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Abstract 

The search for weak oscillations in noisy records requires the development of analysis tools more 

sophisticated than the Fourier spectrum analysis. We present in this paper a new non-linear damped 

harmonic analysis (NLDHA) method that enables us to detect any damped harmonic signal hidden 

in noise and to simultaneously estimate the amplitude, frequency, phase and damping factor of the 

harmonic signal. We also compare this newly developed NLDHA method with a conventional auto-

regressive method called ESPRIT. The application of the NLDHA method to the seismic normal 

modes 0S2 and 0S3 excited after the 2004 Sumatra-Andaman earthquake highlights its ability to 

precisely recover the frequencies and quality factors of the singlets that constitute these two seismic 

modes. The application of the NLDHA in the sub-seismic frequency band reveals the presence of 

some unmodelled waves but no detection of the translational oscillation of the inner core has been 

claimed.  

Keywords: non-linear harmonic analysis, normal modes, superconducting gravimeters, Slichter 

triplet 

 

1. Introduction 



 The density structure in the deep Earth is poorly constrained, especially inside the core. 

Knowledge of the density structure inside the core can be achieved by the observation of the surface 

gravity effect of the core modes and of the translation of the solid inner core in the fluid outer core, 

the so-called Slichter triplet (Slichter, 1961). The period of the Slichter triplet is directly dependent 

on the density jump at the inner core boundary (ICB) as the main restoring force is the 

Archimedean force. The PREM (Dziewonski and Anderson, 1981) reference model gives a density 

jump at the ICB of 600 kg/m3 while recent observations by Masters and Gubbins (2003), and Koper 

and Pyle (2004), reached diverging conclusions, respectively that the density jump at ICB should be 

greater or smaller than the PREM predicted value. Moreover a convincing detection of this 

harmonic degree one normal mode could also constrain the viscosity at the ICB (e.g. Smylie and 

McMillan, 1998 and 2000; Rieutord, 2002). However, many attempts using spectral methods and 

stacking processes have not yet led to the reliable detection of the surface gravity signature of the 

free oscillation of the inner core (Jensen et al., 1995; Hinderer et al., 1995; Rosat et al., 2003 and 

2006; Guo et al. 2006a and 2006b) while the unique observation by Smylie (1992) and Smylie et al. 

(1993) has been confirmed by Courtier et al. (2000). However, Rieutord (2002) and Rogister (2003) 

have demonstrated that this unique claim of detection is irrelevant to the theoretical predictions.  

As the problem is to detect weak signals buried in larger amplitude geophysical phenomena 

and with unknown parameters (frequency, damping factor, and excitation source), we have to use 

more sophisticated tools than the usual spectral methods. As the period of the Slichter triplet is 

poorly constrained, the frequency must not be fixed a-priori. The process of excitation of the free 

oscillation of the inner core is also poorly known. Therefore the damping factor must also be an 

estimated parameter and not fixed a-priori. That highlights our motivation to develop a non-linear 

damped harmonic analysis (NLDHA), which is based on the non-linear harmonic analysis (NLHA) 

developed by Harada (2003). The NLHA method was successfully applied to the estimation of the 

time ephemeris of the Earth (Harada and Fukushima, 2003) as well as to the determination of 

planetary precession (Harada and Fukushima, 2004).  



 Here we propose a generalization of the method to damping oscillations and a first 

application to the seismic normal modes of the Earth that induced time-varying gravity signals 

recorded on the Earth’s surface by Superconducting Gravimeters (SGs) of the Global Geodynamics 

Project (GGP; Crossley et al., 1999) after the 2004 Sumatra-Andaman earthquake. SGs have proved 

to be well-suited for the study of the long-period seismic and sub-seismic modes (e.g. Freybourger 

et al., 1997; Van Camp, 1999; Widmer-Schnidrig, 2003; Rosat et al., 2004). The precise estimation 

of the frequencies and damping of the seismic modes of the Earth below 1 mHz, is fundamental as 

they are very sensitive to the density structure inside the Earth. In particular, their frequency 

splitting is directly linked to the 1D-density structure (Widmer-Schnidrig, 2003). Moreover their 

splitting possesses high sensitivity to the 3D-density structure in the Earth’s mantle and core. 

