

Let us introduce some notation. We denoted by λn =
√

(n− 1)(n+ d− 2), n ∈ N∗, the eigen-
values of

√
−∆ on X = Sd. We call Πn the spectral projector associated to λn. In particular,

for any s ∈ R, there is C > 0 such that, for any u in Hs(X),

(1.2.1) C−1ns‖Πnu‖L2 ≤ ‖Πnu‖Hs ≤ Cns‖Πnu‖L2 .

Fix ϕ a non-negative real valued smooth function on R, compactly supported in ]0,+∞[, such
that

∑+∞
j=−∞ ϕ(2−jt) ≡ 1 for any t > 0. We define ψ(t) =

∑0
j=−∞ ϕ(2−jt) and set for u ∈ D′(X),

j ∈ N,

∆ju =
+∞∑

n=1

ϕ(2−jλn)Πnu, j ≥ 1

∆0u = S0u =
+∞∑

n=1

ψ(λn)Πnu,

Sju =
j∑

j′=0

∆j′u, j ≥ 0.

(1.2.2)

In that way, u is in Hs(X) if and only if (2−js‖∆ju‖L2)j is in ℓ2(N).

We shall study an equation of the form of (1.1.18) where the Hamiltonian G will be expressed
in terms of para-differential operators acting on U =

[
u
ū

]
. We introduce several classes of multi-

linear operators. If p ∈ N∗, if U = (u1, . . . , up) is a p-tuple of complex valued functions defined
on X and if n′ = (n1, . . . , np) is an element of (N∗)p, we denote

(1.2.3) Πn′U = (Πn1u1, . . . ,Πnpup), |n′| = max(n1, . . . , np).

We assume given a strictly increasing function ν : N → N, such that ν(0) = 0, that satisfies a
growth condition of type

(1.2.4) ν(p) + ν(q) + a ≤ ν(p+ q), p, q ∈ N∗,

where a is some positive constant that will be adjusted later.

Definition 1.2.1 Let p ∈ N,m ∈ R, ν ∈ R+. One denotes by P̃m,ν
p the space of p-linear

maps U = (u1, . . . , up) → A(U), defined on C∞(X)p with values in the space of linear maps
from C∞(X) to D′(X), such that, for any N1, N2 in N, there is C > 0 so that, for any U =
(u1, . . . , up), any (n0, . . . , np+1) in (N∗)p+2,

‖Πn0A(Πn′U)Πnp+1‖L(L2) ≤ C〈n0 − np+1〉−2
(
min

[ n0

np+1
,
np+1

n0

])N1

nm0

×|n′|ν(p)+ν
(

1 +
|n′|
n0

)−N2 p∏

ℓ=1

‖Πnℓ
uℓ‖L2 ,

(1.2.5)
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where 〈n〉 = (1 + n2)1/2.

Remarks: • The definition implies that for any j, j′ in N

(1.2.6) ‖∆jA(Πn′U)∆j′‖L(L2) ≤ C2−N1|j−j′|2jm|n′|ν(p)+ν
(1 + 2−j |n′|)−N2

p∏

ℓ=1

‖Πnℓ
uℓ‖L2 .

The characterization of Sobolev spaces in terms of dyadic decompositions implies that, for any s
in R, any N2 ∈ N, |n′|N2A(Πn′U) extends as a bounded linear map from Hs(X) to Hs−m−N2(X),
with estimates

(1.2.7) |n′|N2‖A(Πn′U)‖L(Hs,Hs−m−N2 ) ≤ Cs,N2 |n′|ν(p)+ν
p∏

ℓ=1

‖Πnℓ
uℓ‖L2 .

In particular, if uℓ ∈ Hσ(X), ℓ = 1, . . . , p, with σ > ν(p) + ν + 1
2 , A(U) =

∑
n′ A(Πn′U) defines

an element of L(Hs, Hs−m) for any s in R.

• Estimates (1.2.6), (1.2.7) assert that elements of P̃0,ν
p are bounded from Hs to Hs for any s, and

that in (1.2.6), the coefficients U are spectrally localized essentially for frequencies λn1 , . . . , λnp

satisfying |n′| = max(n1, . . . , np) ≤ 2j . Such properties are to be expected from para-differential
operators. Nevertheless, they do not suffice to give a class of operators enjoying a symbolic
calculus. To define a true class of para-differential operators, we shall not use symbols, but
instead a formulation in terms of commutators with differential operators, similar to the Beals
characterization of pseudo-differential operators [4]. In that way, we can give a global definition
on the manifold.

If A,P are two operators, we set AdPA = [P,A].

Definition 1.2.2 We assume given a real number M0 ≥ 1. For p ∈ N,m ∈ R, ν ∈ R+, we
denote by H̃Ψ

m,ν

p the space of p-linear maps U = (u1, . . . , up) → A(U), defined on C∞(X)p with
values in the space of linear maps from C∞(X) to D′(X), such that, for any family (P1, . . . , Pk)
of differential operators on X, of respective orders d1, . . . , dk, for any N1, N2 ∈ N, there is C > 0
and, for any U in C∞(X)p, any n′ = (n1, . . . , np) ∈ (N∗)p, any j, j′ in N

‖∆jAdP1 · · · AdPk
A(Πn′U)∆j′‖L(L2) ≤ C2−N1|j−j′|2j(m+

∑k

ℓ=1
dℓ−k)|n′|ν(p)+ν+M0k

×(1 + 2−j |n′|)−N2

p∏

ℓ=1

‖Πnℓ
uℓ‖L2 .

(1.2.8)

If we want to make explicit in the notation the constant M0 in the above estimate, we use the
notation H̃Ψ

m,ν

p [M0] for the preceding space.

Remarks: • In comparison with (1.2.6), we see that (1.2.8) gains −1 on the order of the
operator every time we make act a commutator with a Pk′ . This gain is traded against a loss
on the smoothness of the coefficients U , given by the power M0k of |n′|. In general, M0 will be
a constant strictly larger than one.
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• It follows from the definition that H̃Ψ
m−1,ν+1

p ⊂ H̃Ψ
m,ν

p .

• If A is in H̃Ψ
m,ν

p , it follows from the definition that for any P1, . . . , Pk as in (1.2.8), any N2 ∈ N,
any s ∈ R, there is C > 0, and for any U in C∞(X)p, any n′ in (N∗)p

(1.2.9)

|n′|N2‖AdP1 · · · AdPk
A(Πn′U)‖

L(Hs,H
s−m−N2−

∑k

1
dℓ+k

)
≤ Cs,N2 |n′|ν(p)+ν+M0k

p∏

ℓ=1

‖Πnℓ
uℓ‖L2 .

Conversely, if such an estimate holds for any P1, . . . , Pk, s,N2, then A satisfies (1.2.8). This

equivalent characterization shows in particular that, if θ is in C∞(X) and A is in H̃Ψ
m,ν

p , then

θA and Aθ are in H̃Ψ
m,ν

p . Moreover, estimate (1.2.9) with N2 = 0, k = 0 shows that if uℓ is in

Hσ(X) with σ > ν(p) + ν + 1
2 for ℓ = 1, . . . , p, then U → A(U) extends as a continuous p-linear

map from Hσ × · · · ×Hσ to L(Hs, Hs−m) for any s.

• One has an inclusion

(1.2.10) H̃Ψ
m,ν

p ⊂ P̃m,ν+2M0
p .

Actually, we may write

(λ2
n0

− λ2
np+1

)2Πn0A(Πn′U)Πnp+1 = Πn0Ad∆Ad∆A(Πn′U)Πnp+1

so that (1.2.8) implies estimates (1.2.9) with ν replaced by ν + 2M0.

• Note that it suffices to assume that (1.2.8) or (1.2.9) holds when the orders d1, . . . , dk of
P1, . . . , Pk are zero or one. Actually, any differential operator on X of order r ≥ 1 may be
written as a finite linear combination with smooth coefficients of expressions X1 · · ·Xr′ , with
r′ ≤ r and Xj smooth vector field on X. This allows one to deduce (1.2.9) (and so (1.2.8)) for
general Pℓ’s from the estimates corresponding to operators of order zero or one.

We define from the preceding classes operators whose coefficients are given in terms of a single
function U = (u, ū) instead of a p-tuple of functions.

Definition 1.2.3 Let m ∈ R, ν ∈ R+, p ∈ N. One denotes by HΨm,ν
p (resp. Pm,ν

p ) the space of
functions U → A(U), defined for U = (u, ū) in C∞(X), with values in the vector space of linear
maps from C∞(X) to D′(X), such that there is a family Aj of elements of H̃Ψ

m,ν

p (resp. P̃m,ν
p ),

0 ≤ j ≤ p, so that

(1.2.11) A(U) =
p∑

j=0

Aj(u, . . . , u︸ ︷︷ ︸
j

, ū, . . . , ū︸ ︷︷ ︸
p−j

).

As in the case of multi-linear operators, we see that if σ > ν(p) + ν+ 1
2 , any element U → A(U)

of HΨm,ν
p or Pm,ν

p extends as a continuous map from Hσ(X) to L(Hs, Hs−m) for any s.

We denote by HΨm,ν
p [M0] the same space as above, when we want to make explicit the constant

M0 used in the definition of H̃Ψ
m,ν

p [M0].
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We may deduce from the definitions of the preceding classes composition results.

Lemma 1.2.4 Let m,m′ be in R, ν, ν ′ be in R+, p, q be in N. Assume that (1.2.4) is satisfied
for some a ≤ ν + ν ′. The following inclusions hold:

H̃Ψ
m,ν

p [M0] ◦ H̃Ψ
m′,ν′

q [M0] ⊂ H̃Ψ
m+m′,ν+ν′−a
p+q [M0]

HΨm,ν
p [M0] ◦HΨm′,ν′

q [M0] ⊂ HΨm+m′,ν+ν′−a
p+q [M0]

(1.2.12)

when p > 0 and q > 0,

H̃Ψ
m,ν

p [M0] ◦ H̃Ψ
m′,ν′

q [M0] ⊂ H̃Ψ
m+m′,ν+ν′

p+q [M0]

HΨm,ν
p [M0] ◦HΨm′,ν′

q [M0] ⊂ HΨm+m′,ν+ν′

p+q [M0]
(1.2.13)

if p = 0 or q = 0,

H̃Ψ
m,ν

p [M0] ◦ P̃m′,ν′

q ⊂ P̃m+m′,ν+ν′−a+2M0
p+q

P̃m,ν
p ◦ H̃Ψ

m′,ν′

q [M0] ⊂ P̃m+m′,ν+ν′−a+2M0
p+q

P̃m,ν
p ◦ P̃m′,ν′

q ⊂ P̃m+m′,ν+ν′−a
p+q

(1.2.14)

if p > 0 and q > 0. If p = 0 or q = 0, one has similar inclusions with a = 0 in the exponents
of the right hand side. Finally, (1.2.14) holds also replacing everywhere H̃Ψ (resp. P̃ ) by HΨ
(resp. P ).

Proof: To prove (1.2.12), one notices that if U ′ = (u1, . . . , up), U ′′ = (up+1, . . . , up+q),
AdP1 · · · AdPK

[A(U ′) ◦B(U ′′)] may be expressed from

(AdPi1
· · · AdPiℓ

A(U ′)) ◦ (AdPj1
· · · AdPjℓ′

B(U ′′))

where ℓ+ ℓ′ = k, {i1, . . . , iℓ} ∪ {j1, . . . , jℓ′} = {1, . . . , k}. One has just to apply characterization
(1.2.9) of the H̃Ψ-spaces, together with (1.2.4), to obtain the first inclusion in (1.2.12), (1.2.13).
The second inclusion in those formulas follows from the first one.

To prove the last inclusion (1.2.14), one writes

Πn0A(Πn′U ′) ◦B(Πn′′U ′′)Πnp+1 =
∑

n

(Πn0A(Πn′U ′)Πn) ◦ (ΠnB(Πn′′U ′′)Πnp+1),

and uses (1.2.5). The first and the second inclusions (1.2.5) follow from the third one and from
(1.2.10). This concludes the proof. ✷

We have defined up to now operators homogeneous of order p in some function U . We shall
need as well similar classes for which the U -dependence will be only C1, with some vanishing
when U → 0. If σ is a real number (that will be large enough in practice), we set for R > 0,

(1.2.15) Bσ(R) = {U ∈ Hσ(X); ‖U‖Hσ < R}.
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Definition 1.2.5 Let m ∈ R, ν ∈ R+, p ∈ N, σ > 0, R > 0. One denotes by Ψm,ν
p (Bσ(R)) the

space of maps U = (u, ū) → A(U), defined on Bσ(R), with values in the space of linear maps
from C∞(X) to D′(X), satisfying the following conditions:

(i) For any family P1, . . . , Pk of differential operators of orders d1, . . . , dk on X, for any N ∈ N,
there is C > 0 such that, for any U ∈ Bσ(R), any j, j′ ∈ N

(1.2.16)

‖∆jAdP1 · · · AdPk
A(U)∆j′‖L(L2) ≤ C2−N |j−j′|2j[m+

∑k

ℓ=1
dℓ−k+(M0k+ν(p)+ν−σ)+]‖U‖pHσ .

(ii) For any j, j′, P1, . . . , Pk as above, the map U → ∆jAdP1 · · · AdPk
A(Πn′U)∆j′ is C1 on Bσ(R)

with values in L(L2) and, for any σ′ with |σ′| ≤ σ, the differential in U extends as a linear map
from Hσ′

(X) to L(L2) such that, for any N ∈ N, there is C > 0 so that, for any U ∈ Bσ(R),
any j, j′ ∈ N, any H in Hσ′

(X)

(1.2.17) ‖∆jAdP1 · · · AdPk
(∂UA(U) ·H)∆j′‖L(L2)

≤ C2−N |j−j′|2j[m+
∑k

ℓ=1
dℓ−k+(M0k+ν(p)+ν−σ′)+]‖U‖p−1

Hσ ‖H‖Hσ′ .

Remarks: • We may write equivalent formulations of (1.2.16), (1.2.17), asking that for any
s ∈ R, any P1, . . . , Pk as in the statement of the definition, any σ′ with |σ′| ≤ σ, any U in
Bσ(R), any H in Hσ′

,

(1.2.18) ‖AdP1 · · · AdPk
A(U)‖

L(Hs,H
s−

(
m+

∑
dℓ−k

)
−(M0k+ν(p)+ν−σ)+ )

≤ C‖U‖pHσ

and

(1.2.19) ‖AdP1 · · · AdPk
(∂UA(U) ·H)‖

L(Hs,H
s−

(
m+

∑
dℓ−k

)
−(M0k+ν(p)+ν−σ′)+ )

≤ C‖U‖p−1
Hσ ‖H‖Hσ′ .

• In (1.2.18), (1.2.19) it would be enough to assume that these inequalities hold for all k such
that M0k + ν(p) + ν − σ < 1. The inequalities for larger values of k will follow from the fact
that Pℓ is bounded from Hs to Hs−dℓ for any s and the assumption M0 ≥ 1.

• As in the case of the preceding multi-linear classes, the space Ψm,ν
p (Bσ(R)) is stable by mul-

tiplication at the left or at the right by functions in C∞(X). Moreover, it is enough to assume
conditions (1.2.16), (1.2.17) (or (1.2.18), (1.2.19)) for operators Pℓ of order zero or one.

• It follows from Definition 1.2.5 and from (1.2.8) that if q ≥ p and if ν ′ is any number with
ν ′ > ν + ν(q) − ν(p) + 1

2 , HΨm,ν
q is contained in Ψm,ν′

p (Bσ(R)) for any σ > 0, any R > 0 (using
characterization (1.2.1) of Sobolev norms).

Let us state a composition result for the operators of the class we just defined, similar to
Lemma 1.2.4. We shall need later on to control some semi-norms that we introduce before the
statement. If P = (P1, . . . , Pk) is a collection of differential operators of orders d1, . . . , dk, if
σ ∈ R, we set AdP = AdP1 · · · AdPk

,

(1.2.20) α(P, p, ν, σ) =
k∑

ℓ=1

dℓ − k + (M0k + ν(p) + ν − σ)+.
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If A is in Ψm,ν
p (Bσ(R)) and σ′ is in [−σ, σ], we define

N
0,m,s
(P,p,ν,σ)(A) =

∑

P ′⊂P
‖AdP ′A(U)‖L(Hs,Hs−m−α(P′,p,ν,σ))

N
1,m,s
(P,p,ν,σ′)(A) =

∑

P ′⊂P
sup

‖H‖
Hσ′ ≤1

‖AdP ′(∂uA(U) ·H)‖L(Hs,Hs−m−α(P′,p,ν,σ′))

(1.2.21)

where the sums are taken over all sub-families of P.

Lemma 1.2.6 Let m,m′ ∈ R, ν, ν ′ ∈ R+, p, p′ ∈ N, R > 0. Let σ > 0 satisfying the inequality
σ ≥ min(ν(p), ν(p′))+min(ν, ν ′) and let U → A(U) (resp. U → B(U)) be in Ψm,ν

p (Bσ(R)) (resp.

Ψm′,ν′

p′ (Bσ(R))). Then U → A(U) ◦B(U) is in Ψ
m+m′,max(ν,ν′)
max(p,p′) (Bσ(R)). Moreover, for any P =

(P1, . . . , Pk) as above, there is a constant C > 0, depending only on P, R, p, p′, ν, ν ′,m,m′, s, σ′ ∈
[−σ, σ] such that, if p′′ = max(p, p′), ν′′ = max(ν, ν ′)

N
0,m+m′,s
(P,p′′,ν′′,σ)(A ◦B) ≤ CN0,m,s

(P,p,ν,σ)(A)N0,m′,s
(P,p′,ν′,σ)(B)

N
1,m+m′,s
(P,p′′,ν′′,σ′)(A ◦B) ≤ C[N0,m,s

(P,p,ν,σ)(A)N1,m′,s
(P,p′,ν′,σ′)(B) + N

1,m,s
(P,p,ν,σ′)(A)N0,m′,s

(P,p′,ν′,σ)(B)].
(1.2.22)

Proof: We may write AdP(A(U) ◦ B(U)) as a linear combination of quantities of the form
(AdP ′A(U)) ◦ (AdP ′′B(U)) where (P ′,P ′′) is a partition of P. If k′ (resp. k′′, resp. k) is
the cardinal of P ′ (resp. P ′′, resp. P), we shall deduce estimates (1.2.18), (1.2.19) for the
composition from the corresponding estimates for each factor, if we have the inequality

α(P ′, p, ν, σ) + α(P ′′, p′, ν′, σ′) ≤ α(P,max(p, p′),max(ν, ν ′), σ′)

for |σ′| ≤ σ (and the same inequality with σ and σ′ exchanged in the left hand side). This
follows from

(M0k
′ +ν(p)+ν−σ)+ +(M0k

′′ +ν(p′)+ν ′ −σ′)+ ≤ (M0k+max(ν(p), ν(p′))+max(ν, ν ′)−σ′)+

which is a consequence of the assumptions on σ, σ′. Inequalities (1.2.22) follow from the proof.
✷

To state a more general version of Theorem 1.1.1, we introduce classes of functions defined on
Bσ(R), in terms of the preceding classes of operators.

Definition 1.2.7 Let m ∈ R, ν ∈ R+, p ∈ N, σ ∈ R, R > 0. Assume

(1.2.23) σ > ν(p) + ν +
1

2
, 2σ ≥ m.

(i) One denotes by HFm,ν
p,E (Bσ(R)) (resp. HFm,ν

p,H (Bσ(R)), resp. HFm,ν
p (Bσ(R))) the space of

functions F defined on Bσ(R), real valued, that may be written, for some element Ap of HΨm,ν
p

as

(1.2.24) F (U) = Re

∫

X
[Ap(U)u]u dµ
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resp. as

(1.2.25) F (U) = Re

∫

X
[Ap(U)u]ū dµ,

resp. as the sum of an element of HFm,ν
p,E (Bσ(R)) and of an element of HFm,ν

p,H (Bσ(R)). One
uses the notation HFm,ν

p (Bσ(R))[M0] when one wants to keep track of the constant M0 as in
the definition of HΨm,ν

p [M0].

(ii) One denotes by Fm,ν
p,E (Bσ(R)) (resp. Fm,ν

p,H (Bσ(R)), resp. Fm,ν
p (Bσ(R))) the space of func-

tions defined on Bσ(R) by similar expressions as above, but with Ap in Ψm,ν
p (Bσ(R)).

(iii) One denotes by Gm,νp (Bσ(R)) the space of functions defined on Bσ(R) as Fm,ν
p (Bσ(R)), but

with Ap in Pm,ν
p .

Remarks: • We shall call elements of HFm,ν
p,E (Bσ(R)) (resp. HFm,ν

p,H (Bσ(R))) elliptic (resp.
hyperbolic) elements.

• Since Ap(U) sends Hσ to Hσ−m, the second assumption (1.2.23) shows that (1.2.24), (1.2.25)
make sense.

• It follows from Definition 1.2.3 and inequality (1.2.7) that if F is in Gm,νp (Bσ(R)) and σ is
large enough relatively to m, ν, then ∇F is in Hσ−m.

Let us define the set N of exceptional values of the mass that have to be excluded. For m ∈
]0,+∞[, define if p ∈ N, 0 ≤ ℓ ≤ p, ξj ∈ R for 0 ≤ j ≤ p+ 1,

F p,ℓ
m

(ξ0, . . . , ξp+1) =
ℓ∑

j=0

√
m2 + ξ2

j −
p+1∑

j=ℓ+1

√
m2 + ξ2

j

Gp,ℓ
m

(ξ1, . . . , ξp) =
ℓ∑

j=1

√
m2 + ξ2

j −
p∑

j=ℓ+1

√
m2 + ξ2

j .

(1.2.26)

Denote by Zℓ(p) (resp. Zℓ(p)) the set of those (n0, . . . , np+1) ∈ (N∗)p+2 (resp. (n1, . . . , np) ∈
(N∗)p) such that there is a bijection τ : {0, . . . , ℓ} → {ℓ + 1, . . . , p + 1} (resp. τ : {1, . . . , ℓ} →
{ℓ+ 1, . . . , p}) with nτ(j) = nj for any j = 0, . . . , ℓ (resp. j = 1, . . . , ℓ). Of course, these sets are
empty if p is odd, or if p is even and ℓ 6= p/2. Then, Theorem 4.7 of [8] (see also, for similar
results in one dimension, Bambusi [1] and Bourgain [5]) asserts that there is N ⊂]0,+∞[ of zero
measure and for any p ∈ N, L0 > 0 such that, for any m ∈]0,+∞[−N , there is c > 0 with

|F p,ℓ
m

(λn0 , . . . , λnp+1)| ≥ c(n0 + · · · + np+1)−L0

inf
α∈Z

∣∣∣Gp,ℓ
m

(λn1 , . . . , λnp) +
α

2

∣∣∣ ≥ c(n1 + · · · + np)
−L0

(1.2.27)

for any (n0, . . . , np+1) ∈ (N∗)p+2 − Zℓ(p) and any (n1, . . . , np) ∈ (N∗)p − Zℓ(p) respectively.

We may state a more general version of Theorem 1.1.1.
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Theorem 1.2.8 Let P ∈ N∗ be given, R > 0, ν′ ∈ R+. Let P ′ ∈ N∗, σ > ν(P ′) + ν + 1
2 and let

for any 1 ≤ p ≤ P ′, Gp be an element of HF1,ν′

p (Bσ(R)). Denote G0(U) =
∫
X(Λmu)ū dµ and

G(U) =
∑P ′

p=0Gp(U). Then for any m ∈]0,+∞[−N , there is s0 > 0 such that, for any s > s0,
there are ǫ0 ∈]0, 1[, c > 0, C > 0 and, for any ǫ ∈]0, ǫ0[, for any u0 in the unit ball of Hs(X),
there is a unique solution u in C0(] − Tǫ, Tǫ[, H

s(X)) of the equation

(1.2.28) ut = i∇ūG(u, ū), u(0, x) = ǫu0(x)

with Tǫ ≥ cǫ−P . Moreover

(1.2.29) sup
|t|<Tǫ

‖u(t, ·)‖Hs ≤ Cǫ.

In the rest of this subsection, we shall prove that Theorem 1.2.8 contains Theorem 1.1.1. We
do need the more general statement of Theorem 1.2.8 because the structure of G =

∑
pGp will

be stable along the proof.

We have seen that the proof of Theorem 1.1.1 may be reduced to solving equation (1.1.18) with
a Hamiltonian G given by (1.1.11), with V related to U = (u, ū) by (1.1.13). Consequently,
Theorem 1.1.1 follows from Theorem 1.2.8 and the following lemma:

Lemma 1.2.9 Set G(U) = G0(U) − F
(
Λ

−1/2
m

√
2

2i (u − ū)
)
. Then G has the structure of the

assumption of Theorem 1.2.8 for any fixed R > 0 if σ > ν(p)+ν+ 1
2 , ν

′ ≥ d
2 +1 and ν(p) ≥ p

(
d
2 +1

)

for any p = 1, . . . , P ′.

Before giving the proof of the lemma, we shall establish some properties of F (v) =
∫
X f(v, dv) dµ,

where (z, ρ) → f(z, ρ) is a smooth function on R×T ∗X, polynomial in z and in the fiber variable
of ρ, and v is in Lip(X), the space of real valued lipschitz function on X. We denote for a while
by {·, ·} the Poisson bracket between functions on T ∗X, as at the beginning of subsection 1.1. We
consider systematically any smooth enough function on X as a function on T ∗X, independent
of the fiber variable. For h a given element in Lip(X), f : R× T ∗X → R a smooth function, we
define a new function D(h)f from R × T ∗X to R by the formula

(1.2.30) D(h)f =
∂f

∂z
h− {h, f}.

This new function is no longer smooth in ρ ∈ T ∗X, because of the limited smoothness of h.
Nevertheless, a composition D(h1) · · · D(hp)f is still meaningful, for any h1, . . . , hN ∈ Lip(X):
for instance

D(h1)D(h2)f =
∂2f

∂z2
h1h2 −

{
h1,

∂f
∂z

}
h2 −

{
h2,

∂f
∂z

}
h1 + {h2, {h1, f}}

never involves more than one derivative acting on each hj . By an immediate computation in
local coordinates, one checks that F (U) =

∫
X f(v, dv) dµ is a smooth function on Lip(X), whose

differentials are given by

(1.2.31) dpF (v) · (h1, . . . , hp) =

∫

X

( p∏

j=1

D(hj)f
)
(v, dv) dµ.
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This formula, and the above expression for D(hj), shows that when v stays in a fixed ball of
Lip(X),

(1.2.32) |dpF (v) · (h1, . . . , hp)| ≤ C
p∏

j=3

‖hj‖Lip(X)‖h1‖H1‖h2‖H1 .

We shall need bounds on the commutator between the symmetric operator associated to the
bilinear form (h1, h2) → d2F (v)(h1, h2) and differential operators. We fix some notation: if
w1, . . . , wp are smooth functions on X, if k ∈ N, we set

(1.2.33) Mk(w1, . . . , wp) =
∑

|α1|+···+|αp|=k

p∏

j=1

‖∂αwj‖Lip(X).

Definition 1.2.10 Let p ∈ N, r ∈ N,m ∈ Z. If m < 0, set H̃Am

p,r = {0}. If m ≥ 0, we denote

by H̃Am

p,r the space of p-linear maps (v1, . . . , vp) → A(v1, . . . , vp), defined on C∞(M,R)p, with
values in the space symmetric bilinear forms on C∞(X,R) ×C∞(X,R), satisfying the following
condition: for any local chart θ : V → U from an open subset V of X to an open subset U of
Rd, for any γ1, γ2 in Nd with |γ1| + |γ2| ≤ m, there is a map

aγ1,γ2 : (x, v1, . . . , vp) −→ aγ1,γ2(x, v1, . . . , vp)

U × C∞(M,R)p → R
(1.2.34)

which is p-linear in (v1, . . . , vp), smooth in x, satisfying for any α ∈ Nd

(1.2.35) |∂αx aγ1,γ2(x, v1, . . . , vp)| ≤ CM|α|+r(v1, . . . , vp)

such that, for any h1, h2 in C∞
0 (V,R),

(1.2.36)

A(v1, . . . , vp)(h1, h2) =
∑

|γ1|+|γ2|≤m

∫

U
aγ1,γ2(x, v1, . . . , vp)(∂

γ1
x [h1 ◦ θ−1])(∂γ2

x [h2 ◦ θ−1]) dx.

One denotes by HAm
p,r the space of maps v → A(v) that may be written Ã(v, . . . , v) for some Ã

in H̃Am

p,r.

We shall use the following lemma:

Lemma 1.2.11 Let P be a differential operator of order ℓ on X, A be an element of H̃Am

p,r.

Then (h1, h2) → A(v1, . . . , vp)(Ph1, h2) −A(v1, . . . , vp)(h1,
tPh2) is in

∑ℓ
ℓ′=1 H̃Am+ℓ−ℓ′

p,r+ℓ′ .

