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Mean curvature flow with obstacles

Introduction

Motivated by several models in physics, biology and material science, there has been a growing interest in recent years towards the rigorous analysis of front propagation in heterogeneous media, see [START_REF] Phillips | Crystals, Defects and Microstructures[END_REF][START_REF] Barles | Homogenization of fronts in highly heterogeneous media[END_REF][START_REF] Craciun | Effective motion of a curvature-sensitive interface through a heterogeneous medium[END_REF][START_REF] Dirr | Pulsating wave for mean curvature flow in inhomogeneous medium[END_REF][START_REF] Cardaliaguet | A discussion about the homogenization of moving interfaces[END_REF] and references therein. In this paper, we analyze the evolution by mean curvature of an interface in presence of hard obstacles which can stop the motion. Even if this is a prototypical model of energy driven front propagation in a medium with obstacles, to our knowledge there are no rigorous results concerning existence, uniqueness and regularity of the flow. On the other hand, we mention that the corresponding stationary problem, the so-called obstacle problem, has been studied in great detail, see [START_REF] Miranda | Frontiere minimali con ostacoli[END_REF][START_REF] Caffarelli | The obstacle problem revisited[END_REF] and references therein.

To be more precise, given an open set Ω ⊂ R n , we consider the evolution of a hypersurface ∂E(t), with the constraint E(t) ⊂ Ω for all t ≥ 0, where Ω is an open subset of R n and R n \ Ω represents the obstacles. The corresponding geometric equation formally reads (we refer to Section 4 for a precise definition):

v(x) = κ(x) if x ∈ Ω max(κ(x), 0) if x ∈ ∂Ω (1) 
where v and κ denote respectively the normal inward velocity and the mean curvature of ∂E(t) . Notice that the right-hand side of (1) is discontinuous on ∂Ω, so that the classical viscosity theory [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] does not apply to this case (see however [START_REF] Lio | Comparison results for quasilinear equations in annular domains and applications[END_REF][START_REF] Barles | Remarks on the Dirichlet and State-Constraint Problems for Quasilinear Parabolic Equations[END_REF] for a possible approach in this direction).

We are particularly interested in existence and uniqueness of smooth (that is C 1,1 ) solutions to [START_REF] Almeida | Tissue repair modeling[END_REF]. We tackle this problem by means of a variational method first introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF] (see also [START_REF] Ambrosio | Movimenti minimizzanti[END_REF] for a simpler description of the same approach), which is based on an implicit time-discretization scheme for [START_REF] Almeida | Tissue repair modeling[END_REF].

After showing the consistency of the scheme with regular solutions (Theorem 4.8), we obtain a comparison principle and uniqueness of smooth solutions in any dimensions (Corollary 4.9). Moreover, in the two-dimensional case we are also able to prove local in time existence of solutions (Theorem 5.3). Notice that in general one cannot expect existence of regular solutions for all time, due to the presence of singularities of the flow (even in dimension 2).

On the other hand, due to the presence of the obstacles, regular solutions do not necessarily vanish in finite time and may exist for all times. Eventually, we apply our result to the positive curvature flow in two dimensions, obtaining a short time existence and uniqueness result (Corollary 6.5) for C 1,1 -regular flows. Indeed, such evolution can be seen as a curvature flow where the obstacle is given by the complementary of the initial set.

We point out that the study of the positive curvature flow in Section 6 is related to some biological models which originally motivated our work: in several recent studies of actomyosin cable contraction in morphogenesis and tissue repair there is increasing evidence that the contractile structure forms only in the positive curvature part of the boundary curve (see [START_REF] Almeida | Predictive power of "a minima" models in biology[END_REF][START_REF] Almeida | Modeling actin cable contraction[END_REF] and references therein). Since the contraction of such actomyosin structures can be associated with curvature terms (see [START_REF] Hutson | Forces for morphogenesis investigated with laser microsurgery and quantitative modeling[END_REF][START_REF] Almeida | Tissue repair modeling[END_REF][START_REF] Almeida | A mathematical model for dorsal closure[END_REF]), this leads very naturally to consider the positive curvature flow problem. Notice that a set evolving according to this law is always nonincreasing with respect to inclusion, which is a feature not satisfied by the usual curvature flow. This shows why assembling the contractile structure only in the positive curvature portion of the boundary (instead of all around) and thus doing positive curvature flow (instead of usual curvature flow) is an interesting way to evolve from the biological point of view: it corresponds to making our wound (or hole) close in a manner where we never abandon any portion of the surface we have already managed to cover since we started closing. We also remark that the positive curvature flow is useful in the context of image analysis [28, p. 204], and appears naturally in some differential games [START_REF] Kohn | A deterministic-control based approach to fully nonlinear parabolic and elliptic equations[END_REF].

Notation

Given an open set A ⊆ R n , a function u ∈ L 1 (A) whose distributional gradient Du is a Radon measure with finite total variation in A is called a function of bounded variation, and the space of such functions will be denoted by BV (A). The total variation of Du on A turns out to be sup

A u div z dx : z ∈ C ∞ 0 (A; R n ), |z(x)| ≤ 1 ∀x ∈ A , (2) 
and will be denoted by |Du|(A) or by A |Du|. The map u → |Du|(A) is L 1 (A)-lower semicontinuous, and BV (A) is a Banach space when endowed with the norm u := A |u| dx + |Du|(A). We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for a comprehensive treatment of the subject.

We say that a set E satisfies the exterior (resp. interior) R-ball condition, for some R > 0, if for any x ∈ ∂E there exists a ball B R (x ′ ), with

x ∈ ∂B R (x ′ ) and B R (x ′ ) ∩ E = ∅ (resp. B R (x ′ ) ⊆ E).
Notice that a set E with compact boundary satisfies both the interior and the exterior R-ball condition, for some R > 0, if and only if ∂E is of class C 1,1 .

