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Existence results
for the flow of viscoelastic fluids
with an integral constitutive law

Laurent Chupin

Abstract. We consider the flows of viscoelastic fluid which obey a con-
stitutive law of integral type. Some theoretical results are proved: local
existence, global existence with small data and uniqueness results for
the initial boundary value problem.

1. Introduction

The objective of this paper is to provide mathematical results on the integral
models for viscoelastic flows. In particular, we are interested in the existence
and the uniqueness of a strong solution.

In the integral models, stress components 7T are obtained by integrating ap-
propriate functions, representing the amount of deformation, and taking into
account all the strain history of the fluid. Precisely, the constitutive law given
the stress at time ¢ and at position « can be written as follows:

T(t,x) = /t m(t —T)S(F(T,t,x))dT. (1.1)

The scalar function m (the memory) and the tensorial function S depend
on the properties of the fluids studied, whereas the deformation tensor F' is
coupled with the velocity field of the flow. This flow is itself governed by the
Navier-Stokes equations, this constitutes a very strong coupling between the
velocity and the stress.

In some rare cases, it is possible to express the integral models into differen-
tial forms (as in the Maxwell models which corresponds to the case where &
is linear and where the memory m exponentially decreases). For these dif-
ferential models, there are many mathematical results in the same spirit as
those presented here (see for instance [10, 15, 21, 22, 32, 33]).

But for really integral models there are far fewer results. The only relevant
work on this type of model is that of M. Renardy [23, 36, 37]. For instance,
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in [37], M. Renardy proves an existence and uniqueness result for a K-BKZ
fluid using Kato’s theory of quasilinear hyperbolic equations. Its elegant ap-
proach differs substantially from the approach used here, and does not seem
easily adaptable to more general laws. In particular the memory function m
is not singular at O contrary to what is predicted by some molecular mod-
els like the Doi-Edwards model. Notice that the case of a singular memory
function is then studied in [23] but, like in the previous paper, the results are
only local in time. It is important to note that, while the theoretical results
are very few, many authors have studied the numerical simulation of flows
with an integral law of type (1.1). The review article [28] and references cited
therein, provide a good overview of the state of the art regarding the various
methods.

The main reason for this lack of theoretical results is probably the nature of
the equations:

— To evaluate the stress in an integral model, we must know all the previous
configurations. In the present paper, this difficulty is overcome by introducing
an additional time variable corresponding to the age. It is then necessary to
manage two different times. We prove a Gronwall type lemma in two variables
in order to obtain fine estimates with respect to these variables.

— The usual integral models are strongly nonlinear (in the linear case we find
the well-known Maxwell models). A possibility to circumvent this difficulty
is to work with solutions regular enough. More precisely we strongly used
Banach algebras such as the Sobolev spaces WP for p large enough, typically
for p greater than the dimension of the physical fluid domain.

Organization of the paper — Section 2 is devoted to the presentation of the
model. The dimensionless form of equations and many classic examples are
given. The main results are stated in Section 3 whereas the proofs are detailed
in the following sections. Section 4 is entirely devoted to the proof of the
first theorem regarding the local (in time) well posedness. The next two
Sections (5 and 6) are devoted to the proof of the uniqueness result and the
global existence with small data respectively. The conclusion of this paper
(Section 7) contains many remarks and open questions. Finally, some notions
on tensors, and a technical Gronwall type lemma have been postponed to
Appendices A and B.

2. Governing equations

2.1. Conservation principles

The fluid flows is modeled using the equation of conservation of the linear mo-
mentum and the equation of the conservation of mass. In the incompressible
and isothermal case these conservation laws read as follows:

{p(@tu+u'Vu)+Vp dive + f,

2.1
divu = 0. (2.1)
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The real p is the constant density of mass and the vector f corresponds to
some external body forces. This system is closed using a constitutive equation
connecting the stress and the deformation Du = $(Vu + 7(Vu)).

For a Newtonian viscous fluid, the relationship is linear: 74 = 2nsDwu. The
real n; > 0 is named the solvent viscosity and the contribution div 7Ty in the
momentum equation gives the usual diffusive term nsAwu. To taking account
some elasticity aspect, which characterise polymer solutions, we add to the
viscous contribution 74 an elastic one:

o =2n,Du+T. (2.2)

The role of this additional contribution 7 is to take into account the past
history of the fluid. The most natural way to do this is to introduce the
integral models.

2.2. Integral models

The elastic contribution 7(¢,) at a time ¢ and at a spatial position x is
usually written
T(t, @) = § (F(T,t,z)), (2.3)
T<t

where § is a functional to clarify, which depends on the deformation gradi-
ent F(T,t,-) from a times T to a future time ¢. This approach is classical and
widely used in the field of continuum mechanics, see for instance the recent
review [38] by J.-C. Saut.

More precisely, the deformation gradient F(T,t,-) measures stretch and ro-
tation. It is defined as follows: for two times T < ¢ given, we first introduce
the notation (T, t, X) which corresponds to the position at time ¢ of the
fluid particle which was at the position X at time 7. The dynamics of any
mechanical problem with a velocity field u(¢, ) can be described by this flow
map x(T,t, X) which is a time dependent family of orientation preserving
diffeomorphisms:

{at;c(T,t,X) = u(t,z(T,t, X)), 24)

z(T,T,X)=X.

The deformation gradient F (T, t, X) is used to describe the changing of any
configuration, amplification or pattern during the dynamical process. It is
defined by
~ ox
F(T,t,X)= X
The deformation gradient F(T,t, ) will be finally defined as the correspond-
ing in the Eulerian coordinates:

(T,t, X). (2.5)

F(T,t,2(T,t, X)) = F(T,t, X). (2.6)

The integral models we study in this article correspond to the particular case
of Equation (2.3). They are written

T(t,z) = /t m(t —T)S(F(T,t,x))dT, (2.7)
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where m is called a memory function. The function § is a model-dependent
strain measure. It is a tensorial function (its arguments and its images are
2-tensors).

Remark 2.1. Due to many physical principles, the functions m and S must
satisfy some assumptions.

— For instance, the principle of frame indifference implies that the stress
tensor depends on the relative deformation gradient F' only through the rel-
ative Finger tensor 7F - F' (or its inverse, the Cauchy-Green tensor), see the
examples given in Subsection 2.4.

— In the same way (see also Subsection 2.4), the principle of fading memory
implies that m must be a positive function which decreases to 0.

2.3. A closed system

2.3.1. PDE for the deformation gradient. From the definition (2.4)—(2.5) of
the deformation gradient, it is possible to deduce a partial differential equa-
tion coupling this deformation F' and the velocity field u, see for instance [24]:
We derivate the relation (2.6) with respect to the time ¢. The chain rule to-
gether with the relation (2.4) yields the following equation
OF(T,t,X) = O,F(T,t,) + 8yx(T,t,X) - 0 F (T, t,x) 28)
= O F(T,t,x) +u(t,z) 0. F(T,t,x). '

But using the relation (2.5) together with the chain rule and the relation (2.4)
again, we obtain
8, F(T,t,X) = 0x (0,x(T, t, X))
= Ox (u(t,z(T,t,X)))
=oxx(T,t, X) - Ozu(t,x)
= F(T,t,x) - Ogpu(t,x).