Proof: If Ã is in H̃Am

p,r, we may write, according to (1.2.36), the quantity under study from
expressions

∫

U
aγ1,γ2(x, v1, . . . , vp)(∂

γ1
x [Ph1 ◦ θ−1])(∂γ2

x [h2 ◦ θ−1]) dx

−
∫

U
aγ1,γ2(x, v1, . . . , vp)(∂

γ1
x [h1 ◦ θ−1])(∂γ2

x [(tPh2) ◦ θ−1]) dx.
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If we perform integrations by parts in the second integral, we get expressions involving at most
ℓ′ derivatives of aγ1,γ2 and |γ1| + |γ2| − ℓ′ + ℓ derivatives of (h1, h2) for 1 ≤ ℓ′ ≤ ℓ. This shows

that we obtain an element of
∑ℓ
ℓ′=1 H̃Am+ℓ−ℓ′

p,r+ℓ′ . ✷

Proof of Lemma 1.2.9: We denote by Q the pseudo-differential operator of order −1/2, Q =

Λ
−1/2
m

√
2

2i [1 − 1], acting on complex valued functions U =
[
u
ū

]
. The Hamiltonian G of the

statement of the lemma is expressed in terms of

U → F (QU) =

∫

X
f(QU, dQU) dµ.

Using notation (1.2.2), with the convention S−1 = 0, we write Id =
∑+∞
j=0(Sj − Sj−1) so that

F (QU) =
+∞∑

j=0

(F (QSjU) − F (QSj−1U)) =
+∞∑

j=0

∫ 1

0
dF (QSj(t)U) ·Q∆jU dt

where Sj(t) = tSj +(1− t)Sj−1. Applying the same decomposition to U → dF (QSj(t)U), which
is possible since dF (0) = 0, we get

(1.2.37) F (U) =
+∞∑

j=0

+∞∑

j′=0

∫ 1

0

∫ 1

0
d2F (QSjj′(t, t′)U) · (Q∆jU,QSj(t)∆j′U) dtdt′

with Sjj′(t, t′) = Sj(t)Sj′(t′). We use Taylor formula to decompose

d2F (W ) =
+∞∑

p=0

1

p!
dp+2F (0) ·W p

where the sum is finite since F is polynomial. Plugging this expression in (1.2.37) and using the
expression (1.2.31) of dpF , and the fact that F vanishes at least at order three at zero, we may
write

(1.2.38) F (QU) =
+∞∑

p=1

Ap(U) · (U,U),

where the symmetric bilinear forms Ap(U) are given by

(1.2.39) Ap(U) =
+∞∑

j1=0

+∞∑

j′
1=0

∫ 1

0

∫ 1

0
A
j1,j′

1
p (U, t, t′) dtdt′, p ≥ 1,

denoting

(1.2.40) A
j1,j′

1
p (U, t, t′) · (H1, H2) =

1

p!

∫

X
D(Q∆j1H1)D(QSj1(t)∆j′

1
H2)gp(U, ·)|{0}×X dµ

with

(1.2.41) gp(U, z, ρ) = [D(QSj1j′
1
(t, t′)U)]pf(z, ρ)
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(The restriction in the right hand side of (1.2.40) means restriction to the zero section {0} ×X
of R × T ∗X).

To finish the proof of the lemma, we have to show that Gp(U) = −Ap(U) · (U,U) is in
HF1,ν′

p (Bσ(R)) with σ > ν(p) + ν ′ + 1
2 for any p ≥ 1. This follows from next lemma. ✷

Lemma 1.2.12 For U = (U1, . . . , Up) a family of C∞(X) functions, set

(1.2.42) g̃p(U , t, t′, z, ρ) =
p∏

ℓ=1

D(QSj1j′
1
(t, t′)Uℓ) · f(z, ρ)

and define A
j1,j′

1
p (U , t, t′) (resp. Ap(U)) by (1.2.40) (resp. (1.2.39)) with gp replaced by g̃p and

with U replaced by U . Then, if we identify these symmetric bilinear forms on C∞(X) ×C∞(X)

to the corresponding linear maps from C∞(X) to D′(X), Ap(U) belongs to H̃Ψ
1,ν′

p if ν ′ ≥ ν
(
d
2 +1

)

and ν(p) ≥ p
(
d
2 + 1

)
.

Proof: Define for p ∈ N∗

(1.2.43) B
j1,j′

1
p (U , t, t′)(H1, H2) =

1

p!

∫

X
D(H1)D(H2)g̃p(U , ·)|{0}×X dµ.

Let us check that B
j1,j′

1
p is in H̃A2

p,0, with constants in estimates (1.2.35) uniform in j1, j
′
1, t, t

′.

It follows from the definition of D(h) that |D(h1) · · · D(hp)f | is bounded from above by a constant
times C

∏p
1‖hj‖Lip(X). Expression (1.2.42), and boundedness of pseudo-differential operators of

order −1/2 like QSj1,j′
1
(t, t′) on Lip(X), show that ∂αx derivatives of g̃p(U , t, t′, z, ρ) are bounded,

when (z, ρ) stays in a compact set, in terms of M|α|(U1, . . . , Up) defined by (1.2.33). If in

(1.2.43), H1, H2 are supported in a chart domain, it follows that B
j1,j′

1
p (U , t, t′)(H1, H2) is given

by an expression of form (1.2.36) with m = 2, and with ∂αx -derivatives of the coefficients aγ1,γ2

bounded by the right hand side of (1.2.35) with r = 0. This shows that B
j1,j′

1
p (U , t, t′) is in

H̃A2

p,0, uniformly in j1, j
′
1, t, t

′. Moreover, because of the definition of g̃p, B
j1,j′

1
p (Πn′U , t, t′) ≡ 0

if |n′| ≥ C2min(j1,j′
1) for some large enough constant C.

We have to deduce from these informations on B
j1,j′

1
p the conclusion of the lemma for Ap(U).

Identifying bilinear forms and linear maps, we deduce from (1.2.40), (1.2.42), (1.2.43) that A
j1,j′

1
p

may be written in terms of B
j1,j′

1
p by

(1.2.44) A
j1,j′

1
p (U , t, t′) = ∆j1

tQB
j1,j′

1
p (U , t, t′)QSj1(t)∆j′

1
.

Let P = (P1, . . . , Pk) be a family of differential operators, and denote AdP = AdP1 · · · AdPk
. By

definition of Ap(U) and (1.2.44)

∆jAdPAp(Πn′U)∆j′ =

∑

j1

∑

j′
1

∫ 1

0

∫ 1

0
∆jAdP [∆j1

tQB
j1,j′

1
p (Πn′U , t, t′)QSj1(t)∆j′

1
]∆j′ dtdt′.(1.2.45)
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The integrand may be written from a sum of terms

(1.2.46) ∆jAdP ′ [∆j1
tQ] · AdP ′′ [B

j1,j′
1

p (Πn′U , t, t′)] · AdP ′′′ [QSj1(t)∆j′
1
]∆j′

where P ′ ∪ P ′′ ∪ P ′′′ is a partition of P. Let ϕ̃ ∈ C∞
0 (R − {0}) with ϕ̃ϕ = ϕ, and denote by

∆̃j = ϕ̃(2−j√−∆) the corresponding spectral cut-off (with the obvious modification for j = 0).

We insert ∆̃j2∆j2 , ∆̃j′
2
∆j′

2
in (1.2.46) and rewrite this expression as

∑

j2

∑

j′
2

K(j, j1, j2)∆j2AdP ′′ [B
j1,j′

1
p (Πn′U , t, t′)]∆j′

2
K ′(j′

2, j
′
1, j

′)

with
K(j, j1, j2) = ∆jAdP ′ [∆j1

tQ]∆̃j2 , K
′(j′

2, j
′
1, j

′) = ∆̃j′
2
AdP ′′′ [QSj1(t)∆j′

1
]∆j′ .

By Proposition A.1 of the appendix, for any N ∈ N, there is CN > 0 such that

‖K(j, j1, j2)‖L(L2) ≤ CN2−N [|j−j1|+|j1−j2|]− j
2

+jD

‖K ′(j′
2, j

′
1, j

′)‖L(L2) ≤ CN2−N [|j′−j′
1|+|j′

1−j′
2|]− j′

2
+j′D′

with D =
∑
P∈P ′ deg(P )−|P ′|, D′ =

∑
P∈P ′′′ deg(P )−|P ′′′|. These estimates, and an elementary

computation, show that (1.2.45) will satisfy (1.2.8) with m = 1,M0 = 1 if we may prove that
for any N1 ∈ N, there is N ′

1 such that

‖∆j2AdP ′′ [B
j1,j′

1
p (Πn′U , t, t′)]∆j′

2
‖L(L2) ≤ C2−N1|j2−j′

2|+N ′
1(|j1−j2|+|j′

1−j′
2|)2j2[2+D′′]

×|n′|ν(p)+|P ′′|
(1 + 2−j1 |n′|)−N2

∏
‖Πnℓ

uℓ‖L2 ,
(1.2.47)

where D′′ =
∑
P∈P ′′ deg(P )−|P ′′|. Note that a commutator [P,B

j1,j′
1

p (Πn′U , t, t′)] is the transla-
tion at the level of linear maps of the quantities studied in Lemma 1.2.11 at the level of bilinear

forms. By this lemma, AdP ′′B
j1,j′

1
p (Πn′U , t, t′) will be the sum indexed by a in {0, . . . , D′′} of

elements of H̃AD′′−a+2

p,|P ′′|+a. Expressions (1.2.36) and bounds (1.2.35) imply that the left hand side
of (1.2.47) is smaller than

CM|P ′′|+a(Πn′U)
∑

|γ2|+|γ′
2|≤D′′−a+2

2j2|γ2|+j′
2|γ′

2|.

By (1.2.33) and Sobolev injections, this is smaller than

(1.2.48) C|n′||P
′′|+p

[
d
2

+1
]
2j2(D′′+2)+(D′′+2−a)|j2−j′

2|(|n′|2−j2)a
p∏

1

‖Πnℓ
uℓ‖L2 .

We have seen that if B
j1,j′

1
p (Πn′U , t, t′) 6= 0, then |n′| ≤ C min(2j1 , 2j

′
1). This shows that (1.2.48)

implies (1.2.47) with ν(p) = p
[
d
2 + 1

]
if we are able to show that we may improve (1.2.48) by a

factor 2N1[|j1−j2|+|j′
1−j′

2|−|j2−j′
2|] for any N1. To do so, we denote by ∆̄j a new cut-off such that,

for j > 0, ∆∆̄j = 22j∆j . When 0 < j′
2 ≤ j2, write

22j2∆j2AdP ′′ [B
j1,j′

1
p (Πn′U , t, t′)]∆j′

2
= ∆̄j2∆AdP ′′ [B

j1,j′
1

p (Πn′U , t, t′)]∆j′
2

= ∆̄j2Ad∆AdP ′′ [B
j1,j′

1
p (Πn′U , t, t′)]∆j′

2
+ ∆̄j2AdP ′′ [B

j1,j′
1

p (Πn′U , t, t′)]∆̄j′
2
22j′

2 .
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If we apply estimate (1.2.48) to the right hand side of this equality, we get a bound given by
the product of (1.2.48) and of

|n′|2j2 + 22j′
2 ≤ C[2j2+j′

1 + 22j′
2 ].

Consequently, we gained the factor

2j
′
1−j2 + 22(j′

2−j2) ≤ C2−|j′
2−j2|+|j′

1−j′
2|.

A symmetric reasoning applies if j2 ≤ j′
2, so that we have gained, in the special case N1 = 1,

the missing factor 2N1[|j1−j2|+|j′
1−j′

2|−|j2−j′
2|]. Iterating, we get the case of an arbitrary N1. ✷

2 Symbolic calculus

The quasi-linear Birkhoff normal forms method, that will be used to prove Theorem 1.2.8,
will rely on properties of commutators of operators belonging to the classes defined in Defini-
tions 1.2.3, 1.2.5. To establish such properties, we need a notion of principal symbol that will
be defined through local models of our operators, acting on functions defined on the Euclidean
space.

2.1 Operators on Rd and their symbols

In the same way as we defined dyadic cut-offs acting on functions on the compact manifold X
in (1.2.2), we define for u in S ′(Rd), j in N

∆E
j u = F−1(

ϕ(2−j |ξ|)û)
, j ≥ 1

∆E
0 u = SE

0 u = F−1(
ψ(|ξ|)û)

SE
j u =

j∑

j′=0

∆E
j′u.

(2.1.1)

where û (resp. F−1) denotes the Fourier transform (resp. the inverse Fourier transform) on Rd,
and where ϕ,ψ are the functions introduced at the beginning of subsection 1.2.

Definition 2.1.1 Let m ∈ R, ν ∈ N, p ∈ N. One denotes by H̃Ψ
m,ν

p,loc the space of p-linear maps
U = (U1, . . . , Up) → A(U), defined on C∞(X)p, with values in the space of linear maps from
C∞

0 (Rd) to D′(Rd), such that the distribution kernel of A(U) is supported in a compact subset
of Rd × Rd (independent of U) and such that for any family of differential operators P1, . . . , Pk
of order d1, . . . , dk, for any U in C∞(X)p, any n′ = (n1, . . . , np) in (N∗)p, any j, j′ in N, any
N1, N2 in N,

‖∆E
j AdP1 · · · AdPk

A(Πn′U)∆E
j′‖L(L2)

is bounded from above by the right hand side of (1.2.8)
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As in the case of global operators onX, one can give an equivalent definition in terms of estimates
of the form (1.2.9). We define from H̃Ψ

m,ν

p,loc the space HΨm,ν
p,loc as in Definition 1.2.3

Definition 2.1.2 Let m ∈ R, ν ∈ N, p ∈ N, σ > 0, R > 0. One defines Ψm,ν
p,loc(Bσ(R)) as the

space of maps U → A(U) defined on Bσ(R), with values in the vector space of linear maps from
C∞

0 (Rd) to D′(Rd), such that the distribution kernel of A(U) is supported in a compact subset
of Rd × Rd independent of U , and such that for any family of differential operators P1, . . . , Pk
of order d1, . . . , dk, for any N ∈ N, for any σ′ ∈ [−σ, σ], any U ∈ Bσ(R), any H ∈ Hσ′

(X), any
j, j′ ∈ N, ‖∆E

j AdP1 · · · AdPk
A(U)∆E

j′‖L(L2) (resp. ‖∆E
j AdP1 · · · AdPk

(∂UA(U) · H)∆E
j′‖L(L2)) is

bounded from above by the right hand side of (1.2.16) (resp. (1.2.17)).

As in the case of the global definition, one may give an equivalent characterization in terms of
estimates like (1.2.18), (1.2.19).

We introduce classes of symbols that will allow us to give alternative descriptions of the preceding
classes of operators.

Definition 2.1.3 Let m ∈ R, ν ∈ N, p ∈ N. One denotes by H̃S
m,ν

p,loc the space of functions

a : C∞(X)p × T ∗Rd → C

(u1, . . . , up, x, ξ) → a(u1, . . . , up, x, ξ)

which are p-linear in (u1, . . . , up), smooth in (x, ξ), and satisfy for any α, β ∈ Nd, any U =
(u1, . . . , up) in C∞(X)p, any n′ = (n1, . . . , np) in (N∗)p, any (x, ξ) ∈ T ∗Rd, any N ∈ N

(2.1.2) |∂αx ∂βξ a(Πn′U , x, ξ)| ≤ CN 〈ξ〉m−|β||n′|ν(p)+ν+M0(|α|+|β|+d+1)
(

1 +
|n′|
〈ξ〉

)−N p∏

1

‖Πnℓ
uℓ‖L2 .

We define also a class of symbols that are not homogeneous in U .

Definition 2.1.4 Let m ∈ R, ν ∈ N, p ∈ N, σ > 0, R > 0. One denotes by Sm,νp,loc(Bσ(R)) the
space of maps

a : Bσ(R) × T ∗Rd → C

(U, x, ξ) → a(U, x, ξ)

which are smooth in (x, ξ), C1 in U , and satisfy the following conditions:

(i) For any α, β ∈ Nd, there is C > 0 and, for any U in Bσ(R), any (x, ξ) in T ∗Rd

(2.1.3) |∂αx ∂βξ a(U, x, ξ)| ≤ C〈ξ〉m−|β|+(M0(|α|+|β|+d+1)+ν(p)+ν−σ)+‖U‖pHσ .

(ii) For all α, β, x, ξ, U , H → (∂αx ∂
β
ξ ∂Ua)(U, x, ξ) · H extends as a continuous linear form on

Hσ′

(X) for all σ′ with |σ′| ≤ σ and satisfies

(2.1.4) |(∂αx ∂βξ ∂Ua)(U, x, ξ) ·H| ≤ C〈ξ〉m−|β|+(M0(|α|+|β|+d+1)+ν(p)+ν−σ′)+‖U‖p−1
Hσ ‖H‖Hσ′ .
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We quantize the preceding classes of symbols in the following way. If v is in C∞
0 (Rd) and a is

in Sm,νp,loc(Bσ(R)), we set

(2.1.5) Op(a(U ; ·))v =
1

(2π)d

∫

Rd
eix·ξa(U, x, ξ)v̂(ξ) dξ.

We use a similar formula to quantize elements of H̃S
m,ν

p,loc.

If χ is in C∞
0 (Rd), a belongs to H̃S

m,ν

p,loc, we set

(2.1.6) aχ(U , x, ξ) = χ(Dx/〈ξ〉)[a(U , x, ξ)] = F−1
η

[
χ(η/〈ξ〉)â(U , η, ξ)

]

where â(U , η, ξ) is the x-Fourier transform of a(U , x, ξ). We use a similar notation for elements of
Sm,νp,loc(Bσ(R)). The definition immediately implies that aχ belongs to the same space of symbols
as a.

If χ is supported in a small enough neighborhood of zero, on the support of âχ(U , η, ξ), |η| ≪ |ξ|,
so that 〈ξ + η〉 ∼ 〈ξ〉. For technical reasons, we shall have to consider symbols for which a weaker

version of this spectral localization is satisfied, namely symbols a in H̃S
m,ν

p,loc or Sm,νp,loc(Bσ(R))

such that for any λ ∈ R, 〈Dx + ξ〉λ〈ξ〉−λa is still in the same class. We shall use eventually the
following lemma:

Lemma 2.1.5 Let a be an element of H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))) such that 〈Dx + ξ〉λ〈ξ〉−λa

is in the same space for any λ ∈ R. Let θ in S(Rd × Rd) and b(U , x, y, ξ) = θ(x, y)a(U , x, ξ)
(resp. b(U, x, y, ξ) = θ(x, y)a(U, x, ξ)). Then, for any n′ in (N∗)p, any λ in R,

|∂αx ∂βξ ∂γy [〈Dx + ξ〉λ〈ξ〉−λb(Πn′U , x, y, ξ)]|,

resp.
|∂αx ∂βξ ∂γy [〈Dx + ξ〉λ〈ξ〉−λb(U, x, y, ξ)]|,

resp.
|∂αx ∂βξ ∂γy [〈Dx + ξ〉λ〈ξ〉−λ(∂Ub(U, x, y, ξ) ·H)]|

is bounded from above by the right hand side of (2.1.2) (resp. (2.1.3), resp. (2.1.4)).

Proof: It is enough to prove that the operator 〈Dx + ξ〉λθ〈Dx + ξ〉−λ−θ is bounded on L∞(dx),
uniformly in ξ, y, for any λ ∈ R. The distribution kernel of this operator, at fixed ξ, y, is

Kξ,y(x, x
′) =

1

(2π)2d
e−i(x−x′)·ξ

∫
ei(x−x′)·η+ix·ζ〈η〉−λ[〈η + ζ〉λ − 〈η〉λ]θ̂(ζ, y) dζdη,

where θ̂(ζ, y) is the Fourier transform relatively to the first variable. Integrating by parts, one
checks

|Kξ,y(x, x
′)| ≤ CN |x− x′|−d+1〈x− x′〉−N 〈x〉−N

for any N , from which the L(L∞)-bound follows. ✷

We relate the symbols we just defined to the local operators.
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Proposition 2.1.6 Let m ∈ R, ν ∈ N, σ > 0, R > 0.

(i) Let A be an element of H̃Ψ
m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))). There is a (unique) symbol a in

H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))) such that for any λ ∈ R, 〈Dx + ξ〉λ〈ξ〉−λa is still in the same
space, and such that A(U) = Op(a(U ; ·)) (resp. A(U) = Op(a(U ; ·))).

(ii) Let a be a symbol in H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))) such that for any λ ∈ R, 〈Dx + ξ〉λ〈ξ〉−λa

is still in the same space. Let θ1, θ2 in C∞
0 (Rd). Then θ1Op(a)θ2 belongs to H̃Ψ

m,ν+2M0(d+1)

p,loc

(resp. Ψ
m,ν+2M0(d+1)
p,loc (Bσ(R))).

(iii) Let a be a symbol in H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))). Let χ be in C∞
0 (Rd) with small

enough support, χ ≡ 1 close to zero. Then, for any j ≥ 0, a − aχ is in H̃S
m−j,ν+jM0

p,loc (resp.

Sm−j,ν+jM0

p,loc (Bσ(R))).

Proof: (i) Let A be an element of H̃Ψ
m,ν

p,loc. Denote by K(U , x, y) the distribution kernel of
A(U) and define

a(U , x, ξ) =

∫

Rd
K(U , x, y)e−i(x−y)·ξ dy

so that Op(a(U ; ·)) = A(U) and Op(∂αx (i∂ξ)
βa(U ; ·)) = (Ad∂x)α(Adx)βA(U). Since K is com-

pactly supported, we may choose θ1, θ2 in C∞
0 (Rd) such that K = θ1(x)Kθ2(y). We compute

â(U , η, ξ) =

∫
e−ix·(ξ+η)θ1(x)K(U , x, y)eiy·ξθ2(y) dydξdx

=

∫
e−ix·(ξ+η)θ1(x)A(U)[ei〈ξ,·〉θ2(·)] dx.

This implies, for any λ ∈ R,

∣∣∣ ̂∂αx ∂
β
ξ a(Πn′U , η, ξ)

∣∣∣ ≤
∥∥∥e−i〈·,ξ+η〉θ1

∥∥∥
H−λ

‖(Ad∂x)α(Adx)βA(Πn′U)[ei〈ξ,·〉θ2]‖Hλ .

Using that
∥∥∥e−i〈ζ,·〉θj

∥∥∥
Hλ

∼ 〈ζ〉λ when |ζ| → +∞ and inequality (1.2.9), we obtain

∣∣∣ ̂∂αx ∂
β
ξ a(Πn′U , η, ξ)

∣∣∣|n′|N2 ≤ C〈ξ + η〉−λ〈ξ〉λ+N2+m−|β||n′|ν(p)+ν+M0(|α|+|β|)
p∏

1

‖Πnℓ
uℓ‖L2 .

By Sobolev injection, we get the same estimate for

∣∣∣∂αx ∂
β
ξ

(〈Dx + ξ〉λ〈ξ〉−λa(Πn′U , x, ξ))
∣∣∣

if we replace in the right hand side ν by ν + M0(d + 1) and discard 〈ξ + η〉−λ〈ξ〉λ. This gives

the wanted estimate (2.1.2), showing that for any λ, 〈Dx + ξ〉λ〈ξ〉−λa is in H̃S
m,ν

p,loc.

The proof of the analogous statement for operators in Ψm,ν
p,loc(Bσ(R)) is similar, using (1.2.18)

and (1.2.19).
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(ii) Let a be in H̃S
m,ν

p,loc. Since θ1Op(a)θ2 ,satisfies the support property, we just need to check
estimates (1.2.8) for the operator AdP1 · · · AdPk

[θ1Op(a(Πn′U ; ·))θ2]. By the last remark follow-
ing Definition 1.2.2, we may assume that Pℓ is of order zero or one, so either of the form b(x) or
b(x) ∂

∂xj
for some function b in C∞

0 (Rd). Let α (resp. β) be the number of those ℓ such that Pℓ

is of order 1 (resp. 0). The kernel of [b(x) ∂
∂xj

, θ1Op(a(U ; ·))θ2] (resp. [b(x), θ1Op(a(U ; ·))θ2]) is

1

(2π)d

∫
ei(x−y)·ξã(U , x, y, ξ) dξ

with

ã(U , x, y, ξ) = −
d∑

k=1

bk(x, y)θ1(x)θ2(y)
∂

∂ξk
[a(U , x, ξ)ξj ] + b(x)

∂

∂xj
[θ1(x)a(U , x, ξ)θ2(y)]

+
∂

∂yj
[b(y)θ1(x)a(U , x, ξ)θ2(y)]

with bk a smooth function on Rd × Rd (resp. with

ã(U , x, y, ξ) = i
d∑

k=1

bk(x, y)θ1(x)
∂a

∂ξk
(U , x, ξ)θ2(y)).

Computing in the same way iterated commutators, and using Lemma 2.1.5, we conclude that
AdP1 · · · AdPk

[θ1Op(a(U ; ·))θ2] = Op(b(U ; ·)), where, for any λ ∈ R, any N ∈ N,

|∂α′

x ∂
β′

ξ ∂
γ′

y [〈Dx + ξ〉λ〈ξ〉−λb(Πn′U , x, y, ξ)]| ≤ C〈ξ〉m−β−|β′||n′|ν(p)+ν+M0(α+β+|α′|+|β′|+d+1)

×
(

1 +
|n′|
〈ξ〉

)−N p∏

1

‖Πnℓ
uℓ‖L2 ,

(2.1.7)

and where Op(b) is the operator with kernel (2π)−d ∫
ei(x−y)·ξb(U , x, y, ξ) dξ. Let us estimate

‖∆jOp(b(Πn′U ; ·))∆j′‖L(L2). We decompose b(U , x, y, ξ) =
∑
j′′ bj′′(U , x, y, ξ) with the notation

bj′′ = bϕ(2−j′′ |ξ|) for j ≥ 1, b0 = bψ(|ξ|). The kernel Kj′′(U , x, y) of ∆jOp(bj′′)∆j′ may be
written by a direct computation

Kj′′(U , x, y) =
1

(2π)d

∫
ei(x−y)·ξcj′′(U , x, y, ξ) dξ

with

cj′′(U , x, y, ξ) =
1

(2π)2d

∫
ei[zζ+z′ζ′]ϕ(2−j |ξ − ζ|)ϕ(2−j′ |ξ − ζ ′|)ϕ(2−j′′ |ξ|)

× b(U , x− z, y − z′, ξ) dzdz′dζdζ ′

when j′′ > 0, j > 0, j′ > 0, and similar expressions when j, j′ or j′′ is zero. If we write

b(U , x− z, y − z′, ξ) = 〈Dz − ξ〉−λ〈Dx + ξ〉λb(U , x− z, y − z′, ξ)
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and integrate by parts in z, we get the expression

cj′′(Πn′U , x, y, ξ) =
1

(2π)2d
〈ξ〉λ2−jλ

∫
ei[zζ+z′ζ′]φj(2

−j |ξ − ζ|)ϕ(2−j′ |ξ − ζ ′|)ϕ(2−j′′ |ξ|)

× b̃(U , x− z, y − z′, ξ) dzdz′dζdζ ′

(2.1.8)

where b̃ is the symbol in the left hand side of (2.1.7), and where φj has the same support
properties as ϕ, with estimates of its derivatives uniform in j. Let us show that, for any N,N ′

(2.1.9) |∂β′

ξ cj′′(Πn′U , x, y, ξ)| ≤ C2j
′′(m−β)[max(2−j , 2−j′

, 2−j′′

)]|β
′|2−N ′(|j−j′|+|j′−j′′|)

× |n′|ν(p)+ν+M0(α+β+d+1+|β′|)
(1 + 2−j′′ |n′|)−N

p∏

1

‖uℓ‖L2 .

To do so, we performN1 integrations by parts in (2.1.8) using the vector field L = (1+|ζ ′|2)−1(1+
ζ ′ · Dz′). The estimate (2.1.7) show that we gain in that way a 〈ζ ′〉−N1 factor. Next, perform
N2 integrations by parts using L2 = (1 + |z′|2)−1(1 + z′ ·Dζ′). We gain a factor 〈z′〉−N2 . Finally,

we integrate by parts using L3 = (1 + 22j |z|2)−1(1 + 22jz · Dζ) to gain a factor 〈2jz〉−N3 . We

obtain for the modulus of ∂β
′

ξ cj′′ a bound given by the product of

C2j
′′(m−β)[max((2−j , 2−j′

, 2−j′′

)]|β
′||n′|ν(p)+ν+M0(α+β+d+1+|β′|)

(1 + 2−j′′ |n′|)−N
p∏

1

‖uℓ‖L2

and of

2(j′′−j)λ
∫
✶|ξ−ζ|∼2j✶|ξ−ζ′|∼2j′✶|ξ|∼2j′′ 〈ζ ′〉−N1〈z′〉−N2〈2jz〉−N3

dzdz′dζdζ ′.