The implicit scheme

Following the celebrated papers [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], we shall define an implicit time discrete scheme for [START_REF] Almeida | Tissue repair modeling[END_REF]. As a preliminary step, we consider solutions of the Total Variation minimization problem with obstacles; the scheme is then defined in Definition 4.2 below. Let B ⊂ R n be an open set and let v : B → [-∞, ∞) be a measurable function, with v + ∈ L 2 (B). Following [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Chambolle | An algorithm for mean curvature motion[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], given h > 0 and

f ∈ L 2 (B), we let S h,v (f, B) ∈ L 2 (B) ∩ BV (B)
be the unique minimizer of the problem

min u≥v B |Du| + 1 2h B (u -f ) 2 dx. (3) 
We have the following comparison result (see [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF]Lemma 2.1]).

Proposition 3.1. The operator S h,• (•, B) is monotone, in the sense that u 1 = S h,v 1 (f 1 , B) ≥ u 2 = S h,v 2 (f 2 , B) whenever f 1 ≥ f 2 and v 1 ≥ v 2 a.e.
Proof. The idea is simply to compare the sum of the energies of u 1 and u 2 , with the sum of the energy of u 1 ∧ u 2 (which is admissible in the problem defining u 2 ) and of u 1 ∨ u 2 (which is admissible in the problem defining u 1 ). The conclusion follows from the uniqueness of the solution to (3).

Proposition 3.2. Assume f, v + ∈ L ∞ (B): then u = S h,v (f, B) ∈ L ∞ (B) and S h,v (f, B) L ∞ (B) ≤ max f L ∞ (B) , v + L ∞ (B) .
Proof. Again, the proof is trivial. It is enough check that the energy of u M = (u∨-M )∧M is less than the energy of u, while u M is admissible as soon as

M ≥ max f L ∞ (B) , v + L ∞ (B) . Theorem 3.3. Let v : R n → [-∞, +∞) be a measurable function with v + ∈ L ∞ loc (R n ), f ∈ L ∞ loc (R n ), and h > 0. There exists a unique function u ∈ L ∞ loc (R n ) ∩ BV loc (R n
), which we shall denote by S h,v (f ), such that for all R > 0 and p ∈ (n, +∞) there holds

lim M →∞ u -S h,v (f, B M ) L p (B R ) = 0.
This function is characterized by the fact that u ≥ v a.e., and for any R and any ϕ ∈ BV (R n ) with support in B R and u + ϕ ≥ v a.e.,

B R |Du| + 1 2h |u -f | 2 dx ≤ B R |D(u + ϕ)| + 1 2h |u + ϕ -f | 2 dx .
Proof. We shall show a bit more: for any M > 0, let us denote by u M an arbitrary local minimizer of (3), in the sense that

B M |Du M | + 1 2h |u M -f | 2 dx ≤ B M |D(u M + ϕ)| + 1 2h |u M + ϕ -f | 2 dx (4) 
for any ϕ ∈ BV (B M ) with compact support. We will show that (u M ) M ≥2R is a Cauchy sequence in L p (B R ), provided p > n.

To start, let us consider ψ : R → R + a smooth, nondecreasing and bounded function with 0 ≤ ψ(s) ≤ Cs + for any s. Let M ′ > M > 0, and let ϕ ∈ C ∞ c (B M ; R + ), which we extend by zero to

B M ′ . We denote u = u M , u ′ = u M ′ . Let t > 0: observe that u ′ (x) + tψ(u(x) -u ′ (x))ϕ(x) ≥ u ′ (x) ≥ v(x) u(x) -tψ(u(x) -u ′ (x))ϕ(x) ≥ u(x) -tC sup ϕ (u(x) -u ′ (x)) + ≥ u(x) -(u(x) -u ′ (x)) + = min{u(x), u ′ (x)} ≥ v(x)
for almost every x ∈ R n , as soon as t ≤ (C sup ϕ) -1 . Hence, we deduce from (4) that for t small enough,

B M |D(u -tψ(u -u ′ )ϕ)| + 1 2h B M |u -tψ(u -u ′ )ϕ -f | 2 dx ≥ B M |Du| + 1 2h B M |u -f | 2 dx and B M |D(u ′ + tψ(u -u ′ )ϕ)| + 1 2h B M |u ′ + tψ(u -u ′ )ϕ -f | 2 dx ≥ B M |Du ′ | + 1 2h B M |u ′ -f | 2 dx ,
which we sum to obtain

t h B M (u -u ′ )ψ(u -u ′ )ϕ dx ≤ t 2 h B M (ψ(u -u ′ )ϕ) 2 dx + B M |Du -tψ ′ (u -u ′ )(Du -Du ′ )ϕ -tψ(u -u ′ )∇ϕ| + |Du ′ + tψ ′ (u -u ′ )(Du -Du ′ )ϕ + tψ(u -u ′ )∇ϕ| -|Du| -|Du ′ | .
For ρ ≤ t ϕ ∞ ψ ′ ∞ ≤ 1 and t small enough, the integrand in the right-hand side has the form

|p -ρ(p -p ′ ) -tq| + |p ′ + ρ(p -p ′ ) + tq| -|p| -|q| ≤ 2t|q| + (1 -ρ)|p| + ρ|p ′ | + (1 -ρ)|p ′ | + ρ|p| -|p| -|q| = 2t|q|
and we obtain

t h B M (u -u ′ )ψ(u -u ′ )ϕ dx ≤ t 2 h B M (ψ(u -u ′ )ϕ) 2 dx + 2t B M ψ(u -u ′ )|∇ϕ| dx .
Dividing by t and letting t → 0, we deduce

B M (u -u ′ )ψ(u -u ′ )ϕ dx ≤ 2h B M ψ(u -u ′ )|∇ϕ| dx . (5) 
Consider now, for p > 2, the function ψ(s) = (s + ) p-1 : we want to show that (5) still holds. We approximate ψ with ψ k (s) = k tanh(ψ(s)/k), for k ≥ 1. The functions ψ k satisfy the assumptions which allowed us to establish [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF], so that it holds with ψ replaced with

ψ k . Moreover, lim k→∞ ψ k (u -u ′ ) = sup k≥1 ψ k (u -u ′ ) = ψ(u -u ′ )
, and in the same way

sup k≥1 (u -u ′ )ψ k (u -u ′ ) = (u -u ′ )ψ(u -u ′ ).
Hence, the monotone convergence theorem shows that (5) also holds, in the limit, for ψ, as claimed.