(2.9)

Equations (2.8) and (2.9) show that we have the following relation coupling
the velocity field uw and the deformation gradient F':

OF+u-VF=F Vu. (2.10)

2.3.2. A new time variable to take into account the past. Note that in the
previous subsection, the time T can be view as a parameter. In fact, it is only
used in the law (2.3), or in the law (2.7) for the integral form, as a marker of
past events. In the sequel, it is interesting to select as independent variable the
age s = t—T', which is measured relative to the current time ¢. This viewpoint
is relatively classical in the numerical framework, see for instance [25, 28, 43].
Now we introduce G(s,t,x) = F(t — s,t,x). Clearly, we have the following
relation instead of the relation (2.10):

G +0,G+u-VG =G Vu, (2.11)

where naturally the velocity w only depends on (¢, ) and is independent of
this new variable s. Moreover, in term of variables (s,t), the relation (2.7)
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given the stress tensor reads
+oo
(@) = / m(s) S(G(s,t,)) ds. (2.12)
0

Initial and past conditions — In order to describe a flow, we must at least
know it in its original configuration. For a memory flow, we need to know all
the past of the flow. More precisely, if we denote by ¢ = 0 this initial time
that we consider, then we assume that there exists a given function F',)q such
that

F(T,0,z) = Fou(T,z) VT <O0. (2.13)

For T > 0 fixed, the deformation field F (T, ¢, x) can be thought of as having
been created at time t = T with the natural initial condition

F(T,T,x)=6 VT >0, (2.14)

the symbol & corresponding to the identity tensor represented by the matrix
d;; = 1if i = j and d;; = 0 otherwise.

Remark 2.2. The relations (2.13) and (2.14) must clearly be compatible: we
must have the equality Fo14(0, ) = 8. In many articles, the fluid is assumed
to be quiescent before the initial time so that the authors use Fo4(T, ) = 6
for all T' < 0, see for instance [25, 28, 43].

In term of the new variables (s,t) the two relations (2.13) and (2.14) read

G(s,0,2) = Goa(s, x) Vs >0,
G(0,t,z) =6 Vit >0,

where Goa(s, ) = Fola(—s, x).
2.3.3. Non-dimensional final model. The resulting system using Equations (2.1),
(2.2), (2.11) and (2.12) is then written

p(Ou+u-Vu)+ Vp —nsAu = divr + f,

divu =0,

+o0
T(t, @) = / m(s) S(G(s,t,x)) ds,
0
0G+0sG+u-VG =G-Vu.

(2.15)

This system is written in a non-dimensional form in the usual way. We intro-
duce the characteristic values U and L for the velocity and the length. The
current time is then of order of L/U and it is natural to introduce another
characteristic time A for the age variable s. The characteristic viscosity of the
fluid takes into account the viscosity 7, of the solvent, but also the viscos-
ity n. of the elastic part (the polymer): we note n = ns + 1.. More precisely,



6 Laurent Chupin

we introduce the following dimensionless variables, quoted by a star:

* m * u * t * S
x =T u = t :L/—U7 s =
D . T . f
T AN AN a7 75
S(@) m(s)

G" =G, S(G’):ne/)\7 m(s)zl/)\.

System (2.15) is then written in dimensionless form as follows (where we drop
the star for sake of simplicity):

Re(Qpu+u - Vu) + Vp — (1 —w)Au = divr + f,

divu = 0,

w [T
T(t,x) = @/0 m(s) S(G(s,t,w)) ds, (2.16)

1
0:G + —0sG +u-VG =G - Vu,
e

where we introduced the three non-dimensional numbers which characterize
the flow:

— The Reynolds number Re = % which corresponds to the ratio be-
tween inertial and viscous forces acting on the fluid;

— The Weissenberg number e = /\TU which is the ratio between the time
of the relaxation of the fluid and the time of the experiment;

— The retardation parameter w = %‘" € [0,1] which balances the purely

viscous effects (w = 0) and the purely elastic effects (w = 1).

System (2.16) is closed with the following initial and boundary conditions:
“‘t:o = Uo, “’asz =0, G‘t:o = Gold, G’s:O =9. (2.17)

Remark 2.3. As we said in Remark 2.1, the stress tensor 7 depends on the
deformation tensor G via the right relative Finger tensor B = 7G - G or via
the Green-Cauchy tensor C = B™'. Using the last equation of (2.16), we
note that the tensor B satisfies

1
8tB+%8SB+u~VB =B -Vu+ T(Vu) - B, (2.18)
whereas the tensor C satisfies
1
0:C + @asc +u-VC=-C-T(Vu)—Vu-C. (2.19)

2.4. Examples of integral models

In this section we present some classical integral laws of kind (2.12) to model
the viscoelasticity. These law are defined by the memory function m and by
the strain measure S.



Viscoelastic fluids with integral law 7

2.4.1. Memory function m. In accordance with thermodynamics through
what is called the principle of fading memory - see [11] - the memory func-
tion m used in the integral models (2.12) must be decreasing, positive and
must satisfy [, m(s)ds = 1.

In many cases experimentally observed relaxation functions exhibit a stretched
exponential decay e~(*/%) where A > 0 is a relaxation time. We could as well
have considered the case of several relaxation times, that is a memory func-

tion like
N

m(s) = Z—ge_“‘/“. (2.20)
k=1"%k
From a mathematical point of view, it will be equivalent to consider the
memory function m(s) =e~* (in dimensionless form).
This expression for the memory function can be generalized. For instance, in

the Doi-Edwards model - see [13], the memory function is given by

+oo
8 _ 2
m(s) = WE e~ (ZEHLs/2, (2.21)
k=0

In practice, the difference between this model (2.21) and the model (2.20)
containing a finite number of relaxation times is really important. In fact,
in the case of the model (2.21), the function m has a singularity in 0. This
singularity can bring additional difficulties (eg, such a case is not treated in
the article [37] of M. Renardy, and treated in [23] with other assumptions on
the memory such that the integrability of the derivatives m’ and m’). The
function m remains integrable, which is the key assumption for the present
results.

Even if the exponential case is usually used, many other possible choices
for the memory function m are possibles - see [16]. The algebraic pattern
g(s) = (s/A)7# with 0 < B < 1 is observed in the stress relaxation of vis-
coelastic materials such as critical gels [8, 40], in the charge carrier transport
in amorphous semiconductors [39], in dielectric relaxation [26] or in the at-
tenuation of seismic waves [30]. That corresponds to the following memory

functions
N
N Br (s~ BetD)
m(s) = — .
=3B

2.4.2. Strain measure S. The more simple case corresponds to the choice
S(G) = B — § where B = TG - G, and where the memory (dimensionless)
function m is given by m(s) =e~*%:

Maxwell models — The stress tensor 7 is then given by

—+o0
T(t,x) = ﬁ/o e *(B(s,t,x) — §) ds.

This expression is simple enough to deduce a PDE for the stress tensor 7
from the PDE for the deformation tensor G. In fact we use Equation (2.18)
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satisfied by the Finger tensor:
1
= (B —6)-Vu+ {(Vu)- (B - §) + 2Du.

We next multiply this equation by g=m(s) and integrate for s € (0,400).
Taking into account the initial condition B|s—o = d, we obtain the Upper
Convected Maxwell (UCM) model:

Qﬂe(@t7+u~VT— T(Vu)~T—T~Vu) + 7 = 2wDu.

