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Abstract

This article deals with the existence and the uniquenesslofisns to quadratic and superquadratic Marko-
vian backward stochastic differential equations (BSDEssfwrt) with an unbounded terminal condition. Our
results are deeply linked with a strong a priori estimateZaihat takes advantage of the Markovian framework.
This estimate allows us to prove the existence of a viscasilytion to a semilinear parabolic partial differen-
tial equation with nonlinearity having quadratic or supgrdratic growth in the gradient of the solution. This
estimate also allows us to give explicit convergence raietirhe approximation of quadratic or superquadratic
Markovian BSDEs.

1 Introduction

Since the early nineties and the work of Pardoux and Pengtf2&ie has been an increasing interest for backward
stochastic differential equations (BSDEs for short). Eweguations have a wide range of applications in stochastic
control, in finance or in partial differential equation tigoA particular class of BSDE is studied since few years:
BSDEs with generators of quadratic growth with respect towariablez (quadratic BSDEs for short). This
class arises, for example, in the context of utility optiatian problems with exponential utility functions, or
alternatively in questions related to risk minimizatiom foe entropic risk measure (see e.g. [27, 17, 24] among
many other references). Many papers deal with existenceaigdeness of solution for such BSDESs. In the first
one [21], Kobylanski obtains an existence and uniquenasdtifer quadratic BSDEs when the terminal condition
is bounded. Let us remark that this result has been revigtehtly thanks to a fixed point argument by Tevzadze
in [28]. Now, it is well known that the boundedness of the ter@hcondition is a too strong assumption. Indeed,
when we look to the simple quadratic BSDE

"z, [
Ytszr/ Tdsf/ ZsdW,
t t

we find the explicit solutiory; = log (IE [¢*|F;]) and we immediately see that we just need to have an expohentia
moment for¢ to obtain a solution. In [5], Briand and Hu show an existeresailt for quadratic BSDEs when the
terminal condition has such an assumption. Let us notidehigresult has been recently revisited in [2]. For the
unigueness problem, results are more incomplete. In [18hoasis show a uniqueness result when the generator
is convex (or concave) with respecti@nd whert has an exponential moment which is almost the exponential
moment needed for the existence result.

Naturally, we could also wonder what happens when the geordras a superquadratic growth with respect to
the variablez. Up to our knowledge the case of superquadratic BSDESs isiondgtigate in the recent paper [12].
In this article, authors consider superquadratic BSDEswthe terminal condition is bounded and the generator
is convex inz. Firstly, they show that in a general way the problem is dbed: given a superquadratic generator,
there exists a bounded terminal condition such that theceed BSDE does not admit any bounded solution
and, on the other hand, if the BSDE admits a bounded solutiene exist infinitely many bounded solutions for
this BSDE. In the same paper, authors also show that thegoroidcomes well-posed in a Markovian framework:
When the terminal condition and the generator are detestitriunctions of a forward SDE, we have an existence
result.



1 INTRODUCTION 2

The first aim of this paper is to study existence and uniqueressilts for quadratic and superquadratic Marko-
vian BSDEs. More precisely, we consideY, Y, Z) the solution to the (decoupled) forward backward system

ot ot
X = z+/ b(s,Xs)ds+/ o(s)dWs,
0 0

T T

Yo = g(Xn)+ [ fe XY Z)ds— [ Zaw.,

t t
wheref has quadratic or superquadratic growth with respeleas no convexity assumption, ant not supposed
to be bounded. The starting point of our work is a simple tebalt says: ify and f are Lipschitz functions with
respect tac, then there exists a unique solution such thié bounded, or in other word&, preserves the regularity
of the derivatives ofy and f with respect ta:. Now, the idea is to show that this property stays true whand f
are only locally Lipschitz. More precisely, if we assumettha

IVo(@)| + [Vaf(oa, ., ) < C(L+[a])
for r sufficiently small, then we are able to show the a priori eaten
2] < C(1+|X]).

Thanks to this kind of estimate, it is then possible to showexstence and uniqueness result amongst solutions
that, roughly speaking, verify such an estimate (see Tmed&&). Contrarily to [13, 12] we do not need a
convexity assumption ofi and contrarily to [12], we treat the case of unbounded teahtanditions.

