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Abstract

This article deals with the existence and the uniqueness of solutions to quadratic and superquadratic Marko-
vian backward stochastic differential equations (BSDEs for short) with an unbounded terminal condition. Our
results are deeply linked with a strong a priori estimate onZ that takes advantage of the Markovian framework.
This estimate allows us to prove the existence of a viscositysolution to a semilinear parabolic partial differen-
tial equation with nonlinearity having quadratic or superquadratic growth in the gradient of the solution. This
estimate also allows us to give explicit convergence rates for time approximation of quadratic or superquadratic
Markovian BSDEs.

1 Introduction

Since the early nineties and the work of Pardoux and Peng [25], there has been an increasing interest for backward
stochastic differential equations (BSDEs for short). These equations have a wide range of applications in stochastic
control, in finance or in partial differential equation theory. A particular class of BSDE is studied since few years:
BSDEs with generators of quadratic growth with respect to the variablez (quadratic BSDEs for short). This
class arises, for example, in the context of utility optimization problems with exponential utility functions, or
alternatively in questions related to risk minimization for the entropic risk measure (see e.g. [27, 17, 24] among
many other references). Many papers deal with existence anduniqueness of solution for such BSDEs. In the first
one [21], Kobylanski obtains an existence and uniqueness result for quadratic BSDEs when the terminal condition
is bounded. Let us remark that this result has been revisitedrecently thanks to a fixed point argument by Tevzadze
in [28]. Now, it is well known that the boundedness of the terminal condition is a too strong assumption. Indeed,
when we look to the simple quadratic BSDE

Yt = ξ +

∫ T

t

|Zs|
2

ds−
∫ T

t

ZsdWs,

we find the explicit solutionYt = log
(

E
[

eξ|Ft

])

and we immediately see that we just need to have an exponential
moment forξ to obtain a solution. In [5], Briand and Hu show an existence result for quadratic BSDEs when the
terminal condition has such an assumption. Let us notice that this result has been recently revisited in [2]. For the
uniqueness problem, results are more incomplete. In [13], authors show a uniqueness result when the generator
is convex (or concave) with respect toz and whenξ has an exponential moment which is almost the exponential
moment needed for the existence result.

Naturally, we could also wonder what happens when the generator has a superquadratic growth with respect to
the variablez. Up to our knowledge the case of superquadratic BSDEs is onlyinvestigate in the recent paper [12].
In this article, authors consider superquadratic BSDEs when the terminal condition is bounded and the generator
is convex inz. Firstly, they show that in a general way the problem is ill-posed: given a superquadratic generator,
there exists a bounded terminal condition such that the associated BSDE does not admit any bounded solution
and, on the other hand, if the BSDE admits a bounded solution,there exist infinitely many bounded solutions for
this BSDE. In the same paper, authors also show that the problem becomes well-posed in a Markovian framework:
When the terminal condition and the generator are deterministic functions of a forward SDE, we have an existence
result.
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1 INTRODUCTION 2

The first aim of this paper is to study existence and uniqueness results for quadratic and superquadratic Marko-
vian BSDEs. More precisely, we consider(X,Y, Z) the solution to the (decoupled) forward backward system

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,

wheref has quadratic or superquadratic growth with respectz, has no convexity assumption, andg is not supposed
to be bounded. The starting point of our work is a simple result that says: ifg andf are Lipschitz functions with
respect tox, then there exists a unique solution such thatZ is bounded, or in other words,Z preserves the regularity
of the derivatives ofg andf with respect tox. Now, the idea is to show that this property stays true wheng andf
are only locally Lipschitz. More precisely, if we assume that

|∇g(x)| + |∇xf(., x, ., .)| 6 C(1 + |x|r)

for r sufficiently small, then we are able to show the a priori estimate

|Z| 6 C(1 + |X |r).

Thanks to this kind of estimate, it is then possible to show anexistence and uniqueness result amongst solutions
that, roughly speaking, verify such an estimate (see Theorem 2.5). Contrarily to [13, 12] we do not need a
convexity assumption onf and contrarily to [12], we treat the case of unbounded terminal conditions.

One of the major drawback of results explained before is thatwe consider only the case of a deterministic
functionσ. The second part of our paper gives some partial results whenσ is random. In this framework we do
not know if our previous starting point stays true: ifg andf are Lipschitz functions with respect tox and ifσ is
bounded, does there exist a solution such thatZ is bounded ? We are able to show that this is true whenT is small
enough or for allT when we consider a simple example of quadratic BSDE. But the general case stays an open
question. We also investigate precisely the quadratic casewheng andf are bounded with respect tox by deeply
using bounded mean oscillation martingale (BMO martingalefor short) tools.

Thanks to our existence and uniqueness result we are able to give a probabilistic representation of the following
PDE:

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),t ∇u(t, x)σ(t)) = 0, x ∈ Rd, t ∈ [0, T ],
u(T, .) = g.

Such a probabilistic representation, also called Feynman-Kac representation, is already given in [13] whenf has
a quadratic growth and is convex with respect toz. Existence and uniqueness of this PDE has been studied in
[9] whenf has a quadratic growth with respect to∇uσ and in [10] for the superquadratic case, but the main part
of the results needs a convexity assumption onf with respect toz. In this paper, our existence result arises in
quadratic and superquadratic frameworks. Moreover, we do not need any convexity assumption onf which is
interesting for applications: For example, when we consider Isaacs equations in differential game theory,f is the
sum of a convex function and a concave function with respect to z.

The main goal of this paper is to apply a priori estimates obtained for the processZ to the problem of time
discretization of quadratic and superquadratic BSDEs. Actually, the design of efficient algorithms which are able
to solve BSDEs in any reasonable dimension has been intensively studied since the first work of Chevance [8], see
for instance [29, 3, 16]. But in all these works, the driver ofthe BSDE is a Lipschitz function with respect toz and
this assumption plays a key role in theirs proofs. In a recentpaper, Cheridito and Stadje [7] study approximation of
BSDEs by backward stochastic difference equations which consist in replacing the Brownian motion by a random
walk. They obtain a convergence result when the driver has a subquadratic growth with respect toz and they give
an example where there proof does not work when the driver hasa quadratic growth. To the best of our knowledge,
the only works where the time approximation of a quadratic BSDE is studied are the one of Imkeller and dos
Reis [18] and the one of Richou [26]. Let us notice that, when the driver has a specific form1, it is possible to get
around the problem by using an exponential transformation method (see [19]) or by using results on fully coupled
forward-backward differential equations (see [11]). Papers [18, 26] only study the case of a bounded terminal
condition: The first one investigates the case of Lipschitz terminal conditions whereas the second one studies the
non-smooth case. To the best of our knowledge, the time approximation of superquadratic BSDEs has not been
studied yet. In this paper we have obtained two types of results. Firstly we consider the case of a deterministic
functionσ. Theorem 5.7 gives us a speed of convergence very close to thespeed of convergence in the classical

1Roughly speaking, the driver is a sum of a quadratic termz 7→ C |z|2 and a function that has a linear growth with respect toz.
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Lipschitz case and this theorem is obtained in a general framework (quadratic and superquadratic BSDEs with
an unbounded terminal condition). Whenσ is random, we only study quadratic BSDEs with bounded terminal
conditions. In Theorem 5.9 we obtain almost the classical speed of convergence but in a restricted framework that
does not cover some interesting situations: for example we are not able to find a “good” speed of convergence
whenσ andg are Lipschitz functions with respect tox and this question is actually a real challenge.

The paper is organized as follows. In section 2 we obtain an existence and uniqueness result and an a priori
estimate onZ for Markovian quadratic and superquadratic BSDEs with unbounded terminal conditions whenσ
is a deterministic function. In section 3 we give some extra partial results whenσ is random. Section 4 contains
an application to semilinear parabolic PDEs. The last section is devoted to time approximation of quadratic and
superquadratic Markovian BSDEs.

Notations Throughout this paper,(Wt)t>0 will denote ad-dimensional Brownian motion, defined on a proba-
bility space(Ω,F ,P). For t > 0, let Ft denotes theσ-algebraσ(Ws; 0 6 s 6 t), augmented with theP-null
sets ofF . The Euclidean norm onRd will be denoted by|.|. The operator norm induced by|.| on the space of
linear operators is also denoted by|.|. The notationEt stands for the conditional expectation givenFt. Forp > 2,
m ∈ N, we denote further

• Sp(Rm), or Sp when no confusion is possible, the space of all adapted processes(Yt)t∈[0,T ] with values
in Rm normed by‖Y ‖Sp = E[(supt∈[0,T ] |Yt|)p]1/p; S∞(Rm), or S∞, the space of bounded measurable
processes;

• Mp(Rm), or Mp, the space of all progressively measurable processes(Zt)t∈[0,T ] with values inRm

normed by‖Z‖Mp = E[(
∫ T

0
|Zs|2 ds)p/2]1/p.

In the following, we keep the same notationC for all finite, nonnegative constants that appear in our computations.
In this paper we will considerX the solution to the SDE

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs, (1.1)

and(Y, Z) ∈ S2 ×M2 the solution to the Markovian BSDE

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs. (1.2)

2 A uniqueness and existence result

For the SDE (1.1) we use standard assumption.

Assumption (F.1). Let b : [0, T ]× Rd → Rd andσ : [0, T ] → Rd×d be continuous functions and let us assume
that there existsKb > 0 such that:

1. ∀t ∈ [0, T ], |b(t, 0)| 6 C,

2. ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |b(t, x)− b(t, x′)| 6 Kb |x− x′| .

Let us assume the following for the generator and the terminal condition of the BSDE (1.2).

Assumption (B.1). Let f : [0, T ]× Rd × R × R1×d → R andg : Rd → R be continuous functions and let us
assume moreover that there exist five constants,l > 1, α > 0, β > 0, γ > 0 andKf,y > 0 such that:

1. for each(t, x, y, y′, z) ∈ [0, T ]× Rd × R× R× R1×d,

|f(t, x, y, z)− f(t, x, y′, z)| 6 Kf,y |y − y′| ;

2. for each(t, x, y, z, z′) ∈ [0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(

C +
γ

2
(|z|l + |z′|l)

)

|z − z′| ;
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3. for each(t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(

C +
β

2
(|x|1/l + |x′|1/l)

)

|x− x′| ,

|g(x)− g(x′)| 6
(

C +
α

2
(|x|1/l + |x′|1/l)

)

|x− x′| ;

4.

α+ Tβ <
1

γ1/le((1+1/l)Kb+Kf,y)T |σ|1+1/l
∞ T 1/l

.

Sometimes we will also consider stronger assumption.

Assumption (B.2). Let f : [0, T ]× Rd × R × R1×d → R andg : Rd → R be continuous functions and let us
assume moreover that there exist five constants,l > 1, 0 6 r < 1

l , α > 0, β > 0, γ > 0 andKf,y > 0 such that:

1. for each(t, x, y, y′, z) ∈ [0, T ]× Rd × R× R× R1×d,

|f(t, x, y, z)− f(t, x, y′, z)| 6 Kf,y |y − y′| ;

2. for each(t, x, y, z, z′) ∈ [0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(

C +
γ

2
(|z|l + |z′|l)

)

|z − z′| ;

3. for each(t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(

C +
β

2
(|x|r + |x′|r)

)

|x− x′| ,

|g(x)− g(x′)| 6
(

C +
α

2
(|x|r + |x′|r)

)

|x− x′| .