Therefore these modes are a mean to improve the density profile inside the Earth without any trade-

off with elastic parameters. Finally, an application of the NLDHA to the SG gravity residuals at 

Strasbourg (France) and Canberra (Australia) in the sub-seismic frequency range is performed in 

the search for the surface gravity effect of the Slichter modes. 

 

2. Description of NLDHA method 

 We extended Harada’s NLHA (Harada, 2003; Harada and Fukushima, 2003 and 2004) so as 

to be applicable to time series containing unknown numbers of damping oscillations with unknown 

frequencies and damping factors. The extended method tries to minimize Φ, the weighted sum of 

the square of residuals of the given data after subtracting a polynomial trend and multiple damping 

oscillations, defined by: 
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where N is the number of data, fi is the i-th datum obtained at the time ti, and wi is its weight; L is 

the order of the trend polynomial, pj is its j-th coefficient; M is the number of damping oscillations, 



sk and ck are the coefficients of the sine and cosine parts of the k-th oscillation component, the 

angular frequency and the damping factor of which are ωk and λk, respectively. Note that the 

introduction of the data weights enables NLDHA to deal with records containing some gaps by 

attributing a weight of zero to the missing samples.  

The outline of the method is roughly the same as that of Harada’s method (Harada, 2003). 

Once the non-linear parameters, ωk and λk, are all fixed, the other linear parameters, pj, sk , and ck, 

are optimally determined by the method of weighted linear least squares. In this sense, the optimal 

linear parameters, pj, sk , and ck, can be regarded as functions of the non-linear parameters. Then we 

regard the objective function Φ as a function of the non-linear parameters only: 

  ,),,(),,(),,(),( csp . 

Thus our problem reduces to a non-linear least squares problem, which is effectively solved by a 

quasi-Newton method such as the well-known BFGS (Broyden-Fletcher-Goldfarb-Shannon) 

method (Press et al., 1992). Therefore the issue is reduced to the questions of how to determine the 

optimal number of damping oscillations, M, and how to find suitable initial guess of the non-linear 

parameters.  

 We solve the first issue by the step-by-step approach, namely increasing M one by one 

starting from 0 as was done in Harada’s NLHA (Harada, 2003). This iterative approach is also 

similar to the iterative Fourier transform method used by Guo et al. (2005) in the search for the 

inner core wobble in Earth’s polar motion data. As for the second issue, we pick up a candidate pair 

of frequency and damping factor which maximizes the decrement of the objective function in the 

two-dimensional search of parameters in the range pre-assigned. Note that we simplified the 

procedure of the search by conducting not the full two-dimensional but the alternative search in the 

sense of frequency-first. The initial frequency is obtained from the power spectrum of the signal for 

the zero-damping factor. When the frequency has been finely estimated, the damping factor is then 

searched. The initial damping value is obtained from the maximum of the damping power spectrum 

estimated at the frequency determined in the previous fine search of frequency. The power 



spectrum in the damping factor domain is uni-modal, namely containing only one maximum (cf. 

Fig. 1). For each direction, in the frequency or in the damping factor, we followed a three-stage 

approach (1) a coarse but comprehensive search, (2) a refined but still comprehensive search, both 

based on the quasi-Newton method implemented with the BFGS algorithm, and (3) a parabola 

fitting near the optimum. The final stage to find the global minimum of Φ is conducted by the 

Brent’s method using the golden rule section (Brent, 1973). The full algorithm is sketched in Fig. 2. 

For the optimization subroutines used in NLDHA, the reader may refer to the Numerical Recipes 

(Press et al., 1992) Chapters 10.1 and 10.7, respectively for the golden section search of a local 

minimum and for the BFGS optimization of the quasi-Newton method. 

 The NLDHA method is different from the well-known auto-regressive Prony’s method, 

discovered by Prony in 1795 (Prony, 1795) during the long-time work to compute numerical tables 

of sine and cosine, and its modifications (Osborne 1975, Smyth 1985, Osborne and Smyth 1995) in 

the sense that (1) the time of sampling can be arbitrary, (2) the secular trend can be determined 

simultaneously, (3) the effect of data weight is considered, and (4) the optimal number of damping 

oscillations is also estimated. Note that Prony’s method is applicable only to evenly-sampled data. 