We can take ϕ

(x) = ϕ 0 (|x|/M ) p , for some ϕ 0 ∈ C ∞ c ([0, 1); R + ) which is 1 on [0, 1/2]
. It follows from ( 5) and Hölder's inequality that

B M (u -u ′ ) + ϕ 0 (|x|/M ) p dx ≤ 2h B M (u -u ′ ) + ϕ 0 (|x|/M ) p-1 p M ϕ ′ 0 (|x|/M ) dx ≤ 2h B M (u -u ′ ) + ϕ 0 (|x|/M ) p 1-1 p B M p M p ϕ ′ 0 (|x|/M ) p 1 p
.

Hence:

(u -u ′ ) + ϕ 0 | • | M L p (B M ) ≤ 2hpω 1/p n M 1-n/p ϕ ′ 0 ∞
with ω n the volume of the unit ball. Exchanging the roles of u and u ′ in the previous proof, we find that

u M -u M ′ L p (B M/2 ) ≤ 2hp ω 1/p n M 1-n/p ϕ ′ 0 ∞ . (6) 
As in particular u M (or u M ′ ) could, in this calculation, have been chosen to be the minimizer

S h,v (f, B M ), which is bounded by Proposition 3.2, we obtain that u M ′ ∈ L p (B M/2 ) (as well as u M ). Hence, choosing R > 0, we see that (u M ) M ≥2R defines a Cauchy sequence in L p (B R ), provided p > n.
It follows that it converges to some limit u ∈ L p (B R ). As R is arbitrary, we build in this way a function u which clearly satisfies the thesis of the theorem.

Corollary 3.4. Assume f ≥ f ′ , v ≥ v ′ , h > 0, then S h,v (f ) ≥ S h,v ′ (f ′ ).
Proof. It follows from Proposition 3.1 and the definition of S h,v (f ).

Corollary 3.5. If f, v are uniformly continuous on R n , with a modulus of continuity ω(•), then S h,v (f ) is also uniformly continuous with the same modulus of continuity.

Proof. It follows from the previous corollary. For

z ∈ R n , let v ′ (x) := v(x-z)-ω(|z|) ≤ v(x) and f ′ (x) := f (x -z) -ω(|z|) ≤ f (x). Then, S h,v ′ (f ′ ) = S h,v (f )(• -z) -ω(|z|) ≤ S h,v (f ),
which shows the corollary.

Observe that, if f, v are uniformly continuous, then S h,v (f, B) satisfies the elliptic equation

-div z + u -f h = 0 on {x ∈ B : u(x) > v(x)}. ( 7 
)
where the vector field z satisfies |z| = 1 and z = Du/|Du| whenever |Du| = 0.

Proposition 3.6. Assume that f (x) → ∞ as |x| → ∞, and let s ∈ R. Then the set {S h,v (f ) < s} is the minimal solution of the problem

min E⊂{v<s} P (E) + E f -s h dx. (8) 
Similarly, the set {S h,v (f ) ≤ s} is the maximal solution of

min E⊂{v≤s} P (E) + E f -s h dx. (9) 
Proof. Let M > 0 and consider the set

E s M = {S h,v (f, B M ) < s}.
Reasoning as in [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF] (see also [16, 

Sec. 2.2.2]) one can show that E s M is the minimal solution of min E⊂B M ∩{v<s} P (E, B M ) + E f -s h dx.
Since f is coercive, the sets E s M do not depend on M for M big enough, and coincide with the set {S h,v (f ) < s}, so that the result follows letting M → +∞. The second assertion regarding the set {S h,v (f ) ≤ s} can be proved analogously.

Mean curvature flow with obstacles

Let us give a precise definition of the flow [START_REF] Almeida | Tissue repair modeling[END_REF]. Given a set E ⊂ R n we denote by

d E (x) := dist(x, E) -dist(x, R n \ E) x ∈ R n
the signed distance function from E, which is negative inside E and positive outside.

Definition 4.1. Given a family of sets E(t), t ∈ [0, T ], we set d(x, t) := d E(t) (x).
We say that

E(t) is a C 1,1 supersolution of (1) if there exists a bounded open set U ⊂ R n such that E(t) ⊂ Ω and ∂E(t) ⊂ U for all t ∈ [0, T ], d ∈ Lip(U × [0, T ]) |∇ 2 d| ∈ L ∞ (U × [0, T ]) (10) 
and

∂d ∂t ≥ ∆d + O(d) a.e. in U × [0, T ]. ( 11 
)
We say that E(t) is a C 1,1 subsolution of (1) if ( 11) is replaced by

∂d ∂t ≤ ∆d + O(d) a.e. in (U × [0, T ]) ∩ {d > d Ω }, (12) 
and we say that E(t) is a C 1,1 solution of (1) if it is both a supersolution and a subsolution.