If we integrate for |ζ ′| ≥ c2|j′−j′′| for some c > 0, we get, choosing λ conveniently and N1

large enough, a factor O(2−N ′[|j−j′|+|j′−j′′|]), whence the upper bound (2.1.9). If we integrate
for |ζ ′| ≪ 2|j′−j′′|, the cut-offs show that |j′ − j′′| has to stay smaller than a fixed constant, so
that we get also the wanted estimate (2.1.9). If we go back to the kernel Kj′′ , perform d + 1
integrations by parts in ξ and use (2.1.9), we get a bound

|Kj′′(Πn′U , x, y)| ≤ C2j
′′d[1 + min(2j , 2j

′

, 2j
′′

)|x− y|]−d−12−N ′[|j−j′|+|j′−j′′|]

× 2j
′′(m−β)|n′|ν(p)+ν+M0(α+β+2(d+1))

(1 + 2−j′′ |n′|)−N
p∏

1

‖uℓ‖L2 .

The L(L2)-norm of ∆jOp(b)∆j′ is bounded from above by the sum in j′′ of the L1(dx) (or
L1(dy)) norm of Kj′′(Πn′U , x, y), so by

C2j(m−β)|n′|ν(p)+ν+M0(α+β+2(d+1))
(1 + 2−j |n′|)−N2−N ′|j−j′|

p∏

1

‖uℓ‖L2

for some new value of N ′. This shows that θ1Op(a)θ2 is in H̃Ψ
m,ν+2M0(d+1)

p,loc as claimed.

The proof of the corresponding statement in the framework of the Sm,νp,loc(Bσ(R)) class of symbols
is identical.
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(iii) This statement follows from the formula

(a− aχ)(U , x, ξ) =

[(
Dx

〈ξ〉

)−j
(1 − χ)

(
Dx

〈ξ〉

)](
Dx

〈ξ〉

)j
a

for any j > 0. ✷

We have already obtained, in the global framework, results of composition of operators (see
Lemma 1.2.4 and Lemma 1.2.6). Nevertheless, to see that a commutator between two operators
is one order less than the sum of the orders, we need to study, for local operators, the symbol
of the composition.

Theorem 2.1.7 Let m,m′ be real numbers, ν, ν ′ in R+, σ > min(ν(p), ν(q)) + min(ν, ν ′) +
M0(2d+ 3). Assume that

(2.1.10) ν(p) + ν(q) + ν ′ +M0(2d+ 3) ≤ ν(p+ q), p > 0, q > 0.

Let A be in H̃Ψ
m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))) and B be in H̃Ψ

m′,ν′

q,loc (resp. Ψm′,ν′

q,loc (Bσ(R))). Denote

by a and b the element of H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))) and H̃S
m′,ν′

q,loc (resp. Sm
′,ν′

q,loc (Bσ(R))) given
by (i) of Proposition 2.1.6. Let χ ∈ C∞

0 (Rd) be equal to one close to zero, with small enough
support. Then, if θ ∈ C∞

0 (Rd) is equal to one on a large enough compact subset of Rd, we may
write for any U ′ in C∞(X)p, U ′′ in C∞(X)q

(2.1.11) A(U ′) ◦B(U ′′) = θOp[(a(U ′, ·)b(U ′′, ·))χ]θ + C(U ′,U ′′),

resp. for U in Bσ(R),

(2.1.12) A(U) ◦B(U) = θOp[(a(U, ·)b(U, ·))χ]θ + C(U),

where C is an element of H̃Ψ
m+m′−1,ν+M0(2d+3)

p+q,loc (resp. Ψ
m+m′−1,max(ν,ν′)+M0(2d+3)
max(p,q),loc (Bσ(R))) if

p > 0, q > 0 and of H̃Ψ
m+m′−1,ν+ν′+2M0(2d+3)

p+q,loc (resp. Ψ
m+m′−1,max(ν,ν′)+M0(2d+3)
max(p,q),loc (Bσ(R))) if

p = 0 or q = 0.

Remark: Of course, if one assumes instead of (2.1.10), ν(p) + ν(q) + ν +M0(2d+ 3) ≤ ν(p+ q)
for p > 0, q > 0, one gets the same conclusion with ν and ν ′ exchanged.

Proof: Let A be in H̃Ψ
m,ν

p,loc and B in H̃Ψ
m′,ν′

q,loc . Let θ, θ1 be in C∞
0 (Rd), with θ1θ = θ and

θAθ = A, θBθ = B. By (iii) of Proposition 2.1.6, for any λ ∈ R, 〈Dx + ξ〉λ〈ξ〉−λ(a − aχ) is in

H̃S
m−1,ν+M0

p,loc and we have a similar statement with b. Applying (ii) of Proposition 2.1.6, we
may write

A = θ1Op(aχ)θ1 +A1, B = θ1Op(bχ)θ1 +B1

with A1 ∈ H̃Ψ
m−1,ν+M0(2d+3)

p,loc and B1 ∈ H̃Ψ
m′−1,ν′+M0(2d+3)

q,loc . Using (2.1.10) and Lemma 1.2.4,
we write

(2.1.13) AB = θ1Op(aχ)θ2
1Op(bχ)θ1 + C1
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where C1 is a contribution to C in (2.1.11). The first term in the right hand side may be written
θ1Op(c(U , ·))θ1 where

c(U , x, ξ) =
1

(2π)d

∫
e−iz·ζaχ(U ′, x, ξ − ζ)θ2

1(x− z)bχ(U ′′, x− z, ξ) dzdζ

if U ∈ C∞(X)p+q has been split in U = (U ′,U ′′) ∈ C∞(X)p × C∞(X)q. Then

c(U , x, ξ) − aχbχ(U , x, ξ)θ1(x)2 =
1

(2π)d

∫
e−iz·ζ [aχ(U ′, x, ξ − ζ) − aχ(U ′, x, ξ)]θ2

1(x− z)

×bχ(U ′′, x− z, ξ) dzdζ.

(2.1.14)

The right hand side may be written, performing an integration by parts, as

(2.1.15)
1

(2π)d

∫ 1

0

∫
e−iz·ζ(∂ξaχ)(U ′, x, ξ − tζ)Dx[θ2

1(x− z)bχ(U ′′, x− z, ξ)] dzdζdt.

We perform d+ 1 integrations by parts using the vector field L = (1 + ζ2)−1(1 − ζ ·Dz) to get
an absolutely convergent integral in ζ. If we replace in (2.1.15) U ′ by Πn′U ′, U ′′ by Πn′′U ′′, each
Dz derivative acting on bχ makes lose a power |n′′|M0 . We decompose θ2

1 as

(2.1.16) θ2
1(w) = (χ(D/〈ξ〉)θ2

1)(w) + θ̃(w, ξ)

where |∂γwθ̃(w, ξ)| = O(〈ξ〉−N 〈w〉−N ) for any N, γ. Let us study first the contribution to (2.1.15)
coming from the first term in the right hand side of (2.1.16). If Suppχ is small enough, the
support properties of b̂χ(U ′′, η, ξ) imply that, in (2.1.15), we may assume |ζ| ≪ |ξ| on the domain
of integration. This integral, computed at ΠnU instead of U , is thus bounded from above in
modulus by

C|n′|ν(p)+ν+M0(d+2)|n′′|ν(q)+ν′+M0(2d+3)〈ξ〉m+m′−1
(

1 +
|n′|
〈ξ〉

)−N(
1 +

|n′′|
〈ξ〉

)−N p+q∏

1

‖Πnℓ
uℓ‖L2 .

Using (2.1.10), we get estimates (2.1.2) of an element of H̃S
m+m′−1,ν+M0

p+q,loc if p, q > 0 and of

H̃S
m+m′−1,ν+ν′+M0(2d+4)

p+q,loc if p or q is zero. The derivatives are bounded in the same way, and

the symbol obtained making act 〈Dx + ξ〉λ〈ξ〉−λ on (2.1.15) satisfies similar estimates, again
because the x-Fourier transform of (2.1.15) is supported for |η| ≪ |ξ| if Suppχ is small enough.
If we consider the contribution of θ̃ in (2.1.16) to (2.1.15), and use that ∂γwθ̃ = O(〈ξ〉−N 〈w〉−N )
for any N , and the fact that L-integrations by parts allow one to gain any 〈ζ〉−N 〈ξ〉N factor,

one sees that the corresponding contribution to (2.1.15) is in H̃S
−N,0
p+q,loc for any N , as well as the

action of 〈Dx + ξ〉λ〈ξ〉−λ on on that function for any λ. It follows from (2.1.13) and from (ii) of
Proposition 2.1.6 that

(2.1.17) AB = θ1Op[θ2
1aχbχ]θ1

modulo an operator C satisfying the conclusion of the theorem. Since AB = θABθ, we may
write as well, modulo such a C, AB = θOp[aχbχ]θ. Write aχbχ = (ab)χ − r with

r = [(aχbχ)χ − (aχbχ)] + ((a− aχ)b)χ + (aχ(b− bχ))χ.
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By (iii) of proposition 2.1.6 and (2.1.10), r belongs to H̃S
m+m′−1,ν+M0

p+q,loc if p > 0, q > 0 and to

H̃S
m+m′−1,ν+M0(d+2)

p+q,loc if p or q is zero. The associated operator contributes to C in (2.1.12).
This concludes the proof in the case of homogeneous operators. The case of operators in

Ψm,ν
p,loc(Bσ(R)), Ψm′,ν′

q,loc (Bσ(R)) is treated similarly. ✷

Let us finish this subsection with a similar result for transpose and adjoint.

Theorem 2.1.8 Let m ∈ R, ν ∈ R+, p ∈ N, R > 0, σ > 0. Let A be an element of the space
H̃Ψ

m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))) and let a be a symbol in H̃S

m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))) given by
(i) of Proposition 2.1.6. If χ is in C∞

0 (R), has small enough support, and is equal to one close
to zero, if θ is in C∞

0 (Rd) and is equal to one on a large enough compact set, then, denoting by
tA and A∗ the transpose and the adjoint of A for the L2(Rd, dx)-scalar product,

(2.1.18) tA = θOp(a∨
χ)θ + C1, A

∗ = θOp(āχ)θ + C2

where C1, C2 are in H̃Ψ
m−1,ν+M0(3d+5)

p,loc (resp. Ψ
m−1,ν+M0(3d+5)
p,loc (Bσ(R))) and where a∨(x, ξ) =

a(x,−ξ).

Proof: Because of the support assumption on the kernel of A and of (iii) of Proposition 2.1.6,
we know that we may write A(U) = θOp(aχ)θ modulo a remainder of form C1, C2. Moreover,
tOp(aχ) = Op(b1), Op(aχ)∗ = Op(b2) with

b1(x, ξ) =
1

(2π)d

∫
e−iz·ζaχ(x− z,−ξ + ζ) dzdζ

b2(x, ξ) =
1

(2π)d

∫
e−iz·ζ āχ(x− z, ξ − ζ) dzdζ.

(2.1.19)

Because of the support of âχ(ζ,−ξ + ζ), ̂̄aχ(ζ, ξ − ζ), we may insert a cut-off χ1(ζ/〈ξ〉) inside
the integrals in (2.1.19) if χ1 ≡ 1 close to zero, Suppχ1 small enough. Then

b1(x, ξ) − aχ(x,−ξ) =
1

(2π)d

∫
e−iz·ζχ1(ζ/〈ξ〉)[aχ(x− z,−ξ + ζ) − aχ(x,−ξ)] dzdζ.

Since the term between brackets vanishes at (z = 0, ζ = 0), we see, performing d+1 integrations

by parts using L =
1−i〈ξ〉2z·∇ζ

1+〈ξ〉2|z|2 that b1(x, ξ) − aχ(x,−ξ) may be written as cχ1(x, ξ) for some

symbol c in H̃S
m−1,ν+M0(d+3)

p,loc (resp. Ψ
m−1,ν+M0(d+3)
p,loc (Bσ(R))). Using (ii) of Proposition 2.1.6,

we get that C1 = Op(cχ1) satisfies the conclusion of the theorem. One treats in the same way
the case of the adjoint. ✷

2.2 Principal symbols

In this subsection, we shall define principal symbols for para-differential operators on the mani-
fold X, and use them to study commutators between such operators. We first study the action
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of a change of variables on local operators. If X,X ′ are two manifolds and κ : X → X ′ is a
diffeomorphism, we denote by τκ : T ∗X → T ∗X ′ the canonical transformation induced by κ. In
local coordinates

(2.2.1) τκ : (x, ξ) → τκ(x, ξ) = (κ(x), tdκ(x)−1ξ).

We denote by κ∗ : C∞
0 (X ′) → C∞

0 (X) the map defined by κ∗u = u ◦ κ.

Proposition 2.2.1 Let m ∈ R, ν ∈ R+, R > 0, σ > 0, V, Ṽ be two open sets of Rd, κ : V → Ṽ be
a C∞-diffeomorphism, let θ, θ′, θ̃, θ̃′ be in C∞

0 (V ) with θθ̃ = θ, θ′θ̃′ = θ′. Let A(U) (resp. A(U))
be an element of H̃Ψ

m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))). Then B = (κ−1)∗θAθ′κ∗ is in H̃Ψ

m,ν

p,loc (resp.
Ψm,ν
p,loc(Bσ(R))). Moreover, if χ1 ∈ C∞

0 (R) equals one close to zero and has small enough support,

if a is the symbol in H̃S
m,ν

p,loc (resp Sm,νp,loc(Bσ(R))) associated to A by (i) of Proposition 2.1.6, we
may write

(2.2.2) B = (θ̃ ◦ κ−1)Op[(θθ′a ◦ τ−1
κ )χ1 ](θ̃′ ◦ κ−1) + C

where C is in H̃Ψ
m−1,ν+M0(3d+4)

p,loc (resp. Ψ
m−1,ν+M0(3d+4)
p,loc (Bσ(R))).

Since θ′κ∗ = θ′κ∗(θ̃′ ◦ κ−1), this operator preserves Sobolev spaces. The characterization of

H̃Ψ
m,ν

p and Ψm,ν
p (Bσ(R)) in terms of estimates of type (1.2.9), (1.2.18), (1.2.19) thus shows

that B is in the indicated space of operators. We just have to show the statements concerning
symbols.

Lemma 2.2.2 (i) Let W be a neighborhood of the diagonal in X ×X. Let (θi)i∈I be a smooth
partition of unity on X such that θi(x)θj(y) 6= 0 implies (x, y) ∈ W . Let J = {(i, j) ∈ I ×
I; Supp θi ∩ Supp θj 6= ∅}. For any A in H̃Ψ

m,ν

p (resp. Ψm,ν
p (Bσ(R))), A − ∑

(i,j)∈J θiAθj is in

H̃Ψ
m−r,ν+rM0

p (resp. Ψm−r,ν+rM0
p (Bσ(R))) for any r ≥ 0.

(ii) Let W be a neighborhood of the diagonal in Rd × Rd, K a compact subset of Rd, χ ∈
C∞

0 (Rd), χ ≡ 1 close to zero, with small enough support. Let (θi)i∈I be a smooth partition of
unity on a neighborhood of K. For any A in H̃Ψ

m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))) with support in

K × K, there is a symbol a in H̃S
m,ν

p,loc (resp. Sm,νp,loc(Bσ(R))), compactly supported in x, such

that A − ∑
(i,j)∈J θiOp(aχ)θj is in H̃Ψ

m−r,ν+M0(r+2d+2)

p,loc (resp. Ψ
m−r,ν+M0(r+2d+2)
p (Bσ(R))) for

any r ≥ 0.

Proof: (i) We notice that if θ1, θ2 are smooth functions with disjoint support, θ1Aθ2 is in

H̃Ψ
m−r,ν+rM0

p (resp. Ψm−r,ν+rM0
p (Bσ(R))) for any r ≥ 0: actually, if θ̃ is in C∞(X) and θ̃θ1 = θ1,

θ̃θ2 = 0, we may write for any r ∈ N

θ1Aθ2 = Adθ̃ · · · Adθ̃︸ ︷︷ ︸
r

(θ1Aθ2).
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We just have to apply the characterization of H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) to get the conclusion.

(ii) The same proof as above, together with the fact that A is supported in K ×K, shows that
A−∑

(i,j)∈J θiAθj is in the wanted space. By (i), (ii), (iii) of Proposition 2.1.6, there is a symbol

a in H̃Ψ
m,ν

p,loc (resp. Ψm,ν
p,loc(Bσ(R))) such that θiAθj−θiOp(aχ)θj belongs to H̃Ψ

m−r,ν+M0(r+2d+2)

p,loc

(resp. Ψ
m−r,ν+M0(r+2d+2)
p,loc (Bσ(R))) . We may assume moreover that a is compactly supported

in a neighborhood of K. This concludes the proof. ✷

Lemma 2.2.3 Let κ be as in the statement of proposition 2.2.1. Let a be in H̃S
m,ν

p,loc (resp.
Sm,νp,loc(Bσ(R))), compactly supported in x in a compact subset of V . Let χ ∈ C∞

0 (Rd), χ ≡ 1
close to zero, with small enough support. Let (x, z) → γ(x, z) be a smooth function, such that
(x, y) → γ(x, x−y) is compactly supported in Ṽ × Ṽ , and such that (x, z) → γ(x, z) is supported
for |z| ≤ ρ ≪ 1. Define for U = (U1, . . . , Up) ∈ C∞(X)p (resp. for U ∈ Bσ(R))

(2.2.3) b(U , x, ξ) =
1

(2π)d

∫
ei[κ

−1(x)−κ−1(x−z)]ζ−iz·ξγ(x, z)aχ(U , κ−1(x), ζ) dzdζ

(resp. b(U, x, ξ) given by the same formula with U replaced by U). Let Γ ∈ C∞
0 (R−{0}) be equal

to one on a large enough compact subset of R − {0}. Then one may write

b(U , x, ξ) =
1

(2π)d

∫
ei[(x−x′)·η′+z·(ζ′−ξ)+(κ−1(x′)−x′′)·η′′]

× c(U , x′, x′′, z, η′, η′′, ζ ′, ξ) dx′dx′′dzdη′dη′′dζ ′ + b1(U , x, ξ)
(2.2.4)

where, for any λ ∈ R, 〈Dx + ξ〉λ〈ξ〉−λb1 is in HΨm−r,ν
p,loc for all r ≥ 0 (resp. b(U, x, ξ) may be

written as (2.2.4) with U replaced by U and 〈Dx + ξ〉λ〈ξ〉−λb1 belonging to Ψm−r,ν
p,loc (Bσ(R)) for

any r ≥ 0, λ ∈ R), and where c is a function supported for

(2.2.5) |η′′| ≪ 〈ζ ′〉 ∼ 〈ξ〉 ∼ 〈ξ + η′〉

and satisfies estimates

(2.2.6) |∂α′

x′ ∂α
′′

x′′ ∂δz∂
β
ξ ∂

β′

η′ ∂
β′′

η′′ ∂
γ
ζ′c(Πn′U , x′, x′′, z, η′, η′′, ζ ′, ξ)|

≤ C〈ξ〉m−|β|−|β′|−|β′′|−|γ||n′|ν(p)+ν+M0[|α′|+|α′′|+|δ|+|γ|+d+1]
(

1 +
|n′|
〈ξ〉

)−N p∏

1

‖uℓ‖L2 ,

resp. c satisfies the estimates

(2.2.7) |∂α′

x′ ∂α
′′

x′′ ∂δz∂
β
ξ ∂

β′

η′ ∂
β′′

η′′ ∂
γ
ζ′c(U, x

′, x′′, z, η′, η′′, ζ ′, ξ)|
≤ C〈ξ〉m−|β|−|β′|−|β′′|−|γ|+(ν(p)+ν+M0[|α′|+|α′′|+|δ|+|γ|+d+1]−σ)+‖U‖pHσ ,

and the estimate

(2.2.8) |∂α′

x′ ∂α
′′

x′′ ∂δz∂
β
ξ ∂

β′

η′ ∂
β′′

η′′ ∂
γ
ζ′ [∂Uc(U, x

′, x′′, z, η′, η′′, ζ ′, ξ) ·H]|
≤ C〈ξ〉m−|β|−|β′|−|β′′|−|γ|+(ν(p)+ν+M0[|α′|+|α′′|+|δ|+|γ|+d+1]−σ′)+‖U‖p−1

Hσ ‖H‖Hσ′
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for any σ′ ∈ [−σ, σ], any H in Hσ′

.

Moreover, the restriction of c at z = 0 is given by

(2.2.9) c|z=0 =
1

(2π)d
γ(x′, 0)|detκ(κ−1(x′))|χ(η′′/〈tdκ(κ−1(x′)) · ζ ′〉)

× Γ

(〈ζ ′〉
〈ξ〉

)
Γ

( 〈ζ ′〉
〈ξ + η′〉

)
a(U , x′′, tdκ(κ−1(x′)) · ζ ′)

(resp. by the same formula with U replaced by U).

Proof: Let us prove the lemma in the case a ∈ H̃S
m,ν

p,loc. We may write the definition (2.2.3) of
b

b(U , x, ξ) =
1

(2π)3d

∫
ei[(x−x′)η′+(κ−1(x′)−κ−1(x′−z))ζ+(κ−1(x′)−x′′)η′′−zξ]γ(x′, z)χ(η′′/〈ζ〉)

×a(U , x′′, ζ) dx′dx′′dzdη′dη′′dζ.
(2.2.10)

On the support of γ(x′, z)Γ(〈∇x′(κ−1(x′ − z) · ζ)〉/〈ξ〉), the quotient 〈ζ〉/〈ξ〉 stays between two
uniform constants (since x′−z stays in a compact subset of Ṽ ), and the function Γ1(x′−z, ζ, ξ) =
(1 − Γ)(〈∇x′(κ−1(x′ − z) · ζ)〉/〈ξ〉) satisfies

(2.2.11) ∂α
′

x′ ∂δzΓ1(x′ − z, ζ, ξ) = O(1).

Define b′
1 as the function given by formula (2.2.10) with Γ1 inserted inside the integral, and

define

L1 =
1 − i(∇x′(κ−1(x′ − z) · ζ) − ξ) · ∇z

1 + |∇x′(κ−1(x′ − z) · ζ) − ξ|2
.

Performing integrations by parts using L1, and denoting by Φ the phase function in (2.2.10), we
write

(2.2.12) b′
1(U , x, ξ) =

1

(2π)3d

∫
eiΦ(x,x′,x′′,z,η′,η′′,ζ,ξ)

× (tL1)N [γ(x′, z)χ(η′′/〈ζ〉)Γ1(x′ − z, ζ, ξ)a(U , x′′, ζ)] dx′dx′′dzdη′dη′′dζ.

We note that, if the domain over which Γ ≡ 1 is large enough, on the support of Γ1 = 1 − Γ,
either 〈ζ〉 ≫ 〈ξ〉 or 〈ζ〉 ≪ 〈ξ〉, so that every L1-integration by parts will provide a gain of
(1+ |ζ|+ |ξ|)−1. Consequently, the symbol in the integral in (2.2.12) satisfies the same estimates
as a, as well as its derivatives, with a gain in (1 + |ζ| + |ξ|)−N . If we insert inside the integral
another cut-off ω(η′/(1+ξ2 +ζ2)1/2), with ω in C∞

0 (Rd), and use that the integrand is compactly
supported in (x′, x′′, z), we obtain for the corresponding contribution to b′

1 a bound in

(2.2.13) CN 〈ξ〉−N ′ |n′|ν(p)+ν
(

1 +
|n′|
〈ξ〉

)−N ′

if N ≫ N ′. Similar estimates hold for derivatives. Moreover, if we make act on b′
1 the operator

〈Dx + ξ〉λ〈ξ〉−λ, and use that 〈η′ + ξ〉 is controlled by the gain coming from the integrations by
parts, we still get a bound of type (2.2.13).
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Consider now the contribution to b′
1 given by (2.2.12) in which we insert (1−ω)(η′/(1+ξ2+ζ2)1/2),

with ω ≡ 1 on a large enough compact set. We consider

L2 =
1 − i(∇x′(κ−1(x′) · (η′′ + ζ)) − (η′ + ξ)) · (∇x′ + ∇z)

1 + |∇x′(κ−1(x′) · (η′′ + ζ)) − (η′ + ξ)|2

and perform N integrations by parts using L2. We get

1

(2π)3d

∫
eiΦ(x,x′,x′′,z,η′,η′′,ζ,ξ)(tL2)N

[
(1 − ω)

(
η′

(1 + ξ2 + ζ2)1/2

)

× (
(tL1)N [γ(x′, z)χ(η′′/〈ζ〉)Γ1(x′ − z, ζ, ξ)a(U , x′′, ζ)]

)]
dx′dx′′dzdη′dη′′dζ.

Since on the support of the integrand, |η′′| ≪ 〈ζ〉, |η′| ≫ (1 + |ξ| + |ζ|), the integrations by parts
gain a (1+ |η′|+ |η′′|+ |ζ|+ |ξ|)−N factor. We obtain again a quantity bounded by (2.2.13), with
similar estimates for the derivatives or for the action of 〈Dx + ξ〉λ〈ξ〉−λ for any λ. Consequently,
b′

1 contributes to b1 in (2.2.4). Let us study next b′′
1, which is given by (2.2.10) where we insert

the cut-off Γ(〈∇x′(κ−1(x′ − z) · ζ)〉/〈ξ〉). In particular, 〈ζ〉 ∼ 〈ξ〉 on the domain of integration.
We decompose b′′

1 = b0 + b′′′
1 with

(2.2.14) b0(U , x, ξ) =
1

(2π)3d

∫
eiΦ(x,x′,x′′,z,η′,η′′,ζ,ξ)Γ

(〈∇x′(κ−1(x′) · ζ)〉
〈ξ + η′〉

)

× γ(x′, z)χ(η′′/〈ζ〉)Γ
(〈∇x′(κ−1(x′ − z) · ζ)〉

〈ξ〉

)
a(U , x′′, ζ) dx′dx′′dzdη′dη′′dζ

and b′′′
1 being given by the same integral, with the first Γ replaced by 1 − Γ. We study first b′′′

1 ,
performing N integrations by parts using L2. We get

(2.2.15)
1

(2π)3d

∫
eiΦ(x,x′,x′′,z,η′,η′′,ζ,ξ)tLN2

[
(1 − Γ)

(〈∇x′(κ−1(x′) · ζ)〉
〈ξ + η′〉

)

× γ(x′, z)χ(η′′/〈ζ〉)Γ
(〈∇x′(κ−1(x′ − z) · ζ)〉

〈ξ〉

)
a(U , x′′, ζ)

]
dx′dx′′dzdη′dη′′dζ.

On the support of the domain of integration, |η′′| ≪ 〈ζ〉, 〈ζ〉 ∼ 〈ξ〉 and either 〈ζ〉 ≪ 〈ξ + η′〉 or
〈ζ〉 ≫ 〈ξ + η′〉. This implies that the integrations by parts gain a factor (1 + |ζ| + |ξ + η′|)−N ,
and that (2.2.15) has a bound of form (2.2.13), as well as the action of 〈Dx + ξ〉λ〈ξ〉−λ on this
integral. Since derivatives are estimated in the same way, we conclude that b′′′

1 contributes to b1

in (2.2.4).

Finally, we are left with showing that b0 may be written as the first term in the right hand side
of (2.2.4). Since the cut-off γ is supported for |z′| ≤ ρ ≪ 1, we may write, if ρ is small enough,
κ−1(x′) −κ−1(x′ − z) = tB(x′, z)−1z, where B(x′, 0) = tdκ(κ−1(x′)) and B(x′, z) is an invertible
matrix for any z with |z| ≪ ρ. Setting ζ = B(x′, z) · ζ ′ in (2.2.14), we rewrite

b0(U , x, ξ) =
1

(2π)2d

∫
ei[(x−x′)·η′+z·(ζ′−ξ)+(κ−1(x′)−x′′)·η′′]

× c(U , x′, x′′, z, η′, η′′, ζ ′, ξ) dx′dx′′dzdη′dη′′dζ ′
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with

c(U , x′, x′′, z, η′, η′′, ζ ′, ξ) =
γ̃(x′, z)
(2π)d

χ

(
η′′

〈B(x′, z) · ζ ′〉

)
Γ

(〈(∇x′(κ−1(x′)) ·B(x′, z) · ζ ′)〉
〈ξ + η′〉

)

×Γ

(〈∇x′(κ−1(x′ − z)) · (B(x′, z) · ζ ′)〉
〈ξ〉

)
a(U , x′′, B(x′, z) · ζ ′)

for another smooth function γ̃, compactly supported in (x′, z) in |z| ≤ ρ ≪ 1, such that

γ̃(x′, 0) = γ(x′, 0)|det dκ(κ−1(x′))|.

