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We consider the Kramers-Kronig transform (KKT) with logarithmic kernel to obtain the 

reflection phase and subsequently the complex refractive index of a bulk mirror from 

reflectance. However, it remains some confusion on the formulation for this analysis. 

Assuming the damped Drude model for the dielectric constant and the oblique incidence case, 

we calculate the additional terms: phase at zero frequency and Blashke factor and we propose 

a reformulated KKT within this model. Absolute reflectance in the s-polarization case of a 

gold film is measured between 40 and 350 eV for various glancing angles using synchrotron 

radiation and its complex refractive index is deduced using the reformulated KKT that we 

propose. The results are discussed with respect to the data available in the literature. 
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1. Introduction 
Kramers-Kronig transform (KKT) of the reflectance measurements remains a unique 

method to determine the dielectric constant of materials, mainly in the short wavelength 

domain (uv and soft x-ray ranges) [1] where other techniques such as ellipsometry are 

inadequate. In a large number of the early works [2], the KKT was implemented with a 

formulation in which the phase at an arbitrary frequency ω0/2π is directly proportional to an 

integral with a logarithmic kernel over the entire spectrum : 
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It is the Robinson-Price formula [3], where 

 

! and 

 

! (assumed to be even) are the phase and 

the amplitude of the complex coefficient of reflection 

 

r , respectively and P stands for the 

principal-value. 

Nevertheless it has been emphasized that it should be necessary to add to this integral 

a constant term, both in the context of the scattering theory [4,5] and in studies of the 

foundations of the dispersion relations, in particular by Toll [6]. Stern in a work based on 

Toll’s analysis attempted to justify the KKT [7]. Young [8] discussed the KKT as given by 

Toll and Stern on the basis of physical considerations and concluded that the validity of the 

KKT remains in doubt and must be applied with caution. More recently Nash et al. [9] have 

derived what they called the « correct version » of the KKT for the phase spectrum with a 

logarithmic kernel and give : 
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Using integration by parts, Eq. (2) can be slightly rewritten as follows : 
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From the mathematical point of view, the term 

 

! 0( )  arises from the existence of a pole at 

zero frequency in the kernel that is overlooked in other approachs. Nash et al. [9] emphasized 

that the term 

 

! 0( ) is close to -π for many  materials, but not always, in particular for a 

material whose absorption coefficient does not vanish at zero frequency. Smith [10] derived a 

formula similar to Eq.(2) but proposed to eliminate the additional term 

 

! 0( )  for conductors 

and insulators. Lee et al. [11] have calculated the term 

 

! 0( ) assuming that the dielectric 
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constant is given by the plasma model, i.e. the undamped Drude model, for the case of normal 

incidence using Eq. (3). 

Otherwise it has been recognized that other terms, sometimes called Blashke factors, 

must be added; they correspond to the occurrence of singularities in the complex coefficient 

of reflection 

 

r  along the imaginary frequency axis [12]. This complementary Blashke term 

has been formally expressed for any incidence as well as for the s- and p-polarization [13]. 

For some cases, Generally, the exact value of this term requires the knowledge of the 

behaviour of the dielectric constant along the imaginary frequency axis. 

Thus, although KKT from reflectance measurements has been applied since many 

years to find the complex refractive index of materials, it seems that it remains some 

confusion on the formulation for this analysis. To the mere Robinson-Price formula usually 

implemented, it should be necessary to add some terms (zero-frequency phase term, Blashke 

factors) whose value depends on the behaviour of the dielectric constant and on the conditions 

of the measurements (oblique or normal incidence, polarization of the incident radiation, 

nature of the mirror: bulk, multilayer, …). This work is a tentative to clarify this problem for 

any case of incidence in the framework of the Drude model; we only assume transverse 

electric polarization. We propose to treat the transverse magnetic in a forthcoming paper. 

In the UV and soft x-ray domains, most of reflectance measurements are performed at 

oblique incidence for practical reasons [1] and consequently, an extension to the oblique 

incidence case of the works by Nash et al. [9] and Lee et al. [11] that were restricted to the 

normal incidence case, was needed. Thus we have been led to develop a reformulated KKT 

based on the assumption of the undamped Drude model for the dielectric constant. 