We now fix an open set Ω ⊂ R n (representing the complement of the obstacle) and a compact set E ⊆ Ω. The case when E c is compact can be treated with minor modifications. Since E is compact, without loss of generality we can assume that Ω is bounded. Indeed, as it will be clear from the sequel, replacing Ω with Ω ∩ B M will not affect our construction, provided B M ⊃ E.

Definition 4.2. Let h > 0 and set

T h E := {S h,d Ω (d E ) < 0}. ( 13 
)
Given t > 0, we let

E h (t) := T [t/h] h E
be the discretized evolution of E defined by the scheme T h .

Notice that T h E is an open subset of Ω and, by Proposition 3.6, T h E is the minimal solution of the geometric problem min

F ⊆Ω P (F ) + 1 h F d E dx (14) 
or equivalently min

F ⊆Ω P (F ) + 1 h F △E |d E | dx.
When Ω = R n this corresponds to the implicit scheme introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF] for the mean curvature flow. Here, from [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] it also follows that

T h E satisfies κ + d E h = 0 on ∂T h E \ ∂Ω. ( 15 
)
Remark 4.3. Observe that from Proposition 3.1 it follows

E 1 ⊂ E 2 ⇒ T h E 1 ⊂ T h E 2 .
Moreover, by Corollary 3.4 we have

S h,d Ω (d E ) ≥ S h,-∞ (d E ) which implies T h E ⊆ T h E := {S h,-∞ (d E ) < 0}
. Notice that T h E is the scheme introduced in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF] for the (unconstrained) mean curvature flow.

From the general regularity theory for minimizers of the perimeter with a smooth obstacle [START_REF] Miranda | Frontiere minimali con ostacoli[END_REF][START_REF] Caffarelli | The obstacle problem revisited[END_REF] we have the following result. 

Σ ⊂ ∂T h E ∩ Ω such that H s (Σ) = 0 for all s > n -8, ∂T h E \ Σ is of class C 1,1
, and

(∂T h E ∩ Ω) \ Σ is C 2,α for any α < 1.
Proposition 4.5. Let ∂Ω be of class C 1,1 . Then there exists C(Ω) > 0 such that

T h E = {S h,-∞ (d E + Chχ Ω c ) < 0}
for all C ≥ C(Ω). In particular T h E is a minimizer of the prescribed curvature problem

min F P (F ) + C|F \ Ω| + 1 h F d E dx. (16) 
Proof. We recall that S h,-∞ (d E + Chχ Ω c ) is the limit, as M → ∞, of the minimizer u M of the variational problem min

u∈BV (B M ) B M |Du| + 1 2h B M (u -d E -Chχ Ω c ) 2 dx (17) 
From Proposition 3.6 it follows that T h E is the minimal solution to [START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF], while

F = {S h,-∞ (d E + Chχ Ω c ) < 0}
is the minimal solution to [START_REF] Chambolle | Theoretical Foundations and Numerical Methods for Sparse Recovery[END_REF]. If F ⊂ Ω, then | F \ Ω| = 0 and both F and T h E solve the same problem, and they must therefore coincide.

In order to show that F ⊂ Ω, it is enough to find a positive constant C such that for all x ∈ Ω, u M ≥ C > 0 for M large enough.

By assumption, Ω satisfies an exterior R-ball condition, for some R > 0, that is, for any x ∈ Ω, there is a ball [START_REF] Meyer | Oscillating patterns in image processing and nonlinear evolution equations[END_REF]. The thesis then follows.

B R (x ′ ) with x ∈ B R (x ′ ) and B R (x ′ ) ∩ Ω = ∅. If M is large enough, we also have B R (x ′ ) ∈ B M/2 . Since E ⊂ Ω, d E + hCχ Ω c ≥ hCχ B R (x ′ ) , so that u M is larger than the minimizer u ′ of min u∈BV (B M ) B M |Du| + 1 2h B M (u -hCχ B R (x ′ ) ) 2 dx If C > n/R, then it is well known that for M large enough, u ′ ≥ (C -n/R)h a.e. in χ B R (x ′ )

Existence of weak solutions

As a consequence of Proposition 4.5, when ∂Ω is of class C 1,1 the scheme enters the framework considered in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]. In that case, we can also show existence of weak solutions in the sense of [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF]. We observe that the results in [6, p. 226] still apply and we can deduce the (approximate) 1/(n + 1)-Hölder-continuity in time of the discrete flow starting from an initial set E 0 . As a consequence, following [6, Th. 3.3], we can pass to the limit, up to a subsequence, and deduce the existence of a flow E(t), which is Hölder-continuous in time in L 1 (Ω).

Theorem 4.6 (Existence of Hölder-continuous weak solutions). Let ∂Ω be of class C 1,1 , let E ⊂ Ω be a compact set of finite perimeter and such that |∂E| = 0. Let E h (t) be the discretized evolutions starting from E, defined in Definition 4.2. Then there exist a constant C = C(n, E, Ω) > 0, a sequence h i → 0 and a map E(t) → P(Ω) such that

• E(0) = E;
• E(t) is a compact set of finite perimeter for all t ≥ 0;

• lim i |E h i (t)∆E(t)| = 0 for all t ≥ 0; • |E(t)∆E(s)| ≤ C|s -t| 1 n+1
for all s, t ≥ 0, with |s -t| ≤ 1.

Consistency of the scheme

The main result of this section (Theorem 4.8) is showing that the implicit scheme is consistent with regular evolutions, according to the following definition. Proof. The proof consists in building, arbitrarily close to ∂E(t), strict super and subsolutions of class C 2 , of the curvature flow with forcing term Cχ Ω c , for C large enough. Then, the consistency result in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]Th. 3.3] applies.