We note that (2.2.5) and estimates (2.2.6) hold true, and that c|z=0 is given by (2.2.9). This
concludes the proof of Lemma 2.2.3, as the case of symbols in Sm,νp,loc(Bσ(R)) is identical. ✷

Proof of proposition 2.2.1: We consider A in H̃Ψ
m,ν

p,loc. According to Lemma 2.2.2, we may find

a C∞
0 (Rd×Rd)-function, (x, z) → γ1(x, z), supported for |z| ≤ ρ ≪ 1, satisfying θθ′(x)γ1(x, 0) =

θθ′(x) and such that A(U) is given, up to an operator in in H̃Ψ
m−r,ν+M0(r+2d+2)

p,loc for any r, by

the operator Ã(U) with kernel

K(U , x, y) =
1

(2π)d

∫
ei(x−y)·ξγ1(x, x− y)aχ(U , x, ξ) dξ

where a is an element of H̃S
m,ν

p,loc, compactly supported in x. The distribution kernel of the

operator (κ−1)∗θÃθ′κ∗ will be

θ̃ ◦ κ−1(x)
1

(2π)d

∫
ei(κ

−1(x)−κ−1(y))·ξγ(x, x− y)aχ(U , κ−1(x), ξ) dξ θ̃′ ◦ κ−1(y)

where

γ(x, z) = θ ◦ κ−1(x)γ1(κ−1(x), κ−1(x) − κ−1(x− z))θ′ ◦ κ−1(x− z)|det dκ−1(x− z)|.

Consequently, (κ−1)∗θÃ(U)θ′κ∗ = (θ̃ ◦ κ−1)Op(b(U , ·))(θ̃′ ◦ κ−1) where b is given by (2.2.3). We
apply Lemma 2.2.3. By (2.2.4) and (ii) of proposition 2.1.6, we may replace b by the first term

in the right hand side of (2.2.4), up to an operator in H̃Ψ
m−r,ν+2M0(d+1)

p,loc for any r ≥ 0. Write
c = c0 + c1 where c0 = c|z=0 is given by (2.2.9). The contribution corresponding to c0 to the
first term in the right hand side of (2.2.4) is

(2.2.16) Γ

( 〈ξ〉
〈Dx + ξ〉

)[
γ(x, 0)|det dκ(κ−1(x))|aχ(U , κ−1(x), tdκ(κ−1(x)) · ξ)

]

= Γ

( 〈ξ〉
〈Dx + ξ〉

)[
(θθ′) ◦ κ−1aχ(U , κ−1(x), tdκ(κ−1(x)) · ξ)

]
.

We write

(θθ′aχ) ◦ τκ = (θθ′(aχ − a)) ◦ τκ + [(θθ′a) ◦ τκ − ((θθ′a) ◦ τκ)χ1 ] + ((θθ′a) ◦ τκ)χ1

with χ1 ∈ C∞
0 (Rd), χ1 ≡ 1 close to zero. By (iii) of Proposition 2.1.6, the first two terms in the

right hand side belong to H̃S
m−r,ν+rM0

p,loc for any r ≥ 0. If one makes act on them the spectral
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cut-off Γ
( 〈ξ〉

〈Dx+ξ〉
)

of (2.2.16), one obtains elements of the same space, that stay in it if one applies

〈Dx + ξ〉λ〈ξ〉−λ for any λ ∈ R. Consequently, since Γ
( 〈ξ〉

〈Dx+ξ〉
)
χ1(D/〈ξ〉) = χ1(D/〈ξ〉) if Suppχ1

is small enough, we may write

(κ−1)∗θÃθ′κ∗ = (θ̃ ◦ κ−1)Op(((θθ′a) ◦ τκ)χ1)(θ̃′ ◦ κ−1) + (θ̃ ◦ κ−1)Op(b̃)(θ̃′ ◦ κ−1) + C1

where C1 contributes to C in (2.2.2) and b̃ is given by the first term in the right hand side of
(2.2.4), with c replaced by c1 = c − c|z=0. We may write c1 = zc′

1, where c′
1 satisfies estimates

(2.2.6), with ν replaced by ν +M0.

Then

(2.2.17) b̃(U , x, ξ) =
1

(2π)2d

∫
ei[(x−x′)·η′+z·(ζ′−ξ)+(κ−1(x′)−x′′)·η′′]

× i(∂ζ′c′
1)(U , x′, x′′, z, η′, η′′, ζ ′, ξ) dx′dx′′dzdη′dη′′dζ ′.

Consider the vector fields

L3 =
1 − i〈ξ〉2(κ−1(x′) − x′′) · ∇η′′

1 + 〈ξ〉2|κ−1(x′) − x′′|2

L4 =
1 − i〈ξ〉2(x− x′) · ∇η′

1 + 〈ξ〉2|x− x′|2

L5 =
1 − i〈ξ〉2|n′|−2M0z · ∇ζ′

1 + |z|2〈ξ〉2|n′|−2M0
.

If we perform N integrations by parts using L3, L4, L5, use (2.2.6) and the support condition
(2.2.5), we estimate (2.2.17) by

∫
(1 + 〈ξ〉|κ−1(x′) − x′′|)−N (1 + 〈ξ〉|x− x′|)−N (1 + |z|〈ξ〉|n′|−M0)−N

× ✶|η′′|≪〈ζ′〉∼〈ξ〉∼〈ξ+η′〉dx
′dx′′dzdη′dη′′dζ ′

× 〈ξ〉m−1|n′|ν(p)+ν+M0(d+3)
(

1 +
|n′|
〈ξ〉

)−N

≤ C〈ξ〉m−1|n′|ν(p)+ν+M0(2d+3)
(

1 +
|n′|
〈ξ〉

)−N
.

Since the derivatives are estimated in the same way, we get an element of H̃S
m−1,ν+M0(d+2)

p,loc ,

which stays in that space if we apply any 〈Dx + ξ〉λ〈ξ〉−λ because of the support condition

(2.2.5). The corresponding operator is in H̃Ψ
m−1,ν+M0(3d+4)

p,loc by (ii) of proposition 2.1.6. This
concludes the proof, as the case of operators in Ψm,ν

p,loc(Bσ(R)) is similar. ✷

Let us define a principal symbol.
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Definition 2.2.4 Let m ∈ R, ν ∈ R+, p ∈ N, σ > 0, R > 0. One denotes by H̃S
m,ν

p (T ∗X) (resp.
Sm,νp (Bσ(R), T ∗X)) the space of maps (U , ρ) = (U1, . . . , Up, ρ) → a(U , ρ) (resp. (U, ρ) → a(U, ρ))
which are defined on C∞(X)p×T ∗X (resp. Bσ(R)×T ∗X), with values in C, which are p-linear
in U (resp. C1 in U), smooth in ρ, and such that for any local coordinate system κ defined on
an open set V of X, with values in Rd, for any θ in C∞

0 (V ), (θa) ◦ τ−1
κ is an element of H̃S

m,ν

p,loc

(resp. Sm,νp,loc(Bσ(R))).

Definition 2.2.5 One says that an element A of H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) admits an el-

ement a of H̃S
m,ν

p (T ∗X) (resp. Sm,νp (Bσ(R), T ∗X)) as a principal symbol modulo H̃Ψ
m−1,ν+ℓ

p

(resp. Ψm−1,ν+ℓ
p (Bσ(R))) if and only if, for any χ in C∞

0 (Rd), χ ≡ 1 close to zero, with small
enough support, for any local chart κ : V ⊂ X → Rd, for any functions θ, θ′, θ̃, θ̃′ in C∞

0 (V ),
with θθ̃ = θ, θ′θ̃′ = θ′,

(2.2.18) (κ−1)∗θAθ′κ∗ − (θ̃ ◦ κ−1)Op[((θθ′a) ◦ τ−1
κ )χ](θ̃′ ◦ κ−1)

is in H̃Ψ
m−1,ν+ℓ

p,loc (resp. Ψm−1,ν+ℓ
p,loc (Bσ(R))).

Remark: If ℓ ≥ M0(3d + 4), the above definition is coherent. Actually, consider two local
coordinate systems κ : V

∼→ Ṽ , κ1 : W
∼→ W̃ , where V,W are non disjoint open subsets of X,

and Ṽ , W̃ are open subsets of Rd. Let θ, θ′, θ̃, θ̃′ be in C∞
0 (V ∩ W ), with θθ̃ = θ, θ′θ̃′ = θ′ and

set O = κ(V ∩W ), O1 = κ1(V ∩W ). Then

(κ−1
1 )∗θAθ′κ∗

1 = (κ ◦ κ−1
1 |O1)∗(κ−1)∗θAθ′κ∗(κ1 ◦ κ−1|O)∗

= (κ ◦ κ−1
1 |O1)∗(θ̃ ◦ κ−1)Op[(θθ′a) ◦ τ−1

κ ]χ(θ̃′ ◦ κ−1)(κ1 ◦ κ−1|O)∗

modulo H̃Ψ
m−1,ν+ℓ

p,loc (resp. Ψm−1,ν+ℓ
p,loc (Bσ(R))). By proposition 2.2.1, this is equal to

(θ̃ ◦ κ−1
1 )Op[(θθ′a) ◦ τ−1

κ1
]χ1(θ̃′ ◦ κ−1

1 )

modulo H̃Ψ
m−1,ν+M0(3d+4)

p,loc (resp. Ψ
m−1,ν+M0(3d+4)
p,loc (Bσ(R))). Of course, using (iii) of Proposi-

tion 2.1.6, we may replace χ1 by any other function χ in C∞
0 (Rd), χ ≡ 1 close to zero, with

small enough support.

Proposition 2.2.6 Let m ∈ R, ν ∈ R+, ν
′ ∈ R+, p, q ∈ N, σ > 0.

(i) Every element of H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) has a principal symbol a in H̃S

m,ν

p (T ∗X)

(resp. Sm,νp (Bσ(R), T ∗X)) modulo H̃Ψ
m−1,ν+M0(3d+4)

p (resp. Ψ
m−1,ν+M0(3d+4)
p (Bσ(R))).

(ii) Let a be an element of H̃S
m,ν

p (T ∗X) (resp. Sm,νp (Bσ(R), T ∗X) ). There is an operator

A in H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) whose principal symbol modulo H̃Ψ

m−1,ν+M0(3d+4)

p (resp.

Ψ
m−1,ν+M0(3d+4)
p (Bσ(R))) is a.

(iii) Assume σ > min(ν(p), ν(q)) + min(ν, ν ′) +M0(3d+ 4), and, when p > 0 and q > 0, assume
moreover that (2.1.10) holds.
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Let A be in H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) and B be in H̃Ψ

m′,ν′

q (resp. Ψm′,ν′

q (Bσ(R))). Denote

by a a principal symbol of A modulo H̃Ψ
m−1,ν+M0(3d+4)

p (resp. Ψ
m−1,ν+M0(3d+4)
p (Bσ(R))) and by

b a principal symbol of B modulo H̃Ψ
m′−1,ν′+M0(3d+4)

p (resp. Ψ
m′−1,ν′+M0(3d+4)
q (Bσ(R))). Then

ab is a principal symbol for A ◦ B modulo H̃Ψ
m+m′−1,ν+M0(3d+4)

p+q when p > 0, q > 0, modulo

H̃Ψ
m+m′−1,ν+ν′+2M0(2d+3)

p+q if p or q is zero (resp. modulo Ψ
m+m′−1,max(ν,ν′)+M0(3d+4)
max(p,q) (Bσ(R))).

(iv) With the notations of (iii), a∨ (resp. ā) is a principal symbols of tA and A∗ modulo

H̃Ψ
m−1,ν+M0(3d+5)

p (resp. Ψ
m,ν+M0(3d+5)
p (Bσ(R))).

Proof: (i) We consider (θi)i∈I a finite partition of unity on X, such that, for each couple (i, j)
of J = {(i, j) ∈ I × I; Supp θi ∩ Supp θj 6= ∅}, there is a chart κij : Vij

∼→ Ṽij from the open
set Vij of X to the open set Ṽij of Rd such that Supp θi ∪ Supp θj ⊂ Vij . We have seen already

in the proof of Lemma 2.2.2, that
∑

(i,j) 6∈J θiAθj is in H̃Ψ
m−1,ν+M0

p (resp. Ψm−1,ν+M0
p (Bσ(R))).

For each i in I, choose θ̃i a smooth function such that θ̃iθi = θi and that Supp θ̃i is a compact
subset of Vij for any j such that (i, j) ∈ J . We consider

(κ−1
ij )∗θiAθj(κij)

∗ = (θi ◦ κ−1
ij )[(κ−1

ij )∗θ̃iAθ̃j(κij)
∗](θj ◦ κ−1

ij ).

The characterization of H̃Ψ
m,ν

p (resp. Ψm,ν
p (Bσ(R))) in terms of Sobolev spaces given in (1.2.7),

(1.2.18), (1.2.19) and Definition 2.1.1 imply that the term between brackets is in H̃Ψ
m,ν

p,loc

(resp. Ψm,ν
p,loc(Bσ(R))). By Proposition 2.1.6, we may find a symbol aij in H̃S

m,ν

p,loc (resp. in

Sm,νp,loc(Bσ(R))) such that

(2.2.19) (κ−1
ij )∗θiAθj(κij)

∗ = (θi ◦ κ−1
ij )Op(aij,χ)(θi ◦ κ−1

ij )

modulo H̃Ψ
m−1,ν+M0(2d+3)

p,loc (resp. Ψ
m−1,ν+M0(2d+3)
p,loc (Bσ(R))). We define a symbol on C∞(X)p×

T ∗X (resp. on Bσ(R) × T ∗X) by

(2.2.20) a =
∑

(i,j)∈I×I
(θiθjaij) ◦ τκij .

Let κ : V
∼→ Ṽ be a local coordinate system, θ, θ̃, θ′, θ̃′ be in C∞

0 (V ) with θ̃θ = θ, θ̃′θ′ = θ′. Let us

show that (2.2.18) holds with the symbol we just defined. We write, modulo H̃Ψ
m,−1,ν+M0(2d+3)

p,loc

(resp. Ψ
m−1,ν+M0(2d+3)
p (Bσ(R))),

(κ−1)∗θAθ′κ∗ =
∑

(i,j)∈J
(κ−1)∗θθiAθjθ

′κ∗

=
∑

(i,j)∈J
(κ−1)∗θ(κij)

∗(κ−1
ij )∗(θiAθj)(κij)

∗(κ−1
ij )∗θ′κ∗

=
∑

(i,j)∈J
((κ ◦ κ−1

ij |κij(V ∩Vij))
−1)∗(θθi) ◦ κ−1

ij Op(aij,χ)(θ′θj) ◦ κ−1
ij (κ ◦ κ−1

ij |κij(V ∩Vij))
∗
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where the last equality comes from (2.2.19). By formula (2.2.2) of Proposition 2.2.1, the last

term may be written, modulo H̃Ψ
m−1,ν+M0(3d+4)

p,loc (resp. Ψ
m−1,ν+M0(3d+4)
p,loc (Bσ(R))) as

∑

(i,j)∈J
(θ̃ ◦ κ−1)Op[(θθ′θiθjaij) ◦ τκij ◦ τ−1

κ ]χ1(θ̃′ ◦ κ−1).

Using (2.2.20) (and that θiθj = 0 if (i, j) 6∈ J), we obtain (θ̃ ◦ κ−1)Op[(a ◦ τ−1
κ )χ1 ](θ̃′ ◦ κ−1) i.e.

the right hand side of (2.2.18).

(ii) Let (θi)i∈I be a partition of unity on X such that Supp θi is contained in an open set Vi so
that there is a local chart κi : Vi

∼→ Ṽi ⊂ Rd. Take θ̃i in C∞
0 (Vi) with θ̃iθi = θi and define A by

A =
∑

i∈I
κ∗
i (θ̃i ◦ κ−1

i )Op[(θia) ◦ τ−1
κi

]χ(θ̃i ◦ κ−1
i )(κ−1

i )∗

where χ ∈ C∞
0 (Rd), χ ≡ 1 close to zero, Suppχ small enough. By (ii) of Proposition 2.1.6, A

is an element of H̃Ψ
m,ν+2M0(d+1)

p (resp. Ψ
m,ν+2M0(d+1)
p (Bσ(R))). Let us check that a satisfies

(2.2.18). If κ, θ, θ′ are as in the statement of Definition 2.1.5,

(2.2.21) (κ−1)∗θAθ′κ∗

=
∑

i∈I
(θ̃ ◦ κ−1)[(κi ◦ κ−1)∗(θθ̃i ◦ κ−1

i )Op[(θia) ◦ τ−1
κi

]χ(θ′θ̃i ◦ κ−1
i )(κ ◦ κ−1

i )∗](θ̃′ ◦ κ−1)

if θ̃, θ̃′ are in C∞
0 (V ) with θθ̃ = θ, θ′θ̃′ = θ′. We apply Proposition 2.2.1, to get modulo

H̃Ψ
m−1,ν+M0(3d+4)

p,loc (resp. Ψ
m−1,ν+M0(3d+4)
p,loc (Bσ(R))) the expression

∑

i∈I
(θ̃ ◦ κ−1)Op[((θθ′θia) ◦ τ−1

κ )χ1 ](θ̃′ ◦ κ−1) = (θ̃ ◦ κ−1)Op[((θθ′a) ◦ τ−1
κ )χ1 ](θ̃′ ◦ κ−1).

(iii) We just need to check the property locally. We may always assume that the distribution
kernels of A and B are supported in a small neighborhood W of the diagonal. Let κ : V

∼→ Ṽ
be a chart and θ, θ′ in C∞

0 (V ). If W is small enough, we may find θ1 in C∞
0 (V ) with θθ1 = θ,

θ′θ1 = θ′ so that
(κ−1)∗θABθ′κ∗ = [(κ−1)∗θAθ1κ

∗][(κ−1)∗θ1Bθ
′κ∗].

By Definition 2.2.5, Lemma 1.2.4 and Lemma 1.2.6, the last expression may be written, modulo

H̃Ψ
m+m′−1,ν+M0(3d+4)

p+q,loc (resp. Ψ
m+m′−1,max(ν,ν′)+M0(3d+4)
max(p,q),loc (Bσ(R))) as

(2.2.22) (θ̃ ◦ κ−1)Op[((θa) ◦ τ−1
κ )χ](θ̃1 ◦ κ−1)2Op[((θ′b) ◦ τ−1

κ )χ](θ̃′ ◦ κ−1)

where θ̃1θ1 = θ1, θ̃θ = θ, θ̃′θ′ = θ′, when p > 0 and q > 0. When p = 0 or q = 0, the

equality is valid modulo H̃Ψ
m+m′−1,ν+ν′+M0(3d+4)

p+q,loc (resp. Ψ
m+m′−1,max(ν,ν′)+M0(3d+4)
max(p,q),loc (Bσ(R))).

By Theorem 2.1.7 (see (2.1.13) and (2.1.17)), we may write (2.2.22) as

(θ̃ ◦ κ−1)Op[((θθ′ab) ◦ τ−1
κ )χ](θ̃1 ◦ κ−1)
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modulo an element of H̃Ψ
m+m′−1,ν+ν′+M0(2d+3)

p+q,loc when p > 0, q > 0 and modulo an element of

H̃Ψ
m+m′−1,ν+ν′+2M0(2d+3)

p+q,loc if p = 0 or q = 0 (resp. modulo Ψ
m+m′−1,max(ν,ν′)+M0(2d+3)
max(p,q),loc (Bσ(R))).

This shows that ab is a principal symbol of the composition.

(iv) With the same notations as above, we need to study t[(κ−1)∗θAθ′κ∗] (where we denote by the
same notation transpose of maps from L2(X, dµ) to L2(X, dµ), from L2(Rd, dx) to L2(Rd, dx),
from L2(X, dµ) to L2(Rd, dx) and from L2(Rd, dx) to L2(X, dµ). Denote by α the density of
the measure dµ relatively to Lebesgue measure in the coordinate patch i.e. dµ(y) = α(x)dx if
y = κ−1(x). Then t(κ∗) = (κ−1)∗(α ◦ κ), t(κ−1)∗ = (α ◦ κ)−1κ∗, so that

[(κ−1)∗θtAθ′κ∗] = t[(κ−1)∗θ′(α ◦ κ)A(α ◦ κ)−1θκ∗].

We apply (2.2.18) and (2.1.18) to write this quantity as

(θ̃ ◦ κ−1)Op[(θθ′a∨)χ](θ̃′ ◦ κ−1)

modulo H̃Ψ
m−1,ν+M0(3d+5)

p,loc (resp. Ψ
m−1,ν+M0(3d+5)
p,loc (Bσ(R))). This concludes the proof, the case

of the adjoint being similar. ✷

3 Quasi-linear Birkhoff normal forms method

3.1 Description of the method

Our goal is to prove Theorem 1.2.8. We fix some integer P ∈ N∗ and take G a function as in
the statement of the theorem. We fix also m ∈]0,+∞[−N , where N is the zero measure subset
of ]0,+∞[ introduced before the statement of Theorem 1.2.8. Then inequalities (1.2.27) hold.

To prove the theorem, i.e. to show that the solution of (1.2.28) extends to a time interval
] − Tǫ, Tǫ[ with Tǫ ≥ cǫ−P , for all u0 in the unit ball of Hs(X) (s > s0) and any small enough
ǫ, it is enough to construct a function Θs, defined on a neighborhood of zero in Hs(X), real
valued, such that there is C > 0, R > 0 with

(3.1.1) C−1‖u‖2
Hs ≤ Θs(u) ≤ C‖u‖2

Hs for all u in Bs(R)

and for any solution u of ut = i∇ūG(u, ū), defined and smooth on ] − T, T [×X for some T , the
estimate

(3.1.2) Θs(u(t, ·)) ≤ Θs(u(0, ·)) + C
∣∣∣
∫ t

0
‖u(τ, ·)‖P+2

Hs dτ
∣∣∣ + CǫP

∣∣∣
∫ t

0
‖u(τ, ·)‖2

Hs dτ
∣∣∣

holds for all t in ] − T, T [ such that u(t, ·) ∈ Bs(R). Actually, (3.1.1) and (3.1.2) imply an
estimate

‖u(t, ·)‖2
Hs ≤ C

[
‖u(0, ·)‖2

Hs +
∣∣∣
∫ t

0
‖u(τ, ·)‖P+2

Hs dτ
∣∣∣ + ǫP

∣∣∣
∫ t

0
‖u(τ, ·)‖2

Hs dτ
∣∣∣
]
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as long as u(t, ·) stays in Bs(R) ∩ C∞. This shows that for u(0, ·) smooth and ‖u(0, ·)‖Hs ≤ ǫ
small enough, the solution extends up to a time Tǫ ≥ cǫ−P for some small c > 0. When u(0, ·)
is only in Hs(X), with small enough Hs-norm, we may always approximate the Cauchy data
by C∞(X) functions, solve the equation for these approximations on ] − Tǫ, Tǫ[ and pass to the
limit to get the solution of (1.2.28) for any u0 in the unit ball of Hs(X) and any ǫ > 0 small
enough.

The construction of Θs will be made in three steps, given by the following three theorems.

Theorem 3.1.1 There is ν ∈ R+, s0 > 0, R > 0 and for any s > s0, a canonical transformation
χ defined on Bs(R), with χ(0) = 0, χ′(0) = Id, and there are
• Elements Ap of HΨ1,ν

p , 1 ≤ p ≤ P − 1, self-adjoint,
• Elements AP , BP of Ψ1,ν

P (Bs(R)), with AP self-adjoint,
• Functions GL,p in G1−∞,ν+∞

p (Bs(R)), 1 ≤ p ≤ P − 1,
such that for any C1 function Θ1

s, defined on Bs(R), vanishing at order 2 at the origin, one has,
for any U in Bs(R) ∩ C∞

(3.1.3) {Θ1
s ◦ χ,G}(U) = {Θ1

s, GL +GH + G̃P } ◦ χ(U) +O(‖u‖P+2
Hs ), U → 0

with

(3.1.4) GL(U) =
P−1∑

p=1

GL,p(U)

(3.1.5) GH(U) = G0(u) +
P−1∑

p=1

∫

X
(Ap(U)u)ū dµ

and

(3.1.6) G̃P (U) =

∫

X
(AP (U)u)ū dµ+ Re

∫

X
(BP (U)u)u dµ.

Remarks • We write the preceding statement for functions U = (u, ū) in Bs(R) ∩ C∞ so that
the Poisson brackets in (3.1.3) are well defined. Actually, since (3.1.5), (3.1.6) involve operators
of order one, XGH

, XG̃P
are in Hs−1(X) if U is in Hs. On the other hand, dΘ1

s(U) is in L(Hs,R),

so that dΘ1
s(U) · XGL+GH+G̃P

is not necessarily well defined if U is assumed to be only in Hs.

Of course, at the end of the proof, Θ1
s will be defined in such a way that the right hand side of

(3.1.3) will extend even to function U that belong only to Hs.

• The conclusion of the theorem asserts that we may choose χ in such a way that the new
Hamiltonian in the right hand side of (3.1.3) contains contributions homogeneous of lower degree
0 ≤ p ≤ P−1 that are hyperbolic (in the sense of Definition 1.2.7), which form GH, “lower order”
contributions giving GL, and a term G̃P , which has no special structure, but vanishes at high
order when U goes to zero.

The second step in the proof of theorem 1.2.8 will eliminate the elliptic part of G̃P .
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Theorem 3.1.2 Let ν ∈ R+ be given. There is s0 > 0 such that if s ≥ s0, there is a local
diffeomorphism ψ from a neighborhood of 0 in Hs(X) to a neighborhood of zero in Hs(X), with
ψ(0) = 0, such that, for any function Θ2

s which is in
⊕P−1

p=0

(
HF2s,ν

p,H (Bs(R)) + G2s−1,ν
p (Bs(R))

)
,

for any U in C∞(X) belonging to a small enough neighborhood of zero in Hs(X),

(3.1.7) {Θ2
s ◦ ψ,GL +GH + G̃P }(U) = {Θ2

s, GL +GH} ◦ ψ(U) +O(‖U‖P+2
Hs ).

The last step of the proof will be to choose Θ2
s so that the first term in the right hand side of

(3.1.7) vanishes essentially at order P + 2 at zero.

Theorem 3.1.3 There are ν ∈ R+, s0 > 0 and, for any s ≥ s0, a constant C0 > 0 and, for any
ǫ ∈]0, 1[, any R > 0, an element Θ2

s = Θ2
s(ǫ) in

⊕
p≥0HF2s,ν

p,H (Bs(R)) + G2s−1,ν
p (Bs(R)), with

estimates uniform in ǫ ∈]0, 1[, satisfying (3.1.1) uniformly in ǫ ∈]0, 1[, such that

(3.1.8) |{Θ2
s, GL +GH}(U)| ≤ C0[‖U‖P+2

Hs + ǫP ‖U‖2
Hs ]

for any U in C∞(X) ∩Bs(R).

Proof of theorem 1.2.8: As already seen, we just need to construct a function Θs such that
(3.1.1) and (3.1.2) hold (actually, Θs will be a family of functions, depending on ǫ, and for which
(3.1.1), (3.1.2) hold with constants independent of ǫ ∈]0, 1[). We take ν large enough so that
Theorems 3.1.1 and 3.1.3 hold, and s0 large enough so that Theorems 3.1.1, 3.1.2 and 3.1.3
apply. We use Theorem 3.1.1 to determine χ, GH, G̃P . Then, Theorem 3.1.3 determines Θ2

s

and Theorem 3.1.2 determines ψ. We set Θ1
s = Θ2

s ◦ ψ and Θs = Θ1
s ◦ χ. Then, (3.1.3),

(3.1.7) and (3.1.8) show that |{Θs, G}| is bounded from above by the right hand side of (3.1.8).
Since it follows from equation (1.2.18) that d

dtΘs(u(t, ·)) = {Θs, G}(u(t, ·)), this gives (3.1.2) by
integration. Inequality (3.1.1) holds by construction. This concludes the proof of Theorem 1.2.8
from the three results in this subsection. ✷

The proofs of Theorems 3.1.1 to 3.1.3 will depend on the study of Poisson brackets between
functions of the classes of Definition 1.2.7. We shall study such Poisson brackets in the following
subsection.

3.2 Computation of Poisson brackets

Let U → A(U) be a C1 function defined on an open set Ω of Hσ(X), with σ large enough, with
values in L(Hs, Hs−m) for some m and any s with s ≥ σ and m ≤ 2s. Consider the functions

HA
1 (W,U) =

∫

X
(A(W )u)u dµ

HA
0 (W,U) =

∫

X
(A(W )u)ū dµ

HA
−1(W,U) =

∫

X
(A(W )ū)ū dµ

(3.2.1)
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defined for W ∈ Ω, U = (u, ū) ∈ Hs(X). If U is in Ω ∩ Hs(X), set FAa (U) = HA
a (U,U),

a = −1, 0, 1. Let B be another C1 map from Ω to L(Hs, Hs−m′

) for some m′ and any s ≥ σ,
m′ ≤ 2s. Assume moreover m+m′ ≤ 2s. By formulas (1.1.17), (1.1.16)

{FAa , FBb } = {HA
a (W, ·), HB

b (W, ·)}|W=U + i(dWH
A
a )(U,U)tJ(∇UH

B
b )(U,U)

−i(dWHB
b )(U,U)tJ(∇UH

A
a )(U,U) + {HA

a (·, U), HB
b (·, U)}|W=U

(3.2.2)

where the first (resp. the last) term in the right hand side is the Poisson bracket of the functions
U → HA

a (W,U), U → HB
b (W,U) (resp. W → HA

a (W,U),W → HB
b (W,U)) at fixed W (resp.