To test the validity of our reformulation, we present a comparison of the values of the 

complex refractive index of a gold film deduced from our KKT analysis based on our own 

reflectance measurements (conditions of which are well mastered) with data from literature. 

The choice of the gold sample has been motivated by the fact that it is recognized that the 

tabulated values of the dielectric constant of this material obtained from methods different 

from KKT analysis by reflection are well established. 

Initially this work has been motivated by the fact that the knowledge of accurate 

values of the dielectric constants in the short wavelength domain becomes very important for 

the development of new multilayer optics designed for this spectral domain [14] and for the 

characterization of new materials for microelectronics [15]. 

The paper is organized as follows. In section 2, we present a formulation of the KKT 

extended to the oblique case involving the phase at zero frequency and a Blashke factor. The 
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phase at zero frequency is calculated within the Drude model in section 3, while the Blashke 

factor is determined in section 4. The final expression of the global phase in the Drude model 

is given in section 5. We explain in section 6 our method to deduce the complex refractive 

index. Section 7 is devoted to the presentation of our reflectance measurements of a gold film. 

In section 8 we present and discuss the results of the determination of the gold optical index 

from our measurement by means of our KKT analysis. 

 

2. KKT formulation in normal and oblique case with the Drude model 
It is well-known that from the mathematical point of view, the KKT can be regarded 

as a Hilbert transform that relates the real and imaginary part of a linear response function by 

virtue of the causality principle. The calculation of this Hilbert transform is performed by a 

contour integration on a judiciously chosen path C in the complex frequency z plane with an 

appropriate kernel. The choice of the kernel and the determination of the contour C are 

strongly related. The strategy is to integrate a function that is analytic within the contour and 

on the contour C so that, by virtue of the Cauchy theorem, the contour integral vanishes. The 

path along the real axis must lead to a principal-value integral with a logarithmic kernel 

containing the modulus of the reflection coefficient and to the phase of reflection at the 

frequency ω0 of interest. These considerations lead to consider a kernel containing the term 

Ln[r(z)]
z !"0

. Consequently, in the usual KKT analysis the dispersion relationship is derived from 

the contour integral : 

    
 

Ln[r(z)]
z !"0
!# dz       (4) 

where the closed contour includes a complete semi-circle in the upper half-plane (UHP). To 

take into account the simple pole at ω = 0, Nash et al. [9] used the kernel g(z) Ln[r(z)] with 

g(z) = z-1 (z - ω0)-1 and an integration path C1 (see Appendix) that consists of a complete semi-

circle in the UHP and of small circles around the 0 and ω0 poles along the real axis; thus they 

derivate Eq. (2). Nevertheless Ln[r(z)] may have singularities on the imaginary axis as 

discussed in [12] which compromise the analyticity of the kernel within the path C1. These 

singularities appear along the imaginary frequency axis and have been given by Plaskett et al. 

[12] for the case where the reflection coefficient is given by the Fresnel formula. Taking into 

account all these considerations, it appears that the kernel f(z) Ln[r(z)] with f(z) = (z2 - ω0
2)-1 is 

analytic in the first quadrant of the UHP but has a pole at z = ω0 on the real frequency axis and 
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possibly three poles on the imaginary frequency axis, commonly named τ, η and δ if the 

coefficient of reflection is assumed to be given by Fresnel formula. 