Step 1. Let E be a subsolution on [t 1 , t 2 ] in the sense of Definition 4.1, let U ⊂ R n be the neighborhood associated to ∂E(t) (given by Definition 4.1). Without loss of generality we can assume t 1 = 0. Observe that there exists ρ > 0 such that {|d(•, t)| ≤ ρ} ⊂ U for all t ∈ [0, t 2 ], and the sets ∂Ω, ∂{d(•, t) ≤ s}, |s| ≤ ρ, satisfy the interior and exterior ρ-ball condition for all times (in particular ∂E(t) satisfies the condition with radius 2ρ). Let c ρ ≥ (n -1)/ρ 2 , and for ε > 0 small, let

d ε (x, t) = d(x, t) -ε -4c ρ εt t ∈ [0, t 2 ].
Observe that for ε small enough, {|d ε (•, t)| ≤ ρ/2} ⊂ {|d(•, t)| ≤ ρ} for all t. The constant c ρ is precisely chosen so that in this set, the curvature of two level surfaces {d(•, t) = s} and {d(•, t) = s ′ } at points along the same normal vector ∇d(•, t) differ by at most c ρ |ss ′ |.

We have, for a.e. t ∈ (0, t 2 ) and

x ∈ {|d(•, t)| ≤ ρ} ⊂ U , ∂d ε ∂t (x, t) = ∂d ∂t (Π ∂E(x,t) (x), t) -4c ρ ε , thus: • If Π ∂E(x,t) (x)
∈ Ω, then (by Definition 4.1)

∂d ε ∂t (x, t) ≤ ∆d ε (x, t) -4c ρ ε + c ρ |d| ≤ ∆d ε (x, t) + c ρ |d ε | + c ρ (-4ε + ε(1 + 4c ρ t)) so that if t ≤ t = min(t 2 , 1/(2c ρ )) and |d ε | ≤ ε/2, ∂d ε ∂t (x, t) ≤ ∆d ε (x, t) -c ρ ε 2 . ( 18 
)
• While if Π ∂E(x,t) (x) ∈ ∂Ω, then d = d Ω and almost surely ∂d/∂t = 0, so that ∂d ε /∂t = -4c ρ ε. On the other hand, there is a constant C large enough (of order 1/ρ, and admissible for Proposition 4.5) such that |∆d ε | ≤ C a.e. in {|d(•, t)| < ρ}, and we deduce

-4c ρ ε = ∂d ε ∂t (x, t) ≤ ∆d ε (x, t) + C -4c ρ ε. (19) 
Moreover, if

d ε ≥ -ε/2, we have that d Ω = d ≥ 4c ρ εt + ε/2.
Consider a function g ε which is C in {d Ω ≥ ε/2}, 0 in Ω, and smoothly decreasing from C to 0 as d Ω decreases from ε/2 to 0: we deduce from ( 18) and ( 19) that

∂d ε ∂t ≤ ∆d ε + g ε -c ρ ε 2 a.e. in {(x, t) : |d ε (x, t)| ≤ ε/2 , t ∈ (0, t)}.
We have built a strict subflow, as close as we want from ∂E(t), for t ∈ [0, t]. The fact that t could be less than t 2 is not an issue, as we will see in the end of the next step. On the other hand, the consistency result in [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF] requires that d is at least C 2 in space, which is not the case here (and the proof does not extend to C 1,1 regularity). For this, we need an additional smoothing of the surface, which we perform in a second step.

Step 2. Now consider a spatial mollifier ϕ η (x) = η -n ϕ(x/η), with η << ε. For all time let d η ε = ϕ η * d ε , which is still Lipschitz in t and now, smooth in x. If η is small enough, and since g ε is continuous, we have

∂d η ε ∂t ≤ ∆d η ε + g ε -c ρ ε 4
for a.e. x, t with |d ε (x, t)| ≤ ε/2η. We can rewrite this equation as a curvature motion equation with some error term, as follows:

∂d η ε ∂t ≤ |∇d η ε | div ∇d η ε |∇d η ε | + g ε -c ρ ε 4 + g ε (1 -|∇d η ε |) + (D 2 d η ε ∇d η ε ) • ∇d η ε |∇d η ε | 2 . ( 20 
)
Now, we have that

1 ≥ |∇d η ε | ≥ 1 -cη (21) 
almost everywhere, for some constant c > 0, of order 1/ρ. Hence, if η is small enough, we have

g ε (1 -|∇d η ε |) ≤ c ρ ε/16. ( 22 
)
We claim that the following estimates holds: there exists a constant c > 0 (of order 1/ρ 2 ) such that

|D 2 d η ε ∇d η ε | ≤ cη . ( 23 
)
This will be shown later on (see Step 3 ). Using ( 21) and ( 23), we find that

(D 2 d η ε ∇d η ε ) • ∇d η ε |∇d η ε | 2 ≤ c ρ ε/16
if η is small enough. Thus (20) becomes, using [START_REF] Hutson | Forces for morphogenesis investigated with laser microsurgery and quantitative modeling[END_REF],

∂d η ε ∂t ≤ |∇d η ε | div ∇d η ε |∇d η ε | + g ε -c ρ ε 8 . ( 24 
)
Since |D 2 d ε | ≤ 1/ρ for a.e. t and x with |d ε (x, t)| ≤ ε/2, this is also true for |D 2 d η ε | (for |d ε (x, t)| ≤ ε/2η), and using [START_REF] Dirr | Pulsating wave for mean curvature flow in inhomogeneous medium[END_REF] we can easily deduce that the boundaries of the level sets E ε (t) = {d η ε (•, t) ≤ 0} have an interior and an exterior ball condition with radius ρ/2. Together with [START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], and using g ε ≤ Cχ Ω c , we find that E ε (t), 0 ≤ t ≤ t, is a strict subflow for the motion with normal speed V = -κ -Cχ Ω c , and [START_REF] Chambolle | Implicit time discretization of the mean curvature flow with a discontinuous forcing term[END_REF]Th. 3.3] holds. We deduce that there exists

h 0 > 0 such that if h < h 0 , T h (E ε (t)) ⊆ E ε (t + h) for any t ∈ [0, t -h],
where T h is the evolution scheme defined by