U). Let us compute explicitly the first Poisson bracket. According to formula (1.1.17)

{HA
1 (W, ·), HB

0 (W, ·)} = i

∫

X
((A(W ) + tA(W ))u)(B(W )u) dµ

{HA
1 (W, ·), HB

−1(W, ·)} = i

∫

X
((A(W ) + tA(W ))u)((B(W ) + tB(W ))ū) dµ

{HA
0 (W, ·), HB

−1(W, ·)} = i

∫

X
(tA(W )ū)((B(W ) + tB(W ))ū) dµ

(3.2.3)

and

{HA
1 (W, ·), HB

1 (W, ·)} = 0, {HA
−1(W, ·), HB

−1(W, ·)} = 0

{HA
0 (W, ·), HB

0 (W, ·)} = i

∫

X
([A,B](W )u)ū dµ.

(3.2.4)

Consequently, the first term in the right hand side of (3.2.2) may be written as HC
c (U,U) for

some C that may be computed from compositions of A,B, tA, tB or from a commutator [A,B].
On the other hand, the second term in the right hand side of (3.2.2), has the following structure
for a = 1, 0,−1

i

∫

X
[dWA(W ) · (tJ∇UH

B
b )u]u dµ

i

∫

X
[dWA(W ) · (tJ∇UH

B
b )u]ū dµ

i

∫

X
[dWA(W ) · (tJ∇UH

B
b )ū]ū dµ.

(3.2.5)

By definition of HB
b ,

∇UH
B
1 (W,U) =

[
(B(W ) + tB(W ))u

0

]
, ∇UH

B
0 (W,U) =

[
tB(W )ū
B(W )u

]

∇UH
B
−1(W,U) =

[
0

(B(W ) + tB(W ))ū

](3.2.6)

so that (3.2.5) will be computed from quantities of the form

(3.2.7) dwA(W ) · (C(W )u), dwA(W ) · (C(W )ū), dw̄A(W ) · (C(W )u), dw̄A(W ) · (C(W )ū)

where C(W ) will be an operator of the same form as A(W ), B(W ).

We introduce an auxiliary class of multi-linear operators.
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Definition 3.2.1 Let m ∈ R, ν ∈ R+, p ∈ N∗. We denote by H̃Mm,ν

p the space of p-linear maps
(u1, . . . , up) → M(u1, . . . , up), defined on C∞(X)p, with values in the space of linear maps from
C∞(X) to D′(X), that may be written as a sum

∑p
i=1Mi(u1, . . . , up), where Mi satisfies the

following estimates: for any N1, N2 in N, there is C > 0 and for any n0, . . . , np+1 in N∗

‖Πn0Mi(Πn1u1, . . . ,Πnpup)Πnp+1‖L(L2) ≤ C

[
min

( ni
np+1

,
np+1

ni

)]N1

max(n0, . . . , n̂i, . . . , np)
ν(p)+ν

×(ni + np+1)m
(

1 +
max(n0, . . . , n̂i, . . . , np)

ni + np+1

)−N2 p∏

1

‖Πnℓ
uℓ‖L2 .

(3.2.8)

We shall denote by HMm,ν
p the space of operator valued maps U → M(U) that may be written

(3.2.9) M(U) =
p∑

ℓ=0

Mℓ(u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū︸ ︷︷ ︸
p−ℓ

)

with Mℓ in H̃Mm,ν

p .

Lemma 3.2.2 Let A be an element of Pm,ν
p and set for j ∈ N

HA,≤j(W,U) =

∫

X
(A(W )Sju)u dµ or

∫

X
(A(W )Sju)ū dµ or

∫

X
(A(W )Sj ū)ū dµ.

Then ∇wH
A,≤j(W,U)|W=U and ∇w̄H

A,≤j(W,U)|W=U may be written as a linear combination
of Mα(U)Sju, Mα(U)Sj ū for elements Mα of HMm,ν

p .

Proof: We consider for instance the first expression of HA,≤j . We decompose A(W ) =∑p
ℓ=0Aℓ(w, . . . , w︸ ︷︷ ︸

ℓ

, w̄, . . . , w̄) with Aℓ in P̃m,ν
p . Then dwH

A,≤j(W,U) · h may be written as a

sum
p∑

ℓ=0

ℓ∑

i=1

∫

X

(
Aℓ(w, . . . , h︸︷︷︸

i

, . . . , w, w̄, . . . , w̄)Sju)u dµ.

Consequently, ∇wH
A,≤j(W,U)|W=U may be written as a sum

p∑

ℓ=0

ℓ∑

i=1

Mℓi(u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū)Sju

with
∫

X
(Mℓi(u1, . . . , up)up+1)h dµ =

∫

X
(Aℓ(u1, . . . , ui−1, h, ui+1, . . . , up)up+1)ui dµ.

The fact that ‖Πn0Mℓi(Πn1u1, . . . ,Πnpup)Πnp+1‖L(L2) is bounded by the right hand side of (3.2.8)
follows from (1.2.5). ✷

The goal of this subsection is to prove the following:
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Proposition 3.2.3 Let m,m′ in R, ν, ν ′ in R+, p, q in N, σ ∈ R. Assume

(3.2.10) ν(p) + ν(q) + max(ν, ν ′) +M0(3d+ 4) ≤ ν(p+ q) if p > 0, q > 0

and that σ is large enough so that condition (1.2.23) holds for all the spaces of multi-linear forms
below. Then, with the notations introduced in definition 1.2.7, one has the following inclusions

(3.2.11)
{
HFm,ν

p,E (Bσ(R)), HFm′,ν′

q,E (Bσ(R))
}∪

{
HFm,ν

p,H (Bσ(R)), HFm′,ν′

q,E (Bσ(R))
}

∪
{
HFm,ν

p,H (Bσ(R)), HFm′,ν′

q,H (Bσ(R))
}

⊂ HFm+m′,min(ν,ν′)
p+q (Bσ(R)) +HFm,m′

++min(ν,ν′)
p+q (Bσ(R)) +HFm′,m++min(ν,ν′)

p+q (Bσ(R))

if p > 0 and q > 0. If p or q is zero, one gets the same inclusion with min(ν, ν ′) replaced by
ν + ν ′;

(3.2.12)
{
HFm,ν

p,H (Bσ(R)), HFm′,ν′

q,H (Bσ(R))
}⊂ HFm+m′−1,min(ν,ν′)+M0(3d+4)

p+q,H (Bσ(R))

+HFm,m′
++min(ν,ν′)

p+q,H (Bσ(R)) +HFm′,m++min(ν,ν′)
p+q,H (Bσ(R))

if p > 0 and q > 0. If p or q is zero, one gets the same inclusion with min(ν, ν ′) replaced by
ν + ν ′ and M0(3d+ 4) replaced by 2M0(2d+ 3). Moreover, one has also the inclusions

(3.2.13)
{

Gm,νp (Bσ(R)),Gm′,ν′

q (Bσ(R))
}

⊂ Gm+m′,min(ν,ν′)
p+q (Bσ(R)) + Gm,m

′
++min(ν,ν′)

p+q (Bσ(R)) + Gm
′,m++min(ν,ν′)

p+q (Bσ(R))

if p > 0 and q > 0. If p or q is zero, one gets the same inclusion with min(ν, ν ′) replaced by
ν + ν ′. One has also

(3.2.14)
{
HFm,ν

p,H (Bσ(R)),Gm′,ν′

q (Bσ(R))
}

⊂ HFm,m′
++min(ν,ν′)

p+q,H (Bσ(R)) + Gm+m′,min(ν,ν′)+2M0
p+q (Bσ(R)) + Gm

′,m++min(ν,ν′)
p+q (Bσ(R))

if p > 0 and q > 0. If p or q is zero, one gets the same inclusion with min(ν, ν′) replaced by
ν + ν ′ (resp. ν + ν ′ + 2M0) in the first (resp. last) term in the right hand side.

Finally, one has the inclusion

(3.2.15)
{
HFm,ν

p (Bσ(R)),Gm′,ν′

q (Bσ(R))
}

⊂ Gm+m′,min(ν,ν′)+2M0
p+q (Bσ(R)) + Gm,m

′
++min(ν,ν′)+2M0

p+q (Bσ(R)) + Gm
′,m++min(ν,ν′)+2M0

p+q (Bσ(R))

if p > 0 and q > 0. If p or q is zero, one gets the same inclusion with min(ν, ν ′) replaced by
ν + ν ′.

The main step to prove the proposition will be to study expressions of type (3.2.7) where A will
be an element of HΨm,ν

p . We consider the different possible situations in the following lemma.
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Lemma 3.2.4 Assume, for some a ≥ 0,

(3.2.16) ν(p) + ν(q) + max(ν, ν ′) + a ≤ ν(p+ q) if p > 0 and q > 0.

Let A be an element of H̃Ψ
m,ν

p (resp. P̃m,ν
p ) and B be an element of P̃m′,ν′+a

q . Define

(3.2.17) C(u1, . . . , up+q) = A(B(u1, . . . , uq)uq+1, uq+2, . . . , up+q).

Then C is in H̃Ψ
m,min(ν,ν′)+m′

+

p+q if p > 0, q > 0 and in H̃Ψ
m,ν+ν′+m′

++a

p+q if p = 0 or q = 0. (resp.

in P̃m,min(ν,ν′)+m′
+

p+q if p > 0, q > 0 and in P̃m,ν+ν′+m′
++a

p+q if p = 0 or q = 0).

Proof: Let P1, . . . , Pk be differential operators as in Definition 1.2.1. When A is in H̃Ψ
m,ν

p ,

denote Ã = AdP1 · · · AdPk
A and C̃ = AdP1 · · · AdPk

C. Compute

(3.2.18) ∆jC̃(Πn1u1, . . . ,Πnp+qup+q)∆j′

=
∑

n

∆jÃ(ΠnB(Πn1u1, . . . ,Πnquq)Πnq+1uq+1,Πnq+2uq+2, . . . ,Πnp+qup+q)∆j′ .

By symmetry, we may assume n1 ≥ · · · ≥ nq, nq+2 ≥ · · · ≥ np+q. By (1.2.8) and (1.2.5),
the L(L2)-norm of the general term of the sum is bounded from above by a constant times∏p+q

1 ‖Πnℓ
uℓ‖L2 times

(3.2.19) 2−|j−j′|N ′
1(n+ nq+2)ν(p)+ν+M0k2jm̃(1 + 2−j(n+ nq+2))−N ′

2

×
[
min

( n

nq+1
,
nq+1

n

)]N ′′
1

nm
′

n
ν(q)+ν′+a
1

(
1 +

n1

n

)−N ′′
2 〈n− nq+1〉−2

where m̃ = m+
∑k

1 dℓ − k. We write

(3.2.20)

(
1 +

n+ nq+2

2j

)(
1 +

n1

n

)
≥ 1 +

n+ nq+2 + n1

2j

≥
(

1 +
nq+1 + nq+2 + n1

2j

)
min

( n

nq+1
,
nq+1

n

)
,

so that (3.2.19) is bounded from above by

(3.2.21) 2jm̃2−|j−j′|N ′
1(nq+1 + nq+2 + n1)ν(p)+ν(q)+ν+ν′+a+m′

++M0k
(

1 +
nq+1 + nq+2 + n1

2j

)−N ′
2

× 〈n− nq+1〉−2
[
min

( n

nq+1
,
nq+1

n

)]N ′′
1 −N ′

2−ν(p)−ν−m′
+−M0k

if N ′′
1 , N

′′
2 are large enough relatively to N ′

2, ν,m
′
+, k. If we sum this in n, we get estimate (1.2.8)

of an element of H̃Ψ
m,min(ν,ν′)+m′

+

p+q when p > 0, q > 0 and (3.2.16) holds. If p = 0 or q = 0, we

get an element of H̃Ψ
m,ν+ν′+m′

++a

p+q . When A is in P̃m,ν
p , we bound

‖Πn0C(Πn1u1, . . . ,Πnp+qup+q)Πnp+q+1‖L(L2)
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using (1.2.5), by the product of a constant times
∏p+q

1 ‖Πnℓ
uℓ‖L2 times

(3.2.22) 〈n0 − np+q+1〉−2
[
min

( n0

np+q+1
,
np+q+1

n0

)]N ′
1

(n+ nq+2)ν+ν(p)nm0

(
1 +

n+ nq+2

n0

)−N ′
2

× 〈n− nq+1〉−2
[
min

( n

nq+1
,
nq+1

n

)]N ′′
1

nm
′

n
ν(q)+ν′

1

(
1 +

n1

n

)−N ′′
2
.

The rest of the computation is similar as above. ✷

Lemma 3.2.5 Let p, q ∈ N∗. Assume for some a ≥ 0,

(3.2.23) ν(p) + ν(q) + max(ν, ν′) + a+ 1 ≤ ν(p+ q).

Let A be in H̃Ψ
m,ν

p (resp. P̃m,ν
p ) and M =

∑q
i=1Mi be in H̃Mm′,ν′+a

q . Consider

(3.2.24) C(u1, . . . , up+q) =
+∞∑

j′′=0

q∑

i=1

A(Mi(u1, . . . , uq)Sj′′uq+1, uq+2, . . . , up+q)∆j′′ .

Then C is in H̃Ψ
m,min(ν,ν′)+m′

+

p+q (resp. P̃m,min(ν,ν′)+m′
+

p+q ).

Proof: We consider the contribution to (3.2.24) of the term corresponding to i = 1. We write
M instead of M1. Let P1, . . . , Pk be differential operators on X of orders d1, . . . , dk. We may
express AdP1 · · · AdPk

C from

∑

j′′

AdP ′A(M(u1, . . . , uq)Sj′′uq+1, uq+2, . . . , up+q)AdP ′′∆j′′

where P = P ′∪P ′′ is any partition of P = (P1, . . . , Pk). Denote by k′ (resp. k′′) the cardinal of P ′

(resp. P ′′) and set d′ =
∑
Pℓ∈P ′ dℓ, d

′′ =
∑
Pℓ∈P ′′ dℓ. Then ‖∆jAdP1 · · · AdPk

C(Πn′U)∆j′‖L(L2)

will be bounded from above by the sum for P = P ′ ∪ P ′′ of

(3.2.25)
∑

n

∑

j′′

∑

̃′′

∥∥∆jAdP ′A(ΠnM(Πn1u1, . . . ,Πnquq)Sj′′Πnq+1uq+1,

Πnq+2uq+2, . . . ,Πnp+qup+q)∆̃′′
∥∥

L(L2)
‖∆̃̃′′(AdP ′′∆j′′)∆j′‖L(L2)

where ∆̃j̃′′ is a cut-off such that ∆̃j̃′′∆j̃′′ = ∆j̃′′ . By symmetry, we may assume that n2 ≥ n3 ≥
· · · ≥ nq, nq+2 ≥ · · · ≥ np+q. Moreover, in the sum, nq+1 ≤ C2j

′′

for some C > 0. By (1.2.8)
and (3.2.8) with i = 1, the first factor in the general term of (3.2.25) is bounded from above by
the product of

∏p+q
1 ‖Πnℓ

uℓ‖L2 and

(3.2.26) 2−|j−̃′′|N ′
1(n+ nq+2)ν(p)+ν+M0k′

2j(m+d′−k′)(1 + 2−j(n+ nq+2))−N ′
2

×
(

min
( n1

nq+1
,
nq+1

n1

))N ′′
1

(n+ n2)ν(q)+ν′

(n1 + nq+1)m
′

(
1 +

n+ n2

n1 + nq+1

)−N ′′
2

✶nq+1≤C2j′′ .
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We notice that

(3.2.27) (1 + 2−j(n+ nq+2))

(
1 +

n+ n2

n1 + nq+2

)
max

[
n1

nq+1
,
nq+1

n1

]
2|j−j′′|

≥ c(1 + 2−j(nq+2 + nq+1 + n2 + n1))

since nq+1 ≤ C2j
′′

. Moreover, for ℓ = 2 or ℓ = q + 2

(n+ nℓ)

(
1 +

n+ n2

n1 + nq+2

)−1

≤ C(nq+2 + nq+1 + n2 + n1).

If N ′′
1 , N

′′
2 are large enough, we bound the sum in n of (3.2.26) by

(3.2.28) C2−N ′
1|j−̃′′|2j(m+d′−k′)(n1 + · · · + np+q)

ν(p)+ν(q)+ν+ν′+1+m′
++M0k′

× (1 + 2−j(n1 + · · · + np+q))
−N ′

22N
′
2|j−j′′|.

We use Proposition A.1 of the appendix to bound the last factor in (3.2.25) by the expression
CN2−N [|̃′′−j′′|+|j′′−j′|]2j(d

′′−k′′). If we take N ≫ N ′
1 ≫ N ′

2 ≫ N1, N2 and use (3.2.23), we bound
(3.2.25) by

(3.2.29) C2−N1|j−j′|2j(m+
∑

dℓ−k)(n1 + · · · + np+q)
ν(p+q)+min(ν,ν′)+m′

++M0k

× (1 + 2−j(n1 + · · · + np+q))
−N2

p+q∏

1

‖Πnℓ
uℓ‖L2 .

This is the wanted estimate.

The case when A is in P̃m,ν
p is treated in the same way. ✷

Proof of Proposition 3.2.3: Let A (resp. B) be an element of HΨm,ν
p or Pm,ν

p (resp. HΨm′,ν′

q

or Pm′,ν′

q ). Denote by H1
a , H

b
b , −1 ≤ a, b ≤ 1, the functions given by any of the formulas (3.2.1).

We have to compute {HA
a (U,U), HB

b (U,U)}. According to (3.2.2), the first quantity to study is
given by (3.2.3) or (3.2.4) with W = U . They may be written as expressions of type

(3.2.30)

∫

X
(C(U)u)ū dµ,

∫

X
(C(U)u)u dµ,

∫

X
(C(U)ū)ū dµ.

Consider first the contribution to the left hand side of (3.2.11) given by (3.2.3), (3.2.4). Then C
may be expressed from the composition of an element of HΨm,ν

p and of HΨm′,ν′

q . By lemma 1.2.4

with a = max(ν, ν ′) and (3.2.10), we obtain that C is in HΨ
m+m′,min(ν,ν′)
p+q if p > 0, q > 0 and

HΨm+m′,ν+ν′

p+q if p = 0 or q = 0. This shows that (3.2.30) belongs to the right hand side of
(3.2.11). If we consider the contribution of (3.2.4) to (3.2.12), we get expressions of form (3.2.30)
with C = [A,B]. We apply Proposition 2.2.6 (iii), which is possible under assumption (3.2.10),

and see that C is in HΨ
m+m′−1,min(ν,ν′)+M0(3d+4)
p+q if p > 0, q > 0 and HΨ

m+m′−1,ν+ν′+2M0(2d+3)
p+q

if p = 0 or q = 0.

Let us study as well the contributions of (3.2.3), (3.2.4) to the left hand side of (3.2.13), (3.2.14).
For the first of these inclusions, C may be expressed from the composition of an element of Pm,ν

p
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and Pm′,ν′

q , so belongs to Pm+m′,min (ν,ν′)
p+q (if p > 0, q > 0) and Pm+m′,ν+ν′

p+q if p = 0 or q = 0 by
(1.2.14), so that (3.2.30) contributes to the right hand side of inclusion (3.2.13). The inclusion
(1.2.10) shows that the contributions of (3.2.3), (3.2.4) to the left hand side of (3.2.14) belong

to Gm+m′,min(ν,ν′)+2M0
p+q (Bσ(R)) when if p > 0, q > 0 and to Gm+m′,ν+ν′+2M0

p+q (Bσ(R)) if p = 0 or
q = 0.

We consider now the contributions of type (3.2.5) to the inclusions (3.2.11)–(3.2.14) (as well as
the symmetric ones obtained exchanging A and B). According to (3.2.7), we must study

(3.2.31)

∫

X
(d(w,w̄)A(W ) · C(W )u1)u2dµ|W=U ,

where u1, u2 stand for u or ū, C(W ) stands for B(W ) or tB(W ) or B(W ) + tB(W ), and the
symmetric expressions obtained exchanging A and B.

Let us study first contributions of type (3.2.31) to the left hand side of (3.2.11), (3.2.12). Then
A is in HΨm,ν

p and C is in HΨm′,ν′

q ⊂ Pm′,ν′+2M0
q . It follows from Lemma 3.2.4 that (3.2.31)

is in HFm,m′
++min(ν,ν′)

p+q (Bσ(R)) if p > 0, q > 0 and to HFm,m′
++ν+ν′+2M0

p+q (Bσ(R)) if p = 0

or q = 0. Consider now (3.2.13). Then A (resp. C) in (3.2.31) is in Pm,ν
p (resp. Pm′,ν′

q )

so that Lemma 3.2.4 shows that (3.2.31) is in Gm,m
′
++min(ν,ν′)

p+q (Bσ(R)) if p > 0, q > 0 and in

Gm,m
′
++ν+ν′

p+q (Bσ(R)) when p = 0 or q = 0. For inclusion (3.2.14), we use that in (3.2.31), A is in

HΨm,ν
p and B in Pm′,ν′

q , so that Lemma 3.2.4 shows that (3.2.31) is in HFm,m′
++min(ν,ν′)

p+q (Bσ(R))

when p > 0, q > 0 and in HFm,m′
++ν+ν′

p+q (Bσ(R)) when p = 0 or q = 0.

Those contributions coming from the symmetric version of (3.2.31) with A and B exchanged
belong to the space of functions obtained exchanging (m, ν) and (m′, ν′), except for inclusion
(3.2.14). In this case, we have to consider (3.2.31) with A replaced by an element of Pm′,ν′

q

and C by an element of HΨm,ν
p ⊂ Pm,ν+2M0

q . Again, by Lemma 3.2.4, we get a contribution

belonging to Gm
′,m++min(ν,ν′)

p+q (Bσ(R)) if p > 0, q > 0 and to Gm
′,m++ν+ν′+2M0

p+q (Bσ(R)) if p or q
is zero.

Finally, we have to study the last contribution to (3.2.2), namely {HA
a (·, U), HB

b (·, U)}. We
decompose

HA
a (W,U) =

+∞∑

j=0

HA,j
a (W,U)

where

HA,j
a (W,U) =

∫

X
(A(W )∆ju1)u2 dµ

with (u1, u2) = (u, u) if a = 1, (u1, u2) = (u, ū) if a = 0, (u1, u2) = (ū, ū) if a = −1. We use a
similar decomposition for HB

b and set HA,<j
a =

∑
j′<j H

A,j′

a , HA,≤j
a =

∑
j′≤j H

A,j′

a . Then

(3.2.32) {HA
a (·, U), HB

b (·, U)} =
∑

j

{HA,≤j
a (·, U), HB,j

b (·, U)} +
∑

j

{HA,j
a (·, U), HB,<j

b (·, U)}.
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We study the first sum in the right hand side. The general term in that sum may be written
−i(dWHB,j

b ) · (tJ∇WH
A,j
a ) so is equal to

(3.2.33) −i
∫

X

(
[dWB(W ) · (tJ∇WH

A,j
a (W,U))]∆ju1

)
u2 dµ|W=U .

We apply Lemma 3.2.2 considering A as an element of Pm,,ν+2M0
p . This allows us to write

(3.2.33) as a linear combination of quantities

∫

X
[(dUB(U) ·M(U)Sju3)∆ju1]u2 dµ

where u3 = u or ū and M is in HMm,ν+2M0
p . The sum in j of these quantities may be computed

from expressions

∑

j

∫

X

(
B(u1, . . . , uℓ,M(uℓ+1, . . . , uℓ+p)Sjuℓ+p+1, uℓ+p+2, . . . , up+q)∆jup+q+1

)
u0 dµ

where ui has to be replaced by u or ū. This is an expression of the form
∫

X
(C(u1, . . . , up+q)up+q+1)u0 dµ

with C given by (3.2.24) (up to a change of indices). By Lemma 3.2.5, C is in H̃Ψ
m′,m++min(ν,ν′)

p+q

(resp. P̃m′,m++min(ν,ν′)
p+q ) if B is in HΨm′,ν′

q (resp. Pm′,ν′

q ). This gives to (3.2.32) a con-

tribution belonging to HFm′,m++min(ν,ν′)
p+q (Bσ(R)), when we consider (3.2.11), (3.2.12) and to

Gm
′,m++min(ν,ν′)

p+q (Bσ(R)) for (3.2.13), (3.2.14).

The second contribution to (3.2.32) belongs to the same classes with (m, ν) and (m′, ν′) ex-
changed in the case of (3.2.11), (3.2.12), (3.2.13). For (3.2.14), we get a contribution in

HFm,m′
++min(ν,ν′)

p+q (Bσ(R)) (Note that when studying (3.2.32) we may assume p > 0 and q > 0,
as otherwise the corresponding contribution is zero).

Inclusion (3.2.15) follows from (3.2.13) and the inclusion HFm,ν
p (Bσ(R)) ⊂ Gm,ν+2M0

p (Bσ(R)).
✷

We shall need a version of inclusion (3.2.12), when one of the functions involved in the bracket
is not homogeneous, and with a weaker conclusion.

Lemma 3.2.6 Let ν, ν ′ in R+, p in N, q in N∗, R > 0. Assume (2.1.10). There is s0, depending
only on ν, ν ′, p, q such that if s ≥ s0, if Θ is in HF2s,ν

p,H (Bs(R)) + G2s−1,ν
p (Bs(R)) and F is in

F1,ν′

q,H (Bs(R)), then {Θ, F}(U) = O(‖U‖q+2
Hs ), U → 0.

Proof: If Θ is in G2s−1,ν
p (Bs(R)), {Θ, F}(U) = dΘ · XF (U) is well defined and is O(‖U‖q+2

Hs )
since, by the last remark following Definition 1.2.7, XF (U) is in Hs−1 while dΘ belongs to
L(Hs−1,R) because of the definition of G2s−1,ν

p (Bs(R)) (if s is large enough).

49



Assume from now on that Θ is in HF2s,ν
p,H (Bs(R)). Using notation (3.2.1), we may write Θ(U) =

HA
0 (U,U), F (U) = HB

0 (U,U) with A in HΨ2s,ν
p and B in Ψ1,ν′

q (Bs(R)). We have seen, in the

last remark following Definition 1.2.5, that we may consider A as an element of Ψ2s,ν̄
0 (Bs(R))

with ν̄ > ν + ν(p) + 1
2 . In particular, by (iii) of Proposition 2.2.6, [A,B] is an element of

Ψ
2s,max(ν̄,ν′)+M0(3d+4)
q (Bs(R)). We use (3.2.2) to express {Θ, F}. The first term in the right

hand side of this equality is given by the last formula in (3.2.4). Since [A,B] is of order 2s, we
do get, for s ≥ s0 large enough, a O(‖U‖q+2

Hs ) contribution.

We consider next the second term in the right hand side of (3.2.2). By (3.2.6), tJ∇UH
B
0 (U,U)

is in Hs−1, and is O(‖U‖q+1
Hs ) (if s ≥ s0 large enough) using (1.2.18). The term under study,

given by the second formula in (3.2.5), is thus O(‖U‖q+1
Hs ), since dWA(W ) · (tJ∇UH

B
0 (U,U)) is

L(Hs, H−s) by (1.2.18).

Take now the third term in the right hand side of (3.2.2). By (3.2.6), tJ∇UH
A
0 (U,U) is in H−s,

with norm in that space O(‖U‖Hs). We apply (1.2.19) to B, with m = 1, σ′ = −s. We get, if
s is large enough relatively to ν(q), ν ′, that dB(U) · (tJ∇UH

A
0 )u is in H−s, with norm in that

space O(‖U‖q+1
Hs ). The corresponding contribution to {Θ, F} is again O(‖U‖q+1

Hs ).

Finally, the last contribution to (3.2.2) will be expressed from
∫

X
(dWA(W ) · (tJ∇WH

B
0 (W,U))u)ū dµ|W=U

and from the similar expression exchanging A and B. We need to check that

dWA(W ) · (tJ∇WH
B
0 (W,U)), dWB(W ) · (tJ∇WH

A
0 (W,U))

are in L(Hs, H−s). This will follow from (1.2.19) with m = 2s (resp. m = 1) if we show that
∇WH

B
0 (W,U) (resp. ∇WH

A
0 (W,U)) belongs to Hσ′

for some σ′ ≥ ν̄ (resp. to H−s) and if s is
large enough. In other words, we have to check that

H →
∫

X
((dWB(W ) ·H)u)ū dµ|W=U , H →

∫

X
((dWA(W ) ·H)u)ū dµ|W=U

are linear continuous on H−σ′

(resp. Hs). This follows again from (1.2.19). ✷

4 Proof of the main theorem

We have seen that Theorem 1.2.8 follows from Theorem 3.1.1, Theorem 3.1.2 and Theorem 3.1.3.
This section is devoted to the proof of these results.