Remark 2.1 Assumption (B.2) implies assumption (B.1). Moreover, the quadratic case corresponds tol = 1.

Proposition 2.2 We assume that assumptions (F.1) and (B.2) hold. There exists a solution(Y, Z) of the Markovian
BSDE (1.2) inS2 ×M2 such that, for allε > 0,

|Zt| 6 A∞ +
[

e(Kb(1+r)+Kf,y)(T−t)(α+ βT ) |σ|∞ + ε
]

|Xt|r , ∀t ∈ [0, T ],

whereA∞ is the unique strictly positive fixed point of the function

x 7→ Cε + Cε(α+ βT )2 +
[

e(Kb(1+r)+Kf,y)(T−t)(α + βT ) |σ|1+r
∞ γrT r + ε

]

xrl,

andCε is a constant that does not depend onr, α andβ. Moreover, this solution is unique amongst solutions
(Y, Z) such that

• Y ∈ S2,

• there existsη > 0 such that

E

[

e(
1
2+η) γ2

4

∫
T

0
|Zs|

2lds

]

< +∞.
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Proof of the proposition First of all, let us remark that if we have a solution(Y, Z) such that

|Zt| 6 C(1 + |Xt|r), ∀t ∈ [0, T ],

then, for allc > 0,

E

[

ec
∫

T

0
|Zs|

2lds
]

6 E

[

CeC sup06t6T |Xt|
2lr
]

< +∞ (2.1)

because2lr < 2 (see e.g. part 5 in [6]). Now, let us start by the uniqueness result. We consider two solutions
(Y 1, Z1) and(Y 2, Z2) such thatY 1, Y 2 ∈ S2,

∣

∣Z1
∣

∣ 6 C(1 + |X |r) and there existsη > 0 such that

E

[

e(
1
2+η) γ2

4

∫
T

0 |Z2
s |2lds

]

< +∞.

We defineȲ := Y 1 − Y 2 andZ̄ := Z1 − Z2. By considering the difference of the two BSDEs, the classical
linearization method gives us

Ȳt =

∫ T

t

ȲsUs + Z̄sVsds−
∫ T

t

Z̄sdWs,

that is to say

Ȳt = −
∫ T

t

e
∫

s

t
UuduZ̄s(dWs − Vsds), (2.2)

where(U, V ) takes value inR× Rd and

|Us| 6 Kf,y, |Vs| 6 C +
γ

2
(
∣

∣Z1
s

∣

∣

l
+
∣

∣Z2
s

∣

∣

l
).

By applying Young’s inequality, Hölder’s inequality and (2.1), we have

E

[

e
1
2

∫
T

0
|Vs|

2ds
]

6 E

[

e
1
2

∫
T

0
(C+C|Z1

s |2l+(1+η) γ2

4 |Z2
s |2l)ds

]

6 CE

[

eC
∫

T

0 |Z1
s |2ldse

1+η
2

γ2

4

∫
T

0 |Z2
s |2lds

]

6 CE

[

eCp
∫

T

0 |Z1
s |2lds

]1/p

E

[

e(
1
2+η) γ2

4

∫
T

0 |Z2
s |2lds

]1/q

< +∞,

with q = (1/2 + η)(1/2 + η/2)−1. This estimate shows us that Novikov’s condition is fulfilled and so we are
able to use Girsanov’s Theorem in (2.2) that gives us directly thatȲ = 0. Then it is standard to show thatZ̄ = 0.
Finally we obtain the uniqueness result.

Now, let us show the existence result. Firstly we will approximate our Markovian BSDE by another one. Let
(Y M , ZM ) the solution of the BSDE

Y M
t = gM (XT ) +

∫ T

t

fM (s,Xs, Y
M
s , ZM

s )ds−
∫ T

t

ZM
s dWs, (2.3)

with gM = g ◦ρM andfM = f(., ρM (.), ., .) whereρM is a smooth modification of the projection on the centered
euclidean ball of radiusM such that|ρM | 6 M , |∇ρM | 6 1 andρM (x) = x when |x| 6 M − 1. It is now
easy to see thatgM andfM are Lipschitz functions with respect tox. Theorem 3.1 in [26] gives us thatZM

is bounded by a constantA0 that depends onM in the quadratic case. In fact this result stays true in our more
general framework. More precisely we have this propositionthat we will show in the appendix.

Proposition 2.3 We assume that (F.1) holds. We also assume thatf : [0, T ] × Rd × R × R1×d → R and
g : Rd → R are continuous functions such that:

• g isKg-Lipschitz,
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• f is Kf,x-Lipschitz with respect tox, Kf,y-Lipschitz with respect toy and locally Lipschitz with respect to
z: there exists an increasing functionϕ : R+ → R+ such that for each(t, x, y, z, z′) ∈ [0, T ]× Rd × R×
R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6 C(1 + ϕ(|z|) + ϕ(|z′|)) |z − z′| .
Then, there exists a unique solution(Y, Z) to the BSDE (1.2) inS2×M2 such thatZ is bounded. Moreover,
we have

|Z| 6 e2Kb+Kf,y |σ|∞ (Kg + TKf,x).

Thanks to this lemma we know that there exists a unique solution (Y M , ZM ) to the BSDE (2.3) (in the
appropriate space) andZM is bounded by a constantA0 that depends onM . Moreover,fM is a Lipschitz function
with respect toz and BSDE (2.3) is a classical Lipschitz BSDE. Now we will showthe following Lemma.

Lemma 2.4 We have, for allε > 0,
∣

∣ZM
t

∣

∣ 6 An +Bn |Xt|r ,
with (An, Bn)n∈N defined by recursion:B0 = 0, A0 defined before,

Bn+1 = e(Kb(1+r)+Kf,y)(T−t)(α+ βT ) |σ|∞ + ε,

An+1 = C + C(α+ βT )2 +
[

e(Kb(1+r)+Kf,y)(T−t)(α+ βT ) |σ|1+r
∞ γrT r + ε

]

Arl
n ,

whereC is a constant that does not depend onr, α, β andM .

Proof of the lemma Let us prove the result by recursion. Forn = 0 we have already shown the result. Let us
assume that the result is true for somen ∈ N∗ and let us show that it stays true forn+ 1. Firstly we assume that
for all t ∈ [0, T ], b(t, .), g andf(t, ., ., .) are differentiable. ThenX and(Y M , ZM ) are differentiable with respect
to x (see e.g. [14]), we have

∇Y M
t = ∇gM (XT )∇XT −

∫ T

t

∇ZM
s dWs

+

∫ T

t

∇xfM (s,Xs, Y
M
s , ZM

s )∇Xs +∇yfM (s,Xs, Y
M
s , ZM

s )∇Y M
s +∇zfM (s,Xs, Y

M
s , ZM

s )∇ZM
s ds,

andZM
t = ∇Y M

t (∇Xt)
−1σ(t) a.s.. Since

∣

∣ZM
s

∣

∣ 6 A0, we have

∣

∣∇zfM (s,Xs, Y
M
s , ZM

s )
∣

∣ 6 C(1 +
∣

∣ZM
s

∣

∣

l
) 6 C

and so we are allowed to apply Girsanov’s Theorem:W̃t := Wt −
∫ t

0 ∇zfM (s,Xs, Y
M
s , ZM

s )ds is a Brownian
motion under a probabilityQM . We obtain

∇Y M
t = E

QM

t

[

e
∫

T

t
∇yfM (u,Xu,Y

M
u ,ZM

u )du∇gM (XT )∇XT

+

∫ T

t

e
∫

s

t
∇yfM (u,Xu,Y

M
u ,ZM

u )du∇xfM (s,Xs, Y
M
s , ZM

s )∇Xsds

]

,

and finally
∣

∣ZM
t

∣

∣ 6 C + e(Kb+Kf,y)(T−t) |σ|∞ E
QM

t

[

α |XT |r + β

∫ T

t

|Xs|r ds
]

(2.4)

because∇Xs(∇Xt)
−1 is bounded byeKb(T−t). Let us come back to the SDE:

Xs = Xt +

∫ s

t

b(u,Xu)du +

∫ s

t

σ(u)dW̃u +

∫ s

t

σ(u)∇zf(u,Xu, Y
M
u , ZM

u )du,

|Xs| 6 |Xt|+ C +

∫ s

t

Kb |Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

+ |σ|∞ γ

∫ s

t

|An +Bn |Xu|r|l du, (2.5)

E
QM

t [|Xs|] 6 |Xt|+ C +Kb

∫ s

t

E
QM

t [|Xu|] du + (1 + ε) |σ|∞ γTAl
n + CεE

QM

t

[
∫ s

t

Bl
n |Xu|rl du

]

,
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thanks to the recursion assumption. Young’s inequality gives us

CεB
l
n |Xu|rl 6 CεB

lp
n + ε |Xu|rlq

with 1/p+ 1/q = 1 andrlq = 1 (let us recall thatrl < 1). Thus, we obtain

E
QM

t [|Xs|] 6 |Xt|+ C +Kb

∫ s

t

E
QM

t [|Xu|] du+ (1 + ε) |σ|∞ γTAl
n + CBlp

n + εEQM

t

[
∫ s

t

|Xu| du
]

.

Gronwall’s Lemma gives us

E
QM

t [|Xs|] 6 C + e(Kb+ε)(T−t)
(

(1 + ε) |σ|∞ γTAl
n + CBlp

n + |Xt|
)

,

and so

E
Q

M

t [|Xs|r] 6
(

E
Q

M

t [|Xs|]
)r

6 C + er(Kb+ε)(T−t)
(

(1 + ε) |σ|r∞ γrT rArl
n + CBrlp

n + |Xt|r
)

becauser < 1. By introducing this inequality into (2.4) we obtain
∣

∣ZM
t

∣

∣ 6 C+C(α+βT )+ e(Kb+Kf,y+r(Kb+ε))(T−t)(α+βT ) |σ|∞
(

(1 + ε) |σ|r∞ γrT rArl
n + CBrlp

n + |Xt|r
)

.

Finally,
Bn+1 = e(Kb+Kf,y+r(Kb+ε))(T−t)(α+ βT ) |σ|∞ ,

and, thanks to the recursion assumption,

An+1 = C + C(α+ βT )2 + (1 + ε)e(Kb+Kf,y+r(Kb+ε))(T−t)(α+ βT ) |σ|1+r
∞ γrT rArl

n .