Assuming that the radiation is specularly reflected in the s-polarization case 

(transverse electric) at a glancing angle θ, the corresponding Fresnel coefficient of reflection 

is : 

rs =
! sin" + # ! cos2"

sin" + # ! cos2"
     (5) 

The first singularity τ called pseudo total reflection frequency corresponds to the branch cut of 

the square root in the Fresnel formula Eq. (5) and satisfies : 

! i"( ) = cos2#       (6) 

The second one η called pseudo zero total frequency corresponds to a divergence of the 

logarithm and fulfills : 

     ! i"( ) = 1       (7) 

The third one δ called pseudo total polarization frequency corresponds to Brewster’s 

condition for complete polarisation and satisfies : 

     ! i"( ) = cot an2#    (8) 

To take into account these singularities one has to consider the closed contour C2 (see 

Appendix). The calculation detailed in Appendix gives for the overall phase the following 

relationship: 

   !("0 ,#) = !(0,#) + K("0 ,#) + B("0 ,#)      (9) 

The first term comes from the pole at ω = 0 when one considers the kernel g(z) Ln[r(z)] and 

the path C1 and does not occur with the kernel f(z) Ln[r(z)] and the path C2; the second term 

K(ω0,θ) is a principal-value integral resulting from the integration along the real axis for both 

kernels and paths and is given by : 

K !0 ,"( ) = # 2!0

$
P

Ln % !( )&' ()
! 2 # !0

20

+*

+ d! = # 1
$
P

dLn % !( )&' ()
d!0

+*

+ Ln ! + !0

! # !0

d!   (10) 

Eq. (10) is nothing else but the Robinson-Price formula. The third term is the the so-called 

Blashke factor arising from the integration along the imaginary axis for the kernel 

f(z) Ln[r(z)] and the path C2 ; it does not exist for the kernel g(z) Ln[r(z)] and the path C1. This 

term reads: 

B(!0 ,") = #
2!0

$
Im Ln[% i!( )]( )

! 2 +!0
2 d!

0

+&

'    (11) 
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3. Phase 

 

! 0,"( ) at origin 

In the Drude model, the dielectric constant is given by : 

! "( ) = 1# $ + i %       (12a) 

with    ! =
" p
2

" 2 + # 2        (12b) 

and    ! =
" # p

2

# 3 + " 2#
       (12c) 

where ωp is the plasma frequency and 

 

!  the Drude relaxation rate. For gold ωp is about 9 eV 

(1.37 1016 rad/s) and 

 

!  is around 35 meV (5 1013 rad/s). The continuation of ε(ω) in the UHP 

(! " z =! '+ i! " ) is analytic ; ε takes real values only on the imaginary axis where it 

decreases from 

 

! at ω’’ = i 0 to 1 at ω’’ = i 

 

! , as it can be seen from the following formula : 

    ! i" ''( ) = 1+ " p
2

" ''2# $ 2 #
$ " p

2

" ''3# $ 2" ''
    (13) 

By inserting Eq. (13) in the Fresnel formula Eq. (5), one gets for the amplitude of the 

coefficient of reflection in the s-polarization case: 

!Drude "0 ,#( ) = A "0 ,#( ) + C "0 ,#( ) $ S+ "0 ,#,0( ) $ S$ "0 ,#,0( )
A "0 ,#( ) + C "0 ,#( ) + S+ "0 ,#,0( ) + S$ "0 ,#,0( )

  (14) 

The phase in the same condition is given by : 

!Drude "0 ,#( ) = arctan sin# S+ "0 ,#,0( )
2 $ 2 + % & sin2#( )2 & C(#)2

'

(

)
)
)

*
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,
,
,

    (15) 

where 

A !0 ,"( ) = 2 3+ 8 (#2 + $ 2 % #) + 4 2 # % 2( ) cos(2") + cos(4")   (16a) 

C(!) = 2 (1" cos(2!))         (16b) 

S± !0 ,",#( ) = 4 $ 2 + % & sin2"( )24 sin # +" ±
1
2
arctan $

% & sin2"( )
'

(
)

*

+
,

-

.
/
/

0

1
2
2

  (16c) 

The subscript “Drude” means that the corresponding quantities are calculated with the 

dielectric constant given by the Drude model. When the frequency tends towards zero, one 

finds that in the Drude model and for the s-polarisation case whatever the value of the 

glancing angle θ : 

      !(0,") = 0      (17) 
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Let us mention that according to Lee et al. [11], in the normal incidence case : 

      !(0,"
2
) = #"      (18) 

a result that does not agree with Eq. (17). In fact the value of 

 

!(0,") as deduced by Lee et al. 