4.1 Elimination of elliptic terms of lower degree

This subsection will be devoted to the proof of Theorem 3.1.1: we shall construct a canonical
transformation χ such that (3.1.3) holds, i.e. such that we may reduce the Hamiltonian G to
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another Hamiltonian GL + GH + G̃P , where all elliptic terms of degree strictly smaller that P
have been eliminated. Let us introduce a class of smoothing operators.

Definition 4.1.1 Let m ∈ R, p ∈ N, p ≥ 2, γ ∈ R+, s ≥ γ,R > 0. One denotes by Rm
γ,p(Bs(R))

the space of maps U → R(U), defined on Bs(R), with values in H2s−m−γ, satisfying the follow-
ing:

(i) The map U → R(U) is C1 from Bs(R) to H2s−m−γ and there is C > 0 such that, for any U
in Bs(R)

(4.1.1) ‖R(U)‖H2s−m−γ ≤ C‖U‖pHs .

(ii) For any θ, θ′ in R satisfying

(4.1.2) s−m ≥ |θ|, s−m ≥ |θ′|, s+ θ + θ′ > m+ γ,

for any U in Bs(R), ∂UR(U) extends as an element of L(Hθ′

, H−θ) with estimates

(4.1.3) ‖∂UR(U)‖L(Hθ′ ,H−θ) ≤ C‖U‖p−1
Hs .

The main example of remainders satisfying the conditions of the preceding definition is given
by the following lemma:

Lemma 4.1.2 Let m ∈ R, ν ∈ R+, p ≤ q in N∗. Let s, γ such that

(4.1.4) s ≥ γ > ν(q) + ν +
1

2
, 2s ≥ m+ γ.

Let A be in HΨm,ν
q and define H(W,U) =

∫
X(A(W )w1)w2 dµ where w1, w2 stand for u or ū.

Then R(U) = XH(·,U)|W=U = itJ∇WH(W,U)|W=U is in Rm
γ,p+1(Bs(R)) for any R > 0.

Proof: Decomposing A(W ) =
∑q
ℓ=0Aℓ(w, . . . , w, w̄, . . . , w̄) with Aℓ in H̃Ψ

m,ν

q , we may assume

that A is one of the terms in that sum. If K = (k, k̄) is a smooth function on X, we may write
by duality

∫
X R(U) ·K dµ from expressions of type

(4.1.5)

∫

X
(A(Jh, u2, . . . , uq)uq+1)u0 dµ

where h stands for k or k̄ and uℓ is u or ū, and from similar expressions where the Jh term
replaces any other argument of A. In the same way,

∫
X(∂UR(U) ·K ′)K dµ may be written from

expressions of type

(4.1.6)

∫

X
(A(Jh, h′, u3, . . . , uq)uq+1)u0 dµ

(4.1.7)

∫

X
(A(Jh, u2, . . . , uq)h

′)u0 dµ

51



and from similar expressions, where Jh replaces any other argument inside A, or h′ = k′ or k̄′

replaces any other argument of A, or where h′ and u0 are exchanged in (4.1.7). To prove (4.1.1),
we must bound the modulus of (4.1.5) by

(4.1.8) C‖h‖H−2s+γ+m‖u0‖Hs

q+1∏

ℓ=2

‖uℓ‖Hs .

In the same way, to show (4.1.3), we have to bound the modulus of (4.1.6) and (4.1.7) respectively
by

(4.1.9) C‖h‖Hθ ‖h′‖Hθ′

q+1∏

ℓ=3

‖uℓ‖Hs‖u0‖Hs , C‖h‖Hθ ‖h′‖Hθ′

q∏

ℓ=2

‖uℓ‖Hs‖u0‖Hs .

To obtain (4.1.8), we apply (1.2.9) with N2 = 2s − m. We obtain a bound of (4.1.5) by the
product of C‖u0‖Hs‖uq+1‖Hs and of

(4.1.10)
∑

n1

· · ·
∑

nq

(n1 + · · · + nq)
ν(q)+ν−2s+m‖Πn1h‖L2

q∏

ℓ=2

‖Πnℓ
uℓ‖L2

≤ C
∑

n1

· · ·
∑

nq

n
ν(q)+ν−γ
1

q∏

ℓ=2

n−s
ℓ

q∏

ℓ=1

cℓnℓ
‖h‖H−2s+γ+m

q∏

ℓ=2

‖uℓ‖Hs ,

where (cℓnℓ
)nℓ

are ℓ2-sequences, and where we used that the exponent in the left hand side of
(4.1.10) is negative by (4.1.4). The assumptions on γ, s show that the series converges, which
gives (4.1.8).

To estimate (4.1.6) by the first term in (4.1.9), we bound the modulus of (4.1.6) by
∑

n

∑

n′

∑

n3

· · ·
∑

nq

‖A(JΠnh,Πn′h′,Πn3u3, . . . ,Πnquq)uq+1‖H−s‖u0‖Hs .

We apply (1.2.9) with N2 = 2s − m to get a bound given by the product of the factor
C‖h‖Hθ ‖h′‖Hθ′

∏q+1
ℓ=3‖uℓ‖Hs and of

∑

n

∑

n′

∑

n3

· · ·
∑

nq

(n+ n′ + n3 + · · · + nq)
ν(q)+ν−2s+mn−θn′−θ′

cncn′

q∏

ℓ=3

n−s
ℓ cℓnℓ

with ℓ2-sequences (cn)n, (c′
n′)n′ , (cℓnℓ

)nℓ
. Since the first exponent is negative and s > 1/2, this

sum is finite as soon as

(4.1.11)

∫

R2
+

(1 +X +X ′)−α(1 +X)−θ(1 +X ′)−θ′

c(X)c′(X ′)dXdX ′ < +∞

where c(·), c′(·) are L2 functions, α = 2s−m− ν(q) − ν. One checks that (4.1.11) holds as soon
as

(4.1.12) α > max
[(1

2
− θ

)
+

+
(1

2
− θ′

)
,
(1

2
− θ

)
+

(1

2
− θ′

)
+

]

which follows from assumptions (4.1.2), (4.1.4).
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Let us study (4.1.7). We bound the modulus of this quantity by

∑

n

∑

n2

· · ·
∑

nq

‖A(JΠnh,Πn2u2, . . . ,Πnquq)h
′‖H−s‖u0‖Hs .

We apply estimate (1.2.9) with N2 = s+ θ′ −m ≥ 0 and s replaced by θ′, and get a bound given
by the product of C‖h‖Hθ ‖h′‖Hθ′

∏q
2‖uℓ‖Hs‖u0‖Hs and of

(4.1.13)
∑

n

∑

n2

· · ·
∑

nq

(n+ n2 + · · · + nq)
ν(q)+ν−s−θ′+mn−θcn

q∏

2

n−s
ℓ cℓnℓ

for ℓ2-sequence (cn)n, (cℓnℓ
)nℓ

. By symmetry, we may assume n2 ≥ · · · ≥ nq. This reduces the
verification of the finiteness of (4.1.13) to the study of an integral of form (4.1.11) with (α, θ, θ′)
replaced by (s+ θ′ −m− ν(q) − ν, θ, s). One checks that condition (4.1.12) follows from (4.1.2),
(4.1.4). This concludes the proof. ✷

To prepare the proof of Theorem 3.1.1, we have to study the Hamiltonian flow of some auxiliary
functions. Let Ap be an element of HΨ0,ν

p , 1 ≤ p ≤ P−1, for some ν ∈ R+. Define A =
∑P−1
p=1 Ap,

and set

F (U) = Re

∫

X
(A(U)u)u dµ.

By (1.1.16) and Lemma 4.1.2

(4.1.14) XF (U) =
i

2

[
(A(U) + tA(U))ū

−(A(U) + tA(U))u

]
+ R(U) = A(U)U + R(U)

where A(U) = i
2

[
0 Ā+tĀ

−(A+tA) 0

]
and R is an element of R0

γ,2(Bσ(R)) if γ > ν(P − 1) + ν + 1
2 ,

σ > γ. By the Cauchy-Lipschitz theorem, the equation

Φ̇(t, U) = XF (Φ(t, U))

Φ(0, U) = U,
(4.1.15)

where Φ(t, U) =
[
φ(t,U)

φ(t,U)

]
, has a unique solution defined for t ∈ [−1, 1], for U in Bσ(R), with R

small enough. Moreover, Φ(t, U) stays in a bounded subset of Hs if U stays in Bs(R) for some
s ≥ σ and t ∈ [−1, 1].

Let us notice that if s ≥ σ and U is in Bs(R), DΦ(t, U) extends as an element of L(Hs′

, Hs′

) for
any s′ with |s′| ≤ s, any t in [−1, 1]. Actually, consider the solution W (t, U) of the linear ODE

Ẇ (t, U) = A(Φ(t, U))W (t, U) + [DA(Φ(t, U)) ·W (t, U)]Φ(t, U) +DR(Φ(t, U)) ·W (t, U)

W (0, U) = Id.

(4.1.16)

We just need to check that the right hand side of the first equation in (4.1.16) is, as a function
of W , a bounded linear map from L(Hs′

, Hs′

) to itself, for any s′ with |s′| ≤ s, when U is taken
in Bs(R). The boundedness of W → DR(Φ(t, U)) · W follows from (4.1.3), since Φ(t, U) stays
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in a bounded subset of Hs and (4.1.2) holds by the conditions imposed to σ, γ. The continuity
of W → A(Φ(t, U))W is a consequence of (1.2.9) and the fact that σ > ν(P − 1) + ν + 1

2 . We
are left with examining the middle term in the right hand side of the first equation (4.1.16).
Let ν̄ = ν + ν(P − 1) − ν(1) + 1

2 + 0. By the last remark following Definition 1.2.5, A is in

Ψ0,ν̄
1 (Bσ(R)) ⊗ M2(R). We write for H in Hs′

‖DA(Φ(t, U)) · (W ·H)Φ(t, U))‖Hs′ ≤ C‖DA(Φ(t, U)) · (W ·H))‖L(Hs,Hs′ )‖Φ(t, U)‖Hs

≤ C‖W ·H‖Hs′ ‖Φ(t, U)‖Hs ,

where the last inequality comes from (1.2.19) applied with σ = s, σ′ = s′, and noticing that
s− (ν(1) + ν̄ − s′)+ ≥ s′ because if the assumptions on s, s′. We get the wanted inequality

‖(DA(Φ(t, U)) ·W )Φ(t, U))‖L(Hs′
,Hs′

) ≤ C‖W‖L(Hs′
,Hs′

).

This gives the fact that DΦ(t, U) is bounded in L(Hs′

, Hs′

) uniformly for t ∈ [−1, 1], if |s′| ≤ s.

We deduce from this and from (1.2.18), (1.2.19):

Corollary 4.1.3 If s > γ > ν(P−1)+ν+ 1
2 and ν̄ = ν+ν(P−1)−ν(1)+ 1

2 +0, (A(Φ(t, ·)))−1≤t≤1

is a bounded family of matrices of elements of Ψ0,ν̄
1 (Bs(R)).

Let us describe the structure of Φ(t, U).

Proposition 4.1.4 Let P ∈ N∗, s ≥ σ > γ > ν(P − 1) + ν + 1
2 . Let A be in

∑P−1
p=1 HΨ0,ν

p ⊂
Ψ0,ν̄

1 (Bσ(R)) with ν̄ = ν+ν(P −1)−ν(1)+ 1
2 +0. Let Φ be the solution of (4.1.15), defined for U

in Bs(R) for some R > 0. If R is small enough, there is a bounded family (B(t, ·))−1≤t≤1 (resp.
(R̃(t, ·))−1≤t≤1) of 2×2-matrices of elements of Ψ0,ν̄

1 (Bσ(R)) (resp. of elements of R0
γ,2(Bσ(R)))

such that, for any t ∈ [0, 1]

(4.1.17) Φ(t, U) = U +B(t, U)U + R̃(t, U).

Proof: By (4.1.15), (4.1.14),

(4.1.18) Φ(t, U) = U + t

∫ 1

0
A(Φ(α1t, U))Φ(α1t, U) dα1 + t

∫ 1

0
R(Φ(α1t, U)) dα1.

If R > 0 is small enough, there is C > 0 such that ‖Φ(t, U)‖Hs ≤ C‖U‖Hs for any U in Bs(R),
any t ∈ [−1, 1]. Iterating (4.1.18), we get

(4.1.19) Φ(t, U) = U +
N∑

k=1

tkA[k](t, U)U + tN+1CN (t, U) +
N+1∑

k=1

tkR[k](t, U)
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where

A[k](t, U) =

∫ 1

0
. . .

∫ 1

0

k∏

j=1

A(Φ(tα1 · · ·αj , U))
k−1∏

j=1

αk−j
j dα1 · · · dαk

CN (t, U) =

∫ 1

0
. . .

∫ 1

0

N+1∏

j=1

A(Φ(tα1 · · ·αj , U))
N∏

j=1

αN+1−j
j Φ(tα1 · · ·αN+1, U) dα1 · · · dαN+1

R
[k](t, U) =

∫ 1

0
. . .

∫ 1

0

k−1∏

j=1

A(Φ(tα1 · · ·αj , U))
k∏

j=1

αk−j
j R(Φ(tα1 · · ·αk, U)) dα1 · · · dαk.

(4.1.20)

We apply Lemma 1.2.6 with m = m′ = 0, p = p′ = 1, ν = ν ′ = ν̄. For some P = (P1, . . . , Pk)

as in the statement of this lemma, we set for short N
ℓ,s
σ = N

ℓ,0,s
(P,1,ν̄,σ). Then, if |σ′| ≤ σ, s ∈ R,

there is C > 0 such that for any U in Bσ(R), any t ∈ [0, 1]

N
0,s
σ (A[k](t, U)) ≤ Ck

k!
[N0,s

σ (A)]k

N
1,s
σ′ (A[k](t, U)) ≤ Ck

k!
[N0,s

σ (A)]k−1
N

1,s
σ′ (A)

so that
∑+∞
k=1 t

kA[k](t, U) converges to an element B(t, ·) of Ψ0,ν̄
1 (Bσ(R)). Since N0,s

σ (CN (t, U)) =

O
(
CN+1

(N+1)!N
0,s
σ (A)N+1

)
, the last but one term in (4.1.19) goes to zero.

Let us check that the last series in (4.1.19) converges in the space R0
γ,2(Bs(R)).

Note first that by (4.1.1) and (1.2.18) ‖R[k](t, U)‖H2s−γ ≤ Ck

k! ‖U‖2
Hs for U in Bs(R), whence

an estimate of type (4.1.1) for
∑
k t
k
R

[k](t, U), uniformly for t ∈ [−1, 1]. Let us study the
norm ‖∂UR[k](t, U)‖L(Hθ′ ,H−θ) for θ, θ′ satisfying (4.1.2). If, when computing ∂UR

[k] from its

expression (4.1.20), the derivative ∂U falls on R(Φ(α1 . . . αkt, U)), it follows from (4.1.3), the
boundedness of ∂UΦ on Hθ′

for |θ′| ≤ s, and (1.2.18) that the corresponding contribution

to ‖∂UR[k](t, U)‖L(Hθ′ ,H−θ) is bounded from above by Ck

k! ‖U‖Hs . On the other hand, if the

derivative falls on A(Φ(α1 . . . αjt, U)), we have to estimate for H ′ in Hθ′

(4.1.21) ‖(∂UA)(Φ(tα1 · · ·αj , U)) · (∂UΦ(tα1 · · ·αj , U) ·H ′)‖L(H2s−γ ,H−θ)

since R(Φ(t, ·)) is in H2s−γ by (4.1.1). We apply (1.2.19) with σ = s, σ′ = θ′. This allows us
to estimate (4.1.21) for H ′ ∈ Hθ′

if 2s− γ − (ν(1) + ν̄ − θ′)+ ≥ −θ, which follows from (4.1.2),
the definition of ν̄ and the assumptions of the proposition. Again, we get convergence of the
corresponding series. This concludes the proof. ✷

Proof of Theorem 3.1.1: We consider a function G(U) =
∑P ′

p=0Gp(U) as in the statement of

Theorem 1.2.8. For p = 1, . . . , P − 1, Gp is an element of HF1,ν′

p (Bσ(R)) for some ν ′. We shall
construct the canonical transformation χ through a standard Birkhoff normal forms method.
We use an auxiliary function F (U) =

∑P−1
p=1 Fp(U) with

(4.1.22) Fp(U) = Re

∫

X
(Ap(U)u)u dµ
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with Ap element of HΨ0,ν
p for some ν ≥ ν ′ to be chosen. Let us assume that the increasing

function p → ν(p) satisfies

(4.1.23) ν(p) + ν(q) + ν +M0(3d+ 4) ≤ ν(p+ q) if p > 0, q > 0.

We denote by Φ the flow of (4.1.15) defined from F on Bs(R) where s > ν(P − 1) + ν + 1
2 . We

set χ(U) = Φ(−1, U): this is a canonical transformation close to zero, with χ(0) = 0, χ′(0) = Id.
For U in Bs(R) ∩ C∞, we compute

G ◦ χ−1(U) = G(Φ(1, U))

=
P−1∑

k=0

1

k!

dk

dtk
(G ◦ Φ(t, U))|t=0 +

∫ 1

0

(1 − t)P−1

(P − 1)!

dP

dtP
(G ◦ Φ(t, U)) dt

=
P−1∑

k=0

(−1)k

k!
adkF ·G+

(−1)P

(P − 1)!

∫ 1

0
(1 − t)P−1(adPF ·G)(Φ(t, U)) dt,

(4.1.24)

using the notation adF ·G = {F,G} and adpF ·G = {F, adp−1F ·G}. We decompose

(4.1.25)
P−1∑

k=0

(−1)k

k!
adkF ·G = G0 −

P−1∑

ℓ=1

{Fℓ, G0} +
∑

ℓ≥1

Hℓ

where the last sum is finite, and where Hℓ is a linear combination of quantities of the form

(4.1.26) adFi1 · · · adFirGp

with 1 ≤ ij < ℓ, p ≥ 0, i1 + · · · + ir + p = ℓ and r ≥ 2 if p = 0. Assume

(4.1.27) Fp ∈ HF0,ν
p (Bσ(R)) and {Fp, G0} ∈ HF1,ν′

p (Bσ(R)) 1 ≤ p ≤ P − 1.

Then, by inclusion (3.2.11) and assumption (4.1.23), (4.1.26) belongs to HF1,ν′

ℓ (Bσ(R)) +

HF0,ν′+1
ℓ (Bσ(R)) ⊂ HF1,ν′

ℓ (Bσ(R)) if σ is large enough so that (1.2.23) with p = ℓ is satis-

fied. Consequently, for any ℓ ≥ 1, Hℓ is in HF1,ν′

ℓ (Bσ(R)), and depends only on Fℓ′ for ℓ′ < ℓ.

Lemma 4.1.5 Let ν ≥ ν ′ + 2M0, σ satisfying (1.2.23), and denote

Gm−∞,ν+∞
p (Bσ(R)) =

⋂

N∈N

Gm−N,ν+N
p (Bσ(R))

(with the notations introduced in definition 1.2.7). For each p = 1, . . . , P − 1 there is Fp in
HF0,ν

p,E(Bσ(R)) such that {Fp, G0}−Hp is in HF1,ν′

p,H (Bσ(R))+G1−∞,ν′+2M0+∞
p (Bσ(R)) and that

(4.1.27) holds.

Proof: We decompose Hp = Hp,E +Hp,H with Hp,E in HF1,ν′

p,E (Bσ(R)), Hp,H in HF1,ν′

p,H (Bσ(R)).

We may write Hp,E(U) = Re
∫
X(Bp(U)u)u dµ with Bp in HΨ1,ν′

p . By definition of this space

Bp(U) =
p∑

ℓ=1

Bp,ℓ(u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū)
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where Bp,ℓ is in H̃Ψ
1,ν′

p . We decompose Bp,ℓ = B
(1)
p,ℓ + B

(2)
p,ℓ where for any n′ ∈ (N∗)p, U =

(u1, . . . , up),

B
(1)
p,ℓ (Πn′U) =

∑

j;|n′|≤c2j

Bp,ℓ(Πn′U)∆j

with c > 0 a small enough constant. By formula (A.1) of the appendix, B
(1)
p,ℓ is in H̃Ψ

1,ν′

p .
Moreover, if c is small enough,

(4.1.28) Πn0B
(1)
p,ℓ (Πn′U)Πnp+1 6≡ 0 ⇒

√
m2 + λ2

np+1
≥ 2

( p∑

1

√
m2 + λ2

nℓ

)

and by construction (and the inclusion (1.2.10)), B
(2)
p,ℓ is in G1−∞,ν′+2M0+∞

p (Bσ(R)). To prove

the lemma, we just need to find Fp in HF0,ν
p,E(Bσ(R)) such that

(4.1.29) {Fp, G0} = Re
∑

ℓ

∫

X
(B

(1)
p,ℓ (u, . . . , u︸ ︷︷ ︸

ℓ

, ū, . . . , ū)u)u dµ.

We look for Fp under the form

Fp(U) =
p∑

ℓ=0

Re

∫

X
(Cp,ℓ(u, . . . , u, ū, . . . , ū)u)u dµ

with Cp,ℓ in H̃Ψ
0,ν

p . To solve (4.1.29), it is enough to find Cp,ℓ such that

(4.1.30)
ℓ∑

ℓ′=1

Cp,ℓ(u1, . . . ,Λmuℓ′ , . . . , up) −
p∑

ℓ′=ℓ+1

Cp,ℓ(u1, . . . ,Λmuℓ′ , . . . , up)

+ ΛmCp,ℓ(u1, . . . , up) + Cp,ℓ(u1, . . . , up)Λm = −iB(1)
p,ℓ (u1, . . . , up).

We replace in the formula uj by Πnjuj , compose at the left (resp. at the right) with Πn0 (resp.
Πnp+1). We get

F̃ p,ℓ
m

(λn0 , . . . , λnp+1)Πn0Cp,ℓ(Πn1u1, . . . ,Πnpup)Πnp+1

= −iΠn0B
(1)
p,ℓ (Πn1u1, . . . ,Πnpup)Πnp+1

(4.1.31)

with

F̃ p,ℓ
m

(ξ0, . . . , ξp+1) =
√

m2 + ξ2
0 +

√
m2 + ξ2

p+1 +
ℓ∑

ℓ′=1

√
m2 + ξ2

ℓ′ −
p∑

ℓ′=ℓ+1

√
m2 + ξ2

ℓ′ .

We define

Cp,ℓ(u1, . . . , up) = −i
∑

n0

· · ·
∑

np+1

F̃ p,ℓ
m

(λn0 , . . . , λnp+1)
−1

Πn0B
(1)
p,ℓ (Πn1u1, . . . ,Πnpup)Πnp+1 .
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By inclusion (1.2.10), Πn0B
(1)
p,ℓ (Πn′U)Πnp+1 satisfies estimate (1.2.5) with ν = ν ′ + 2M0,m = 1.

Since, by (4.1.28), |F̃ p,ℓm (λn0 , . . . , λnp+1)| ≥ c(n0 + np+1) when the right hand side of (4.1.31) is
not zero, we get

‖Πn0Cp,ℓ(Πn1u1, . . . ,Πnpup)Πnp+1‖L(L2) ≤ C〈n0 − np+1〉−2
(

min
[ n0

np+1
,
np+1

n0

])N1

×|n′|ν(p)+ν
(

1 +
|n′|
n0

)−N2 p∏

ℓ=1

‖Πnℓ
uℓ‖L2

(4.1.32)

for any N1, N2. To prove similar estimates for commutators with differential operators, we
consider P1 a differential operator of order d1 and deduce from (4.1.30)

(4.1.33)
ℓ∑

ℓ′=1

[P1, Cp,ℓ](u1, . . . ,Λmuℓ′ , . . . , up) −
p∑

ℓ′=ℓ+1

[P1, Cp,ℓ](u1, . . . ,Λmuℓ′ , . . . , up)

+ Λm[P1, Cp,ℓ](u1, . . . , up) + [P1, Cp,ℓ](u1, . . . , up)Λm = −iB̃(1)
p,ℓ (u1, . . . , up)

where

B̃
(1)
p,ℓ (u1, . . . , up) = −i[P1,Λm]Cp,ℓ(u1, . . . , up) − iCp,ℓ(u1, . . . , up)[P1,Λm]

+[P1, B
(1)
p,ℓ ](u1, . . . , up).

We need to prove

(4.1.34) ‖Πn0 [P1, Cp,ℓ](Πn1u1, . . . ,Πnpup)Πnp+1‖L(L2)

≤ C〈n0 − np+1〉−2nd1−1
0

(
min

[ n0

np+1
,
np+1

n0

])N1

|n′|ν(p)+ν+M0

×
(

1 +
|n′|
n0

)−N2 p∏

ℓ=1

‖Πnℓ
uℓ‖L2

for any N1, N2. Since B
(1)
p,ℓ is in H̃Ψ

1,ν′

p , [P1, B
(1)
p,ℓ ] is in H̃Ψ

d1,ν′+M0

p by Definition 1.2.2, so in

P̃d1,ν+M0
p by inclusion (1.2.10). Consequently

(4.1.35) ‖Πn0 [P1, B
(1)
p,ℓ ](Πn1u1, . . . ,Πnpup)Πnp+1‖L(L2)

≤ C〈n0 − np+1〉−2nd1
0

(
min

[ n0

np+1
,
np+1

n0

])N1

|n′|ν(p)+ν+M0

×
(

1 +
|n′|
n0

)−N2 p∏

ℓ=1

‖Πnℓ
uℓ‖L2 .

Since [P1,Λm] is a pseudo-differential operator of order d1, we have estimates

(4.1.36) ‖Πn1 [P1,Λm]Πn2‖L(L2) ≤ CN 〈n1 − n2〉−Nnd1
1

for any N . Combining this with (4.1.32), we conclude that the right hand side of (4.1.33) is such

that ‖Πn0B̃
(1)
p,ℓ (Πn′(U))Πnp+1‖L(L2) is bounded from above by the right hand side of (4.1.35).
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If we use (4.1.36) for P1 instead of [P1,Λm] and (4.1.32), we conclude that P1Cp,ℓ, Cp,ℓP1 and

so [P1, Cp,ℓ] satisfy estimate (4.1.32) in which we replace, in the right hand side, |n′|ν(p)+ν by

|n′|ν(p)+νnd1
0 . We decompose [P1, Cp,ℓ] = C

(1)
p,ℓ + C

(2)
p,ℓ where

C
(1)
p,ℓ =

∑

|n′|≤cnp+1

Πn0 [P1, Cp,ℓ](Πn′U)Πnp+1 .

Then C
(2)
p,ℓ satisfies (4.1.35) with nd1

0 replaced by nd1−1
0 in the right hand side, because of |n′| ≥

cnp+1, so that

Πn0ΛmC
(2)
p,ℓ (Πn′U)Πnp+1 , Πn0C

(2)
p,ℓ (Πn′U)ΛmΠnp+1 ,

Πn0C
(2)
p,ℓ (Πn1u1, . . . ,Πnℓ′ Λmuℓ′ , . . . ,Πnpup)Πnp+1

satisfy (4.1.35). We obtain in that way from (4.1.33) an equation

(4.1.37)
ℓ∑

ℓ′=1

C
(1)
p,ℓ (u1, . . . ,Λmuℓ′ , . . . , up) −

p+1∑

ℓ′=ℓ+1

C
(1)
p,ℓ (u1, . . . ,Λmuℓ′ , . . . , up)

+ ΛmC
(1)
p,ℓ (u1, . . . , up) + C

(1)
p,ℓ (u1, . . . , up)Λm = −iB̃(2)

p,ℓ (u1, . . . , up),

where ‖Πn0B̃
(2)
p,ℓ (Πn′U)Πnp+1‖L(L2) is bounded by the right hand side of (4.1.35) and where, if

the constant c in the definition of C
(1)
p,ℓ is small enough, this operator satisfies a condition of

type (4.1.28). We may thus solve (4.1.37) in the same way as (4.1.30) and find C
(1)
p,ℓ and Cp,ℓ

such that (4.1.34) holds. It follows from this inequality and from (4.1.32) that Cp,ℓ satisfies the
bounds (1.2.8) (or (1.2.9)) for m = 0, k = 0, 1. Iterating the reasonning, we conclude that Cp,ℓ

is in H̃Ψ
0,ν

p as wanted. ✷

End of proof of Theorem 3.1.1. We consider the expression (4.1.24) of G ◦ χ−1. The first term
in the right hand side is given by (4.1.25). If σ is large enough, the contributions Hℓ with ℓ ≥ P

belong to HF1,ν′

ℓ (Bσ(R)) which is contained by the last remark following Definition 1.2.5 in

F1,ν
P (Bσ(R)) if ν > ν ′ + ν(ℓ) − ν(P ) + 1

2 . Since there are only finitely many Hℓ’s, this gives a
contribution of the form of G̃P given by (3.1.6) to G◦χ−1. For 1 ≤ ℓ ≤ P−1, we have constructed
Fℓ in Lemma 4.1.5 so that {Fℓ, G0} − Hℓ belongs to HF1,ν

ℓ,H(Bσ(R)) + G1−∞,ν+∞
ℓ (Bσ(R)), if ν

is taken large enough relatively to ν ′. These terms give a contribution to GL + GH defined by
(3.1.5), (3.1.4). To prove (3.1.3), we write, since χ is canonical,

{Θ1
s ◦ χ,G} = {Θ1

s, G ◦ χ−1} ◦ χ

and since the sum in the right hand side of (4.1.24) gives to G ◦ χ−1 a contribution of the form
GL +GH + G̃P , we are left with showing that, if

S =
(−1)P

(P − 1)!