Since these equalities are true for allε > 0, the result is proved. Whenb, g andf are not differentiable, we can
prove the Lemma by a standard approximation and stability results for Lipschitz BSDEs. ⊓⊔

Sincelr < 1, the recursion function that defines the sequence(An)n>0 is a contractor function and soAn →
A∞ whenn → +∞, with A∞ that does not depend onM . Finally,

∣

∣ZM
t

∣

∣ 6 A∞ +
[

e(Kb(1+r)+Kf,y)(T−t)(α+ βT ) |σ|∞ + ε
]

|Xt|r . (2.6)

Now, we want to come back to the initial BSDE (1.2). We will show that(Y n, Zn)n∈N is a Cauchy sequence
in the spaceS2 ×M2. We have, thanks to the classical linearization method,

Y p+q
t − Y p

t = gp+q(XT )− gp(XT ) +

∫ T

t

fp+q(s,Xs, Y
p+q
s , Zp+q

s )− fp(s,Xs, Y
p+q
s , Zp+q

s )ds

+

∫ T

t

(Y p+q
s − Y p

s )U
p,q
s + (Zp+q

s − Zp
s )V

p,q
s ds−

∫ T

t

Zp+q
s − Zp

sdWs,

that is to say

Y p+q
t − Y p

t = e
∫

T

t
Up,q

u du [gp+q(XT )− gp(XT )]

+

∫ T

t

e
∫

s

t
Up,q

u du
[

fp+q(s,Xs, Y
p+q
s , Zp+q

s )− fp(s,Xs, Y
p+q
s , Zp+q

s )
]

ds

−
∫ T

t

e
∫

s

t
Up,q

u du(Zp+q
s − Zp

s )(dWs − V p,q
s ds),

with p, q ∈ N, |Up,q
s | 6 Kf,y and |V p,q

s | 6 γ
2 (1 + |Zp

s |
l
+ |Zp+q

s |l). Thanks to (2.6), Novikov’s condition is
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fulfilled and so we are able to apply Girsanov’s Theorem:

∣

∣Y p+q
t − Y p

t

∣

∣ 6

∣

∣

∣
E
Q

p,q

t

[

e
∫

T

t
Up,q

u du [gp+q(XT )− gp(XT )]
]
∣

∣

∣

+

∣

∣

∣

∣

∣

E
Qp,q

t

[

∫ T

t

e
∫

s

t
Up,q

u du
[

fp+q(s,Xs, Y
p+q
s , Zp+q

s )− fp(s,Xs, Y
p+q
s , Zp+q

s )
]

ds

]∣

∣

∣

∣

∣

6 eKf,yTE
Qp,q

t [|gp+q(XT )− gp(XT )|]

+eKf,yT

∫ T

t

E
Qp,q

t

[∣

∣fp+q(s,Xs, Y
p+q
s , Zp+q

s )− fp(s,Xs, Y
p+q
s , Zp+q

s )
∣

∣

]

ds

6 CE
Qp,q

t

[

(1 + |XT |r+1
)1|XT |>p−1

]

+ C

∫ T

t

E
Qp,q

t

[

(1 + |Xs|r+1
)1|Xs|>p−1

]

ds

6 CE
Qp,q

t

[

1 + |XT |2r+2
]1/2

E
Qp,q

t

[1|XT |>p−1

]1/2

+C

∫ T

t

E
Qp,q

t

[

1 + |Xs|2r+2
]1/2

E
Qp,q

t

[1|Xs|>p−1

]1/2
ds

6 CE
Qp,q

t

[

1 + |XT |2r+2
]1/2 E

Qp,q

t [|XT |]1/2

p1/2

+C

∫ T

t

E
Qp,q

t

[

1 + |Xs|2r+2
]1/2 E

Qp,q

t [|Xs|]1/2

p1/2
ds.

By the same calculus than in the proof of Lemma (2.4) using thea priori estimate onZp,q andZp, we are able to
show that

E
Qp,q

t [|Xs|a] 6 C(1 + |Xt|a)
for all a > 1 with a constantC that depends ona but does not depend onp andq. Finally

E

[

sup
06t6T

∣

∣Y p+q
t − Y p

t

∣

∣

2
]

6

C(1 + E

[

sup06t6T |Xt|r+3/2
]

)

p1/2
6

C

p1/2
p→+∞−−−−−→ 0.

By applying Itô’s formula to the process|Y p+q − Y p|2 and using the same calculus, it is rather standard to show

that(Zn)n∈N is a Cauchy sequence inM2. Finally, it is easy to check that(Y n, Zn)
n→+∞−−−−−→ (Y, Z) the solution

of the initial BSDE (1.2) and our estimate onZn stays true forZ:

|Zt| 6 A∞ +
[

e(Kb(1+r)+Kf,y)T (α+ βT ) |σ|∞ + ε
]

|Xt|r .

⊓⊔

Theorem 2.5 We assume that assumptions (F.1) and (B.1) hold. There exists a solution(Y, Z) of the Markovian
BSDE such that, for allε > 0,

|Zt| 6 Cε +
[

e(Kb(1+1/l)+Kf,y)(T−t)(α + βT ) |σ|∞ + ε
]

|Xt|1/l , ∀t ∈ [0, T ].

Moreover, this solution is unique amongst solutions(Y, Z) such that

• Y ∈ S2,

• there existsη > 0 such that

E

[

e(2+η) γ2

4

∫
T

0
|Zs|

2lds

]

< +∞.

Proof of the theorem We will mimic the proof of Proposition (2.2). Let us start by the uniqueness result. We
consider two solutions(Y 1, Z1) and(Y 2, Z2) such thatY 1, Y 2 ∈ S2 and

E

[

e(2+η) γ2

4

∫
T

0 |Z1
s |2lds

]

+ E

[

e(2+η) γ2

4

∫
T

0 |Z2
s |2lds

]

< +∞.
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As in the proof of Proposition (2.2) we consider the BSDE satisfied by processes̄Y andZ̄ and we introduce the
two processesU andV . Now we just have to show that Novikov’s condition stays fulfilled: by applying Young’s
inequality and Hölder’s inequality we have

E

[

e
1
2

∫
T

0
|Vs|

2ds
]

6 E

[

e
1
2

∫
T

0
(C+(2+η) γ2

4 |Z1
s |2l+(2+η) γ2

4 |Z2
s |2l)ds

]

6 CE

[

e
2+η
2

γ2

4

∫
T

0 |Z1
s |2ldse 2+η

2
γ2

4

∫
T

0 |Z2
s |2lds

]

6 CE

[

e(2+η) γ2

4

∫
T

0 |Z1
s |2lds

]1/2

E

[

e(2+η) γ2

4

∫
T

0 |Z2
s |2lds

]1/2

< +∞.

The remaining of the uniqueness proof is unchanged. Now, letus show the existence result. We will consider
again the solution(Y M , ZM ) of the BSDE (2.3). We have already remark thatZM is bounded by a constantCM

that depends onM . Now we want to obtain an estimate onZM that does not depend onM . Thanks to assumption
(B.1) we have, for allr ∈ [0, 1/l[,

|fM (t, x, y, z)− fM (t, x′, y, z)| 6
(

C +
βM1/l−r

2
(|x|r + |x′|r)

)

|x− x′| ,

|gM (x)− gM (x′)| 6
(

C +
αM1/l−r

2
(|x|r + |x′|r)

)

|x− x′| .

Since assumption (B.2) holds, we are now allowed to apply Proposition 2.2: for allr ∈ [0, 1/l[ we have

∣

∣ZM
t

∣

∣ 6 Dr +
[

e(Kb(1+r)+Kf,y)(T−t)(α+ βT )M1/l−r |σ|∞ + ε
]

|Xt|r , (2.7)

whereDr is the unique strictly positive fixed point of the function

x 7→ Cε + CεM
2(1/l−r)(α+ βT )2 +

[

e(Kb(1+r)+Kf,y)(T−t)(α+ βT )M1/l−r |σ|1+r
∞ γrT r + ε

]

xrl.

Now we want to consider a sequence(rk)k∈N such thatrk
k→+∞−−−−−→ 1/l. To study the behavior of(Drk)k∈N we

use a lemma that we will show after in the appendix.

Lemma 2.6 Let us consider three sequences(pk)k∈N, (ak)k∈N and(bk)k∈N such thatpk ∈ [0, 1], pk
k→+∞−−−−−→ 1,

ak > 0, ak
k→+∞−−−−−→ a∞, bk ∈ [0, b̄] with b̄ < 1 andbk

k→+∞−−−−−→ b∞. For all k ∈ N ∪ {+∞}, we also consider the

unique fixed pointuk > 0 of the functionx 7→ ak + bkx
rk. Thenuk

k→+∞−−−−−→ u∞.

Forε sufficiently small we have

e(Kb(1+1/l)+Kf,y)(T−t)(α+ βT ) |σ|1+1/l
∞ γ1/lT 1/l + ε < 1,

because in assumption (B.1) we assume

α+ Tβ <
1

γ1/le((1+1/l)Kb+Kf,y)T |σ|1+1/l
∞ T 1/l

.

Thus we have, thanks to Lemma 2.6,Drk
k→+∞−−−−−→ D1/l the unique strictly positive fixed point of the function

x 7→ Cε + Cε(α + βT )2 +
[

e(Kb(1+1/l)+Kf,y)(T−t)(α+ βT ) |σ|1+1/l
∞ γ1/lT 1/l + ε

]

x.

Finally, whenε is small enough, we obtain an estimate ofZM that does not depend onM by lettingr → 1/l in
(2.7):

∣

∣ZM
t

∣

∣ 6 D1/l +
[

e(Kb(1+1/l)+Kf,y)(T−t)(α+ βT ) |σ|∞ + ε
]

|Xt|1/l . (2.8)

To conclude we have to show that(Y n, Zn)n∈N is a Cauchy sequence in the spaceS2 ×M2. As in the proof of
Proposition 2.2 we consider the BSDE satisfied by processesY p+q − Y p andZp+q − Zp and we introduce two
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processesUp,q andV p,q. Now we just have to show that Novikov’s condition stays fulfilled: by applying Young’s
inequality and Hölder’s inequality we have

E

[

e
1
2

∫
T

0
|V p,q

s |2ds
]

6 E

[

e
1
2

∫
T

0
(C+(2+η) γ2

4 |Zp+q
s |2l+(2+η) γ2

4 |Zp
s |

2l)ds

]

(2.9)

6 CE

[

e
2+η
2

γ2

4

∫
T

0 |Zp+q
s |2ldse 2+η

2
γ2

4

∫
T

0
|Zp

s |
2lds

]

(2.10)

6 CE

[

e(2+η) γ2

4

∫
T

0 |Zp+q
s |2lds

]1/2

E

[

e(2+η) γ2

4

∫
T

0
|Zp

s |
2lds

]1/2

. (2.11)

Thanks to estimate (2.8) we have, for allM ∈ N andε small enough,

E

[

e(2+η) γ2

4

∫
T

0 |ZM
s |2lds

]

6 CE

[

exp

(

(1 + η)
γ2

2
e2l(Kb(1+1/l)+Kf,y)T (α+ βT )2l |σ|2l∞ T sup

06t6T
e−2Kbt |Xt|2

)]

.

Since we have

sup
06t6T

(

e−2Kbt |Xt|2
)

6 sup
06t6T

(

e−2Kbt sup
06s6t

|Xs|2
)

,

a slight modification of the proof of Lemma 4.1 in [13] gives usthat the left term in the penultimate inequality is
finite for η small enough when

γ2

2
e2l(Kb(1+1/l)+Kf,y)T (α+ βT )2l |σ|2l∞ T <

1

2 |σ|2∞ T

which is always true because we assume in assumption (B.1) that

α+ Tβ <
1

γ1/le((1+1/l)Kb+Kf,y)T |σ|1+1/l
∞ T 1/l

.

Finally Novikov’s condition is fulfilled and we are allowed to use Girsanov’s theorem. The remaining of the
existence proof is unchanged. ⊓⊔

Remark 2.7 In (B.1), our assumption

α+ Tβ <
1

γ1/le((1+l−1)Kb+Kf,y)T |σ|1+1/l
∞ T 1/l

is exactly the one we can find in the article [13] for the quadratic case (i.e.l = 1). In this case, this assumption is
optimal because we need it to obtain a sufficient exponentialmoment for the terminal condition and the random
part of the generator. Let us also remark that in [13] assumptions are more general because they are about the
growth off andg instead of the growth of derivatives off andg.