[11] is related to the value of !(",#
2
)  but the determination of the “exact” value of 

 

!(",#)  

appears to be a delicate question discussed in particular by Young. In our Drude model we 

find that : 

      !(",#) = 0      (19) 

 

4. Blashke factor B(ω0,θ) in the Drude model 

We suppose that the incident medium is vacuum and that the incident radiation is reflected 

in the s-polarization configuration; the coefficient of reflection is then given by the Fresnel 

formula, Eq. (5). To determine the Blashke factor, one has to calculate the integral given by 

Eq. (11). To do it this is valuable to note that in our case the singularity τ disappears at 

infinity since 

 

cos2 !1 while the pole δ vanishes and η tends towards infinity; indeed along the 

imaginary axis the dielectric constant tends to unity as the frequency goes to infinity as 

mentioned above which means that 

 

!"#. It follows that the term Im(Log[r(iω’’]) in the 

integrand is equal to π on the imaginary positive axis and the integral becomes: 

  B(!0 ,") = #
2!0
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! 2 +!0
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2!0

$
$ 2

2!0

= #$    (20) 

It appears that the Blashke factor contributes to the global phase by the term – π in the Drude 

model, in agreement with the data given in [13], case 3.1 of the Table 1. 

 

5. The global phase in the Drude model 

By virtue of Eq. (9), the global phase in the Drude model reads: 

  !Drude("0 ,#) = !Drude(0,#) + KDrude("0 ,#) + BDrude("0 ,#)    (21) 

Taking into account the preceding results, it follows that 

 

!Drude("0,#) is given for the s-

polarization reflection by : 

!Drude "0 ,#( ) = $
1
%

P
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01
$ %            (22) 



 8 

The first term corresponds to the Robinson-Price term (R-P T) evaluated from the 

experimental amplitude of the coefficient of reflection measured in the interval (ωmin, ωmax); 

the second term corresponds to the R-P T evaluated from amplitude of the coefficient of 

reflection calculated outside the experimental domain: in high energy region according to the 

Drude model, one can show using Eq. (14) that ρ(ω) varies as ω-2 so that: 

  

 

P
dLn[!Drude "( )]

d""max

+#

$ Ln" + "0

" %"0

d" = %P 2
""max

+#

$ Ln" + "0

" %"0

d"   (23) 

In the low energy range the following extrapolation is adopted: 

 

! "( ) = !2 "min( ) + (1#!2 "min( )) 1# "
"min

$ 

% 
& 

' 

( 
) 
1/ 2

   (24) 

from the point ωmin to ρ = 1 at ω = 0. 

The last term − π   of Eq. (23) is the Blashke factor. The phase at zero frequency does 

not contribute in our model. According to Eq. (5) the global phase could be obtained by the 

sum of only three terms; nevertheless other terms may be added. The term m ! sgn(" )  with 

sgn(! ) = !
!

 for ω ≠ 0 must be added to take into account that the direction of beam 

propagation is arbitrary and the reflectivity tensor can be multiplied by -1 without affecting 

the physical situation. Of course, one may add an integer multiple of 2. Finally, let us 

emphasize that other terms should be introduced if the kernel presents at some frequencies a 

“pathological” behaviour compromising its analyticy in the UHP but this situation is beyond 

the scope of the paper since we restrict to the case where the coefficient of reflection is given 

by the Fresnel formula and the incident medium is vacuum. 

 

5. Method of determination of the dielectric constant by the KKT in the Drude model 

From the reflectance measurements, we deduce the experimental amplitude of the 

reflection coefficient that is then introduced in the integrand of the first integral of Eq. (22). 