Another classical case is to the Lower Convected Maxwell (LCM) model.
It corresponds to S(G) = & — C where C = B!, and to an exponential
memory function m(s) = e~*. Using Equation (2.19) we obtain, like to get
the UCM model:

Qﬁe(aﬂ'—l—u~VT+T- T(Vu)—l—Vu-T) + 7 = 2wDu.

Remark 2.4. In fact there exists a continuum of such model (called Oldroyd
models and corresponding to a balance between the upper-convected model
and the lower-convected one) but we do not know if these models derive from
integral models.

K-BKZ models — Among the most relevant nonlinear cases, the most popular
integral models for a viscoelastic flow are the K-BKZ models introduce by B.
Bernstein, E. A. Kearsley and L. J. Zapas [4, 5] and A. Kaye [27]. For such
models, S takes the following form:

S(G) = ¢1(11, I2)(B — 8) + ¢2(11,12)(6 — C),

where ¢1 and ¢ are two scalar functions of the strain invariants I; = Tr(B)
and I, = Tr(B™') (see Appendix A for a discussion on these invariants).
Clearly, the two Maxwell models presented in the previous paragraph are
particular K-BKZ models, for (¢1,¢2) = (1,0) and (¢1,¢2) = (0, 1).

Remark 2.5. In the integral models presented here, if we consider S(G)+ ¢ §
instead of S(G) then T becomes T + 5-¢ & and the additional contribution
can be considered as a pressure contribution in the Navier-Stokes equation
on the velocity field. Then such modification has no influence on the mathe-
matical structure of the whole System (2.16).

Following the last remark, we can see the PSM models presented by A. C. Pa-
panastasiou, L. Scriven and C. Macosko in [35] as K-BKZ models:

S(G) = h(l1,12)B

. o (2.22)

with  h(l1,12) = .
(I, I2) a+BL+(1-p) -3

In these models, the parameters o > 0 and 0 < 3 < 1 are obtained from the

rheological fluid properties. In the same way, Wagner [44, 45] proposes the

same law

with  h(Iy, Is) = exp(—av/BI + (1 — B) 15 — 3). (2.23)
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Doi-Edwards model — The Doi-Edwards model is a molecular model where
the motion of the polymers is described by reptation in a tube, more precisely
it corresponds to the simplest tube model of entangled linear polymers. The
memory function m associated to such model is given by the relation (2.21)
whereas the strain measure is obtained as an average with respect to the ori-
entation of tube segments. Works of P.-K. Currie show that we can approach
this model using the following strain function (named the Currie approxima-
tion, see [12]):
4 B_ 4 C

3(J—=1) 3(J—1)vI2+3.25 (2.24)

where J =1; +2+/15 + 3.25.

S(G) =

3. Main results

3.1. Mathematical framework

In the sequel, the fluid domain Q € R?, d > 2, is a bounded connected open
set with a smooth boundary 99 (in fact the regularity C*¢ for some a > 0
is sufficient as in the proof dedicated to the Oldroyd case, see [14, 15]). We
use the following standard notations:

— For all real s > 0 and all integer p > 1, the set W*?(Q) corresponds
to the usual Sobolev spaces. We classically note LP(2) = W9P(Q) and
H*(Q) = W*2(Q).

We will frequently use functions with values in R? or in the space L(R?)
of real d x d matrices. In all cases, the notations will be abbreviated. For
instance, the space (W1P(Q))? will be denoted W'P(Q). Moreover, all the
norms will be denoted by index, for instance like [|u|y1.0(q)-

— Since we are interested in the incompressible flows, we introduce
H,(Q) ={veLP(Q); divv =0, v-n =0 on 00},

where m is the unitary vector normal to 92, oriented towards the ex-
terior of (. Moreover, we note V(Q) = Hy(Q) N HL(Q) and V/(Q) its
dual.

— The Stokes operator A, in H,(?) is introduced, with domain

D(A,)(R) = W?P(2) N Wy () N Hy (),

whereas we note
—+oo
T - r 1/r
DP(Q) = {U € Hp, ||'UHL;7(Q) + (/0 ||Ape tApUHLP(Q) dt) < +oo}

— The notation of kind L"(0,7;D(A,)) denotes the space of r-integrable
functions on (0,7), T > 0, with values in D(A,). Similarly, expressions
like g € L=(R*; L™(0, T; LP(Q2))) means that

1

T ¥
sup ([ st ooy ) < 4.

seER+
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Assumptions — About the model (2.16) itself, it uses the two given func-
tions m and S. From a mathematical point of view we assume very general
assumptions (satisfied by all the physical models introduced earlier):

(H1) m:s € RT — m(s) € R is measurable, positive and f0+oom(s) ds=1;
(H2) S: G € L(R?) — S(G) € L(R?) is of class C*.

Note that the notion of derivative for the 2-tensorial application S will be
specified in Appendix A. Moreover, if we wanted to be more accurate, As-
sumption (H2) is written rather “the function S is of class C! on a subset of
L(R9) taking into account the fact that det G = 17 - see Appendix A again.
Throughout the remainder of this paper, these two hypotheses (H1) and (H2)
will be assumed satisfied.

3.2. Statements of main results

The first result concerns an existence result for strong solutions. It is ob-
viously local with respect to time (as for the results on the Navier-Stokes
equations):

Theorem 3.1 (local existence). Let T > 0, r €]1,+00[ and p €]d, +0o0].
If Uug € D;(Q), Gouq € LOC(R+;W1’p(Q)), 0:Golq € LT(R+7LP(Q)) and f S
L7(0,7T;LP(Q)) then there exists T, €]0,T| and a strong solution (u,p, T, G)
to System (2.16) in [0, T,], which satisfies the initial /boundary conditions (2.17).
Moreover we have

u € L"(0,T,; W2P(Q)), Oyu € L7(0,74; LP(Q)),

T € L>=(0,T,; WhP(Q)), o € L"(0,T; LP(2)),

G € LR x(0,7,); W'P(Q2)), 095G, 8;:G € L>*(RT; L"(0, T5; LP())).

We will show that the solution obtained in Theorem 3.1 is the only one in
the class of regular solution. Precisely, the result reads as follow

Theorem 3.2 (uniqueness). Let T > 0.

Ifug € H, Goig € L¥(R*; L2(Q)), f € L(0,T;V'(Q)) and if (2.16)-(2.17)
possess two weak solutions (u1,p1,7T1,G1) and (ug,pa2, T2, G2) in the usual
sense, with for i € {1,2},

w; € L*°(0,T;L*(Q)) N L*(0,7; H () N LY(0, T; Whe (1))

Gi € L¥(R* x (0, 7); Wh(2))),
then they coincide (p1 and ps coincide up to an additive function only de-
pending on t).

If the data are small, it is possible to show that the unique local solution
obtained by Theorems 3.1 and 3.2 is defined for all time (up to an assumption
on the relaxation parameter w):

Theorem 3.3 (global existence with small data). Let r €]1,4o00[ and p €
|d, +o0.