Remark 2.8 With the same machinery it is possible to treat a little more general framework than the one of
assumption (B.1): indeed it is possible to replace points 2 and 3 with

2. for each(t, x, y, z, z′) ∈ [0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(

C + γ′ |x|+ γ

2
(|z|l + |z′|l)

)

|z − z′| ;

3. for each(t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(

C + β′ |z|+ β

2
(|x|1/l + |x′|1/l)

)

|x− x′| ,

|g(x)− g(x′)| 6
(

C +
α

2
(|x|1/l + |x′|1/l)

)

|x− x′| ;

and the point 4 with an Ad hoc assumption. We decided to do not deal with this little more general setting because
the proof is already technical and we do not want to complicate it unnecessarily.
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3 Some results when σ is random

The main restriction in the previous part is about the functionσ that is assumed to be deterministic. In this section
we will give some partial results when the SDE is given by

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (3.1)

We will consider classical assumptions on this SDE.

Assumption (F.2). Let b : [0, T ]× Rd → Rd andσ : [0, T ]× Rd → Rd×d be continuous functions and let us
assume that there existKb > 0, Kσ > 0 andMσ > 0 such that:

1. ∀t ∈ [0, T ], |b(t, 0)| 6 C,

2. ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |b(t, x)− b(t, x′)| 6 Kb |x− x′|,

3. ∀t ∈ [0, T ], ∀x ∈ Rd, |σ(t, x)| 6 Mσ,

4. ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |σ(t, x) − σ(t, x′)| 6 Kσ |x− x′|.

Before giving our first result, let us point out why we are not able to use the same machinery than in our first
part. Whenσ is deterministic, the starting point is Proposition 2.3 where we show thatZ is bounded under good
assumptions. To prove this result we deeply use the fact that∇X is bounded. Now, whenσ is not deterministic,
∇X is not necessarily bounded and so Proposition 2.3 does not necessarily remain. Finally, the first question to
answer is: does the processZ remains bounded wheng andf are Lipschitz with respect tox?

3.1 Boundedness of Z when T is small enough

In this part we will give a partial answer to the previous question.

Proposition 3.1 We assume that (F.2) holds. We also assume thatf : [0, T ] × Rd × R × R1×d → R and
g : Rd → R are continuous functions such that:

• g isKg-Lipschitz,

• f is Kf,x-Lipschitz with respect tox, Kf,y-Lipschitz with respect toy and locally Lipschitz with respect
to z: there exists an increasing continuous functionϕ : R+ → R+ such that for each(t, x, y, z, z′) ∈
[0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6 (Kf,z + ϕ(|z|) + ϕ(|z′|)) |z − z′| .

Then, forT small enough, there exists a unique solution(Y, Z) to the BSDE (1.2) inS2 ×M2 such thatZ
is bounded.

Proof of the proposition Once again, we will use a classical truncation argument (seee.g. the proof of Theorem
4.1 in [12]). Our truncation functionρM is a smooth modification of the projection on the centered euclidean ball
of radiusM such that|ρM | 6 M , |∇ρM | 6 1 andρM (x) = x when|x| 6 M − 1. We denote(Y M , ZM ) the
solution of the BSDE

Y M
t = g(XT ) +

∫ T

t

fM (s,Xs, Y
M
s , ZM

s )ds−
∫ T

t

ZM
s dWs,

wherefM := f(., ., ., ρM (.)). Now, this BSDE is also Lipschitz with respect toz. Firstly we assume that for all
t ∈ [0, T ], b(t, .), g andf(t, ., ., .) are differentiable. ThenX and(Y, Z) are differentiable with respect tox, we
have

∇Y M
t = ∇g(XT )∇XT −

∫ T

t

∇ZM
s dWs

+

∫ T

t

∇xfM (s,Xs, Y
M
s , ZM

s )∇Xs +∇yfM (s,Xs, Y
M
s , ZM

s )∇Y M
s +∇zfM (s,Xs, Y

M
s , ZM

s )∇ZM
s ds,
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andZM
t = ∇Y M

t (∇Xt)
−1σ(t,Xt) a.s.. Since∇zfM is bounded byKf,z + 2ϕ(M), we are allowed to apply

Girsanov’s Theorem:̃Wt := Wt−
∫ t

0
∇zfM (s,Xs, Y

M
s , ZM

s )ds is a Brownian motion under the probabilityQM .
We obtain

∇Y M
t = E

QM

t

[

e
∫

T

t
∇yfM (u,Xu,Y

M
u ,ZM

u )du∇gM (XT )∇XT

+

∫ T

t

e
∫

s

t
∇yfM (u,Xu,Y

M
u ,ZM

u )du∇xfM (s,Xs, Y
M
s , ZM

s )∇Xsds

]

,

and finally
∣

∣ZM
t

∣

∣ 6 eKf,yTMσ

(

KgE
QM

t [|UT |] +Kf,x

∫ T

t

E
QM

t [|Us|] ds
)

,

with (Us)t6s6T the solution to the SDE

Us = Id+

∫ s

t

∇b(Xu)Uudu+

∫ s

t

∑

i=1

∇σi(Xu)UudW
i
u

= Id+

∫ s

t

∇b(Xu)Uudu+

∫ s

t

∑

i=1

∇σi(Xu)Uu(dW̃
i
u + (∇zfM )i(u,Xu, Y

M
u , ZM

u )du)

where the superscripti denotes thei-th column. A classical estimate onEQM

t [|Us|] gives us

E
QM

t [|Us|] 6 CeK
2
σT+(Kb+Kσ(Kf,z+2ϕ(M)))2T 2

.

ForT small enough, the function

x 7→ 1 + CeKf,yTMσ(Kg +Kf,xT )e
K2

σT+(Kb+Kσ(Kf,z+2ϕ(x)))2T 2

has, at least, one positive fixed point. Let us denotesM̄ the lowest positive fixed point of this function. Then
ZM̄ 6 M̄ − 1 and(Y M̄ , ZM̄ ) is a solution to the initial BSDE. Uniqueness follows from the uniqueness result
for Lipschitz BSDEs. ⊓⊔

Remark 3.2

• In general, it is not possible to stick local solutions to obtain a solution(Y, Z) with Z bounded for allT .

• The biggestT that allows the existence of a fixed point for the function

x 7→ 1 + CeKf,yTMσ(Kg +Kf,xT )e
K2

σT+(Kb+Kσ(Kf,z+2ϕ(x)))2T 2

,

strongly depends onKg. So, it is not possible to treat the case ofg andf locally Lipschitz with respect tox
by using the same machinery than in the previous part.

3.2 A simple example

In this part we will see that when we consider a simple quadratic BSDE with an explicit solution, the processZ
remains bounded wheng andf are Lipschitz with respect tox. More precisely, we will consider the following
quadratic BSDE:

Yt = g(XT ) +

∫ T

t

|Zs|2
2

ds−
∫ T

t

ZsdWs. (3.2)

Proposition 3.3 Let us assume that (F.2) holds and thatg is aKg-Lipschitz function. Then there exists a unique
solution(Y, Z) to the BSDE (3.2) inS2 ×M2 such that the processZ is bounded.
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Proof of the proposition It is well known that (3.2) can be explicitly solved with an exponential transform, also
called Cole-Hopf transform in PDE theory. More precisely, we have

Yt = logEt

[

eg(XT )
]

, Zt = e−YtZ̃t,

whereZ̃ is given by the martingale representation theorem applied to the martingale
(

Et

[

eg(XT )
])

06t6T
. Y is

well defined becauseg is Lipschitz and for allC > 0

E

[

eC|XT |
]

< +∞,

sinceσ is bounded (see e.g. part 5 in [6]). The uniqueness is standard. As in previous proofs, we assume in a first
time thatg, b andσ are differentiable with respect tox. Then we have

|Zt| =

∣

∣

∣

∣

∣

Et

[

∇g(XT )∇XT (∇Xt)
−1eg(XT )

]

Et

[

eg(XT )
] σ(t,Xt)

∣

∣

∣

∣

∣

6 C
Et

[∣

∣∇XT (∇Xt)
−1
∣

∣ eg(XT )
]

Et

[

eg(XT )
]

6 CEt

[

∣

∣∇XT (∇Xt)
−1
∣

∣

2
]1/2 Et

[

e2g(XT )
]1/2

Et

[

eg(XT )
]

6 C
Et

[

e2g(XT )
]1/2

Et

[

eg(XT )
]

because∇g, σ are bounded and(∇Xs(∇Xt)
−1)t6s6T solve the SDE

Us = Id+

∫ s

t

∇b(s,Xs)Usds+

d
∑

i=1

∫ s

t

∇σi(s,Xs)UsdW
i
s ,

soEt

[

∣

∣∇XT (∇Xt)
−1
∣

∣

2
]

is bounded. Let us denotēX the solution of the ordinary differential equation (with a

random initial condition)

X̄s = Xt +

∫ s

t

b(u, X̄u)du, t 6 s 6 T.

Sinceg is Lipschitz andX̄T isFt-measurable, we obtain

|Zt| 6 C
eg(X̄T )Et

[

e2C|XT −X̄T |
]1/2

eg(X̄T )Et

[

e−C|XT−X̄T |
] 6 C

Et

[

e2C|XT−X̄T |
]1/2

Et

[

e−C|XT −X̄T |
] . (3.3)

Let us estimateEt

[

e2C|XT−X̄T |
]

. We have

∣

∣Xs − X̄s

∣

∣ = 0 +Kb

∫ s

t

∣

∣Xu − X̄u

∣

∣ du+ sup
t6r6T

∣

∣

∣

∣

∫ r

t

σ(u,Xu)dWu

∣

∣

∣

∣

,

and we deduce from Gronwall’s lemma the inequality

sup
t6s6T

∣

∣Xs − X̄s

∣

∣ 6 C sup
t6s6T

∣

∣

∣

∣

∫ s

t

σ(u,Xu)dWu

∣

∣

∣

∣

.

It follows from the Dambis-Dubins-Schwarz representationtheorem that, forλ > 0,

E

[

exp

(

λ sup
t6s6T

∣

∣

∣

∣

∫ s

t

σ(u,Xu)dWu

∣

∣

∣

∣

) ∣

∣

∣

∣

Ft, Xt = x0

]

= Et

[

exp

(

λ sup
t6s6T

∣

∣

∣

∣

∫ s

t

σ(u,Xt,x0
u )dWu

∣

∣

∣

∣

)]

6 E

[

sup
06s6‖σ‖2

∞
T

eλ|Ws|

]

< +∞
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where(Xt,x0
s )t6s6T stands for the solution to the SDE (3.1) that starts fromx0 at timet. We remark that the right

term in the last inequality does not depend onx0 so

Et

[

exp

(

C sup
t6s6T

∣

∣

∣

∣

∫ s

t

σ(u,Xu)dWu

∣

∣

∣

∣

)]

is upper bounded. By the same type of argument we have that

Et

[

exp

(

−C sup
t6s6T

∣

∣

∣

∣

∫ s

t

σ(u,Xu)dWu

∣

∣

∣

∣

)]

is lower bounded by a strictly positive constant. Finally (3.3) becomes

|Zt| 6 C
Et

[

e2C supt6s6T |∫ s

t
σ(u,Xu)dWu|

]1/2

Et

[

e−C supt6s6T |∫ s

t
σ(u,Xu)dWu|

] 6 C,

and soZ is bounded. Finally, wheng, b andσ are not differentiable, we can prove the result by a standard
approximation. ⊓⊔

Remark 3.4 Thanks to this estimate onZ, it is possible to use the same machinery than in the previoussection to
show estimates onZ wheng andf are locally Lipschitz with respect tox. This simple example is a good argument
to postulate that Theorem 2.5 or Proposition 2.2 could stay true when we replace (F.1) by (F.2), at least in the
quadratic case.