T h E = S h,-∞ (d E + Chχ Ω c ) < 0
for any bounded set E. (It corresponds to the time-discretization of the mean curvature flow with discontinuous forcing term -Cχ Ω c .) Recall that if E ⊂ Ω, Proposition 4.5 shows that T h E = T h E ⊂ Ω. In particular, for the subflow E(•) considered here, he have T n h (E(0)) = T n h E(0), for all n and h > 0. By induction, it follows that as long as nh ≤ t,

T n h E(0) = T n h E(0) ⊆ E ε (nh), hence T ⌊t/h⌋ h E(0) is in a 3ε-neighborhood of E(t)
. Since t only depends on ρ > 0 (the regularity of the subflow E(•)), we can split [0, t 2 ] into a finite number of intervals of size at most t and reproduce this construction on each interval, making sure that the ε parameter of each interval is less than one third of the ε of the next interval. We deduce that for any δ > 0, if h > 0 is small enough, then T n h E(0) ⊂ {d E(nh) ≤ δ}, for 0 ≤ nh ≤ t 2 . This shows the consistency of T h with subflows, assuming (23) holds.

Step 3: Proof of estimate [START_REF] Kohn | A deterministic-control based approach to fully nonlinear parabolic and elliptic equations[END_REF]. Recall that since d ε is a distance function, |∇d ε | = 1 almost everywhere. Now, let us compute, for η > 0 small and x, y ∈ {d(•, t) ≤ ε/2 -η}:

|∇d η ε (x, t)| 2 -|∇d η ε (y, t)| 2 = (∇d η ε (x, t) -∇d η ε (y, t)) • (∇d η ε (x, t) + ∇d η ε (y, t)) = Bη Bη (∇d ε (x -z, t) -∇d ε (y -z, t))• ∇d ε (x -z ′ , t) + ∇d ε (y -z ′ , t) ϕ η (z)ϕ η (z ′ ) dz dz ′ . (25) 
As

|D 2 d ε | ≤ 1/ρ, ∇d ε (•, t) is 1/ρ-Lipschitz, using |∇d ε (x -z, t)| 2 -|∇d ε (y -z, t)| 2 = 0 it follows (∇d ε (x -z, t) -∇d ε (y -z, t)) • ∇d ε (x -z ′ , t) + ∇d ε (y -z ′ , t) ≤ |∇d ε (x -z, t) -∇d ε (y -z, t)| 2 ρ |z -z ′ | ≤ 2 ρ 2 |x -y||z -z ′ |
and it follows from (25) that

|∇d η ε (x, t)| 2 -|∇d η ε (y, t)| 2 ≤
We deduce (letting y → x) that

2|D 2 d η ε (x, t)∇d η ε (x, t)| ≤ 4 ρ 2 η ,
which is estimate [START_REF] Kohn | A deterministic-control based approach to fully nonlinear parabolic and elliptic equations[END_REF].

Step 4. Consistency with superflows: the proof is almost identical (reversing the signs and inequalities), but simpler for superflows. Indeed, all the sets we now consider stay in Ω and we do not need to take into account the constraint or the forcing term Cχ Ω c .

We can define a generalized flow as limit of the scheme T h as h → 0. Given an initial set E ⊆ Ω, for all t ≥ 0 we let

E h (t) = T [t/h] h E and E h = t≥0 E h (t) × {t} ⊂ R n × [0, +∞). ( 26 
)
Then there exists a sequence (h k ) k≥1 such that both Corollary 4.9. Let E 1 (t) and E 2 (t) be respectively a sub-and a supersolution of (1)

E h k and R n × [0, +∞) \ E h k = c E h k converge in
for t ∈ [0, T ], in the sense of Definition 4.1. Then, if E 1 (0) ⊆ E 2 (0), it follows that E 1 (t) ⊆ E 2 (t) for all t ∈ [0, T ].
In particular, if ∂E is compact and of class C 1,1 , there exists at most one solution E(t) starting from E. Moreover, by Remark 4.3, E(t) is contained in the solution to the (unconstrained) mean curvature flow starting from E.

Short time existence and uniqueness in dimension two

In this section we assume n = 2 and ∂Ω of class C 1,1 . In the bidimensional case, the mean curvature is the same as the total curvature of the boundary ∂E. Hence, any estimate on the mean curvature yields a global estimate on the regularity of E. This will be the key of our construction, for showing the existence of regular (C 1,1 ) solutions to the mean curvature flow with obstacles. In higher dimension, this is not true anymore, and showing the existence of such solutions remains an open problem.

The following result follows as in [11, Lemma 7].

Lemma 5.1. Let h > 0 and let E ⊆ Ω with ∂E of class C 1,1 . Let δ E be the maximum δ > 0 such that both ∂E and ∂Ω satisfy the δ-ball condition, and let u = S h,d Ω (d E ). Then, for all δ ′ ∈ (0, δ E ) we have

|u -d E | ≤ h δ E -δ ′ in {|d E | ≤ δ ′ } ( 27 
)
for all h < (δ Eδ ′ ) 2 /3.

Lemma 5.2. Let E ⊆ Ω with ∂E of class C 1,1 . Then, there exists δ > 0 and T > 0 such that ∂E h (t) satisfies the δ-ball condition for all t ∈ [0, T ].