Prony’s method and its modern variation were re-discovered independently many times, for 

example, the “Sompi” method (Hori et al. 1989, Kumazawa et al. 1990, Imanishi et al. 1992), 

which is now popular in geophysics. Recently the ESPRIT method (Roy 1987, Roy and Kailath 

1989), which is a variation of Prony’s method and originally established in the field of acoustic 

signal processing, seems to be better than the modified Prony’s method in analyzing transient 

phenomena in electric power systems (Dafis et al. 2002). The ESPRIT method requires fixing a-

priori the model order, i.e. the number of harmonic signals to be analyzed. However, based on the 

estimation error (Badeau et al. 2004) for instance, it is possible to evaluate a-posteriori the optimal 

model order. The characteristics of the NLDHA and the auto-regressive ESPRIT methods are 

compared in Table 1. 



 A first application of the NLDHA method to the seismic normal modes excited after the 

2004 Sumatra-Andaman earthquake is proposed in the next section. The seismic normal modes are 

well-known decaying waves; therefore they are useful to test our NLDHA method and to compare 

it with more conventional analyses. 

 

3. Application to the seismic modes 0S2 and 0S3 after the 2004 Sumatra-Andaman earthquake 

 SGs have proved to be well suited for the study of the seismic modes below 1 mHz and the 

seismic mode analysis after the Mw = 9.3 Sumatra-Andaman earthquake on 2004 December 26 has 

confirmed their high quality (Rosat et al., 2005). Contrary to the Slichter triplet, the frequencies and 

Q-values of the seismic modes are well-known from many previous studies based on seismometer 

data (e.g. He and Tromp, 1996) or SG data (e.g. Roult et al., 2006). Therefore the analysis of the 

seismic modes presents a great opportunity to test the NLDHA method. 

 In the following, we use 22-day SG data recorded at the Strasbourg (ST, France) station 

after the 2004 Sumatra event. The gravity records have been corrected for the local tides and 

atmospheric pressure effect through a nominal barometric admittance of -3 nm/s²/hPa. The 

atmospheric pressure reduction is necessary to reduce the noise level at these frequencies (e.g. Zürn 

and Widmer, 1995). 

 In order to reduce the computation time of NLDHA, we limit the analysis to the frequency 

band 0.28-0.34 mHz by pre-processing the data with a band-pass filter. This frequency range 

contains the spheroidal seismic mode 0S2 only. The second subscript corresponds to the spherical 

harmonic degree l=2 and the first figure is the radial number n=0 in the notation nSl for the 

spheroidal modes. Because of the Earth’s rotation and ellipticity, each mode is split into 2l+1 

singlets having distinct frequencies. Thus 0S2 is split into 5 frequencies. The amplitude spectrum of 

0S2 is represented in the upper plot of Fig. 3 (a). The reconstructed signals and the residuals 

obtained with NLDHA and with ESPRIT are plotted in Fig. 3 (a). We have also plotted the RMS 

residuals after each step of the NLDHA in Fig. 3 (b). The sudden and clear drop after the 5th step, 



i.e. after the analysis of five decaying waves, indicates that all the meaningful harmonic signals 

have been detected and that only noise is remaining. 

 A comparison of the frequency estimates after the 2004 December 26th Andaman-Sumatra 

earthquake using a standard Lorentzian fitting of an amplitude spectrum (Rosat et al., 2005) with 

the results of the NLDHA and ESPRIT methods shows a perfect similitude within the error bars (cf. 

Table 2). The errors computed by Rosat et al. (2005) are based on the signal to noise ratio of each 

singlet as proposed by Dahlen (1982), and thus do not reflect the method uncertainty. So we have 

also estimated the uncertainties of the Lorentzian fitting. The estimated quality factors (Table 3) are 

also in good agreement between the amplitude decay measurement and NLDHA methods. It is 

worth to note that the NLDHA method gives lower uncertainties on the estimated parameters of 0S2 

seismic mode. The predicted frequencies and Q values of 0S2 for a PREM model are also given in 

Table 3. 