For each T > 0, with the same assumptions as in Theorem 3.1, there exists
wr € (0,1) such that if 0 < w < wy and if the data wg and f have sufficiently
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small norms in their respective spaces, then there exists a unique strong solu-
tion (u,p, T, G) to System (2.16)-(2.17) in [0, T] which belongs in the same
spaces that the local solution obtained in Theorem 3.1.

Remark 3.4. We make here some remarks concerning the above three theo-
rems:

- We remark that Theorem 3.3 does not contain smallness conditions on the
deformation tensor Goq. At rest this tensor is not zero but is equal to the
identity tensor. An assumption of smallness should eventually be introduced
on the quantity Ggq — 8. In fact it is implicit in the smallness assumption
on the parameter w.

- In some papers about the classical Oldroyd model (corresponding to a linear
stress relation, see page 7) the smallness condition on the parameter w is not
necessary. It is the case in a Hilbertian framework, that is in the Hilbert
spaces H® instead of the Banach spaces L?, see [10] or [33].

- Theorem 3.3 can be viewed as a stability result for u = 0, 7 = 0.

4. Proof of the local existence

This section is devoted to the proof of the local existence theorem 3.1. The
main ideas to prove Theorem 3.1 are based on work of C. Guillopé and
J.C. Saut [20, 21]. Roughly speaking, we rewrite Equations (2.16) as a fixed
point equation and apply Schauder’s theorem. This principle was taken up
by E. Fernandez-Cara, F. Guillen and R.R. Ortega [14, 15] in the context of
the functional spaces L™ — LP. This choice is presented in the present paper.
We then analyze three independent problems. A linear Stokes system with
given source term and initial value:

Redu + Vp — (1 —w)Au =7,
divu =0, (4.1)
ulon =0, uli=o = Uo;

A problem given the deformation gradient as a function of a given velocity
field w:

1
G+ —I;G+u-VG =G - Vu,
Ne
Gls—0 =9, Gli=0 = Golg;

And the constitutive integral law given the stress tensor 7 with respect to a
deformation gradient G:

(4.2)

w [T —
T(t,x) = @/0 m(s) S(G(s,t,x))ds. (4.3)

4.1. Estimates for the velocity u solution of a Stokes problem

The results for the Stokes system (4.1) are very usual. In this subsection we
only recall, without proof (we can found a proof in [18]), a well known results
for the time dependent Stokes problem:
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Lemma 4.1. Let T > 0, r €]1,400[ and p €]1,40c0].

If ug € Dy(Q) and g € L"(0,T; Hy) then there exists a unique solution u €
L™(0,7;D(Ap)) such that dyu € L"(0,T; Hy) to Equations (4.1). Moreover
this solution satisfies

Cy
[l 20,7 w2r () + 10l L0, 7510 (22)) gm(‘ﬁe [wollw2 ()

+ 118l -0, 7:Lr)))»

where the constant Cy only depends on ), r and p.

4.2. Estimates for the deformation gradient G

This subsection is devoted to the proof of the following lemma, which gives
estimates for the solution to System (4.2):

Lemma 4.2. Let T > 0, r €]1,+00[ and p €]d, +o0|.

If Gola € L®(RT;WEP(Q)), 05Gola € L™(RY; LP(Q2)) andw € L"(0,T; D(A,))
then the problem (4.2) admits a unique solution G € L (R*tx(0,T); WLP(Q))
such that 9;G,0:G € L= (R*; L"(0,T; LP(2))). Moreover, this solution sat-
isfies

HG||Loo(]R+><(0,T);W1’p(Q))
+ 105Gl Lo r+:17 (0,757 (2)))
+ HatGHLoc(R+;LT(O,T;LP(Q)))
< Co(1+ IV o720 (0))) exp(Ca| Va1 0 73w 2)))

where the constants Cy and Cs depend on ), p, r, We and the norms of Goq
and 0sGolq. Their expressions will be detailed in the proof.

The existence of a unique solution to (4.2) follows from the application of the
method of characteristics. Some details are given in [15] (Appendix p. 26) on
Equation (2.10), that is, using the function F'. Note that the case presented
here is a little bit more complicated. Equation (2.10) satisfied by F' possesses
a parameter T € R. This equation (2.10) is defined for time ¢ such that
t > max{0,T}. Moreover the “initial” condition, with respect to the time ¢,
depends on this parameter (see the initial conditions (2.13) and (2.14)). The
characteristic method is applicable since conditions (2.13) and (2.14) exactly
correspond to the boundary conditions for the “time” domain

{(T,t) e R? ; t > max{0,T}}.
Note that in terms of the variables (s,t), the “time” domain is given by
{(s,t) eER?; s >0, t >0},

and that the boundary conditions in (4.2) are exactly given on the boundary
of this domain. Finally these two boundary conditions are compatible since
Goidl|s=0 = 9, see Remark 2.2.

In practice, the following estimates will be made on regular solution G,
which approaches the solution G when a regular velocity field u,, approaches
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the velocity w. The regularity of these solutions G, with respect to ¢ and s
comes from the Cauchy-Lipschitz theorem. For sake of simplicity, we omit
the indexes ”n”. In the following proof, we refer to [15] for the passage to the
limit n — 4o00. The rest of the proof of Lemma 4.2 is split into three parts:
in the first one (see Subsection 4.2.1) we obtain a first estimate concerning
the regularity of G, and in Subsection 4.2.3 we obtain the estimate for 0;G
This estimate requires an estimate on d;G, which is given in Subsection 4.2.2.
Note that we strongly use a Gronwall type lemma whose the proof is given
in Appendix B.

4.2.1. Estimate for the deformation gradient G. Let p > d and take the
scalar product of Equation (4.2) by |G|P~2G. We deduce

1_
u

1 1
- p P - P\ — p—2 C\Ta7) -
pat(|G| )+ mpas(\m )+ V(IG]P) = |GP*(G-Vu): G.

Integrating for € €2, due to the incompressible condition divw = 0 and the
homogeneous boundary Dirichlet condition for the velocity, we obtain

O(IG 1 o) + 52 (IG o)) = [ 167G V) : G

< PVl @) |Gl q)-

We next use the continuous injection W1P(Q) < L*°(Q), holds for p > d
and making appear a constant Cy = Cy(£2,p):

1
O (IG 1% ) + 5505 (1G 0)) < 2 Coll Vallw s |Gl (44)

Now, we take the spatial gradient in (4.2) and compute the scalar product of
both sides of the resulting equation with [VG|P~2VG (we will note that this
is a scalar product on the 3-tensor, defined by A :: B = A, ; 1B, ;). After
integrating for « € ) we obtain

0 (IVGl00) + 019G 1) < 2 [ [VGIIVE

+p/ |G||VG[P~|V?al.
Q
Using the Holder inequality, we have
1 _
O(IVGI0y) + 5505 (VG ) < 20 V8l e VG
+ PG|z @) VG V22 ).