3.3 The case of bounded terminal conditions

In this part we will restrict our study to the quadratic case and we will assume that the terminal condition and the
generator are bounded with respect tox. In this case we are able to obtain estimates onZ thanks to the additional
tool of Bounded Mean Oscillation martingales (BMO martingales for short). We refer the reader to [20] for the
theory of BMO martingales and we just recall the properties that we will use in the sequel. LetΦt =

∫ t

0 φsdWs,
for t ∈ [0, T ], be a real square integrable martingale with respect to the Brownian filtration. ThenΦ is a BMO
martingale if

‖Φ‖BMO = sup
τ∈[0,T ]

E [〈Φ〉T − 〈Φ〉τ |Fτ ]
1/2

= sup
τ∈[0,T ]

E

[

∫ T

τ

φ2
sds

∣

∣

∣

∣

Fτ

]1/2

< +∞,

where the supremum is taken over all stopping times in[0, T ] and〈Φ〉 denotes the quadratic variation ofΦ. In our
case, the very important feature of BMO martingales is the following lemma:

Lemma 3.5 LetΦ be a BMO martingale. Then we have:

1. The stochastic exponential

E(Φ)t = Et = exp

(
∫ t

0

φsdWs −
1

2

∫ t

0

|φs|2 ds
)

, 0 6 t 6 T,

is a uniformly integrable martingale.

2. Thanks to the reverse Hölder inequality, there existsp > 1 such thatET ∈ Lp. The maximalp with this
property can be expressed in terms of the BMO norm ofΦ.

We will work under following assumptions on coefficients of SDE (5.6) and BSDE (1.2).

Assumption (F.3). Let b : [0, T ]× Rd → Rd andσ : [0, T ]× Rd → Rd×d be continuous functions and let us
assume that there existKb > 0, Kσ > 0, Mσ > 0 andκ ∈ [0, 1] such that:

1. ∀t ∈ [0, T ], |b(t, 0)| 6 C,

2. ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |b(t, x)− b(t, x′)| 6 Kb |x− x′|,

3. ∀t ∈ [0, T ], ∀x ∈ Rd, |σ(t, x)| 6 Mσ(1 + |x|κ),

4. ∀t ∈ [0, T ], ∀(x, x′) ∈ Rd × Rd, |σ(t, x) − σ(t, x′)| 6 Kσ |x− x′|.
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Assumption (B.3). Let f : [0, T ]× Rd × R × R1×d → R andg : Rd → R be continuous functions and let us
assume moreover that there exist seven constants,r ∈ R+, α > 0, β > 0, γ > 0, Kf,y > 0, Mf > 0 andMg > 0
such that:

1. for each(t, x, y, y′, z) ∈ [0, T ]× Rd × R× R× R1×d,

|f(t, x, y, z)− f(t, x, y′, z)| 6 Kf,y |y − y′| ;

2. for each(t, x, y, z, z′) ∈ [0, T ]× Rd × R× R1×d × R1×d,

|f(t, x, y, z)− f(t, x, y, z′)| 6
(

C +
γ

2
(|z|+ |z′|)

)

|z − z′| ;

3. for each(t, x, x′, y, z) ∈ [0, T ]× Rd × Rd × R× R1×d,

|f(t, x, y, z)− f(t, x′, y, z)| 6
(

C +
β

2
(|x|r + |x′|r)

)

|x− x′| ,

|g(x)− g(x′)| 6
(

C +
α

2
(|x|r + |x′|r)

)

|x− x′| ;

4. for each(t, x, y, z) ∈ [0, T ]× Rd × R× R1×d,

|f(t, x, y, z)| 6 Mf (1 + |y|+ |z|2),

|g(x)| 6 Mg.

Theorem 3.6 We assume that assumptions (F.3) and (B.3) hold. There exists a solution(Y, Z) of the Markovian
BSDE inS2 × M2 and this solution is unique amongst solutions(Y, Z) ∈ S2 × M2 such thatY is bounded.
Moreover we have

|Zt| 6 C(1 + |Xt|r+κ
), ∀t ∈ [0, T ],

and
∥

∥

∥

∥

∫ .

0

ZsdWs

∥

∥

∥

∥

BMO

6 C,

where the last constantC depends only onMg, Mf andKf,y.

Proof of the theorem For the existence and uniqueness result we refer the reader to [21, 23]. The estimate for
the BMO norm ofZ is shown in [4, 1]. It just remains to prove the estimate onZ. As in previous proofs, we
firstly assume thatf , g, b andσ are differentiable with respect tox. Then, according to [4, 1],X and(Y, Z) are
differentiable with respect tox, we have

∇Yt = ∇g(XT )∇XT −
∫ T

t

∇ZsdWs

+

∫ T

t

∇xf(s,Xs, Ys, Zs)∇Xs +∇yf(s,Xs, Ys, Zs)∇Ys +∇zf(s,Xs, Ys, Zs)∇Zsds,

andZt = ∇Yt(∇Xt)
−1σ(t,Xt) a.s.. Since

∫ .

0
ZsdWs is BMO and

|∇zf(s,Xs, Ys, Zs)| 6 C(1 + |Zs|)

then
∫ .

0
∇zf(s,Xs, Ys, Zs)dWs is BMO and we are allowed to apply Girsanov’s Theorem thanks to Lemma 3.5:

W̃t := Wt −
∫ t

0
∇zf(s,Xs, Ys, Zs)ds is a Brownian motion under the probability

Q = E
(
∫ .

0

∇zf(s,Xs, Ys, Zs)dWs

)

T

P.

We obtain

∇Yt = E
Q
t

[

e
∫

T

t
∇yf(u,Xu,Yu,Zu)du∇g(XT )∇XT

+

∫ T

t

e
∫

s

t
∇yf(u,Xu,Yu,Zu)du∇xf(s,Xs, Ys, Zs)∇Xsds

]

,
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and then it comes

|Zt| 6 C

(

1 + E
Q
t

[

|XT |2r
]1/2

+

∫ T

t

E
Q
t

[

|Xs|2r
]1/2

ds

)

E
Q
t

[

sup
t6s6T

∣

∣∇Xs(∇Xt)
−1
∣

∣

2
]1/2

(1 + |Xt|κ)

(3.4)
by using assumptions (F.3), (B.3) and Cauchy-Schwarz’s inequality. Let us denote

Et,T := exp

(

∫ T

t

∇zf(s,Xs, Ys, Zs)dWs −
1

2

∫ T

t

|∇zf(s,Xs, Ys, Zs)|2 ds
)

.

Thanks to Lemma 3.5, there existsp > 1 (that does not depend ont) such thatEt[Ep
t,T ] < +∞. But, by using

Hölder’s inequality and classical estimates on SDEs we have

E
Q
t

[

|Xs|2r
]

6 Et[Ep
t,T ]

1/pEt

[

|Xs|2rq
]1/q

6 C(1 + |Xt|2r),

and

E
Q
t

[

sup
t6s6T

∣

∣∇Xs(∇Xt)
−1
∣

∣

2
]

6 Et[Ep
t,T ]

1/pEt

[

sup
t6s6T

∣

∣∇Xs(∇Xt)
−1
∣

∣

2q
]1/q

6 C,

By putting th two last inequalities into (3.4) we obtain the result. Finally, whenb, g andf are not differentiable,
we can prove the result by standard approximations and stability results for quadratic BSDEs (see e.g. [18]).⊓⊔

4 Application to quadratic and superquadratic PDEs

In this section we give an application of previous results concerning BSDEs to semilinear PDEs which have a
quadratic or superquadratic growth with respect to the gradient of the solution. We will restrict our study to
deterministic functionsσ. Let us consider the following semilinear PDE

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x),t ∇u(t, x)σ(t)) = 0, x ∈ Rd, t ∈ [0, T ],
u(T, .) = g,

(4.1)

whereL is the infinitesimal generator of the diffusionXt,x solution to the SDE

Xt,x
s = x+

∫ s

t

b(r,Xt,x
r )dr +

∫ s

t

σ(r)dWr , t 6 s 6 T.

The nonlinear Feynman-Kac formula consists in proving thatthe function defined by the formula

∀(t, x) ∈ [0, T ]× Rd, u(t, x) := Y t,x
t (4.2)

where, for each(t0, x0) ∈ [0, T ] × Rd, (Y t0,x0 , Zt0,x0) stands for the solution given by Theorem 2.5 to the
following BSDE

Y t0,x0

t = g(Xt0,x0

T ) +

∫ T

t

f(s,Xt0,x0
s , Y t0,x0

s , Zt0,x0
s )ds−

∫ T

t

Zt0,x0
s dWs, 0 6 t 6 T,

is a solution, at least a viscosity solution, to the PDE (4.1). Firstly, let us study the growth and the continuity of
this function.

Proposition 4.1 Let assumptions (F.1) and (B.1) hold. The functionu defined by (4.2) has a polynomial growth
and is a continuous function. More precisely we have,∀(t, t′, x, x′) ∈ [0, T ]2 × Rd × Rd,

|u(t, x)| 6 C(1 + |x|1+1/l),

|u(t, x)− u(t′, x′)| 6 C(1 + |x|1/l + |x′|1/l) |x− x′|+ C(1 + |x|1+1/l
+ |x′|1+1/l

) |t− t′|1/2 .
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Proof of the proposition To show the first point, it is sufficient to prove the estimate

E

[

sup
t6s6T

∣

∣Y t,x
s

∣

∣

2
]

6 C
(

1 + |x|2(1+1/l)
)

. (4.3)

By a very classical method we can easily show the estimate

E

[

sup
t6s6T

∣

∣Y t,x
s

∣

∣

2
]

6 CE

[

∣

∣g(Xt,x
T )
∣

∣

2
+

∫ T

t

∣

∣f(s,Xt,x
s , 0, Zt,x

s )
∣

∣

2
ds

]

.

Since|Z|t,x 6 C(1 + |Xt,x|1/l), we obtain, by using the growth ofg andf and classical estimates on SDEs,

E

[

sup
t6s6T

∣

∣Y t,x
s

∣

∣

2
]

6 CE

[

1 + sup
t6s6T

∣

∣Xt,x
s

∣

∣

2(1+1/l)
]

6 C
(

1 + |x|2(1+1/l)
)

.

Now, let us show the second part of the proposition. By a symmetry argument we are allowed to suppose that
t′ > t. Then

u(t, x)− u(t′, x′) = E
[

Y t,x
t − Y t,x

t′

]

+ E

[

Y t,x
t′ − Y t′,x′

t′

]

.

Cauchy-Schwarz’s inequality and growth assumptions onf andg give us

∣

∣E
[

Y t,x
t − Y t,x

t′

]∣

∣

2
=

∣

∣

∣

∣

∣

E

∫ t′

t

f(s,Xt,x
s , Y t,x

s , Zt,x
s )ds

∣

∣

∣

∣

∣

2

6 |t− t′|E
[

∫ t′

t

∣

∣f(s,Xt,x
s , Y t,x

s , Zt,x
s )
∣

∣

2
ds

]

6 C |t− t′|E
[

1 + sup
t6s6T

(

|Xs|2(1+1/l)
+ |Ys|2 + |Zs|2l

)

]

.