One deduces an experimental coefficient of reflection: 

    r ! ,"( ) = #exp ! ,"( ) exp i $ ! ,"( )( )    (25) 

It is well-known that the surface roughness tends to decrease the specular reflectance of a 

mirror and this phenomenon must be taken into account. Although very sophisticated theories 

have been developed to model the light scattering by a surface roughness, we restrict 
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ourselves to the so-called Debye-Waller (DW) model [16]. Let us recall that in this model the 

coefficient of reflection is decreased by the DW factor : 

    DW = exp ! 4 " 2

#2
sin2$ % 2&

'(
)
*+

    (26) 

where λ is the radiation wavelength in the mirror medium and σ the rms height of the 

roughness. 

To obtain the dielectric constant from the measurements we have implemented three 

methods : 

-i/ the comparison of the theoretical coefficient rF ! ,",#r ,#i( )  calculated by means of 

the Fresnel formula multiplied by the Debye-Waller term DW(θ,ω) taking into account the 

surface roughness of the sample with the experimental coefficient by solving the following 

system of two equations : 

   
Re[r ! ,"( )] = DW ! ,"( ) Re[rF ! ,",#r ,#i( )]
Im[r ! ,"( )] = DW ! ,"( ) Im[rF ! ,",#r ,#i( )]

    (27) 

unknows of which are the real part εr and the imaginary part εi of the dielectric constant. The 

FindRoot function of Mathematica® was used to carry out this operation. 

-ii/ the direct calculation of the real part εr and of the imaginary part εi of the dielectric 

constant from the experimental amplitude ρ = 

 

!exp ",#( )  corrected by the DW term and the 

phase 

 

!Drude ",#( )  resulting from the KKT in the Drude model, by means of the relationships : 

!r = 1 "
4 # sin2$ cos% 1+ #2( ) + 2 #( )

1 + #2 + 2 # cos%( )2
    (28) 

!i =
4 " sin2# sin$ "2 %1( )
1 + "2 + 2 " cos$( )2

      (29) 

-iii/ the direct calculation of the complex dielectric constant from the experimental 

amplitude ρ = !exp " ,#( )  corrected by the DW term and from the phase !Drude " ,#( )  by 

inverting the Fresnel formula : 

! = cos2" + sin2" 1# r($ ,")
1+ r($ ,")

%
&'

(
)*

2

     (30) 

The real part of the optical index n and the imaginary part β  are finally obtained from εr and εi 

using the well-known equations: 
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!r = n2 " # 2       (31)

    

 

!i = 2 n "        (32) 

6. Measurements of the reflectance of the gold mirror 

The Au film was deposited using magnetron sputtering onto a Si3N4/Si substrate. The 

purity of the Au target is 99.95%. The thickness of the Au film is about 60 nm. Before the 

measurement the sample was cleaned by a soft Ar sputtering in the following conditions: 

1 keV ion energy, sample orientation equal to 45°, base pressure around 2.10-7 mbar, duration 

30 min. The contamination of the Au film was checked in situ by means of x-ray 

photoelectron spectroscopy and did not show C or O presence within the experimental error. 

The reflectance of the mirror was measured at the BEAR beam-line of ELETTRA 

synchrotron facility for s-polarization light. The surface of the sample was investigated with a 

ZYGO interferometer [17]. According to the location on the sample, the rms height of the 

surface σ is between 1 and 5 nm. For the DW calculation we have retained the mean value of 

1.5 nm. 

Figure 1 shows the reflectance of the gold mirror for different glancing angles θ: 5°, 

10°, 30° 50° and 70°. Around 290eV and for large glancing angles, it is possible to note a 

signature of a carbon contamination of the sample; this contamination was not detected by 

XPS measurements and can be ascribed probably to buried carbon, maybe at the interface 

with the substrate: the carbon peaks are not visible at low glancing angles that is when the 

light doesn’t reach the substrate. For θ = 50° and 70°, Kiessig fringes can be observed. It 

appears that the measurements at θ  = 30° are well suited for the determination of the optical 

index because interferences with the substrate (Kiessig fringes) are not too strong and the 

penetration of the radiation in the sample is enough to probe the bulk of the Au film, which is 

not the case for the smallest glancing angles at energies smaller than 200 eV. 
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Figure 1 : Measured reflectance of the gold mirror for different glancing angles θ : 5°, 10°, 
30° 50° and 70° in the s-polarization case. 