For p > d, using the continuous injection WP(Q2) — L°(£) again, we
deduce

1
at(”VGHLp(Q ) + MWe

Adding this estimate with the estimate (4.4), we deduce

o (I1Gllwrr)) +

05 (IVGII7s0y) < 30 Col VElwrr @) |Gl

1 _
@as(HGHWLP(Q)) <3GV lwre ) |Gllwr e )
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Using the initial conditions we have
1
IGIwrr@)],_o = VAIQr and [Gllwre@),_y = IGouallwre@).

the Gronwall type lemma (see Appendix B) implies that for (s,¢) € R*x(0,7)
we have

t
IG(s,t,-)|[wrr) < C(Svt)exp(?)CO/ HVﬁHWlm(sz))a (4.5)
0

t
G, » s— —) ift <Wes,
where ((s,t) = 1Gorallw (Q)( Qﬁe)

Vd|Q|r if £ > Wes.
The assumption Goq € L®(RT; WHP(Q)) implies ¢ € L>=(RT x (0, 7)) with

1¢1 L e x 0,79y < max {[|Gotall o @ swe (), VA Q7 }.
The relation (4.5) now reads

G| Lo e+ x (0,7); W10 (2) (46)

< ¢l 2o+ x 0,7 exp (3Co |Vl L1 (0,7, w10 (02))) - '

4.2.2. Estimate for the age derivate 0,G. We first remark that the derivative

= 0;G exactly satisfies the same PDE as G (see the first equation of (4.2);

that is due to the fact that @ does not depend on the variable s). We then
deduce the same kind as (4.4):

1 _
(Gl v (o)) + @@(HG/HLP(Q)) < CollVa|wrr @) |G || e (o)
But the initial conditions differ as follows:
G/|t:0 = 0s;Goq and G/|s:0 = e V.

This last condition is obtained using s = 0 in Equation (4.2). Note that
this result is valid because we are working on regular solutions G, (see the
introduction of this proof) such that 9;G,, is continuous at s = 0. From
Lemma B.1 given in Appendix B we obtain for all (s,t) € Rt x(0,7) the
estimate

¢
||G’(s,t,-)HLp(Q) g('(s,t)exp CO/O ||Vﬁ||W1,p(Q)>, (4.7)

||8 GoldHLp(Q (S — 7) if ¢ < Ne S,

We |Vl e (t — Wes) if ¢ > Wes.
For each s > 0, we estimate the L"(0, 7 )-norm of the function ¢ — (’(s,t) as
follows: if T < 20e s then

T T t
! r T
/0 C (S,t) dt = A ||83G01dHLP(Q) (S — Tﬂe) dt

= Qﬁe/ 105 Gotall o (o (') dt’
s T

T We

< We ||05Gotdll 7 w+;10(0))-

where ('(s,t) =
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If 7 > 2We s then

T We s ¢
! T _ T
/0 C (S,t) dt = /0\ ||aSGold||Lp(Q) (S — %) dt

-
+ We" / V@70 ) (t — Wes) dt
We s

— e / 105 Gotallf e (t) dt
0

T—e s
+ QﬁeT/ V|| 70 ) (') dt’
0

< We [|0:Golallr m+1r (0)) + 2" (VU Lr (0,710 (0))-
Finally, we obtain ¢’ € L>®(R™; L"(0,7)) with
1
1< | oo (L7 (0,7)) < We [|05Gord]

The relation (4.7) now reads

Lr(®+:Lr(9) + We[| V| or o, 700 ) -

||GI||L°°(1R+;LT(0,T;L1’(Q))) (4.8)
<< oo vt 1 (0,7) €xp (Coll VAl 10, 75w 1 0 (02)) ) -

4.2.3. Estimate for the time derivate 0;G. Isolating the term ;G in Equa-
tion (4.2) we have

1 _ _
10:G|Lr () < @HG/HLP(Q) + 1@l Lo ) IVGlLr ) + |Gl L @) IV Lr ()

1 _
< TBQHGIHLP(Q) + Collallwrr )| VG| Lr ()
+ Col|Gllwr.p ) | V| Lr (02)-

Introducing the Poincaré inequality with a constant Cp = Cp(€2,p), which
holds since w vanishes on the boundary of the domain, we obtain

1 _
10:G|lLr (o) < @HG'HLP(Q) + Co(1+ Cp) IV Lo () |Gllwr.p(0)-

Taking the L"(0,7)-norm in the variable ¢, and next the L°(R™)-norm in
the variable s, we obtain

1
10:G | oo (m+; L7 (0,757 (2))) < @||G/HLOO(W;LT(O,T;LP(Q)))
+ Co(1 + Cp) IV Lr 0,70 () | Gl Loo (et x (0,7); w12 (02)) -

Using the previous estimates (4.6) and (4.8), we deduce the result announced
in Lemma 4.2.

4.3. Estimates for the stress tensor T

Lemma 4.3. Let T > 0, r €]1,400[ and p €]d, +00].

If G € L®(RT x(0,7); WhP(Q)) and 0;G € L>=(R*; L"(0,T;LP(Q))) then
the stress tensor T defined by the integral relation (4.3) belongs to the space
L>(0, T; WHP(Q)) and its time derivative 9,1 belongs to L*(0,T; LP(12)).
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Moreover, there exists a continuous increasing function Fy : RT — RT such
that

71l Lo 0. 75wre () + 107 Lr (0,750 (02))
w

2We
The function Fy depends on 2, p and on the growth of the function S.

< —Fy(IGl Lo (r+ x (0,7 wrp () + 10:G | oo vt L (0, 7512 (2))) ) -

Proof. Since the function S is of class C!, we can introduce the following
continuous and non-decreasing real functions

So:c€RT — max |S(G)| € RT,
|GI<c

S1:ceRT+— |rcI:1\a<X IS'(G)] € RT,

where the derivative S’(G) denotes the 4-tensor whose the coefficient (i, j, k, £),
denoted 8(ij)8(é)u, is the derivative of (S(G))M with respect to the ten-
sor E;; of the canonical basis of the space L(R9) of real d x d matrices, see
Appendix A.

Due to the continuous injection W1P(Q) — L°°(Q), the function G intro-
duced in the hypothesis of the lemma is bounded in RT x [0, 7] x Q and we
have

IS(G) || @+ x(0,7)x2) < So(|Gl Lo ®+x(0,7)x2))
< 8o(Co |Gl Loe (r+ (0,7 w 10 (2)))-

To simplify, we note @ := Cy |G| Lo &+ x (0,7):w1.(0))- In the same way the

function §’'(G) is bounded by the real S;(¢).
LP-norm for 7 — We easily have the following bound for the stress tensor 7

given by the formula (4.3): |7(t,x)| < 55.80(¢) for a. e. (t,x) € (0,7)xQ.
We note that we used fooo m = 1. We deduce in particular that

1 W
0o Ip < |Ql»
7]z (0,7;L (Q))_| |”;m

eSO(E)' (4.9)

WLP.norm for = — Taking the spatial gradient of the expression (4.3) given
the stress tensor we obtain

w oo — —
Vr(t,x) = %/0 m(s)VG(s,t,x) : S'(G(s,t,x))ds.

The meaning of the symbols here is the following. Component by component,
the equality above written

[VT(t, a:)]

= Z'Tjk(t, :B)

+oo
/ m(s) Z@iégm(snf,:c) a(gm)S(é(S,t7£B))jk ds.
0

l,m

ijk
w
We
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Using the Hélder inequality, the L>-bound on &'(G) and [;“m = 1, we
obtain

[VT(t,x)

= p‘/ VG5, 1) mls) S (s, 1)) ||

_mpsl() /0 m(s)|VG(s, t, )P ds.