Thanks to a priori estimate onZ, a classical estimate on SDEs and (4.3), we obtain

∣

∣E
[

Y t,x
t − Y t,x

t′

]∣

∣

2
6 C |t− t′| (1 + |x|2(1+1/l)

).

Now we will study the termE
[

Y t,x
t′ − Y t′,x′

t′

]

. We have, thanks to the classical linearization method,

Y t,x
t′ − Y t′,x′

t′ = e
∫

T

t′
Ux,x′

u du
[

g(Xt,x
T )− g(Xt′,x′

T )
]

+

∫ T

t′
e
∫

s

t′
Ux,x′

u du
[

f(s,Xt,x
s , Y t,x

s , Zt,x
s )− f(s,Xt′,x′

s , Y t,x
s , Zt,x

s )
]

ds

−
∫ T

t′
e
∫

s

t′
Ux,x′

u du(Zt,x
s − Zt′,x′

s )(dWs − V x,x′

s ds),

with
∣

∣

∣
Ux,x′

s

∣

∣

∣
6 Kf,y and

∣

∣

∣
V x,x′

s

∣

∣

∣
6

γ
2 (1 + |Zt,x

s |l +
∣

∣

∣
Zt′,x′

s

∣

∣

∣

l

). Since Novikov’s condition is fulfilled, we are able

to apply Girsanov’s Theorem. We obtain, by using the fact that f andg are locally Lipschitz,
∣

∣

∣
Y t,x
t′ − Y t′,x′

t′

∣

∣

∣
6 CE

Qx,x′

t′

[
∣

∣

∣
g(Xt,x

T )− g(Xt′,x′

T )
∣

∣

∣

]

+CE
Qx,x′

t′

[

∫ T

t′

∣

∣

∣
f(s,Xt,x

s , Y t,x
s , Zt,x

s )− f(s,Xt′,x′

s , Y t,x
s , Zt,x

s )
∣

∣

∣
ds

]

6 CE
Qx,x′

t′

[

sup
t′6s6T

(

1 +
∣

∣Xt,x
s

∣

∣

1/l
+
∣

∣

∣
Xt′,x′

s

∣

∣

∣

1/l
)

∣

∣

∣
Xt,x

s −Xt′,x′

s

∣

∣

∣

]

6 C

(

1 + E
Qx,x′

t′

[

sup
t′6s6T

∣

∣Xt,x
s

∣

∣

2/l
]1/2

+ E
Qx,x′

t′

[

sup
t′6s6T

∣

∣

∣
Xt′,x′

s

∣

∣

∣

2/l
]1/2

)

×E
Qx,x′

t′

[

sup
t′6s6T

∣

∣

∣
Xt,x

s −Xt′,x′

s

∣

∣

∣

2
]1/2

.
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Let us recall that
∣

∣

∣
V x,x′

s

∣

∣

∣
6 C

(

1 + |Xt,x
s |+

∣

∣

∣
Xt′,x′

s

∣

∣

∣

)

. Once again we are able to use classical methods on SDEs

to obtain finally
∣

∣

∣
Y t,x
t′ − Y t′,x′

t′

∣

∣

∣
6 C(1 +

∣

∣Xt,x
t′

∣

∣

1/l
+ |x′|1/l)

(

∣

∣Xt,x
t′ − x′

∣

∣+ |t− t′|1/2 (1 +
∣

∣Xt,x
t′

∣

∣+ |x′|)
)

.

Classical estimates on SDEs allow us to conclude:

E

∣

∣

∣
Y t,x
t′ − Y t′,x′

t′

∣

∣

∣
6 C(1 + |x|1/l + |x′|1/l)

(

|x− x′|+ |t− t′|1/2 (1 + |x|+ |x′|)
)

.

⊓⊔

Proposition 4.2 Let assumptions (F.1) and (B.1) hold. The functionu defined by (4.2) is a viscosity solution to
the PDE (4.1).

Since we are able to use Girsanov’s transformation in the BSDE, we have a comparison result. Moreover, Propo-
sition 4.1 gives us thatu is a continuous function. So the proof of the proposition is totally standard: for example,
it can be easily adapted from the proof of Theorem 4.2 in [14].

5 Time approximation of quadratic and superquadratic Markovian BS-
DEs

5.1 approximation of the initial BSDE by a Lipschitz one

In a first time, we will consider the deterministic case for the functionσ and we will approximate the solution
(Y, Z) of the BSDE (1.2) by(Y M , ZM ) the solution of the BSDE (2.3). The aim of the following proposition is
to study the approximation error given by:

e1(M) := E

[

sup
06t6T

∣

∣Yt − Y M
t

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Zt − ZM
t

∣

∣

2
dt

]

. (5.1)

Proposition 5.1 If we assume that assumptions (F.1) and (B.1) hold, then there existsλ > 0 such that

e1(M) 6 Ce−λM2

.

Proof of the proposition Let us define processesδY := Y − Y M andδZ := Z − ZM . We have

δYt = g(XT )− gM (XT ) +

∫ T

t

f(s,Xs, Ys, Zs)− fM (s,Xs, Y
M
s , ZM

s )ds−
∫ T

t

δZsdWs.

The classical linearization method gives us

δYt = δg +

∫ T

t

δfs + δYsU
M
s + δZsV

M
s ds−

∫ T

t

δZsdWs, (5.2)

with
δg := g(XT )− gM (XT ), δfs := f(s,Xs, Ys, Zs)− fM (s,Xs, Ys, Zs),

(UM , VM ) with value inR× Rd and

∣

∣UM
s

∣

∣ 6 Kf,y,
∣

∣V M
s

∣

∣ 6 C +
γ

2
(|Zs|l +

∣

∣ZM
s

∣

∣

l
).

We can easily show that Novikov’s condition is fulfilled forV M by doing the same calculus than forV p,q in
the proof of Theorem 2.5 (inequalities (2.9) to (2.11)). So,we are allowed to apply Girsanov’s theorem:W̃t :=

Wt −
∫ t

0
V M
s ds is a Brownian motion under the probabilityQM . Thus, by applying Cauchy-Schwarz’s inequality
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and Markov’s inequality we obtain

δYt = E
QM

t

[

e
∫

T

t
UM

s dsδg +

∫ T

t

e
∫

s

t
UM

u duδfsds

]

,

|δYt| 6 CE
QM

t

[

(1 + |XT |1+1/l
)1|XT |>M +

∫ T

t

(1 + |Xs|1+1/l
)1|Xs|>Mds

]

6 C
(

1 + E
QM

t

[

|XT |2(1+1/l)
])1/2 E

QM

t

[

e2λ|XT |2
]1/2

eλM2

+C

∫ T

t

(

1 + E
QM

t

[

|Xs|2(1+1/l)
])1/2 E

QM

t

[

e2λ|Xs|
2
]1/2

eλM2 ds. (5.3)

Then we use the following lemma that we will prove in the appendix.

Lemma 5.2 We assume that assumptions (F.1) and (B.1) hold. We have

• ∀a ∈ [1,+∞[, ∃C > 0,

E
QM

t

[

sup
t6s6T

|Xs|a
]

6 C(1 + |Xt|a), ∀t ∈ [0, T ],

• ∃C > 0, ∃µ̄ > 0, ∀µ ∈ [0, µ̄[,

E
QM

t

[

sup
t6s6T

eµ|Xs|
2

]

6 CeCµ|Xt|
2

, ∀t ∈ [0, T ].

Now (5.3) becomes,

|δYt| 6
C(1 + |Xt|1+1/l

)

eλM2 eCλ|Xt|
2

.

By using Cauchy-Schwarz’s inequality, we obtain for allp > 1 and for all0 < λ < λ̄ with λ̄ small enough,

E

[

sup
06t6T

|δYt|p
]

6
C

epλM2 E

[

(1 + sup
06t6T

|Xt|p(1+1/l))eCpλ sup06t6T |Xt|
2

]

6
C

epλM2

(

1 + E

[

sup
06t6T

|Xt|2p(1+1/l)

]1/2
)

E

[

eCpλ sup06t6T |Xt|
2
]1/2

.

Let us remark thatC depends on̄λ but does not depend onλ. By using classical results about SDEs (see e.g. the
beginning of part 5 in [6]) we have, for allp > 1,

E

[

sup
06t6T

|Xt|2p(1+1/l)

]1/2

< +∞,

and, forλ small enough,

E

[

eCpλ sup06t6T |Xt|
2
]1/2

< +∞.

Finally we obtain that

E

[

sup
06t6T

|δYt|p
]

6
C

epλM2 . (5.4)

To study the error onZ we come back to (5.2) and we apply Itô’s formula:

|δYt|2 +
∫ T

t

|δZs|2 ds = |δYT |2 +
∫ T

t

2δYs(δfs + δYsU
M
s + δZsV

M
s )ds−

∫ T

t

2δYsδZsdWs.
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We obtain by applying Cauchy-Schwarz’s inequality

E

[

∫ T

0

|δZt|2 dt
]

6 E

[

|δYT |2
]

+ 2E

[

∫ T

0

δYtδftdt

]

+ 2E

[

∫ T

0

|δYt|2 UM
t dt

]

+ 2E

[

∫ T

0

δYtδZtV
M
t dt

]

6 (1 + 2Kf,y)E

[

sup
06t6T

|δYt|2
]

+ 2T 1/2E

[

sup
06t6T

|δYt|2
]1/2

E

[

sup
06t6T

|δft|2
]1/2

+2E

[

∫ T

0

|δZt|2 dt
]1/2

E

[

sup
06t6T

|δYt|4
]1/4

E

[

sup
06t6T

∣

∣δV M
t

∣

∣

4
]1/4

.

Thanks to inequalities
|δft| 6 C(1 + |Xt|1/l)

and
∣

∣δV M
t

∣

∣ 6 C +
γ

2
(|Zt|l +

∣

∣ZM
t

∣

∣

l
) 6 C(1 + |Xt|),

it is easy to see that

E

[

sup
06t6T

|δft|2
]

+ E

[

sup
06t6T

∣

∣δV M
t

∣

∣

4
]

6 C

with C that does not depend onM . Then, by applying (5.4) and the inequality2ab 6 a2

2 + 2b2 we have

E

[

∫ T

0

|δZt|2 dt
]

6
C

e2λM2 +
C

eλM2 + 2E

[

∫ T

0

|δZt|2 dt
]1/2

C

eλM2

6
C

eλM2 +
1

2
E

[

∫ T

0

|δZt|2 dt
]

.

Finally we obtain

E

[

∫ T

0

|δZt|2 dt
]

6
C

epλM2 . (5.5)

To conclude, (5.4) and (5.5) give us the result. ⊓⊔
Now we want to obtain the same type of estimate in the quadratic case whenσ is random. Sinceσ is not

necessarily bounded,Z could be unbounded even ifg andf are Lipschitz functions with respect tox. So, we will
approximate the solution(Y, Z) of the BSDE (1.2) by(Ȳ M , Z̄M ) the solution of the BSDE

Ȳ M
t = g(ρM(r+κ)−1 (XT )) +

∫ T

t

f(s, ρM(r+κ)−1 (Xs), Ȳ
M
s , ρM (Z̄M

s ))ds−
∫ T

t

Z̄M
s dWs (5.6)

whereρM is a smooth modification of the projection on the centered euclidean ball of radiusM such that|ρM | 6
M , |∇ρM | 6 1 andρM (x) = x when |x| 6 M − 1. The aim of the following proposition is to study the
approximation error given by:

ē1(M) := E

[

sup
06t6T

∣

∣Yt − Ȳ M
t

∣

∣

2
]

+ E

[

∫ T

0

∣

∣Zt − Z̄M
t

∣

∣

2
dt

]

. (5.7)

Proposition 5.3 If we assume that assumptions (F.3), (B.3) hold and2κ 6 1 − r, then there existsλ > 0 such
that

ē1(M) 6 Ce−λM2

.