Proof. Let δ E be as in Lemma 5.1, and let K = 2/δ E . By Lemma 5.1, applied with δ ′ = Kh, we get

d H (∂T h E, ∂E) ≤ h δ E -Kh ≤ h δ E 1 + K δ E h + C K 2 δ 2 E h 2
for all h ≤ h 0 := δ 2 E /12, where the constant C > 0 is independent of E. Recalling (15) and Proposition 4.4, we get

κ L ∞ (∂T h E) ≤ 1 δ E 1 + K δ E h + C K 2 δ 2 E h 2
which implies

δ T h E ≥ min 1 κ L ∞ (∂T h E) , δ E -d H (∂T h E, ∂E) (29) 
≥ δ E • min 1 - h δ 2 E 1 + K δ E h + C K 2 δ 2 E h 2 , 1 + K δ E h + C K 2 δ 2 E h 2 -1
for all h ≤ h 0 . By iterating (29) we obtain [START_REF] Sethian | Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry[END_REF].

We now prove a short time existence and uniqueness result for solutions to (1).

Theorem 5.3. Let ∂Ω be of class C 1,1 and let E ⊆ Ω with ∂E of class C 1,1 . Then there exists T > 0 such that (1) admits a unique C 1,1 solution E(t) on [0, T ] with E(0) = E.

Proof. Let E h be as in [START_REF] Miranda | Frontiere minimali con ostacoli[END_REF] 

= ∂d ∂t (x, t) ≥ ∂ d ∂t (x, t) = ∆d Ω (x) ≥ ∆d Ω (x) > 0,
leading to a contradiction. This proves (30) and thus [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF].

Finally, the uniqueness of E(t) follows from Corollary 4.9.

Remark 5.4. Notice that in Theorem 5.3 it is enough to assume that Ω satisfies the exterior R-ball condition for some R > 0, which is a weaker assumption than requiring ∂Ω to be of class C 1,1 . Indeed, we can approximate Ω with the sets

Ω ρ := Bρ(x)⊆Ω B ρ (x) ρ > 0.
Notice that Ω ρ ⊆ Ω and ∂Ω ρ is of class C 1,1 , for all ρ > 0. If we take ρ small enough so that E ⊆ Ω ρ then, by Theorem 5.3 applied with Ω replaced by Ω ρ , we obtain a solution E ρ (t) on [0, T ρ ]. However, E ρ (t) is also a solution of the original problem, with constraint Ω instead of Ω ρ , since Ω ρ is a subsolution to (1) in the sense of Definition 4.1.

Positive mean curvature flow

In this section we consider the geometric equation

v = max(κ, 0). ( 32 
)
Notice that, by passing to the complementary set, (32) includes the evolution by negative mean curvature v = min(κ, 0). Proof. Notice that it is enough to prove the thesis with t 2 = t 1 + τ , for some τ > 0, since the general claim then follows by iteration. Fix ε > 0, let

d ε (x, t) := d E 2 (t) (x) + ε + Cεt and let E ε (t) := {x : d ε (x, t) ≤ 0} t ∈ [t 1 , t 1 + τ ],
where the positive constants C, τ will be determined later. Notice that ∂E ε is compact and of class C 1,1 for all ε small enough, and

E ε (t) → E 2 (t) as ε → 0. A direct computation gives ∂d ε ∂t ≥ max ∆d ε + ε C -CK 2 τ -K 2 , 0 + O(d ε ) a.e. in U × [t 1 , t 1 + τ ], (34) 
where

K = sup x∈[t 1 ,t 2 ] ∆d E 2 (t) L ∞ (∂E 2 (t)) .
If we choose C = 2K [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] applies to equation (32), since the function κ → max(κ, 0) is continuous. Then, Lemma 6.2 implies that, if the initial set has compact boundary of class C 1,1 , the corresponding viscosity solution does not create fattening, i.e. is unique, before the onset of singularities. Corollary 6.5 below will establish the existence of such C 1,1 solutions.

Given E ⊂ R n and h > 0, we set E 0 h = E 0 h = E and, by iteration,

E n h := S h,d E n-1 h d E n-1 h < 0 E n h := S h,d E d E n-1 h < 0 (35)
for all n ∈ N. We also let E h (t) := E . Notice that E h (t) is the discretized evolution corresponding to the mean curvature flow with obstacle Ω = E (see Definition 4.2), while E h (t) is an implicit scheme for (32). Proposition 6.4. Let h > 0 and let E ⊂ R n be a set with compact boundary. Then

E h (t) = E h (t)
f or all t ≥ 0 .

In and hence coincides with E 2 h , again by Proposition 3.6. Proposition 6.4 implies that the evolution (32), with initial set E, can be seen as a particular case of [START_REF] Almeida | Tissue repair modeling[END_REF] with Ω = E. As a consequence, from Theorem 5.3 we get a short time existence result for regular solutions to (32). f or all t 1 ≤ t 2 .

(38)

Proof. Thanks to Theorem 5.3 there exist T > 0 and a unique solution E(t) of ( 1) on [0, T ], with E(0) = E = Ω and ∂E(t) of class C 1,1 . By Proposition 6.4, for all t ∈ [0, T ), E(t) is the solution of (1) on [ t, T ] with obstacle Ω = E( t). In particular, letting as above d(x, t) = d E(t) (x) and recalling [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF], this implies that is, E(t) is the solution of (32) in the sense of Definition 6.1. The uniqueness of E(t) follows from Lemma 6.2, and (38) follows from (36).

Proposition 4 . 4 .

 44 Let ∂Ω be of class C 1,1 , E ⊆ Ω and h > 0. Then there exists a closed set

  the Hausdorff distance (locally in time) to E * and c E * respectively. From Corollary 3.4 and Theorem 4.8 we obtain a comparison and uniqueness result for solutions of (1).

[

  t/h] h and E h (t) := E [t/h] h

Corollary 6 . 5 .