Integrating for x € 2, we obtain
wP . > —
IVt o) < i@ [ mls) VG5t o
Due to the definition of the bound ¢, this implies
w c
V7| L=, 7:Lr < —8&:(¢) —. 4.10
VTl L0700 ) < We 1(¢) Co ( )

LP-norm for ;7 — Similarly, we obtain a bound for ;7 in L?(2): we have

w oo — _
O (t,x) = %/0 m(s)0,G(s,t,x) : S'(G(s,t,x))ds.

Using the Holder inequality to control the quantity |0;7 (¢, «)|P, and next an
integration for x € ), we obtain

wP _ o —
10t M0y < e SE [ ()10 s

Due to the assumption on 0;G, that is ¢ := HaténLoo(R{»;L?‘(O’T;LP(Q))) < 400,
we deduce w
10:7 | Lm0, 720 (22)) < %81(6) C. (4.11)

The estimates (4.9), (4.10) and (4.11) show that 7 and 9;7 are bounded
respectively in L°°(0,7; W1P(Q)) and in L"(0,7;LP(Q)), and that these
bounds continuously depend on ¢ and ¢, and increase in both variables. [

4.4. Proof of Theorem 3.1

For any 7 > 0 we introduce the Banach space
B(T) = L0, T; Wy () x C(RY x [0, T); LP(2) x ([0, T]; L (%))
and for any R; > 0, Ry > 0 and R3 > 0 the subset
AT, Ry, Ra, Rs) = {(@.G.7) € A(T) ;
ueL"(0,7;D(Ay)), omeL"(0,T;Hy,),
G € L¥R"x(0,7);W'P(Q)), 0,G, 8,G € L™(R*;L"(0,T;LP(Q))),
T L™0,T;WP(Q)), 0,7 € L"(0,T;LF(Q)),
uli—o = uo, Gli—o = Gold, Gls—0 =9,
Lr(@)) < B,

[zl

L7(0,T;W?2r(

Gl Lo ®+ x 0,1y wrr () + 105G, G| Lo (m+51-(0,7520(02))) < Ra,

17l 07w 0y + 10Tl 0732000 < Bs -
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Remark 4.4. Such a set is non-empty, for instance if R; and Ro are large
enough. More precisely, if

C
B 2 ﬁ”uOHDg(Q) and Ry > HGOldHLDO(]R*;WLP(Q)) (4.12)

then for any 7 > 0 and any Rz > 0 we can build a velocity field u* such that
(u*, Gola, 0) € F(T, Ry, R, R3), see an example of construction in [15, 21].

Remark 4.5. If (u,G,T) € (T, R1, Ry, R3) for some T, Ry, Ry and R3
then the velocity field u and the tensor G are continuous with respect to
the time ¢ and the age s. In fact, these continuity properties follow from
the Sobolev injections of kind W1%(0, A; X) C C([0, A]; X), holds for a > 1.
Moreover, they make sense of the initial conditions u|i—o = ug, G|t=0 = Gold
and G|3:0 =4.

We consider the mapping
® : H(T,R1,Ra,R3) — AB(T)
(w,G,7) — (u,G,T),
where v is the unique solution of the Stokes problem (4.1) with
g=—Rew-Vu + divy + f; (4.13)

where G solves the problem (4.2) and where 7 is given by the integral for-
mula (4.3). The goal of this proof is to show that the application ® has a fixed
point. For this we first prove that ® leaves a set .7 (T, Ry, Ra, R3) invariant
(for a “good” choice of T, Ry, Ro and R3).

Let 7 >0, Ry >0, R, >0, R3 > 0 and (ﬂ,é,?) € %(T, Rl,Rg,Rg). If
we denote by (u, G, T) = ®(u, G,T), we will show that the previous lemmas
imply estimates of (u, G, T) with respect to the norms of (@, G,T), that is
with respect to (7, R1, R, R3).

Velocity estimate — From Lemma 4.1 we can estimate u and Jyu using the
norm ||g|| .+ (0,7 (02))- For the source term g given by the relation (4.13), we
have

gl 0,7 () < Rel|@ - V| 10,727 ()

T

+ 1T 2 o, 75w e ) HIFl 20,7507 92)) -

T

Since we have the bound Rz on T in L* (0, T; WP(Q)), the term T5 satisfies
T, < T+ R3. The bilinear term 717 is more difficult to estimate. We follow
the ideas of [15] and we generalize their result to the d-dimensional case (the
paper [15] only deals with the case d = 3):

Ty < ||@]| 20,700 ) IV L2 (0,70 ()

S B (4.14)
<77 |[all, [all z2r 0, 7w (92))-

2 (0,751 ()
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But we have the following estimate (see [17]):

p—d d
||i||L°°(Q) < O||ﬂ||L£(Q)||ﬂ||&/l,p(Q)a

which, after integrating with respect to time, implies

p—d d
1, 25 o gy < CNBNLE 7y BBl oo gy (415)

Note that the constant C' introduced here only depends on €2, p and d. More-
over, by interpolation, we have

1 1
Hﬁ”LZT(O,T;Wl’P(Q)) < ||ﬁ||zoo(o,T;Lp(Q))||ﬁ||zr(o,7*;w2,p(g))~ (4'16)
Using (4.15) and (4.16), the estimate (4.14) now reads

p=d _ B2 _ B2
Ty < CT v [all L2 o 7o 1Bl 20, 7w 0 (4.17)

Finally, we use u(t, ) = uo(x) + fot Oyu to obtain
@]l o 0,720 (2)) < ol ey + 1068|2077 (02))
1y
<ol ey + T 04 e 0,710 (2)-

Using the bound R; for @ and 0;@ given in the definition of 72 (T, Ry, Ra, R3),
the estimate (4.17) becomes

p—d

T, <CT% Rl ||u0\|Lp(Q o7

_1
" R2.
We now use this bound to control the source term g. Lemma 4.1 implies:
C
||U||Lr(o T;w2.r(Q)) T ||3tUHLr(o T:Lr(Q) S T (”uOHDT(Q)

<wmmwﬂ@wmwfmmwg@+mcﬂ%+ﬁm}
(4.18)
where the assumptions p > d and r > 1 imply that «, 3, v and ¢ are positive
numbers. This estimate (4.18) can be rewrite as

lwll 20, 7:w2p @) F O] Lr 0,750 () < év1<1+7ﬂ% R3+K(T, Rl))a (4.19)

where bvl may also depends on w and on the norm of ug and f in their spaces.
It is important to notice that for each R; > 0 we have 7l_imo K(T,Ry) =0,
—

~ C
and that C1 > 125 |Jug| py(a-

Deformation gradient estimate — From Lemma 4.2, we have

|Gl @+ x0,7;wrr ) + 100G Lo @+ (0,7 L7 ()

(4.20)
< Cg(l + R1)6Xp(03T1_%R1).
Stress tensor estimate — From Lemma 4.3, we have
w
17l Lo 0. W e (@) + 1007 [l Lr 0,700 () < 5y Fo(Ra)- (4.21)

Ne
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®-Invariant subset — If we then successively choose

R =201,
= C2(1+ RY)exp(C3R}) + || Gowal| o+ w10 ()
w
R: = —Fy(R}
3 Me 0( 2)7

and 7, <1 small enough to have ’T*%Rg + K(T,,Ry) <1,

then we verify that 52 (7., R}, R5, R5) # 0 (that is the inequalities (4.12)
hold). For such a ch01ce the estimates (4.19), (4.20) and (4.21) imply that
o(H(T,, Ry, R5,R%)) C %(ﬁ, T, R%, R%). Moreover the function ® is con-
tinuous and %”(7;, T, R5, R%) is a convex compact subset of B(T,), see [21]
for similar propertles We conclude the proof using the Schauder’s theorem.
U

5. Proof for the uniqueness result

This section is devoted to the proof of the local existence theorem 3.2.