If moreover2κ < 1− r, then there existλ > 0 andε > 0 such that

ē1(M) 6 Ce−λM2+ε

.
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Proof of the proposition Thanks to BMO tool, we have a comparison theorem that gives usan estimate for̄e1.
Indeed, we can apply Lemma 3.2 in [18]: there existsq > 1 such that

ē1(M) 6 CE

[

∣

∣g(XT )− g(ρM(1−κ)−1 (XT ))
∣

∣

2q
]1/q

+CE





(

∫ T

0

∣

∣f(s,Xs, Ys, Zs)− f(s, ρM(1−κ)−1 (Xs), Ys, ρM (Zs))
∣

∣ ds

)2q




1/q

. (5.8)

Assumptions (F.3), (B.3) and the estimate onZ give us
∣

∣f(s,Xs, Ys, Zs)− f(s, ρM(r+κ)−1 (Xs), Ys, ρM (Zs))
∣

∣ 6 C(1 + |Xs|r)1|Xs|>M(r+κ)−1 + C(1 + |Zs|)1|Zs|>M

6 C(1 + |Xs|r)1|Xs|
r+κ>M

+C(1 + |Xs|r+κ)1|Xs|
r+κ>M/C−1

6 C(1 + sup
06s6T

|Xs|r+κ
)1sup06s6T |Xs|

r+κ>M/C−1

and
∣

∣g(XT )− g(ρM(1−κ)−1 (XT ))
∣

∣ 6 (1 + |XT |r)1|XT |>M(r+κ)−1

6 C(1 + sup
06s6T

|Xs|r+κ)1sup06s6T |Xs|
r+κ>M/C−1.

By using Hölder’s inequality and the fact that, for allp > 0,

E

[

sup
06s6T

|Xs|p
]

< +∞,

(5.8) becomes

ē1(M) 6 CP

(

sup
06s6T

|Xs|r+κ
> M/C − 1

)q′

(5.9)

with q′ > 1. To conclude, we will use the following lemma that will be proved in the appendix.

Lemma 5.4 We assume that (F3) holds. There existsλ > 0 such that

E

[

exp

(

λ sup
06t6T

|Xt|2(1−κ)

)]

< +∞.

Since we have assume thatr + κ 6 1− κ, Markov’s inequality and previous lemma give us, forM big enough,

P

(

sup
06s6T

|Xs|r+κ
> M/C − 1

)

6
eλ sup06s6T |Xs|

2(1−κ)

eλ(M/C−1)2
6

C

eλ̃M2
.

Then, the first part of the Lemma is obtained by putting this inequality in the estimate (5.9). Whenr+ κ < 1− κ,
we denoteε := 1−κ

r+κ − 1 > 0 and we obtain, forM big enough,

P

(

sup
06s6T

|Xs|r+κ
> M/C − 1

)

6
eλ sup06s6T |Xs|

2(1−κ)

eλ(M/C−1)2(1+ε)
6

C

eλ̃M2(1+ε)
.

Finally, the last part of the Lemma is proved by putting this inequality in the estimate (5.9). ⊓⊔

Remark 5.5 When2κ > 1− r it is possible to show with the same proof that there existsλ > 0 such that

ē1(M) 6
C

exp
(

λM2 1−κ
r+κ

) .

Whenκ = 1, it is also possible to recover the result obtained by Imkeller and dos Reis in [18] (they assume in
addition thatr = 0): for all k ∈ N, there existsC > 0 such that

ē1(M) 6
C

Mk
.

Let us remark that our result is more precise than the one of [18] and our proof is more simple since we do not
have to study the second order Malliavin differentiabilityof the BSDE.
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5.2 time approximation of the BSDE

In a second time, we will approximate our modified BSDE by a discrete time one. We denote the time step by
h = T

n and(tk = kh)06k6n stand for the discretization times. One needs to approximateX by a Markov chain
Xn which can be simulated. For example, we will consider the classical Euler scheme given by

{

Xn
0 = x

Xn
tk+1

= Xn
tk + hb(tk, X

n
tk) + σ(tk, X

n
tk)(Wtk+1

−Wtk), 0 6 k 6 n− 1.

We denote(Y M,n, ZM,n) (resp.(Ȳ M,n, Z̄M,n)) our time approximation of(Y M , ZM ) (resp.(Ȳ M , Z̄M )). These
couples are obtained by the classical explicit dynamic programming equation:















Y M,n
tn = gM (Xn

tn),

ZM,n
tk = 1

hEtk

[

Y M,n
tk+1

(Wtk+1
−Wtk)

]

, 0 6 k 6 n,

Y M,n
tk

= Etk

[

Y M,n
tk+1

+ hfM (tk, X
n
tk
, Y M,n

tk+1
, ZM,n

tk
)
]

, 0 6 k 6 n,

and














Ȳ M,n
tn = g(ρM(r+κ)−1 (Xn

tn)),

Z̄M,n
tk

= 1
hEtk

[

Ȳ M,n
tk+1

(Wtk+1
−Wtk)

]

, 0 6 k 6 n,

Ȳ M,n
tk = Etk

[

Ȳ M,n
tk+1

+ hf(tk, ρM(r+κ)−1 (Xn
tk), Ȳ

M,n
tk+1

, ρM (Z̄M,n
tk ))

]

, 0 6 k 6 n.

In a classical framework, there is already results about thespeed of convergence of BSDE time approximation.
Let us precise the classical result shown by [3, 29, 22].

Proposition 5.6 Let us assume that assumption (F.1) or (F.3) holds. We also assume that

• g isKg-Lipschitz,

• f isKf,x-Lipschitz with respect tox, Lipschitz with respect toy andKf,z-Lipschitz with respect toz.

We denote(Y n, Zn) the time discretization of(Y, Z) given by the classical explicit dynamic programming equa-
tion. The error discretization is given by

e(n) := sup
06k6n

E

[

∣

∣Y n
tk

− Ytk

∣

∣

2
]

+
n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣Zn
tk

− Zt

∣

∣

2
dt

]

.

Then, there exists a constantC that does not depend onKg, Kf,x andKf,z such that

e(n) 6 CeCK2
f,z

[

1 +K2
g +K2

f,x + E

[

∫ T

0

|Zt|2 dt
]

+ E

[

sup
06t6T

|Yt|2
]

]

h.

This proposition will be proved in the appendix. Now, the aimof this section is to study errors of discretization
e(M,n) andē(M,n) given by

e(M,n) := sup
06k6n

E

[

∣

∣

∣
Y M,n
tk − Ytk

∣

∣

∣

2
]

+

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
ZM,n
tk − Zt

∣

∣

∣

2

dt

]

and

ē(M,n) := sup
06k6n

E

[

∣

∣

∣
Ȳ M,n
tk

− Ytk

∣

∣

∣

2
]

+

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
Z̄M,n
tk

− Zt

∣

∣

∣

2

dt

]

.

Theorem 5.7 We assume that assumption (F.1) holds and(Y M , ZM ) is the solution of BSDE (2.3).

• Let assumption (B.2) holds. We have

e(M,n) 6
C

eCM2 +
CeCM2rl

n
.

In particular, for all 1 < p < (rl)−1, if we takeM = (logn)p/2 thene(M,n) = o(h1−ε) for all ε > 0.

• Let assumption (B.1) holds. We have

e(M,n) 6
C

eC1M2 +
CeC2M

2

n
.

In particular, if we takeM = 1
C1+C2

√
logn thene(M,n) = o(h

C1
C1+C2 ).
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Proof of the theorem It is easy to see that

e(M,n) 6 2(e1(M) + e2(M,n))

with e1(M) defined by (5.1) and

e2(M,n) := sup
06k6n

E

[

∣

∣

∣
Y M,n
tk

− Y M
tk

∣

∣

∣

2
]

+

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
ZM,n
tk

− ZM
t

∣

∣

∣

2

dt

]

.

The errore1(M) is already studied in Proposition 5.1. Concerning the errore2(M,n) let us remark that(Y M , ZM )
is the solution of a BSDE with Lipschitz coefficients: indeed, gM andfM are Lipschitz with respect tox andy,
fM is locally Lipschitz with respect toz and Proposition 2.3 gives us thatZM is bounded. Thus, we are allowed
to apply Proposition 5.6:

e2(M,n) 6
CeCK2

fM,z

(

1 +K2
gM +K2

fM ,x + E

[

∫ T

0

∣

∣ZM
t

∣

∣

2
dt
]

+ E

[

sup06t6T

∣

∣Y M
t

∣

∣

2
])

n

with KgM the Lipschitz constant ofgM , andKfM ,x, KfM ,z the Lipschitz constants offM with respect tox and

z. Estimations onZM given by Proposition 2.2 and Theorem 2.5 show us thatE

[

∫ T

0

∣

∣ZM
t

∣

∣

2
dt
]

is bounded by

a bound that does not depend onM . Thanks to Itô’s formula applied toeKfM,yt
∣

∣Y M
t

∣

∣

2
and estimations onZM

given by Proposition 2.2 and Theorem 2.5 it is also possible to show thatE
[

sup06t6T

∣

∣Y M
t

∣

∣

2
]

is also bounded

by a bound that does not depend onM . Thus, we have

e2(M,n) 6
CeCK2

fM,z

(

1 +K2
gM +K2

fM ,x

)

n
.

Under assumptions (F.1) and (B.2) we have, thanks to Proposition 2.3,KgM 6 C(1+M r), KfM ,x 6 C(1+M r)
andKfM ,z 6 C(1 + (C(1 +M r))l) 6 C(1 +M rl). Finally, we obtain

e2(M,n) 6
CeCM2rl

n
.

Under assumptions (F.1) and (B.1) we have, thanks to Proposition 2.3,KgM 6 C(1 +M1/l), KfM ,x 6 C(1 +
M1/l) andKfM ,z 6 C(1 + (C(1 +M1/l))l) 6 C(1 +M). Finally, we obtain

e2(M,n) 6
CeCM2

n
.

⊓⊔

Remark 5.8 Sinceσ is a deterministic function, Euler and Milshtein schemes are equal, so the discretization
error onX is better. In this situation, authors of [15] show that the discretization error for the BSDE is on the
same order than the discretization error for the SDE if we assume extra smoothness assumptions onb, σ, g andf .
More precisely, we could obtain the better estimate

e2(M,n) 6
CeCM2

n2
.

Theorem 5.9 We assume that assumptions (F.3) and (B.3) hold and(Ȳ M , Z̄M ) is the solution of BSDE (5.6).

• If we assume that2κ < 1− r then there existsη such that

ē(M,n) 6
C

eCM2+η +
CeCM2

n
.

In particular, for all (2 + η)−1 < p < 1/2, if we takeM = (logn)p thene(M,n) = o(h1−ε) for all ε > 0.