 We have also applied the NLDHA method to the same SG data but band-pass filtered 

between the corner frequencies 0.2 and 0.5 mHz. The wider band enables to estimate precisely the 5 

singlets of 0S2 and also to recover the 6 singlets of 0S3 (Fig. 4 (a)). Indeed there should be 7 singlets 

for this harmonic degree 3 seismic mode, but because of the geographical position of ST site with 

respect to the earthquake source, the central singlet corresponding to m = 0 at the PREM frequency 

0.4686 mHz, cannot be observed at ST. In that case, the RMS residuals do not indicate any drop up 

to the final step (Fig. 4 (b)). The process stops at the step 17 by itself as it cannot find any more 

harmonic signal to analyze. Although the NLDHA succeeds to find the harmonic signal 

corresponding to m = 2 and to estimate the frequency and damping factor, it fails computing the 

uncertainties of these non-linear parameters. The reason is that the frequency resolution is too poor 

to distinguish the singlet m = 2 from the singlet m = 1, so the Cholesky decomposition used to 

compute the inverse matrix of the uncertainties fails (the matrix becomes singular). We have 

resolved that problem by using a Singular Value Decomposition instead of the Cholesky 

decomposition when the latter fails. The results of NLDHA obtained for 0S3 are compared with the 



PREM predictions by Millot-Langet et al. (2003) in Table 2 for the frequencies and in Table 3 for 

the quality factors.  

 We have demonstrated with this example that NLDHA can analyze a very small oscillation 

hardly distinguishable from a larger harmonic signal and give a good estimate of its parameters. Of 

course to increase the quality of the parameter estimates we could improve the frequency resolution 

of the 0S3 seismic mode by taking longer data series, when they are available, in a similar way than 

when doing a spectral analysis.  

 To conclude this part, the NLDHA method performs well in the analysis of the seismic 

normal modes of the Earth. In the following section, we will show its application to the search for 

the Slichter triplet in the sub-seismic frequency band. 

 

4. Application to the search for the Slichter modes in the sub-seismic frequency band 

 The mechanism of excitation of the Slichter modes is not well known. It could be excited by 

a strong earthquake (e.g. Rosat, 2006), randomly excited by some turbulent flow in the fluid outer 

core and/or by the variable motions of the atmosphere and oceans. We suppose that the Slichter 

modes are continuously excited or are slowly damping, so that they are statistically well represented 

in a year of SG gravity records, in order to be detectable by the NLDHA. We consider the SG 

gravity records at the Canberra (Australia) and Strasbourg (France) SG sites. These SG sites have 

been chosen because of their low noise level in the frequency range considered (Rosat et al. 2004) 

and because of their nearly opposite geographical location. Before applying the NLDHA method, 

we have corrected the gravity data for the local tides and the atmospheric pressure effect. The 

obtained residuals have then been band-pass filtered between the corner frequencies 0.02 mHz and 

0.08 mHz. That frequency range covers all the possible periods for the Slichter modes predicted or 

observed by the previous works (e.g. Smylie, 1992, Courtier et al. 2000, Rieutord, 2002, Rogister, 

2003).  



 The NLDHA analysis detects the tidal waves as well as the diurnal harmonics of the 

atmospheric mode S1 remaining in the SG data. The reconstructed signal and the final residuals are 

plotted in Fig. 5 (a). The diurnal harmonics of S1 and its overtones (from S2 to S7) are clearly 

observed. Moreover, the main frequencies of the non-linear tides (MN4, M4, SN4, MS4 and MK4 

for the quart diurnal band; 2MN6, M6, MSN6, 2MS6, 2MK6, 2SM6 and MSK6 for the tidal band 

around 6h) are indicated. The RMS amplitudes of the residuals at each step are plotted in Fig. 5 (b). 

The amplitude spectra of the residuals at every five steps from 1 to 50 are also plotted in Fig. 5 (c). 

Notice a spectral peak in the Canberra data found at the frequency 0.0736 mHz with a negative Q-

factor equal to -37051 and an amplitude of 0.008 nm/s², and a spectral peak in the Strasbourg SG 

data found at the frequency 0.0774 mHz with Q = 20810 and an amplitude of 0.003 nm/s² with a 

damping-rate of about 9 years. Note that, as discussed by Zürn and Rydelek (1991), it is possible to 

obtain a negative Q-value when the system has a very large Q and the signal amplitude is small. 

Another spectral peak with amplitude of 0.01 nm/s² emerges clearly above the noise level in the 

Canberra residuals at the frequency 0.0655 mHz with an estimated Q-factor of 119860 giving a 

damping rate of about 58 years. This could be also an actual geophysical signal. However we have 

not enough evidence for the moment to conclude.  

The frequencies detected by Courtier et al. (2000) and attributed to the Slichter triplet were 

0.069186, 0.073767 and 0.077544 mHz, with quality factors between 100 and 400 (Smylie, 1992). 