∫ 1

0
(1 − t)P−1((adPF ) ·G)(Φ(t, U)) dt,

then

(4.1.38) {Θ1
s, S} ◦ χ = {Θ1

s, G̃P } ◦ χ+O(‖u‖P+2
Hs )
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for some (new) contribution G̃P of form (3.1.6). The term S may be written as a sum of
expressions

(4.1.39)

∫ 1

0
(1 − t)P−1Hp(Φ(t, U)) dt

where p ≥ P and Hp is an expression of form (4.1.26), so belongs to HF1,ν′

p (Bσ(R)), i.e. (4.1.39)
may be written from

Re

∫ 1

0
(1 − t)P−1

∫

X
(Ap(Φ(t, U))φ(t, U))φ(t, U) dµdt

Re

∫ 1

0
(1 − t)P−1

∫

X
(Ap(Φ(t, U))φ(t, U))φ(t, U) dµdt

(4.1.40)

with Ap in HΨ1,ν′

p . The first component φ of Φ is given, according to (4.1.17), by

φ(t, U) = u+B1(t, U)u+B2(t, U)ū+R(t, U)

where (Bj(t, ·))t∈[0,1] are bounded families of elements of Ψ0,ν̄
1 (Bs(R)) for j = 1, 2 and where

(R(t, ·))t∈[0,1] is a bounded family of elements of R0
γ,2(Bs(R)) (for s large enough). Plugging

this expression inside (4.1.40), and using Corollary 4.1.3 and Lemma 1.2.6, we see that (4.1.40)
may be written as a linear combination of elements of F1,ν

P (Bs(R)) (for some large enough ν
and some large enough s) and of quantities of type

(4.1.41)

∫ 1

0

∫

X
(C(t, U)u)R(t, U)dµdt,

∫ 1

0

∫

X
(C(t, U)R(t, U))R(t, U)dµdt

with (C(t, ·))t∈[0,1] in Ψ1,ν
p (Bs(R)), (R(t, ·))t∈[0,1] in R0

γ,2(Bs(R)), as well as similar expressions

with u, R replaced by ū, R̄. We just need to check that the Poisson bracket between Θ1
s and

(4.1.41) is O(‖U‖P+2
Hs ) to get (4.1.38). By assumption, ‖DΘ1

s(U)‖L(Hs,R) = O(‖U‖Hs), so that
it is enough to check that if H(U) is any of the expressions (4.1.41), ∇H belongs to Hs, with
Hs-norm O(‖U‖P+1

Hs ). In other words, we have to study, for K in H−s,

∫

X
(C(t, U)K)R(t, U) dµ,

∫

X
((dUC(t, U) ·K)u)R(t, U) dµ

∫

X
(C(t, U)u)(dUR(t, U) ·K) dµ,

∫

X
(C(t, U)R(t, U))(dUR(t, U) ·K) dµ

∫

X
((dUC(t, U) ·K)R(t, U))R(t, U) dµ

(and similar expressions involving transposes). By (4.1.1), R(t, U) is in H2s−γ ⊂ Hs+1 (if s ≥ s0

large enough), by (1.2.19), (dUC(t, U)·K)u ∈ H−ν(p)−ν ⊂ H−s−1, (dUC(t, U)·K)R(t, U) ∈ H−s,
by (4.1.3), dUR(t, U) ·K ∈ H−s+1. This shows that all the above integrals are meaningful and
vanish at least at order P + 2 at zero. This concludes the proof. ✷
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4.2 Diagonalization of the remainder term

The goal of this subsection is to prove Theorem 3.1.2. Theorem 3.1.1 has reduced ourselves to
the study of a new Hamiltonian G1 = GL +GH + G̃P , that may be written

(4.2.1) G1 = GL(U) +

∫

X
((Λm +A(U))u)ū dµ+

1

2

∫

X
(BP (U)u)u dµ+

1

2

∫

X
(BP (U)ū)ū dµ

where A(U) =
∑P
j=1Aj(U). By the last remark following Definition 1.2.5, we may assume

that A is in Ψ1,ν
1 (Bs(R))(increasing the value of ν given by Theorem 3.1.1). Moreover, BP

is in Ψ1,ν
P (Bs(R)), and we may assume A(U)∗ = A(U), tBP (U) = BP (U). We denote by

AH(U) =
∑P−1
p=1 Ap(U) the part of A made of homogeneous terms. Consider the matrices of

para-differential operators

(4.2.2) M(U) =

[
BP (U) Λm + tA(U)

Λm +A(U) BP (U)

]
, MH(U) =

[
0 Λm + tAH(U)

Λm +AH(U) 0

]
,

so that

(4.2.3) (GH + G̃P )(U) =
1

2

∫

X
(M(U) · U)U dµ, GH(U) =

1

2

∫

X
(MH(U) · U)U dµ.

Let us start with a diagonalization lemma.

Lemma 4.2.1 There are s0 large enough, ν̃ ≥ ν large enough, R > 0 and for s ≥ s0, operators
Q in Ψ0,ν̃

P (Bs(R)) ⊗ M2(R), C in Ψ1,ν̃
P (Bs(R)), with C self-adjoint and symmetric, such that, if

we set

(4.2.4) Σ(U) =

[
Λm +A(U) + C(U) 0

0 −Λm − tA(U) − C(U)

]
,

one has the relations

t(I +Q(U))tJ(I +Q(U)) − tJ ∈ Ψ−1,ν̃
P (Bs(R)) ⊗ M2(R)

(I +Q(U))(tJM(U))J t(I +Q(U))tJ − Σ(U) ∈ Ψ0,ν̃
P (Bs(R)) ⊗ M2(R).

(4.2.5)

Proof: Define.

A1 =
1

2
(A+ Ā), A2 =

1

2
(A− Ā), B1 =

1

2
(BP + B̄P ), B2 =

1

2i
(BP − B̄P ).

The assumptions on A,B imply

(A1)∗ = tA1 = A1, (A2)∗ = A2 = −tA2, (B1)∗ = B1, (B2)∗ = B2

so that

(4.2.6) tJM(U) =

[
Λm +A1 +A2 B1 − iB2

−B1 − iB2 −Λm −A1 +A2

]
.
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By (i) of Proposition 2.2.6, there are principal symbols a1, a2 in S1,ν
1 (Bs(R), T ∗X), b1, b2 in

S1,ν
P (Bs(R), T ∗X) of A1, A2, B1, B2 respectively, modulo Ψ0,ν̃

1 (Bs(R)) and Ψ0,ν̃
P (Bs(R)) for ν̃ ≥

ν + M0(3d + 4). Since A1, A2, B1, B2 (resp. A1, B1, B2) are self-adjoint (resp. symmetric) we
may assume by (iv) of Proposition 2.2.6 that a1, a2, b1, b2 are real valued and that a1 = (a1)∨,
b1 = (b1)∨, b2 = (b2)∨ (increasing eventually ν̃). We denote by λ ∈ S1,0

0 (T ∗M) the principal
symbol of Λm, given in local coordinates by (m2 + gx(ξ, ξ))1/2 where g is the metric, and set

b = b1 + ib2, c =
b

λ+ a1 +
√

(λ+ a1)2 + |b|2
.

If R is small enough, the definition is meaningful since a1, b vanish at U = 0, and we get that c
is in S0,ν

P (Bs(R), T ∗X). We define

(4.2.7) Id + q = (1 − |c|2)−1/2

[
1 c̄
c 1

]
.

By a direct computation using that c∨ = c, we get

(4.2.8) t(Id + q∨)tJ(Id + q) = tJ

and, if we define the matrix of symbols m by

tJm =

[
λ+ a1 + a2 b1 − ib2

−(b1 + ib2) −λ− a1 + a2

]
,

we obtain

(4.2.9) (Id + q)(tJm)J t(Id + q∨)tJ =




√
(λ+ a1)2 − |b|2 + a2 0

0 −
√

(λ+ a1)2 − |b|2 + a2


 .

Actually, the eigenvalues of (tJm) are a2 ±
√

(λ+ a1)2 − |b|2 and
[

1
−c

]
(resp.

[
−c̄
1

]
) is an

eigenvector associated to the first (resp. second) eigenvalue. If we set

(Id + p) = (1 − |c|2)−1/2

[
1 −c̄

−c 1

]
,

(Id + p)−1(tJm)(Id + p) equals the right hand side of (4.2.9). One has just to define (Id + q) =
(Id + p)−1 and to use (4.2.8) to get (4.2.9).

By (ii) of proposition 2.2.6, we may find operators E,F in Ψ0,ν̃
P (Bs(R)) whose principal symbols

modulo Ψ−1,ν̃
P (Bs(R)) are (1 − |c|2)−1/2 and c̄(1 − |c|2)−1/2 respectively (taking again ν̃ large

enough). Since c∨ = c, we may assume, using (iv) of Proposition 2.2.6, that E = tE, F = tF .
We define Q by

(4.2.10) I +Q(U) =

[
E F

F̄ Ē

]
.
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Then (4.2.8) and the properties of symbolic calculus of (iii) of Proposition 2.2.6 imply that

t(I +Q(U))tJ(I +Q(U)) − tJ ∈ Ψ−1,ν̃
P (Bs(R)).

Let C be an element of Ψ1,ν̃
P (Bs(R)), self-adjoint and symmetric, whose principal symbol modulo

Ψ0,ν̃
P (Bs(R)) is given by

√
(λ+ a1)2 − |b|2 − (λ + a1). Then (4.2.6), the definition (4.2.4) of Σ,

the equality (4.2.9) and (iii) of proposition 2.2.6 imply that the second equality (4.2.5) holds
(for ν̃ large enough). ✷

Before continuing the proof of Theorem 3.1.2, we write some properties that will be used re-
peatedly below. Consider P an element of Ψm,ν̃

p (Bs(R)) for m = 0, 1. We apply (1.2.19) with
σ = s, σ′ = −s and the smoothness index denoted by s in (1.2.19) taken to be s or s − 1. We
get that if H ∈ H−s, dUP (U) · H belongs to L(Hs, H−s+1) and to L(Hs−1, H−s), if s is taken
large enough relatively to ν(p), ν̃. Moreover, the estimate

(4.2.11) ‖dUP (U) ·H‖L(Hs,H−s+1) + ‖dUP (U) ·H‖L(Hs−1,H−s) ≤ C‖H‖H−s‖U‖p−1
Hs

holds. In the same way, again for s large enough, if H is in Hs−1, dUP (U) ·H is in L(Hs, Hs−m),
with

(4.2.12) ‖dUP (U) ·H‖L(Hs,Hs−m) ≤ C‖H‖Hs−1‖U‖p−1
Hs .

If P (U) = P̃ (u, . . . , u, ū, . . . , ū) with P̃ in P̃m,ν̃
p for some p ∈ N∗, p ≤ P − 1, estimates (1.2.7)

show that (4.2.11), (4.2.12) hold. Actually, we shall also use similar estimates for the difference
(dUP (U) − dUP (U ′)) · H, replacing in the right hand side of (4.2.11), (4.2.12) ‖U‖p−1

Hs by the
quantity (‖U‖Hs + ‖U ′‖Hs)p−2‖U − U ′‖Hs .

Lemma 4.2.2 There is s0 > 0 and for any s ≥ s0, the map U → ψ(U) = (I +Q(U))U defines
a local diffeomorphism from a neighborhood of zero in Hs to a neighborhood of zero in Hs,
coming from a real diffeomorphism in real coordinates. If we define, for V in a small enough
neighborhood of zero in Hs,

(4.2.13) Σ̂(V ) = Σ(ψ−1(V )), Ĝ(V ) =
1

2

∫

X
(JΣ̂(V )V )V dµ,

then for any U in a small enough neighborhood of zero in Hs

(4.2.14) ‖dψ(U) ·X[GH+G̃P ](U) −X
Ĝ(ψ(U))

‖Hs = O(‖U‖P+1
Hs ), U → 0.

Proof: We shall call a “good term” any function U → S(U) defined on a neighborhood of zero
in Hs, such that ‖S(U)‖Hs = O(‖U‖P+1

Hs ), U → 0. It follows from (4.2.3) that X[GH+G̃P ] =

itJ∇(GH + G̃P ) is given by

(4.2.15)

∫

X
X[GH+G̃P ](U) ·H dµ = id(GH + G̃P )(U) · (JH)

= i

∫

X
(tJM(U) · U)H dµ+

i

2

∫

X
(dM(U) · (JH)U)U dµ
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for any H in C∞(X). We may write

(4.2.16) X[GH+G̃P ](U) = itJM(U)U + Z(U)

where Z(U) is defined by the equality

(4.2.17)

∫

X
Z(U)H dµ =

i

2

∫

X
(dM(U) · (JH)U)U dµ for any H.

By (4.2.11), the right hand side is defined and continuous if H is in H−s, so that Z is in Hs and
‖Z(U)‖Hs = O(‖U‖2

Hs). By the inverse function theorem, ψ is a local diffeomorphism at 0, and

the form (4.2.10) of Q shows that ψ sends a vector
[
u
ū

]
on a vector

[
v
v̄

]
i.e. that it is induced

by a local diffeomorphism in real coordinates. Compute

dψ(U) ·X[GH+G̃P ](U) = (I +Q(U))itJM(U)U + (I +Q(U))Z(U)

+(dQ(U) ·X[GH+G̃P ](U))U.
(4.2.18)

The fact that (4.2.16) belongs to Hs−1, and (4.2.12) with m = 0, show that the last term in
(4.2.18) is a good term. Since Z(U) is in Hs, Q(U)Z(U) is also a good term, so that

(4.2.19) dψ(U) ·X[GH+G̃P ](U) = (I +Q(U))itJM(U)U + Z(U) + S(U)

where S(U) is a good term. By the first equality (4.2.5), we may write

U = J t(I +Q(U))tJ(I +Q(U)U + S1(U)

where ‖S1(U)‖Hs+1 ≤ C‖U‖P+1
Hs . Inserting this into the right hand side of (4.2.19) and using

the second formula (4.2.5), we get

(4.2.20) dψ(U) ·X[GH+G̃P ](U) = iΣ(U)ψ(U) + Z(U) + S(U)

for a new good term S(U). We define Σ̂ by (4.2.13). By (1.2.19), dQ(U) ·H is in L(Hs, Hs′

) for
any s′ with |s′| ≤ s, any H in Hs′

, if s is large enough. Consequently, dψ(U) and dψ(U)−1 are
bounded linear maps on Hs′

, for any s′ with |s′| ≤ s, if U stays in a small enough neighborhood
of zero. Moreover, the operator norm of dψ(U)− Id in these spaces is O(‖U‖PHs). A consequence

of this and the definition of Σ̂ is that Σ̂(V ) −
[

Λm 0
0 −Λm

]
belongs to Ψ1,ν̃

1 (Bs(R)) ⊗ M2(R) for

R > 0 small enough. Let us define M̂(V ) = JΣ̂(V ). By (4.2.13), we may write

(4.2.21) X
Ĝ

(V ) = iΣ̂(V )V + Ẑ(V )

where Ẑ(V ) is defined through the equality

(4.2.22)

∫

X
Ẑ(V ) ·H dµ =

i

2

∫

X
(dM̂(V ) · (JH)V )V dµ for any H.

To obtain (4.2.14), we must check that dψ(U) · X[GH+G̃P ](U) − X
Ĝ

(ψ(U)) is a good term. By

(4.2.20), (4.2.21), this difference is given by Z(U) − Ẑ(ψ(U)), modulo a good term. To conclude
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the proof, we have to show, taking (4.2.17) and (4.2.22) into account, that, for any H in H−s,
the modulus of

(4.2.23)

∫

X
(Z(U) − Ẑ(ψ(U)))H dµ

=
i

2

∫

X
[((dM(U) · (JH))U)U − ((dM̂(ψ(U))(JH))ψ(U))ψ(U)] dµ

is bounded from above by C‖H‖H−s‖U‖P+1
Hs . By (4.2.11), dM̂(ψ(U))(JH) is in L(Hs, H−s) and

‖ψ(U) − U‖Hs = O(‖U‖PHs). Consequently, we are reduced to the study of

(4.2.24)

∫

X
(((dM(U) − dM̂(ψ(U))) · (JH))U)U dµ.

By definition of Σ̂ and the second relation (4.2.5)

M̂(ψ(U)) = JΣ(U) = J(I +Q(U))tJM(U)J t(I +Q(U)tJ + R(U)

with R(U) in Ψ0,ν̃
P (Bs(R)) ⊗ M2(R). We decompose

(dM̂(ψ(U)) − dM(U)) · (JH) = I + II + III

where
I = ((dM̂(ψ(U)) − d

[
M̂(ψ(U))

]
) · (JH) = (dM̂)(ψ(U))[Id − dψ(U)] · JH

II = J(dQ(U) · (JH))tJM(U)J t(I +Q(U))tJ

+ J(I +Q(U))tJM(U)J(dtQ(U) · (JH))tJ + dR(U) · JH

III = J(I +Q(U))tJ(dM(U) · (JH))J t(I +Q(U))tJ − dM(U) · (JH).

To finish to prove that (4.2.24) is O(‖H‖H−s‖U‖P+1
Hs ), it remains to show that the L(Hs, H−s)

norm of I, II and III is O(‖H‖H−s‖U‖P−1
Hs ).

Since ‖dψ(U)−Id‖L(H−s,H−s) = O(‖U‖PHs), the estimate of I follows from (4.2.11). The bound of
II follows from (4.2.11) applied to P = Q, and from the fact that dR(U) · (JH) is in L(Hs, H−s)
with norm O(‖H‖H−s‖U‖P−1

Hs ). Finally, the estimate of III follows again from (4.2.11), and from
the fact that ‖Q(U)‖L(Hs′

,Hs′
) = O(‖U‖PHs) for any s′. This concludes the proof of the lemma.

✷

End of the proof of Theorem 3.1.2: The left hand side of (3.1.7) is

(4.2.25) {Θ2
s ◦ ψ,GL +GH + G̃P } = dΘ2

s(ψ(U)) · dψ(U) · [XGL
(U) +X[GH+G̃P ](U)].

The contribution of GL to the right hand side may be written

(4.2.26) {Θ2
s, GL}(ψ(U)) + dΘ2

s(ψ(U))[dψ(U)XGL
(U) −XGL

(ψ(U))].

Since dΘ2
s ∈ L(Hs,R), it is enough, to show that the last term is O(‖U‖P+2

Hs ), to prove that

(4.2.27) dψ(U)XGL
(U) −XGL

(ψ(U)) = XGL
(U) −XGL

(ψ(U)) + (dψ(U) − Id) ·XGL
(U)
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is in Hs and has Hs-norm O(‖U‖P+1
Hs ). Since GL may be written

∑P−1
p=1 GL,p, with GL,p in⋂

N G1−N,ν+N
p (Bs(R)) ⊂ G0,ν+1

p (Bs(R)), we may write

GL,p = Re

∫

X
(AL,p(U)u)ū dµ+ Re

∫

X
(BL,pu)u dµ

with AL,p ,BL,p in P0,ν+1
p . If we use (4.2.11), (4.2.12) applied to such operators (see the state-

ment following these formulas), and the fact that ‖ψ(U) − U‖Hs = O(‖U‖P+1
Hs ), ‖dψ(U) −

Id‖L(H±s,H±s) = O(‖U‖PHs), we get the wanted conclusion for (4.2.26).

Let us study the contribution of GH + G̃P to (4.2.25). We must prove that

dΘ2
s(ψ(U)) · dψ(U) ·X[GH+G̃P ](U) − dΘ2

s(ψ(U)) ·XGH
(ψ(U)) = O(‖U‖P+2

Hs ).

According to Lemma 4.2.2, and to the boundedness of dΘ2
s (resp. dψ) from Hs to R (resp. to

Hs), this will follow from the estimate

(4.2.28) dΘ2
s(ψ(U))[X

Ĝ
(ψ(U)) −XGH

(ψ(U))] = O(‖U‖P+2
Hs ), U → 0.

Using expressions (4.2.3), (4.2.13) of GH, Ĝ, and setting ΣH = tJMH we write

(4.2.29) Ĝ(V ) −GH(V ) =
1

2

∫

X
(J [Σ(ψ−1(V )) − ΣH(V )]V )V dµ

and

Σ(ψ−1(V )) − ΣH(V )

=

[
A(ψ−1(V )) −AH(V ) + C(ψ−1(V )) 0

0 −(tA(ψ−1(V )) − tAH(V ) + C(ψ−1(V )))

]

(4.2.30)

By definition of AH (which is the sum of contributions to A homogeneous of order up to P − 1),
A−AH is in Ψ1,ν

P (Bs(R)). Moreover, C is in Ψ1,ν̃
P (Bs(R)). Since we have seen that ‖dψ−1(V ) −

Id‖L(Hs′ ,Hs′
) is O(‖V ‖PHs) for any s′ with |s′| ≤ s, we deduce that AH(V ) − AH(ψ−1(V ))

is in Ψ1,ν
P (Bs(R)) and that C(ψ−1(V )) is in Ψ1,ν̃

P (Bs(R)). Consequently, (4.2.29), (4.2.30)

show that Ĝ − GH belongs to F1,ν̃
P,H(Bs(R)). The left hand side of (4.2.28) may be written

{Θ2
s, Ĝ−GH}(ψ(U)). It follows from Lemma 3.2.6, and the assumption that Θ2

s is a sum of
elements of HF2s,ν

p,H (Bs(R)) + G2s−1,ν
p (Bs(R)) for some ν and 0 ≤ p ≤ P − 1, that this last term

is O(‖U‖P+2
Hs ) as wanted. ✷

4.3 Elimination of hyperbolic terms

This section is devoted to the proof of Theorem 3.1.3. We prove first several helpful lemmas.

Remember that we denoted by (λ2
n)n∈N∗ the eigenvalues of −∆ on X = Sd and that the mass

parameter m has been chosen so that (1.2.27) holds. We set Λ̃ =
√

−∆ +
(
d−1

2

)2
so that

Λ̃Πn =
(
n− 1 + d−1

2

)
Πn for n ∈ N∗. In particular, t → eitΛ̃ is a 4π-periodic function. Moreover,

Λm − Λ̃ is a pseudo-differential operator of order −1.
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Lemma 4.3.1 Let ν ∈ R+, p ∈ N∗, ℓ ∈ {0, . . . , p} and A′ be an element of the space H̃Ψ
1,ν

p [M0]
introduced in Definition 1.2.2. Assume that A′ satisfies the following condition (using the nota-
tions introduced before the statement of Theorem 1.2.8):

(4.3.1) (n0, . . . , np+1) ∈ Zℓ(p) ⇒ Πn0A
′(Πn′U)Πnp+1 = 0.

Denote M1 = 2M0(2d + 3), ν1 = 2M1. There is a family (Cα(U))α∈Z of linear operators from
C∞(X) to D′(X), such that, for any t ∈ [0, 4π]

(4.3.2) e−itΛ̃A′(U)eitΛ̃ =
∑

α∈Z

eiαt/2Cα(U)

and, for any family of differential operators P1, . . . , Pk of orders d1, . . . , dk, and N1, N2 in N,
there is a constant C > 0 such that, for any α ∈ Z, any j, j′ in N, any n′ in (N∗)p, any u1, . . . , up
in C∞(X)

‖∆jAdP1 · · · AdPk
Cα(Πn′U)∆j′‖L(L2) ≤ C

1 + α2
2−N1|j−j′|2j(1+

∑
dℓ−k)|n′|ν(p)+ν+ν1+M1k

×(1 + 2−j |n′|)−N2

p∏

1

‖Πnℓ
uℓ‖L2 .

(4.3.3)

Moreover C0(Πn′U) ≡ 0 if n′ is in Zℓ(p) ⊂ (N∗)p. Equation (4.3.3) implies in particular that
∑
αCα defines an element of H̃Ψ

1,ν+ν1

p [M1].

Proof: Using the 4π-time periodicity of the left hand side of (4.3.2), we write its Fourier series
decomposition, with coefficients

Cα(U) =
1

4π

∫ 4π

0
e−itΛ̃A′(U)eitΛ̃e−itα/2 dt.

Denote by Pk′(t) = eitΛ̃Pk′e−itΛ̃, 1 ≤ k′ ≤ k. By the Egorov theorem, this is a family of pseudo-
differential operators of order dk, with uniform estimates for t ∈ [0, 4π]. We may write, using
two integrations by parts in t,

(4.3.4) α2AdP1 · · · AdPk
Cα(U) =

1

π

∫ 4π

0
e−itΛ̃AdP1(t) · · · AdPk(t)Ad2

Λ̃
A′(U)eitΛ̃e−itα/2 dt.

By (iii) of Proposition 2.2.6, each commutator with Pk′(t) (resp. Λ̃) makes gain dk′ − 1 (resp.
0) units on the order of the operator, and makes lose M1 = 2M0(2d+ 3) on the second index of
this order. It follows that (4.3.3) holds, with the preceding value of M1 and with ν1 = 2M1.

To get the statement concerning C0, we compute

Πn0C0(Πn′U)Πnp+1 =
1

4π

∫ 4π

0
e−it(n0−np+1)Πn0A

′(Πn′U)Πnp+1 dt.

This quantity vanishes if n0 6= np+1. If n0 = np+1, the condition n′ ∈ Zℓ(p) is equivalent to
(n0, n

′, np+1) ∈ Zℓ(p), so that assumption (4.3.1) implies that the integrand vanishes. This
concludes the proof. ✷
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Lemma 4.3.2 Let µ ∈ R, ν ∈ R+, P ∈ N, p ∈ N, 1 ≤ p ≤ P − 1, ℓ ∈ {0, . . . , p}, N ∈ N. There
are positive numbers ν̄(N), M0(N) = M0(4d+ 6)N such that the following holds:

(i) For any A′ in H̃Ψ
1,ν

p [M0] satisfying (4.3.1), one may find operators B (resp. S, resp. R)

belonging to H̃Ψ
1,ν+ν̄(N)

p [M0(N)] (resp. H̃Ψ
1−N,ν+ν̄(N)

p [M0(N)], H̃Ψ
1,ν+ν̄(N)

p [M0(N)]), such that

(4.3.5) [B(U),Λm] +
ℓ∑

j=1

B(u1, . . . ,Λmuj , . . . , up) −
p∑

j=ℓ+1

B(u1, . . . ,Λmuj , . . . , up)

= A′(U) + S(U) + ǫPR(U).

Moreover, S satisfies (4.3.1).

(ii) Let A′ be an element of P̃µ,ν
p , satisfying (4.3.1). There is B′ in P̃µ+L0,ν

p such that

(4.3.6) [B(U),Λm] +
ℓ∑

j=1

B(u1, . . . ,Λmuj , . . . , up) −
p∑

j=ℓ+1

B(u1, . . . ,Λmuj , . . . , up) = A′(U).

The same conclusion holds for the equations
(4.3.7)

±[ΛmB(U) +B(U)Λm] +
ℓ∑

j=1

B(u1, . . . ,Λmuj , . . . , up) −
p∑

j=ℓ+1

B(u1, . . . ,Λmuj , . . . , up) = A′(U).

Proof: (i) Take θ ∈ C∞
0 (R), θ ≡ 1 close to zero, and define

(4.3.8) B1(Πn′U) = −i
∫ +∞

0
e−itΛ̃A′(Πn′U)eitΛ̃eitG

p,ℓ
m

(n′)θ(ǫt) dt

where we denoted for short by Gp,ℓm (n′) the function Gp,ℓm (λn1 , . . . , λnp) defined in (1.2.26). Using
expansion (4.3.2), we write

B1(Πn′U) = −i
∑

α∈Z

aα(n′, ǫ)Cα(Πn′U)

with

aα(n′, ǫ) =

∫ +∞

0
eit

(
α
2

+Gp,ℓ
m

(n′)
)
θ(ǫt) dt.