• If we assume that2κ = 1− r then we have

ē(M,n) 6
C

eC1M2 +
CeC2M

2

n
.

In particular, if we takeM = 1
C1+C2

√
logn thene(M,n) = o(h

C1
C1+C2 ).
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Proof of the theorem It is easy to see that

ē(M,n) 6 2(ē1(M) + ē2(M,n))

with ē1(M) defined by (5.7) and

ē2(M,n) := sup
06k6n

E

[

∣

∣

∣
Ȳ M,n
tk − Ȳ M

tk

∣

∣

∣

2
]

+

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣

∣
Z̄M,n
tk − Z̄M

t

∣

∣

∣

2

dt

]

.

The error̄e1(M) is already studied in Proposition 5.3. Concerning the errorē2(M,n) let us remark that(Ȳ M , Z̄M )
is the solution of a BSDE with Lipschitz coefficients: indeed, g(ρM(1−κ)−1 (.)) andf(., ρM(1−κ)−1 (.), ., ρM (.))
are Lipschitz with respect tox, y andz. Thus, we are allowed to apply Proposition 5.6:

ē2(M,n) 6
CeCK2

f,z

(

1 +K2
g +K2

f,x + E

[

∫ T

0

∣

∣Z̄M
t

∣

∣

2
dt
]

+ E

[

sup06t6T

∣

∣Ȳ M
t

∣

∣

2
])

n

withKg the Lipschitz constant ofg(ρM(1−κ)−1 (.)), andKf,x,Kf,z the Lipschitz constants off(., ρM(1−κ)−1 (.), ., ρM (.))

with respect tox andz. Classical estimates on solutions of quadratic BSDEs show us thatE
[

sup06t6T

∣

∣Ȳ M
t

∣

∣

2
]

andE
[

∫ T

0

∣

∣Z̄M
t

∣

∣

2
dt
]

are bounded by a bound that does not depend onM . Thus, we have

ē2(M,n) 6
CeCK2

f,z

(

1 +K2
g +K2

f,x

)

n
.

Under assumption (B.3) we have,Kg 6 C(1 + M r(1−κ)), Kf,x 6 C(1 + M r(1−κ)) andKf,z 6 C(1 + M).
Finally, we obtain

ē2(M,n) 6
CeCM2

n
.

⊓⊔

Remark 5.10 When2κ > 1 − r, the error estimate for̄e1(M) given in remark 5.5 is not sufficient to obtain a
“good” speed of convergence: the estimate onē(M,n) becomes, forM well chosen,

ē(M,n) 6
C

(log n)k
,

for all k ∈ N∗. This phenomenon is already explained in introductions of articles [26, 18].

A Appendix

A.1 Proof of Proposition 2.3

To show the result we will use a classical truncation argument (see e.g. the proof of Theorem 4.1 in [12]). Our
truncation functionρN is the projection on the centered euclidean ball of radiusN in R1×d. We denote(Y N , ZN)
the solution of the BSDE

Y N
t = g(XT ) +

∫ T

t

f(s,Xs, Y
N
s , ρN (ZN

s ))ds−
∫ T

t

ZN
s dWs.

Now, this BSDE is also Lipschitz with respect toz. By the same calculus than in the proof of Theorem 3.1 in [26]
we can show thatZN is bounded by

∣

∣ZN
∣

∣ 6 e(2Kb+Kf,y)T |σ|∞ (Kg + TKf,x).

This bound does not depend onN soρN (ZN) = ZN for N big enough. Then a uniqueness result for BSDEs
with Lipschitz coefficients gives us that(Y, Z) = (Y N , ZN) and the result is proved. ⊓⊔
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A.2 Proof of Lemma 2.6

We have

|uk − u∞| = |ak − a∞ + bk(uk)
pk − b∞u∞|

6 |ak − a∞|+ |bk(uk)
pk − bku∞|+ |bk − b∞| |u∞|

6 |ak − a∞|+ b̄ |(uk)
pk − u∞|+ |bk − b∞| |u∞|

6 |ak − a∞|+ b̄ |(uk)
pk − (u∞)pk |+ |(u∞)pk − u∞|+ |bk − b∞| |u∞| .

It is easy to show that

|(uk)
pk − (u∞)pk | 6 |uk − u∞|pk

6 |uk − u∞|+ p
1

1−pk

k (1/pk − 1) 6 |uk − u∞|+ (1/pk − 1).

Thus, we obtain

|uk − u∞| 6 |ak − a∞|+ (1/pk − 1) + |(u∞)pk − u∞|+ |bk − b∞| |u∞|
1− b̄

k→+∞−−−−−→ 0.

⊓⊔

A.3 Proof of Lemma 5.2

Thanks to the estimate onZ of Theorem 2.5 we easily show

Xs = Xt +

∫ s

t

b(u,Xu)du+

∫ s

t

σ(u)[dW̃u + VM
u du]

|Xs| 6 |Xt|+ C + C

∫ s

t

|Xu| du+

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

sup
t6r6s

|Xr| 6 |Xt|+ C + C

∫ s

t

sup
t6r6u

|Xr| du+ sup
t6r6T

∣

∣

∣

∣

∫ r

t

σ(u)dW̃u

∣

∣

∣

∣

,

and we deduce from Gronwall’s lemma the inequality

sup
t6r6s

|Xr| 6 C

(

1 + |Xt|+ sup
t6r6T

∣

∣

∣

∣

∫ r

t

σ(u)dW̃u

∣

∣

∣

∣

)

.

The first part of the lemma is easily proved thanks to the previous inequality. Moreover, we also have

E
QM

t

[

eµ supt6r6s|Xr |
2
]

6 CeCµ|Xt|E
QM

t

[

sup
t6s6T

exp

(

Cµ

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

2
)]

.

It follows from the Dambis-Dubins-Schwarz representationtheorem and Doob’s maximal inequality that

E
Q

M

t

[

sup
t6s6T

exp

(

Cµ

∣

∣

∣

∣

∫ s

t

σ(u)dW̃u

∣

∣

∣

∣

2
)]

6 E

[

sup
06s6|σ|2

∞
(T−t)

eCµ|Ws|
2

]

6 4E
[

eCµ|σ|2
∞

T |W1|
2
]

,

which is a finite constant ifCµ |σ|2∞ T < 1/2. ⊓⊔

A.4 Proof of Lemma 5.4

Let us consider the process

Yt :=
(

1 + |Xt|2
)

1−κ
2

= F (Xt).

Itô’s formula gives us

Yt = Y0 + (1− κ)

∫ t

0

tXsb(s,Xs)

(1 + |Xs|2)
1+κ
2

ds+
1

2

∫ t

0

trace
(

∇2F (Xs)σ(s,Xs)
tσ(s,Xs)

)

ds

+(1− κ)

∫ t

0

tXsσ(s,Xs)

(1 + |Xs|2)
1+κ
2

dWs

= Y0 +

∫ t

0

b̃(s,Xs)ds+

∫ t

0

σ̃(s,Xs)dWs,
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with |σ̃| 6 C and
∣

∣

∣
b̃(t, x)

∣

∣

∣
6 C(1 + |x|1−κ). Then, we have

sup
06t6u

|Yt| 6 |Y0|+
∫ u

0

sup
06t6s

∣

∣

∣
b̃(t,Xt)

∣

∣

∣
ds+ sup

06t6u

∣

∣

∣

∣

∫ t

0

σ̃(s,Xs)dWs

∣

∣

∣

∣

6 |Y0|+ CT + C

∫ u

0

sup
06t6s

|Xt|1−κ
ds+ sup

06t6T

∣

∣

∣

∣

∫ t

0

σ̃(s,Xs)dWs

∣

∣

∣

∣

6 |Y0|+ CT + C

∫ u

0

sup
06t6s

|Yt| ds+ sup
06t6T

∣

∣

∣

∣

∫ t

0

σ̃(s,Xs)dWs

∣

∣

∣

∣

,

and we deduce from Gronwall’s lemma the inequality

sup
06t6T

|Yt| 6 C

(

1 + sup
06t6T

∣

∣

∣

∣

∫ t

0

σ̃(s,Xs)dWs

∣

∣

∣

∣

)

.

Sinceσ̃ is bounded, we are able to fit the end of Lemma 5.2 to show that there existsλ > 0 such that

E

[

exp

(

λ sup
06t6T

|Yt|2
)]

< +∞.

Since|Xt|(1−κ)
6 |Yt|, the proof is complete. ⊓⊔

A.5 Proof of Proposition 5.6

It is already proved in [3, 29] for the implicit scheme or in [22] for the explicit scheme thate(n) = O(h). We just
have to rewrite the proof to show where constantsKg, Kf,x andKf,z appear precisely. For the readability of this
article we will only give few key steps. Firstly, for the error in Y we find, forh small enough,

sup
06k6n

E
∣

∣Ytk − Y n
tk

∣

∣

2
6 CeCK2

f,z

[

(1 +K2
f,z)hE

[

sup
06t6T

|Yt|2
]

+ (1 +K4
f,z)hE

[

∫ T

0

|Zt|2 dt
]

+CK2
f,z

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣Zt − Z̄tk

∣

∣

2
dt

]

]

, (A.1)

with Z̄tk := 1
hEtk

∫ tk+1

tk
Ztdt. For the error inZ we find, forh small enough,

n−1
∑

k=0

E

∫ tk+1

tk

∣

∣Zt − Zn
tk

∣

∣

2
dt 6 Ch

(

1 +K2
f,x +K2

g + E

[

sup
06t6T

|Yt|2
]

+K2
f,zE

[

∫ T

0

|Zt|2 dt
])

+C

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣Zt − Z̄tk

∣

∣

2
dt

]

+ CK2
f,z sup

06k6n
E
∣

∣Ytk − Y n
tk

∣

∣

2
.(A.2)

The study of the error
∑n−1

k=0 E

[

∫ tk+1

tk

∣

∣Zt − Z̄tk

∣

∣

2
dt
]

was done by Zhang in [29]. Theorem 3.5 in [26] improve

a little bit the estimate by studying howKg appears in the constant. Let us rewrite the proof of this theorem.
We suppose in a first time thatb, σ, g andf are differentiable with respect tox, y andz. ThenY andZ are
differentiable with respect tox and we obtain that

n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣Zt − Z̄tk

∣

∣

2
dt

]

6 Ch

(

K2
g +K2

f,x + (1 +K2
f,z)E

[

∫ T

0

|∇Zt|2 dt
])

.

Thanks to classical estimates onto the solution of the BSDE solved by(∇Y,∇Z) we have

E

[

∫ T

0

|∇Zs|2 ds
]

6 C(1 +K2
g +K2

f,x)(1 +K2
f,z).

Thus, we obtain
n−1
∑

k=0

E

[
∫ tk+1

tk

∣

∣Zt − Z̄tk

∣

∣

2
dt

]

6 Ch(1 +K2
g +K2

f,x)(1 +K4
f,z). (A.3)
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By standard approximation and stability results for Lipschitz BSDEs this estimate stays true whenb, σ, g andf
are not differentiable. Finally, by putting together (A.1), (A.2) and (A.3), we have

e(n) 6 CheCK2
f,z

[

(1 +K8
f,z)(1 +K2

g +K2
f,x) + (1 +K6

f,z)E

[

∫ T

0

|Zt|2 dt
]

+ (1 +K4
f,z)E

[

sup
06t6T

|Yt|2
]

]

,

and the final result can be easily deduced. ⊓⊔
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