Crossley et al. (1991) have shown that the damping due to the seismic anelasticity of the inner core 

and mantle has a Q-value of the order of 5000 with a corresponding damping time of 400 days. The 

damping due to the outer core viscosity has been formulated by Smylie and McMillan (1998) and 

also by Rieutord (2002). The estimates of the dynamic viscosity range from 1.6 10-2 Pa.s using 

laboratory experiments (Rutter et al. 2002), giving a Q-value of the order of 107, to 1.2 1011 Pa.s 

(Smylie and McMillan, 2000) using the claimed Slichter modes of Courtier et al. (2000) giving a Q-

value less than 10. Mathews and Guo (2005) have proposed an upper limit of 1.7 105 Pa.s using 

nutation data corresponding to a Q-value of 5000. The magnetic damping of the inner core has been 



studied by Buffet and Goertz (1995) who have shown that the Q-value should be between 5.8 105 

and 2200 for a magnetic field ranging from 0.0005 to 0.001 T. 

Since the expected triplet for the Slichter modes has not been commonly detected at the two 

SG sites Strasbourg and Canberra, we cannot say that the Slichter triplet has been clearly detected 

from the present analysis. However, the obtained signals close to the proposed frequencies of the 

Slichter triplet show a very large Q-value (between 20000 and 120000) suggesting a very low 

viscosity of the fluid core - if these signals can be attributed to the Slichter modes and if we 

consider that the main damping is due to the viscosity of the fluid outer core - and a very small 

amplitude of these waves as suggested from the theoretical studies.  

Besides the S1 wave and its over-tones observed in the residual time series data indicate a 

necessity to improve the accuracy of the atmospheric pressure correction. To strengthen the 

reliability of the detection of the core modes and the Slichter modes, further study is needed; 

particularly using an extension the NLDHA to combine several datasets should be considered (e.g. 

expanding the present NLDHA algorithm so that it can treat many SG data sets simultaneously).  

5. Conclusion 

 The advantages of the NLDHA method reside in the complete analysis of the signal without 

fixing a-priori the number of waves, a highly precise estimation of the parameters values and the 

application to unevenly spaced datasets. 

 We have demonstrated that the NLDHA is well suited to the precise analysis of the Earth’s 

normal modes. The NLDHA will be also very useful to detect and analyze the time-varying gravity 

record in the search for the weak oscillations of the core and inner core. In particular, a multi-

station extension of the NLDHA would be required to stack several SG records and search for the 

global signature of the translational motion of the inner core. This research will be the aim of a 

future work. 
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Figure caption 

Fig. 1 Example of a damping power spectrum. 

Fig. 2 NLDHA algorithm. 



Fig. 3 NLDHA and ESPRIT method applied to the time-varying gravity record of the SG at 

Strasbourg after the Sumatra event. (a) From top to bottom, amplitude spectrum of the SG data, 

amplitude spectrum of the reconstructed signal and amplitude spectrum of the residuals (original 

signal minus the reconstructed damped oscillations) obtained from the NLDHA (solid line) and 

ESPRIT (dotted line) analysis results. The data have been band-pass filtered between the corner 

frequencies 0.28 and 0.34 mHz before applying the NLDHA and ESPRIT. (b) Residual amplitude 

(RMS) after each step of the NLDHA. Note that the step number corresponds to the number of 

selected waves. 

Fig.4 Results of the NLDHA method applied to the time-varying gravity record of the SG at 

Strasbourg after the Sumatra event. (a) From top to bottom, the amplitude spectra of the SG data, of 

the reconstructed signal and of the residuals (original signal minus the reconstructed damped 

oscillations) obtained from the NLDHA analysis results are plotted. The data have been band-pass 

filtered between the corner frequencies 0.2 and 0.5 mHz before applying the NLDHA. (b) Residual 

amplitude (RMS) after each step of the NLDHA. Note that the step number corresponds to the 

number of selected waves. 

Fig. 5 Results of the NLDHA method applied to the one-year time-varying gravity record of the 

Canberra (Australia) and Strasbourg (France) SG sites, respectively on the left-hand and right-hand 

sides. (a) From top to bottom, the amplitude spectra of the SG signal, of the reconstructed signal 

and of the residuals (original signal minus the reconstructed damped oscillations) obtained from the 

NLDHA analysis results are plotted. (b) Residual amplitude (RMS) after each step of the NLDHA. 