By (1.2.27), we know that
∣∣∣α2 +Gp,ℓm (n′)

∣∣∣ ≥ c|n′|−L0 unless α = 0 and n′ ∈ Zℓ(p). This last case is

excluded since, by assumption and Lemma 4.3.1, C0(Πn′U) = 0 when n′ ∈ Zℓ(p). Consequently,
an integration by parts shows that |aα(n′, ǫ)| ≤ C|n′|L0 . Combining this with (4.3.3) and

summing in α, we see that B1 satisfies the estimates of elements of H̃Ψ
1,ν+ν1+L0

p [M1], where
M1 = 2M0(2d+ 3). Let us compute

(4.3.9) − [Λ̃, B1(Πn′U)] +Gp,ℓ
m

(n′)B1(Πn′U)

= −
∫ +∞

0

d

dt

[
e−itΛ̃A′(Πn′U)eitΛ̃eitG

p,ℓ
m

(n′)
]
θ(ǫt) dt

= A′(Πn′U) + ǫPR1(Πn′U)

68



with

R1(Πn′U) =

∫ +∞

0
e−itΛ̃A′(Πn′U)eitΛ̃eitG

p,ℓ
m

(n′)ǫ−P+1θ′(ǫt) dt.

Let θ1 ∈ C∞
0 (]0,+∞[) such that θ1 ≡ θ′ on [0,+∞[. Using again decomposition (4.3.2), we write

R1(Πn′U) =
∑

α∈Z

Cα(Πn′U)ǫ−P θ̂1

(
−ǫ−1

(
Gp,ℓ

m
(n′) +

α

2

))
.

By (1.2.27), ǫ−P
∣∣∣θ̂1

(−ǫ−1
(
Gp,ℓm (n′) + α

2

))∣∣∣ ≤ C|n′|PL0 so that (4.3.3) shows that R′
1 belongs to

the space H̃Ψ
1,ν+ν1+PL0

p [M1]. We deduce from (4.3.9) that

− [Λm, B1(U)] +
ℓ∑

j=1

B1(u1, . . . ,Λmuj , . . . , up) −
p+1∑

j=ℓ+1

B1(u1, . . . ,Λmuj , . . . , up)

= A′(U) + ǫPR1(U) − [Λm − Λ̃, B1(U)].

Since Λm − Λ̃ is of order −1, [Λm − Λ̃, B1(U)] is in H̃Ψ
0,ν+ν1+L0

p [M1], by Lemma 1.2.4, and

satisfies condition (4.3.1), because Πn commutes to Λm − Λ̃, and because B1 satisfies (4.3.1),
as follows from its expression (4.3.8) and the assumption on A′. We see that we have solved
an approximate version of (4.3.5), where S is replaced by an operator [Λ̃ − Λm, B1(U)] of order
0 instead of 1 − N . Since condition (4.3.1) is satisfied by this operator, we may repeat the
construction of B1, defining successively B2, B3, . . . until B = B1 + B2 + · · · satisfies (4.3.5)
with an error S of the wanted order 1 − N . At each step, we have to increase the number of
derivative losses on small frequencies ν, and multiply the constant M1 of estimate (4.3.3) by
2(2d+ 3). We call ν̄(N) the total loss at the end of the process, and get the wanted conclusion.

(ii) We compute (4.3.6) at Πn′U , and compose at the left with Πnp+1 and at the right with Πn0 .
We get

(4.3.10) F p,ℓ
m

(λn0 , . . . , λnp+1)Πnp+1B(Πn′U)Πn0 = Πnp+1A
′(Πn′U)Πn0 .

Since A′ satisfies condition (4.3.1), |F p,ℓm (λn0 , . . . , λnp+1)| is bounded from below by the right
hand side of the first estimate (1.2.27). Going back to the estimate (1.2.5) defining Pµ,ν

p , we see

that we may find a solution B to (4.3.10) in Pµ+L0,ν
p . This concludes the proof since the same

reasoning applies to (4.3.7). ✷

Before proving Theorem 3.1.3, we recall some notations and results of [7]. Let F =
∑P−1
p=1 Fp,

H =
∑P−1
p=0 Hp be two functions defined on a neighborhood of zero in Hs(X), which are sums

of components homogeneous of order p+ 2. Assume also that F,H have enough smoothness so
that all Poisson brackets below are meaningful. We define a truncated Poisson bracket at order
P by

(4.3.11) {F,H}P =
∑

p+p′≤P−1
p≥1,p′≥0

{Fp, Hp′}.
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The iterates of {·, ·}P are defined by

adPF ·H = {F,H}P
adP

jF ·H = adPF · (adP
j−1F ·H).

(4.3.12)

If T is some indeterminate, we define

(4.3.13) exp(TadPF ) ·H =
+∞∑

j=0

T j

j!
adP

jF ·H.

Notice that the sum in the last series is finite, as all terms with j ≥ P vanish. Let Θ be another
multi-linear expression in U = (u, ū). It is proved in Lemma 5.1.3 of [7] that

(4.3.14) {exp(TadPF ) · Θ, H}P = exp(TadPF ) · {Θ, exp(−TadPF ) ·H}P .

We define from Θ (resp. H) and from F new functions, denoted formally by Θ ◦ χPF (resp.
H ◦ (χPF )−1), given by

Θ ◦ χPF = (exp(adPF )) · Θ

H ◦ (χPF )−1 = (exp(−adPF )) ·H
(4.3.15)

so that (4.3.14) may be written, taking T = 1,

(4.3.16) {Θ ◦ χPF , H}P = {Θ, H ◦ (χPF )−1}P ◦ χPF .

The main remaining steps in the proof of Theorem 3.1.3 will be to apply (4.3.16) with Θ replaced
by Θ0

s(u, ū) =
∫
X(Λ2s

m
u)ū dµ, H replaced by the Hamiltonian GL +GH found in Theorem 3.1.2,

and to construct a function F so that {Θ0
s, (GL +GH) ◦ (χPF )−1}P ◦ χPF = O(ǫP ‖u‖2

Hs) (for s
large enough).

Let us fix some notations. We fix P ∈ N∗ and N large enough relatively to P . We shall need
several constants indexed by p = 1, . . . , P − 1, growing quickly enough. We take elements of
[1,+∞[, (Mi(p))1≤p≤P−1, (ν̃i(p)))1≤p≤P−1, i = 1, . . . , 4. We assume for p, q ∈ {1, . . . , P − 1}
such that p+ q ≤ P − 1, and for some large C0, depending on P,N ,

M1(p) ≥ C0M2(p) ≥ C2
0M3(p) ≥ C3

0M4(p) ≥ C3
0M0

M4(p+ q) ≥ max(M1(p),M2(q))

min(ν̃1(p), ν̃2(q)) + C0[M1(p) +M1(q)] ≤ ν̃4(p+ q)

ν̃j(p) ≥ ν̃j+1(p) + C0Mj+1(p), j = 1, 2, 3,

(4.3.17)

where M0 is the constant introduced in Definition 1.2.2 We assume moreover that, if p → ν(p)
is the function of the definition of classes H̃Ψ, it satisfies, for p, q in {1, . . . , P − 1},

(4.3.18) ν(p) + ν(q) + ν + max(ν̃1(p), ν̃2(q)) + C0 max(M1(p),M2(q)) ≤ ν̃4(p+ q).

Finally, we take two other functions p → Ni(p), i = 1, 2, such that N1(1) + M0 = N2(1) = N
and that, for any p, q ∈ {1, . . . , P − 1} with p+ q ≤ P − 1,

(4.3.19) N2(p+ q) ≤ N2(q) −M0 − 1, N2(p+ q) ≤ N1(p) −M0 − 1, N1(p) ≤ N2(p) − L0
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(where L0 is the exponent in (1.2.27)). If N = N2(1) ≫ P , we may find such Ni(p)’s, which are
moreover larger or equal to P for p = 1, . . . , P − 1. We may assume as well that ν̃4(p) ≥ N2(p)
for any p = 1, . . . , P − 1, since it is always possible to increase the ν̃j(p) in such a way they will
continue to satisfy (4.3.17).

We use inclusions (3.2.12), (3.2.14) and (3.2.13) (with the constant M0 of (3.2.10) replaced by
M1(p) or M2(q)) to get, taking into account assumptions (4.3.17), (4.3.18), (4.3.19), the inclusion

(4.3.20) {HF1,ν+ν̃1(p)
p,H (Bs(R))[M1(p)] + G1−N1(p),ν+ν̃1(p)

p (Bs(R)),

HF1,ν+ν̃2(q)
q,H (Bs(R))[M2(q)] + G1−N2(q),ν+ν̃2(q)

q (Bs(R))}
⊂ HF1,ν+ν̃4(p+q)

p+q,H (Bs(R))[M4(p+ q)] + G1−N2(p+q)−M0,ν+ν̃4(p+q)
p+q (Bs(R))

for any p > 0, q > 0 such that p, q, p+ q are smaller than P − 1. Let us prove:

Lemma 4.3.3 For any p = 1, . . . , P − 1, there is an element

(4.3.21) Fp ∈ HF1,ν+ν̃1(p)
p,H (Bs(R))[M1(p)] + G1−N1(p),ν+ν̃1(p)

p (Bs(R))

satisfying

(4.3.22) {Fp, G0} ∈ HF1,ν+ν̃2(p)
p,H (Bs(R))[M2(p)] + G1−N2(p),ν+ν̃2(p)

p (Bs(R))

such that, if F =
∑P−1
p=1 Fp

(4.3.23) {Θ0
s, (GL +GH) ◦ (χPF )−1}P = ǫP {Θ0

s, R},

with R in
⊕P−1

p=1 HF1,ν+ν̃2(p)
p,H (Bs(R))[M2(p)].

Proof: By the definition (3.1.5), (3.1.4) of GL, GH, we may write GL+GH = G0 +
∑P−1
p=1 (GL,p+

GH,p) and GL,p +GH,p ∈ HF1,ν
p,H(Bs(R))[M0] +

⋂
N G1−N,ν+N

p (Bs(R)) for some ν. In particular,
GL,p +GH,p belongs to

(4.3.24) HF1,ν+ν̃4(p)
p,H (Bs(R))[M4(p)] + G1−N2(p),ν+ν̃4(p)

p (Bs(R)).

We compute (GL +GH) ◦ (χPF )−1. By (4.3.15), (4.3.13), this may be written

G0 −
P−1∑

p=1

{Fp, G0} +
P−1∑

p=1

Hp

where Hp is a linear combination of quantities

(4.3.25) {Fp1 , {Fp2 , . . . , {Fpγ , GL,pγ+1 +GH,pγ+1} . . . }}

where p1 + · · · + pγ+1 = p, pβ ≥ 1 if 1 ≤ β ≤ γ, pγ+1 ≥ 0 (with by convention the notation
GL,0 + GH,0 = G0) and where γ ≥ 2 if pγ+1 = 0. Since GL,pγ+1 + GH,pγ+1 is in (4.3.24) with
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p = pγ+1 and Fpγ satisfies (4.3.21) with p = pγ , successive applications of inclusion (4.3.20) show
that (4.3.25) belongs to (4.3.24) when pγ+1 > 0. If pγ+1 = 0, we use that γ ≥ 2, so that we
make use of (4.3.22) to reach the same conclusion. Consequently, Hp belongs to (4.3.24), and
the lemma will be proved if we construct Fp, satisfying (4.3.21) and (4.3.22) and such that

(4.3.26) {Θ0
s, Hp − {Fp, G0}} = ǫP {Θ0

s, Rp}

with Rp in HF1,ν+ν̃2(p)
p,H (Bs(R))[M2(p)]. We decompose Hp = Hp,F +Hp,G according to (4.3.24)

and write

Hp,F (U) = Re

∫

X
(Cp(U)u)ū dµ

Hp,G = Re

∫

X
(Ep,0(U)u)ū dµ+ Re

∫

X
(Ep,1(U)u)u dµ,

(4.3.27)

with Cp in HΨ
1,ν+ν̃4(p)
p [M4(p)], Ep,0, Ep,1 in P1−N2(p),ν+ν̃4(p)

p ⊂ P1−N2(p),ν+ν̃3(p)
p . Coming back

to the definition of these spaces, we decompose

Cp(U) =
p∑

ℓ=0

Cℓp(u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū)

Ep,i(U) =
p∑

ℓ=0

Eℓp,i(u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū), i = 0, 1

(4.3.28)

with Cℓp in H̃Ψ
1,ν+ν̃4(p)

p [M4(p)], Eℓp,i in P̃1−N2(p),ν+ν̃3(p)
p . We may assume that, for a fixed large

enough C,

(4.3.29) Πn0C
ℓ
p(Πn′U)Πnp+1 6= 0 ⇒ n0, np+1 ≥ C|n′|.

Actually, to ensure that condition, we may replace Cℓp by

(4.3.30)
∑

n′

∑

j

∑

j′

✶{2j≥C|n′|,2j′ ≥C|n′|}∆jC
ℓ
p(Πn′U)∆j′

since, using formula (A.1) of the appendix, one checks that (4.3.30) is an element of the space

H̃Ψ
1,ν+ν̃4(p)

p [M4(p)] satisfying (4.3.29). The difference between Cℓp and (4.3.30) may be incorpo-
rated to Ep,0: taking into account that this difference belongs to

H̃Ψ
1−N ′,ν+ν̃4(p)+N ′

p [M4(p)] ⊂ P̃1−N ′,ν+ν̃4(p)+N ′+2M4(p)
p

for any N ′, we take N ′ = N2(p), and obtain that the perturbation of Ep,0 will be in the class

P̃1−N2(p),ν+ν̃3(p)
p (using the last inequality (4.3.17) with a large enough C0).

Let us refine the decomposition of Cℓp, E
ℓ
p,i. When ℓ 6= p/2, we set Eℓ,Zp,0 = 0. When ℓ = p/2, we

define

(4.3.31) Eℓ,Zp,0 =
∑

{n0,...,nℓ}=
{nℓ+1,...,np+1}

Πn0E
ℓ
p,0(Πn1u1, . . . ,Πnpup)Πnp+1 .
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In the same way, if ℓ+ 1 6= p/2, we set Eℓ,Zp,1 = 0. If ℓ+ 1 = p/2, we set

Eℓ,Zp,1 =
∑

{n0,...,nℓ,np+1}=
{nℓ+1,...,np}

Πn0E
ℓ
p,1(Πn1u1, . . . ,Πnpup)Πnp+1 .

Then Eℓ,Zp,i are elements of P̃1−N2(p),ν+ν̃3(p)
p . We define Eℓ,Bp,i = Eℓp,i − Eℓ,Zp,i . In that way, Eℓ,Bp,0

satisfies (4.3.1) and Eℓ,Bp,1 satisfies

(4.3.32) {n0, . . . , nℓ, np+1} = {nℓ+1, . . . , np} ⇒ Πn0E
ℓ,B
p,1 (Πn1u1, . . . ,Πnpup)Πnp+1 = 0.

We perform a similar decomposition of Cℓp = Cℓ,Zp + Cℓ,Bp using formula (4.3.31). Let us show

that Cℓ,Zp belongs to H̃Ψ
1,ν+ν̃3(p)

p [M3(p)]. Actually, because of condition (4.3.29), the property

{n0, . . . , nℓ} = {nℓ+1, . . . , np+1} in the sum of type (4.3.31) defining Cℓ,Zp from Cℓp, is equivalent

to (n0 = np+1) and {n1, . . . , nℓ} = {nℓ+1, . . . , np}. The definition of Cℓ,Zp may be written
equivalently as

Cℓ,Zp (u1, . . . , up) =
∑

{n1,...,nℓ}=
{nℓ+1,...,np}

1

4π

∫ 4π

0
e−itΛ̃Cℓp(Πn′U)eitΛ̃ dt.

We have seen in the proof of Lemma 4.3.1 that this time average belongs to H̃Ψ
1,ν+ν̃3(p)

p [M3(p)]
(This follows from the fact that by (4.3.17), M3(p) ≥ C0M4(p), ν̃3(p) ≥ ν̃4(p) +C0M4(p), which
are the requirement that the new constants (ν1,M1) in the right hand side of (4.3.3) have to
satisfy). Set

CZ
p (U) =

p∑

ℓ=0

Cℓ,Zp (u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū), EZ
p,i(U) =

p∑

ℓ=0

Eℓ,Zp,i (u, . . . , u︸ ︷︷ ︸
ℓ

, ū, . . . , ū)

CB
p (U) = (Cp − CZ

p )(U), EB
p,i(U) = Ep,i(U) − EZ

p,i(U)

HZ
p,F (U) = Re

∫

X
(CZ

p (U)u)ū dµ, HZ
p,G(U) = Re

∫

X
(EZ

p,0(U)u)ū dµ+ Re

∫

X
(EZ

p,1(U)u)u dµ

and define similarly HB
p,F (U), HB

p,G(U). By construction and the definition of the Sobolev energy

Θ0
s(u, ū) =

∫
X(Λ2s

m
u)ū dµ, {Θ0

s, H
Z
p,F +HZ

p,G} = 0, so that equation (4.3.26) is equivalent to

(4.3.33) {Θ0
s, H

B
p,F +HB

p,G − {Fp, G0}} = ǫP {Θ0
s, Rp}.

Let us show that there is an element Rp in HF1,ν+ν̃2(p)
p,H (Bs(R))[M2(p)] and Fp satisfying (4.3.21),

(4.3.22) such that

(4.3.34) {Fp, G0} = HB
p,F +HB

p,G − ǫPRp.

We look for Fp as

(4.3.35) Fp(U) = Re

∫

X
(Bp(U)u)ū dµ+ Re

∫

X
(Dp,0(U)u)ū dµ+ Re

∫

X
(Dp,1(U)u)u dµ
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where Bp(U) =
∑p
ℓ=0B

ℓ
p(u, . . . , u, ū, . . . , ū), Dp,i(U) =

∑p
ℓ=0D

ℓ
p,i(u, . . . , u, ū, . . . , ū), with Bℓ

p in

H̃Ψ
1,ν+ν̃1(p)

p [M1(p)], Dℓ
p,i in P̃1−N1(p),ν+ν̃1(p)

p . Plugging (4.3.35) inside (4.3.34), we see that Bℓ
p

may be computed from Cℓ,Bp solving an equation of type (4.3.5). Applying (i) of Lemma 4.3.2,

we obtain Bℓ
p in H̃Ψ

1,ν+ν̃1(p)

p [M1(p)], using (4.3.17), and assuming that C0 is larger than the loss

ν̄(N) of Lemma 4.3.2. We get the wanted property for Bℓ
p.

The remainder S in the right hand side of (4.3.5) belongs to

H̃Ψ
1−N,ν+ν̃3(p)+ν̄(N)

p [M3(p)] ⊂ P̃1−N,ν+ν̃3(p)+ν̄(N)+2M3(p)
p .

Since N ≥ N2(p), we get an element of P̃1−N2(p),ν+ν̃2(p)
p , if the constant C0 in (4.3.17) has been

taken large enough with respect to N . The contributions Eℓ,Bp,i belong to the same space. By

(ii) of Lemma 4.3.2, we may construct Dp,0 (resp. Dp,1) in P̃1−N2(p)+L0,ν+ν̃2(p)
p solving (4.3.6)

(resp. (4.3.7)) when the right hand side A′ is given by Eℓ,Bp,0 + S (resp Eℓ,Bp,1 ). If we assume
N1(p) ≤ N2(p) − L0 as in (4.3.19), we get the wanted conclusion.

Finally, the term ǫPR in the right hand side of (4.3.5) belongs to ǫP H̃Ψ
1,ν+ν̃3(p)+ν̄(N)

p [M2(p)] ⊂
ǫP H̃Ψ

1,ν+ν̃2(p)

p [M2(p)]. The contribution of this term to an integral of the form of the first one
in (4.3.27) gives the last term in (4.3.34). ✷

Proof of Theorem 3.1.3: We set Θ2
s = Θ0

s ◦ χPF . This is linear combination of quantities

(4.3.36) {Fp1 , {Fp2 , . . . , {Fpℓ
,Θ0

s} · · · }}, ℓ ≤ P − 1,

with Fp satisfying (4.3.21), 1 ≤ p ≤ P − 1. Since we assume N1(p) ≥ P , we have

(4.3.37) Fp ∈ HF1,ν
p,H(Bs(R)) + G1−P,ν

p (Bs(R))

for some large enough value of ν. Moreover, Θ0
s is in HF2s,0

0,H (Bs(R)). If s ≫ P , it follows from

inclusions (3.2.12), (3.2.13) and (3.2.14) that (4.3.36) is in HF2s,ν
p,H (Bs(R)) + G2s+ℓ−P,ν

p (Bs(R))

for p = p1 + · · · + pℓ and a new value of ν, independent of s. Consequently Θ2
s is in

(4.3.38)
P−1⊕

p=0

(
HF2s,ν

p,H (Bs(R)) + G2s−1,ν
p (Bs(R))

)

for some ν. By(4.3.16)

{Θ2
s, GL +GH} = {Θ2

s, GL +GH}P + ({Θ2
s, GL +GH} − {Θ2

s, GL +GH}P )

= {Θ0
s, (GL +GH) ◦ (χPF )−1}P ◦ χPF + ({Θ2

s, GL +GH} − {Θ2
s, GL +GH}P ).

(4.3.39)

The first term in the right hand side may be written according to (4.3.23) as ǫP {Θ0
s, R} ◦ χPF

with R in
⊕P−1

p=1 HF1,ν+ν̃2(p)
p,H (Bs(R)). Since Θ0

s is in HF2s,0
0,H (Bs(R)), it follows from (3.2.12) that
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{Θ0
s, R} is in

⊕P−1
p=1 HF2s,ν

p,H (Bs(R)) for some ν independent of s. Using (4.3.37) and again inclu-

sions (3.2.12), (3.2.14), (3.2.13), we conclude that {Θ0
s, R}◦χPF belongs to

⊕P−1
p=0

(
HF2s,ν

p,H (Bs(R))+

G2s,ν
p (Bs(R))

)
. This implies that {Θ0

s, R} ◦ χPF (U) = O(‖U‖2
Hs) if s is large enough.

The last term in (4.3.39) may be written as a sum of expressions

(4.3.40) {θp, GL,q +GH,q}

where θp is in HF2s,ν
p,H (Bs(R)) + G2s−1,ν

p (Bs(R)), and where GL,q + GH,q belongs to the space

HF1,ν′

q,H (Bs(R))+G0,ν′

q (Bs(R)) for some ν, ν ′ depending on P but not on s, and with p+q ≥ P . By

(3.2.12), (3.2.13), (3.2.14), we obtain elements of HF2s,ν′′

p+q,H(Bs(R))+G2s,ν′′

p+q (Bs(R)) for some new

ν ′′ independent of s. This implies that (4.3.40) is O(‖U‖P+2
Hs ), which is the wanted conclusion.

✷

A Appendix

This appendix is devoted to an estimate that is used several times in the paper.

Proposition A.1 Let P1, . . . , Pk be differential operators of order d1, . . . , kk on the manifold
X. Let Q,Q′ be two pseudo-differential operators of order m,m′. For any N in N, there is
C > 0 and for any j, j′, j′′ in N

(A.1) ‖∆j′(AdP1 · · · AdPk
(Q∆jQ

′))∆j′′‖L(L2) ≤ C2−N [|j−j′|+|j−j′′|]2j
(
m+m′+

∑k

ℓ=1
dℓ−k

)
.

If we prove

(A.2) ‖∆j′AdP1 · · · AdPk
(Q∆jQ

′)‖L(L2) ≤ C2−N |j−j′|2j
(
m+m′+

∑k

ℓ=1
dℓ−k

)

we may deduce (A.1) from (A.2) by duality. To prove (A.2), we introduce, with the notations
(1.2.2), ϕ1(t) = ϕ(

√
t), ψ1(t) = ψ(

√
t), so that ∆j = ϕ1(−2−2j∆), for j ≥ 1, ∆0 = ψ1(−∆). We

use the same letters ϕ1, ψ1 to denote almost holomorphic extensions of this functions to C (see
Dimassi-Sjöstrand [11], Chapter 8). Then ϕ1, ψ1 are smooth functions on C, ϕ1 (resp. ψ1) is
supported in a domain [a, b] + i[−c, c] with 0 < a < b, c > 0 (resp. a < 0 < b, c > 0), and ∂̄ϕ1,
∂̄ψ1 vanish at infinite order on R. The Helffer-Sjöstrand formula [17], [11] Theorem 8.1 implies
that

(A.3) ∆j =
−1

π
2−2j

∫

C

(∂̄ϕ1)(2−2jζ)(ζ + ∆)−1 dζdζ̄

when j ≥ 1, and a similar expression for ∆0, with ϕ1 replaced by ψ1. We shall prove (A.2)
when, more generally, P1, . . . , Pk are pseudo-differential operators of order d1, . . . , dk. Writing
[Pj , (ζ + ∆)−1] = −(ζ + ∆)−1[Pj ,∆](ζ + ∆)−1, we see that AdP1 · · · AdPk

∆j may be written as
a linear combination of expressions

(A.4) 2−2j
∫

C

(∂̄ϕ1)(2−2jζ)

[ k′∏

ℓ′=1

(ζ + ∆)−1Qℓ′

]
(ζ + ∆)−1 dζdζ̄
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where 0 ≤ k′ ≤ k, Qℓ′ , ℓ
′ = 1, . . . , k′ are pseudo-differential operators of order Dℓ′ + 2 and∑k′+1

1 Dℓ′ =
∑k

1 dℓ − k.

Lemma A.2 For any s ∈ R

(A.5) sup
j

‖AdP1 · · · AdPk
∆j‖

L
(
Hs,H

s−

∑k

1
dℓ+k

) < +∞.

Proof: We note that for any σ ∈ R

‖(ζ + ∆)−1‖L(Hσ ,Hσ+2) ≤ C(1 + |ζ|)
|Im ζ| , ‖(ζ + ∆)−1‖L(Hσ ,Hσ) ≤ C|Im ζ|−1.

We deduce from (A.4), the above inequalities, the fact that on the support of ϕ1(2−2jζ), |ζ| ≤
C22j and the vanishing of ∂̄ϕ1 at infinite order on R, that (A.5) is bounded from above by the
supremum in j of quantities of the form

C2−2j
∫

C

|∂̄ϕ1(2−2jζ)| 22jk′

|Im ζ|k′+1
dζdζ̄ ≤ C22j(k′−1−N)

∫

|ζ|≤C22j
|Im ζ|N−k′−1 dζdζ̄ ≤ C

for 0 ≤ k′ ≤ k. This gives the lemma. ✷

Proof of Proposition A.1: For k ∈ N, a ∈ R, denote by Ek(a) the family of operators which
may be written as a finite sum of terms Q0(AdQ1 · · · AdQk′ ∆j)Qk′+1 where k′ ≤ k and Qℓ,

ℓ = 0, . . . , k′ + 1 are pseudo-differential operators such that
∑k′+1
ℓ=0 degQℓ − k′ = a. Let Q,Q′ be

a pseudo-differential operator of order m,m′. Then

(A.6) AdP1 · · · AdPk
[Q∆jQ

′] = Q(AdP1 · · · AdPk
∆j)Q

′ modulo Ek−1(m+
k∑

1

dℓ − k +m′).

Actually, if (A.6) holds at order k, and if we consider another operator P0 of order d0

AdP0AdP1 · · · AdPk
[Q∆jQ

′] = Q(AdP0 · · · AdPk
∆j)Q

′ + [P0, Q](AdP1 · · · AdPk
∆j)Q

′

+Q(AdP1 · · · AdPk
∆j)[P0, Q

′] modulo [P0, Ek−1(m+
k∑

1

dℓ − k +m′)].

We have just to notice that the second and third term in the right hand side are in Ek(m +∑k
0 dℓ − (k + 1) +m′), as well as the elements of [P0, Ek−1(m+

∑k
1 dℓ − k +m′)].

Let us prove estimate (A.2). Assume first j′ > j > 0 and write

(A.7) ∆j′AdP1 · · · AdPk
(Q∆jQ

′) = 22jN∆j′AdP1 · · · AdPk
(Q̃∆̃jQ

′)

where Q̃ = Q∆−N and ∆̃j = ϕ̃(−2−2j∆) for a new ϕ̃ ∈ C∞
0 (]0,+∞[). By (A.6), we may write

(A.7) as the product of 22jN times operators of the form ∆j′Q0(AdQ1 · · · AdQk′ ∆̃j)Qk′+1, where

k′ ≤ k and
∑k′+1

0 degQℓ − k′ = −2N +m+
∑k

1 dℓ +m′ − k. By Lemma A.2

‖∆j′Q0(AdQ1 · · · AdQk′ ∆̃j)Qk′+1u‖L2 ≤ C2−j′σ‖Q0(AdQ1 · · · AdQk′ ∆̃j)Qk′+1u‖Hσ

≤ C2−j′σ‖u‖
H

σ−2N+m+
∑k

1
dℓ+m′−k

.
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We take σ = −m− ∑k
1 dℓ −m′ + 2N + k to conclude that

‖∆j′AdP1 · · · AdPk
(Q∆jQ

′)‖L(L2) ≤ CN22(j−j′)N+j′(m+
∑k

1
dℓ+m′−k)

for any N . When j < j′, we perform the same computation taking Q̃ = Q∆N . This concludes
the proof. ✷
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