 65 Let E ⊂ R 2 with compact boundary of class C 1,1 . Then there exists T > 0 such that (32) admits a unique solution E(t) on [0, T ] with E(0) = E and ∂E(t) a compact set of class C 1,1 for all t ∈ [0, T ]. Moreover E(t 2 ) ⊆ E(t 1 )

  ∂d ∂t = max (∆d + O(d), 0) a.e. in U × [0, T ] ,

  By Lemmas 5.1 and 5.2 there exist an open set U ⊂ R n and T > 0 such that ∂E h (t) ⊂ U for all t ∈ [0, T ] and|∇ 2 d h | ∈ L ∞ (U × [0, T ]); moreover, recalling[START_REF] Phillips | Crystals, Defects and Microstructures[END_REF] we also have d h ∈ Lip(U × [0, T ]). By the Arzelà-Ascoli Theorem the functions d h converge uniformly in U × [0, T ], up to a subsequence as h → 0, to a limit functiond ∈ Lip(U × [0, T ]) such that |∇ 2 d| ∈ L ∞ (U × [0, T ]) and |∇d| = 1 in U × [0, T ]. Letting E(t) = {x : d(x, t) < 0}, for all t ∈ [0, T ] we then have E(0) = E, E(t) ⊂ Ω and ∂E(t) is of class C 1,1 .It remains to show that[START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF] and[START_REF] Caffarelli | The obstacle problem revisited[END_REF] hold in U × [0, T ]. From Theorem 4.8 it follows that, given a supersolution E(t) on [t 1 , t 2 ] ⊂ [0, T ] with E(t 1 ) ⊆ E(t 1 ), we have E(t) ⊆ E(t) for all t ∈ [t 1 , t 2 ], and the same holds with reversed inclusions if E(t) is a subsolution.

	the proof of (11) amounts to show				
			∆d ≤ 0	a.e. in (U × [0, T ]) ∩ {d = d Ω }.	(30)
	Assume by contradiction that there exist (x, t) ∈ (U × (0, T )) ∩ {d = d Ω } such that
				∂d ∂t	(x, t) = 0 < ∆d(x, t) = ∆d Ω (x).	(31)
	Without loss of generality we can assume d(x, t) = d Ω (x) = 0, and d Ω is twice differentiable
	(in the classical sense) at x.						
	Let us take an open set Ω ⊃ Ω with (compact) boundary of class C ∞ and such that
			x ∈ ∂ Ω		and	∆d	
				and let				
		d h (t) = 1 +	t h	-	t h	d E h (t) +	t h	-	t h	d E h (t+h) .
										This implies
	that	∂d ∂t	= ∆d		a.e. in (U × [0, T ]) ∩ {d > d Ω } ∩ {d = 0},
	which proves (12). Observe that, by parabolic regularity, ∂E(t) ∩ Ω is an analytic curve and
	the equality holds everywhere.					
	As we have		∂d ∂t	= 0	a.e. in (U × [0, T ]) ∩ {d = d Ω },

Ω (x) ≥ ∆d Ω (x) > 0.

We let Ω(t), for t ∈ [0, τ ] and τ > 0, be the evolution by curvature of Ω

[START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]

, and observe that

E(t) = Ω(t -t), t ∈ [ t, t + τ ],

is a subsolution in the sense of Definition 4.1. In particular, by Theorem 4.8 E(t) ⊆ E(t) for all t ∈ [ t, t + τ ], but this implies, letting d(x, t) = d E(t) (x) and recalling (31), 0

  Definition 6.1. Given a family of sets E(t), t ∈ [0, T ], we set d(x, t) := d E(t) (x). Lemma 6.2. Let E 1 (t) and E 2 (t), with t ∈ [t 1 , t 2 ], be two C 1,1 solutions of (32) in the sense of Definition 6.1. Then, if E 1 (t 1 ) ⊆ E 2 (t 1 ), it follows that E 1 (t) ⊆ E 2 (t) for all t ∈ [t 1 , t 2 ]. In particular, if ∂E is compact and of class C 1,1 , there exists at most one solution E(t) starting from E.

	We say that E(t) is a C 1,1 solution of (32) if there exists a bounded open set U ⊂ R n such
	that ∂E(t) ⊂ U for all t ∈ [0, T ],		
		d ∈ Lip(U × [0, T ])	|∇ 2 d| ∈ L ∞ (U × [0, T ])	
	and	∂d ∂t	= max (∆d, 0) + O(d)	a.e. in U × [0, T ].	(33)

  ′ ε (t) ≥ 0 for a.e. t ∈ [t 1 , t 1 + τ ]. As a consequence, E ε (t) ⊆ E 1 (t) for all t ∈ [t 1 , t 1 + τ ],and the thesis follows by letting ε → 0. Remark 6.3. Notice that the viscosity theory

2 

and τ < 1/C, (34) implies that E ε (t) is a supersolution of (32). Letting D ε (t) := dist(∂E 1 (t), ∂E ε (t)), we have that D ε is Lipschitz continuous, D ε (0) ≥ ε and D

  particular E h (t 2 ) ⊆ E h (t 1 ) f or all t 1 ≤ t 2 . (36)Proof. We have to show that E n h = E n h for all n ∈ N. By the definition we haveE 1 h = E 1 h =: F . If we also show that E 2 h = E 2 h ,then the thesis follows by iteration. As d F ≥ d E , by Proposition 3.1 we have that S h,d E(d F ) ≥ S h,d E (d E ), so that E 2 h = {S h,d E (d F ) < 0} ⊂ {S h,d E (d E ) < 0} = F.

				(37)
	By Proposition 3.6 we know that E 2 h is the minimal solution of
	min X⊂E	P (X) +	1 h X	d F dx .
	Recalling (37) it then follows that E 2 h is also the minimal solution of
	min X⊂F	P (X) +	1 h X	d F dx

ρ 2 |x -y|η .
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