As usual, we take the difference of the two solutions indexed by 1 and 2. The
vector 4 = w1 — us, the scalar p = p; — p2 and the tensors 7 = 71 — T2,
G = G1 — G, satisfy the following:

Re(Oyu+u1 - Vu +u - Vug) + Vp — (1 —w)Au = divT,

divu = 0,
— Qc;e/;“’ m(s) [S(Gl(s,.,.)) - 5(G2(57.7.))} ds, (5.1)

1
8tG+—8SG+u1-VG+u~VG2:G1-Vu+G~Vu2,

together with zero initial conditions u| =0 and G‘ —0 G|S = 0. Note
that the regularity of G; and the deﬁmtlon of the stress tensor T; implies
that 7; € L*°(0, T; W%(Q)) (the proof is similar that those presented in the
proof of the existence theorem 3.1). The uniqueness proof consists in demon-
strate that u = 0 and that G = 7 = 0. We will initially provide estimates
on these three quantities.

Velocity estimate — Taking the scalar product of the first equation of Sys-
tem (5.1) by w in L?(Q2), we obtain

Re

From the Holder inequality and the Young inequality, we obtain

4
Red (|[ulF20y) + (1 = ) [Va|F2iq) < HHTH%Q(Q)
+ Re|| Vgl oo () [l 72 0 -
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Introducing Z(t) = Re HUH%2(Q) and Cz(t) = ||Vuz|[L=) € L*(0,7T), this
estimate reads

Z'(t) + (1= w)|[Vullfzo) < 5 . HTHL2(Q) +Cz0)Z(@).  (5:2)

Stress tensor estimate — From the definition of the stress tensor 7 in the
System (5.1) we can use the Cauchy-Schwarz inequality to deduce that for
all (¢,x) € (0,7) x

) w2 +oo 2
|T(t,x)|* < QUez/o m(s) ‘S(Gl(s,t,az)) —S(Gg(s,t,w))‘ ds.

By assumption, the function S is of class C', so that S’ is bounded on each
compact. Since G, i € {1, 2}, belongs to L>(R™ x (0,7) x Q) we deduce that
there exists a constant C”, only depending on the norm [|Gj| Lo (r+x (0,7)x )
such that |S(G1)—S8(G2)|*> < C'|G1—Gs|? a.e. in RTx(0,T) x Q. We deduce

2 C'w? [T 2

m(s) |G(s,t,x)|" ds.
rto) < o [ mls) |G t)
Integrating with respect to & € 2 we obtain

C' w?
171720 < WY(t), (5.3)

+o00
where we introduced Y () = / m(s) |G(s,t, -)HQLQ(Q) ds.
0

Deformation gradient estimate — Taking the scalar product of the last equa-
tion of System (5.1) by G in L?(2), we obtain

1 1
501613 0) + 5520 (16 o) = [ (G- V) -G

+/Q(G-Vu2)-G—/Q(u~VG2)-G.

Using the Hélder inequality, we have the estimate

1 1

iat(”GH%ﬁ(Q)) e 35 (IGI72(0y) <NIG1lloe (@) IVl 2@ 1G22 ()
+ ||VU2||L°°(Q)HG||2L2(Q)

+ el 2, (Q)||VG2||Ld(Q)HG||L2(Q)

Due to the Sobolev continuous injection H!(Q) — Ld%(ﬂ), the Poincaré
inequality and the Young inequality, we obtain for all € > 0:

1
O (I1GI72(0) + e

where the function

95 (1Gl72(0)) < ellVulizg) + Oy (G2, (54)

2C?
Cy(t) = sup {21GI o)+ [ Vaallim o)+ o= [VGal ey } € L0, 7)
ES
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and where the constant C depends on Q, p and d. Multiplying this esti-
mate (5.4) by m(s) and integrating for s € (0, 4+00) we obtain

+o0
o | MO0 (1G w) ds < ¢ Vulia +OrOV(). 65)

5
Using a integration by part, the integral .# becomes

+oo 9 2 +
ﬂ:/o =/ ()| Gll72(0) ds + [m(s)”GH”(Q)}o

Using the following arguments:

- The memory function m is non-increasing, that is —m’ > 0;

- The function G is bounded on R* x (0,7) xQ and m € L'(RT), that is
im () |G ) = 0

- We have the following development with respect to the variable s for G:
G(s) = G|,_, +50,G| _, + o(s) ~ 5e Vu.
Moreover, m € L*(R*) so that liH(l) m(s)||G||2Lz(Q) =0.
s—

Hence the integral .# is non-negative so that the estimate (5.5) now reads
V(1) < | Vullfagq) + Oy (Y (1), (56)
Uniqueness result — Finally, adding (5.2) and (5.6) with the choice ¢ = 1 —w,
and using the estimate (5.3), we obtain
(Y +2)(t) < Cyz(t) (Y + Z)(1),

where the function Cy 7 is a linear combination of Cy and Cz. In particular
we have Cyz € L'(0,7). The Gronwall lemma and the initial condition
Y (0) = Z(0) = 0 imply that Y = Z = 0. We deduce that u =0 and G =0
and that consequently the stress 7 = 0 and the pressure p is constant in
(0,7) x Q. O

6. Proof for the global existence with small data

This section is devoted to the proof of the global existence theorem 3.3.
Arguing as in the proof of Theorem 3.1, we introduce the space Z(T), the
subspaces (T, R1, Ra, R3) and the mapping ®.

For (w,G,T) € 52(T, R1, Ra, R3) and (u,G,T) = ®(w, G, T) recall that we
have the following estimates (see the estimates (4.18), (4.20) and (4.21)):

Cy
Il 07w @) + 1950l 0,70 < 7= (ol oy

+ 1 £l

|Gl Lo &+ x 0,7 ;W) + 0G| Lo ®+;L7(0,7:L7 ()
< 02(1 + Rl)exp(Cng_%Rl),

(6.1)

pro.Tine + ReCTORY [uol by o) + Re CT R + T Ry ),

(6.2)
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w
I 7( oo (0, 75w 1 p () + 10T | r 0,750 () < EFO(R2)~ (6.3)

Note that the constants C, Cy, C3, C and the function Fj introduced in these
three estimates do not depend on w. For a time T > 0 given, we successively
choose

. 1-w
hi = 2C1 Re CTY’
Ry =Co(1+ R‘{)exp(Cng_%RI) + [|Goidll Lo ®+;wr()),
w
R; = — Fo(R3).
5= g Fo(R2)

We verify that, for ug, f small enough in their norms, and for w small enough
too, J(T, R}, R3, R%) # 0 (that is (4.12) holds). For such choices of R}, R},
w and small norms of ug, f and Goq, the inequalities (6.1), (6.2) and (6.3) im-
ply that ®(J(T, R}, R5, R3)) C J€(T, R}, R5, R3). Moreover the function ®
is continuous and 2 (T, Ry, R}, R}) is a convex compact subset of Z(T). We
conclude the proof using the Schauder’s theorem again. (|

7. Conclusion

In this article we are interested in the mathematical properties of models
for viscoelastic flows. We have shown that many known results for differen-
tial laws could be adapted to integral models. Nevertheless some differences
persist and we present here some possible viewpoints:

— Our results are formulated in the L" — LP context, following [15].
It seems possible to reformulate them for more regular solutions in the H*®
context, following [21].