(c) Amplitude spectrum of the residuals after every five steps from 1 to 50. The diurnal harmonics 

of the thermal atmospheric wave S1 from S2 to S7 are indicated in vertical dashed and dotted lines 

and the non-linear tides around 4 and 6h are indicated in vertical dotted lines. 



Table 1 Characteristics of the NLDHA and ESPRIT methods. 
 

 NLDHA ESPRIT 
Computation time Time consuming Fast 
Initial estimates Periodogram No 

Model 
Polynomial trend + 

damped harmonic functions 
Autoregressive model 

Number of waves Not fixed a-priori Fixed a-priori 
Updating of parameters at each step Yes No 

Damping estimate Yes Yes 
Initial amplitude Yes Yes 

Starting time of excitation No No 
Precision of parameter estimates most precise precise 

Unevenly space records yes no 
 



 
Table 2 Estimated frequencies in mHz of 0S2 singlets from the 22-day Strasbourg SG record after 

the 2004 Sumatra earthquake using a Lorentzian fitting in amplitude spectrum, NLDHA and 

ESPRIT methods. Note that in Rosat et al. (2005) the errors attributed to the frequency estimates of 

0S2 are based on the signal-to-noise ratio (SNR) of the signal and are not formal uncertainties. 

 
Frequency (mHz) m = -2 m = -1 m = 0 m = 1 m = 2 

Lorentzian fit (Rosat et al.2005) 0.29997 0.30462 0.30929 0.31389 0.31845 
SNR errors (Rosat et al.2005) 6.6 10-5 1.1 10-4 6.1 10-5 9.6 10-5 3.3 10-5 

Uncertainties 1.6 10-5 1.9 10-5 1.5 10-5 2.1 10-5 1.6 10-5

NLDHA 0.299951 0.304599 0.3092607 0.3138446 0.3184385 
Uncertainties 1.5 10-6 1.6 10-6 2.5 10-7 2.6 10-7 2.8 10-7

ESPRIT 0.29997 0.30460 0.30928 0.31388 0.3184 
Uncertainties 1.7 10-5 1.2 10-5 1.8 10-5 6.2 10-5 6.4 10-4

PREM 0.30000117 0.30449303 0.30906353 0.31371556 0.31845238 
 



 
Table 3 Estimated quality factors of 0S2 singlets from the 22-day Strasbourg SG record after the 

2004 Sumatra earthquake using an amplitude decay measurement method, NLDHA and ESPRIT 

methods. 

 
Q m = -2 m = -1 m = 0 m = 1 m = 2 

Amplitude decay measurement 440 493 545 484 555 
Uncertainties 6 11 14 11 5 

NLDHA 449.3 481.5 506.7 457.7 518.7 
Uncertainties 0.1 0.1 0.4 0.3 0.4 

ESPRIT 453.2 433.2 528.1 481.4 539.1 
Uncertainties 5 2.7 4.3 17.8 12.5 

PREM (Millot-Langet et al. 2003) 494.6 501.8 509.3 517.0 525.0 
 



Table 4 Estimated frequencies and quality factors of 0S3 singlets from the 22-day Strasbourg SG 

record after the 2004 Sumatra earthquake using NLDHA. 

 
0S3 m = -3 m = -2 m = -1 m = 0 m = 1 m = 2 m = 3 

NLDHA 
frequency (mHz) 

0.4615728 
± 4.9 10-6 

0.4642270 
± 4.9 10-6 

0.4664168 
± 4.6 10-7 - 

0.4707937 
± 3.8 10-6 

0.4727150 
± 6.9 10-6 

0.4747854 
± 1.1 10-6 

Q 
380.3 
± 0.04 

412.7 
± 0.1 

447.5 
± 0.5 

- 
446.1 
± 0.1 

477.2 
± 0.2 

328.2  
± 0.3 

Rosat et al. 
(2005) 

frequency (mHz) 0.46167 0.46424 0.46639 - 0.47084 0.47266 0.47474 

PREM 
frequency (mHz) 0.4618 0.4641 0.4664 0.4686 0.4707 0.4728 0.4748 

Q (Millot-Langet et 
al. 2003) 

411.7 413.6 415.5 417.4 419.3 421.3 423.3 
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