 
7. Complex optical index of gold between 40 and 350 eV from KKT 

The real part n and imaginary part β of the complex refractive index of our gold film 

have been determined as explained in section 5 from the measurements performed at θ = 30°. 

The three methods give the same results. Figure 2 presents the values of n and β  between 40 

and 350 eV. The effect of anomalous dispersion associated with the 5p and 4f electrons of 

gold can be observed around 60 and 85 eV respectively, as shown in Figure 2. 
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Figure 2: Real part n (red line) and imaginary part β  (blue line) of the refractive index of our 
gold film from the measurements performed at θ = 30° calculated by our reformulated KKT. 
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The values obtained with our KKT can be compared to the tabulated values [18], see 

figure 3a for the real part n and figure 3b for the imaginary part β . The agreement is rather 

satisfactory but it is difficult to draw conclusions from this comparison about the quality of 

the data because the methods of determination and the samples are rather different. 

Nevertheless one can say that our reformulated KKT with accurate measurements of 

reflectance and careful characterization of the surface in terms of roughness provides fairly 

correct values of the complex refractive index. 
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Figure 3: Real part n  (a) and imaginary part β (b) of the refractive index of our gold film from 
the measurements performed at θ = 30°, calculated by our reformulated KKT (blue line) 
compared to the tabulated values (red line). 
 

8. Conclusion and perspectives 
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The approach proposed by Nash et al. [9] and Lee et al. [11] has been extended to the 

oblique case and to the Drude model -including the damping term- of the dielectric constant. 

In this framework we have calculated the additional term 

 

! 0,"( ) and the Blashke factor and 

finally deduced a reformulated KKT. To take into account the singularities on the imaginary 

frequency axis we have implemented a contour integration to perform the Hilbert transform 

different from the one chosen by Nash et al. [9] and we get a formulation of the KKT that is 

slightly different. It appears that in our approach the contribution to the global phase of the 

term

 

! 0,"( ) cancels and that the Blashke term B(ω0) contributes by the value - π. 

Comparison of the results obtained for the complex refractive index of our gold 

sample by means our reformulated KKT with tabulated data leads to believe that our approach 

is a rather satisfactory method to determine the unknown refractive index values of newly 

elaborated substances provided that the reflecting surface is well characterized. It would be 

valuable to check this conclusion for other materials, especially semiconductors and 

insulators, the refractive indices of which are available in the literature. The case of p-

polarization (transverse magnetic) especially concerning the influence of the Blashke factor in 

the Brewster condition will be considered in a forthcoming paper. 
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Appendix 

The Hilbert transformation is obtained from integration in the complex frequency z = 

ω’+ iω” plane along the contour C1 or C2 displayed in Figure A1 and A2 respectively, 

according to the approach of interest. 

In the first approach one has to calculate the integral I where a pole at z = 0 is 

considered: 

 
I =

S z( )
z z ! "0( )C1!# dz      (A1) 

where S(z) stands for Ln[r(z)] . Within the contour and on the contour C1, the kernel is 

analytic and therefore I = 0. In the second approach one has to calculate the integral J: 

 
J =

S z( )
z2 ! "0

2( )C2!# dz      (A2) 

Within the contour and on the contour C2, the kernel is analytic and therefore J = 0. 

!0

R

Imaginary axis !”

Real axis !’

CR

" C!0

0

"
C0

 
Figure A1: Integration contour C1 (in bold line) in the complex frequency z plane. The radius 
R of the part of circle CR may be made as large as necessary, and the radius δ of the semi-
circles C0 and Cω0  centred at 0 and ω0 may be made as small as one pleases. 
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!0

R

Imaginary axis !”

Real axis !’
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" C!0

 
Figure A2: Integration contour C2 (in bold line) in the complex frequency z plane. The radius 
R of the part of circle CR may be made as large as necessary, and the radius δ of the semi-
circle Cω0  centred at ω0 may be made as small as one pleases. 
 