— The result concerning the global existence with small data (Theo-
rem 3.3) is proved for the relaxation parameter w small enough only, that is
to say for the flows which are not too elastic. For the differential models, this
assumption can be removed, see for instance [10, 33]. In this case, the results
on differential models strongly use the structure of the equation, and it seems
difficult to adapt such methods for integral models (see also Remark 3.4).

— There exist differential models which have no apparent equivalent in
terms of integral models, for instance the co-rotational Oldroyd model. This
study does not cover these cases (but they fall within work of C. Guillopé and
J.-C. Saut [21, 22]). Similarly, there are also integral models more general
than those studied here. In [42], R. I. Tanner introduce models where the
memory m also depends on the invariants I; and Is. It might be interesting
to study these models from a theoretical point of view and to observe whether
the approach taken here can be adapted.

— On the other hand, it is possible that classical integral models perform
better than differential models of Oldroyd type. In fact, most of these models
have a stress which is naturally bounded wvia the definition of S, see the
examples given by Equations (2.22), (2.23) or (2.24), and Appendix A. While
obtaining a weak solution seems very difficult, knowing a priori a bound on
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the stress is an interesting information (see [9] for an example of a criterium
for the explosion in the Oldroyd model).

— We note that we are not referring to the case of steady flows, the
reason being that the case is largely dealt with by Renardy in [36]. We also
mention the doctoral study by M. H. Sy [41] about steady flows, as well as
one-dimensional problems for integral models.

— Finally, the theoretical results shown in this paper allow us to consider
several possible lines of study on models of integral type. The well-known re-
sults for the differential model can be generalized to integral models. For
instance, the one dimensional shearing motions and Poiseuille flows admit
global existence for usual differential models, see [19]. In this regard, the
work of A.C.T. Aarts and A.A.F. van de Ven [1] are interesting: they study
the Poiseuille flow of a K-BKZ model. Would it be possible to prove global
existence for such one dimensional flows when we use more general integral
models ? Another possible generalization concerns the behavior of viscoelastic
flows in thin geometries (in the fields such as polymer extrusion or lubrica-
tion), or in thin free-surface flows (to study mudslide or oil slick). Recent
work [2, 3] and [7] can provide answers to the differential models, and we can
imagine the same kind of work for integral models.

Appendix A. Tensors and the strain measure function S

A.1. Some remarks on the invariants of the Finger tensor (d = 3)

For a matrix B € £L(R3), we usually define three invariants:

I, =Tr(B), I,= %((Tr(B))Q —Tr(B?), I3 =detB.
We specify in this subsection some properties of these invariants in the context
studied here, that is when B represents a Finger tensor of an incompressible
flow.
First of all, this incompressibility condition implies that det B = 1. Conse-
quently the third invariant I3 is useless. Next, using the Cayley-Hamilton
theorem we have B~! = B? — I1B + I § and we deduce that

I, =Te(B™).

By definition, B = TF - F is real positive-definite matrix, and consequently
it is diagonalizable. Using a basis formed by its eigenvectors, we have I; =
A1+ A2 + A3 whereas A\; A2 A3 = 1. An inequality of arithmetic and geometric
means indicates that I; > 3, and in a similar way we prove that I > 3. We
deduce that for all § € [0, 1] we have

Bl +(1—-p)I > 3.

That mathematically justifies the PSM model (2.22) and the Wagner model
given by (2.23).
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A.2. Notion of derivative for the Strain measure tensor

The strain measure function S : L£(RY) — L(R?) can be viewed as an
application R4*¢ — R4*4 For 1 < 4,5 < d, we introduce the matrix

as element of the basis of £(R?) and we define the differential of S from its

oS
Jacobian S’ := ( ke) . Note that in this paper, we use the notation
8Eij 7kl
OSke
0ii\Ske = ———.
(i5) ke OE;,

A.3. Norm for the 4-tensor

The notion of derivative introduced above involves the use of tensors of or-
der 4. Recall that for a 2-tensor A = (A),;, we use the usual algebra norm
defined by |G|? := Tr(TG - G). For a 4-tensors H = (H);jxs, we introduce
the following algebra norm:

H|* = Z H?jk@'
i,5,k,L

We will note that this norm having the following property: |A® B| = |A| |B]|
for any 2-tensors A and B.

A.4. Example for a PSM model
Consider the example function corresponding to a PSM model (see Equa-
tion (2.22) with « =4 and g =1):

B

. d
§:G e LR — s

€ L(RY) where B =G -G.

Proposition A.1. For all G € L(R?) we have |S(G)| < 1.

Proof. Using the norm on the 2-tensor, we have for all G € L(R?):

'G - G| GI?
S(G)| = 7 < 5
1+ |G| 1+ |G|
that implies that S is bounded by the constant 1. (I

Proposition A.2. For all G € L(R?) we have |S'(G)| < 2(1|+(;|\/El)
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Proof. The derivative of the function S is a function with values in the set
of 4-tensors:

Gy — Oy (— DR
§(Giswe = ‘9(”)(1 + Tr(B))
_ 04y (Bre) 0 (Tr(B)) B

“11Te(B) (14 T(B)?
_ (01;Gie + 60;Gir) 2G;; By

1+ Tr(B) (1+Tr(B))2’
Taking the 4-tensor norm, we deduce that
291G 2GP°

S'(@)| <
A e R ETeTE

Since |8| = v/d, this implies that |G| |S’(G)| is bounded by 2(1 ++/d). O

Appendix B. Gronwall type lemma

Lemma B.1. Let f : RT — R a positive and locally integrable function. If a
function y : R* x RT — R satisfies, for all (s,t) € RT x RF:

Ouy(s,1) + o Dsu(s, 1) < (1) (5,1 (B.1)
then we have, for all (s,t) € Rt x R :
o) < oo [ frar). (B2)
0
y(s— L,O) if t < Wes,

where ((s,t) = We

y(0,t —Wes) if t > Wes.

Proof. Introducing the new variables u = 3(Wes +t) and v = §(Wes — t),
we can write the first equation of System (B.1) as a system on the function
z(u,v) = y(s,t):

Ouz(u,v) < flu—v)z(u,v).

Since the function f is locally integrable, we obtain

0. [z(u,v) eXp( - /0 o f(t’)dt’)] <.

Integrating this relation between |v| and u, we deduce

z(u,v)exp( - /Ou_vf(t’)dt’> < (||, v) exp( - /Olv_vf(t’)dt’).

Due to the positivity of the function f, the exponential term in the last
equation being less than 1. According to the sign of v, we have z(|v|,v) =
y(0,t —Wes) or z(|v|,v) = y(s — 57,0). That implies the result (B.2) an-
nounced in the lemma. O
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