The integrals I and J can be broken up as follows: 

     I = Ii
i
!      (A.2) 

and     J = Ji
i
!      (A.3) 

where 

I1 =
S(z)

z z !"0( )CR# dz , I2 =
S(! ')

! ' ! ' "!0( )"R

"#

$ d! ' , I3 =
S(! ')

! ' ! ' "!0( )+#

"# +!0

$ d! ,

I4 =
S(! ')

! ' ! ' "!0( )# +!0

R

$ d! ' , I5 =
S(z)

z z !"0( )C0# dz , I6 =
S(z)

z z !"0( )C"0
# dz  (A.4) 

and 

J1 =
S(z)
z2 !"0

2CR# dz , J2 =!
S(i"")
" ''2+"0

2
R

0

# d i""( ) ,

 

J3 =
S(! ')

! '2"!0
2

0

!0 "#

$ d! ' ,  

J4 =
S(z)
z2 !"0

2C"0
# dz , J5 =

S(! ')
! '2"!0

2
!0 +#

R

$ d! '       (A.5) 

Taking the limit of the integrals as 

 

R!"  and 

 

!" 0 , one gets:  

 I1 ! 0 , J1 ! 0     (A. 6) 

the integrals I1 and J1 along CR vanishes as the radius R goes to infinity, since the kernel 

remains finite in the UHP ; one has also : 
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I2 + I3 + I4 !P S(" ')
" ' " ' #"0( )#$

+$

% d" '   (A.7) 

J3 + J5 !P S(" ')
" '2#"0

2
0

$

% d" '    (A.8) 

The integral I5 along C0 can be rewritten as: 

I5 = !("0 )
dz
zC0

# +
!(z) $!(0)

zC0
# dz     (A.9) 

where !(z) = S(z)
z "#0

. 

Setting z = δ exp(iα) in the first integral of Eq. (A.9) and integrating over α from π to 0, leads 

to : 

I5 = ! i "(0) # +
"(z) !"(0)

zC0
$ dz     (A.10) 

Since ϕ(z) is continuous at z = 0, which means that for all ε > 0 there exists a value ξ such that 

if z < ! , then 

 

!(z) "!(0) < #, it follows that the absolute value of the integral in Eq. (A.10) 

satisfies : 

!(z) "!(0)
zC0

# dz $
%
&

dz
C0
# =

%
&
' ( = %   (A.11) 

which means that it can be made smaller than any pre-assigned number. Hence : 

I5 = i
S(0)
!0

"       (A.12). 

A similar calculation gives for I6 : 

    I6 = ! i S("0 )
"0

#      (A.13) 

Collecting the preceding result gives : 

lim
R!",# ! 0

I = P
S $ '( )

$ ' $ ' % $0( )%"

+"

& d$ ' % i '
$0

S($0 ) +
i '
$

S(0) = 0   (A.14) 

Taking the real part of Eq. (A.14) leads to: 

Im[S(!0 )] = Im[S(0)]"
2!0

#
P

Re[S ! '( )]
! '2 " !0

2
0

+$

% d! '    (A.15) 

Since: 
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S(! ) = Ln[r(! )] = Ln["(! ) exp(i #(! ))] = Ln["(! )] + i#(! )   (A.16) 

by inserting the real and imaginary parts, one gets: 

!("0 ) = !(0) # 2"0

$
P

Ln[% "( )]
" 2 # "0

2
0

+&

' d"     (A.17) 

Similarly, collecting the Ji integrals leads to: 

lim
R! ",# ! 0

J = P
S $ '( )

$ '2 % $0
2

0

+"

& d$ ' % S(i$")
$ ''2+$0

2
+"

0

& d i$"( ) % i '
2$0

S($0 ) = 0   (A.18) 

Taking the real part of Eq. (A.18) leads to: 

Im[S(!0 )] = "
2!0

#
P

Ln[$ !( )]
! 2 " !0

2
0

+%

& d! "
2!0

#
Im S(i! )( )
! 2 +!0

2
0

+%

& d!   (A.19) 
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