One of the major drawback of results explained before isweatonsider only the case of a deterministic
functiono. The second part of our paper gives some partial results whemandom. In this framework we do
not know if our previous starting point stays trueyifind f are Lipschitz functions with respect toand if o is
bounded, does there exist a solution such thatbounded ? We are able to show that this is true wihiénsmall
enough or for alll’ when we consider a simple example of quadratic BSDE. But émei@al case stays an open
guestion. We also investigate precisely the quadratic whsmg and f are bounded with respect foby deeply
using bounded mean oscillation martingale (BMO martinfaeshort) tools.

Thanks to our existence and uniqueness result we are alilesta grobabilistic representation of the following
PDE:

{ Opu(t, z) + Lu(t,x) + f(t,z,u(t,r),! Vu(t,z)o(t)) =0, x€R%tecl0,T],
u(T,.) =g.

Such a probabilistic representation, also called FeynKemrepresentation, is already given in [13] whéhas
a quadratic growth and is convex with respecttoExistence and uniqueness of this PDE has been studied in
[9] when f has a quadratic growth with respect¥a.c and in [10] for the superquadratic case, but the main part
of the results needs a convexity assumptionfomith respect taz. In this paper, our existence result arises in
guadratic and superquadratic frameworks. Moreover, wealmeed any convexity assumption grwhich is
interesting for applications: For example, when we condisigacs equations in differential game thegtys the
sum of a convex function and a concave function with respect t

The main goal of this paper is to apply a priori estimates iobthfor the procesg to the problem of time
discretization of quadratic and superquadratic BSDEsua&ltt, the design of efficient algorithms which are able
to solve BSDEs in any reasonable dimension has been ingysiudied since the first work of Chevance [8], see
for instance [29, 3, 16]. But in all these works, the drivettad BSDE is a Lipschitz function with respecti@nd
this assumption plays a key role in theirs proofs. In a repaper, Cheridito and Stadje [7] study approximation of
BSDEs by backward stochastic difference equations whiakisbin replacing the Brownian motion by a random
walk. They obtain a convergence result when the driver hadgusadratic growth with respect tcand they give
an example where there proof does not work when the drives jasdratic growth. To the best of our knowledge,
the only works where the time approximation of a quadrati©BSs studied are the one of Imkeller and dos
Reis [18] and the one of Richou [26]. Let us notice that, wihendriver has a specific formit is possible to get
around the problem by using an exponential transformatiethod (see [19]) or by using results on fully coupled
forward-backward differential equations (see [11]). Rag&8, 26] only study the case of a bounded terminal
condition: The first one investigates the case of Lipscleitminal conditions whereas the second one studies the
non-smooth case. To the best of our knowledge, the time appation of superquadratic BSDEs has not been
studied yet. In this paper we have obtained two types of teskirstly we consider the case of a deterministic
functiono. Theorem 5.7 gives us a speed of convergence very close gpégal of convergence in the classical

1Roughly speaking, the driver is a sum of a quadratic term C'|z|? and a function that has a linear growth with respect.to
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Lipschitz case and this theorem is obtained in a generaldwark (quadratic and superquadratic BSDEs with
an unbounded terminal condition). Wheris random, we only study quadratic BSDEs with bounded teamin
conditions. In Theorem 5.9 we obtain almost the classica¢dmf convergence but in a restricted framework that
does not cover some interesting situations: for exampler@eat able to find a “good” speed of convergence
whengo andg are Lipschitz functions with respect toand this question is actually a real challenge.

The paper is organized as follows. In section 2 we obtain @&tence and uniqueness result and an a priori
estimate orZ for Markovian quadratic and superquadratic BSDEs with wmigied terminal conditions when
is a deterministic function. In section 3 we give some exagigl results whem is random. Section 4 contains
an application to semilinear parabolic PDEs. The last sedf devoted to time approximation of quadratic and
superquadratic Markovian BSDEs.

Notations Throughout this pape(i¥;),>o will denote ad-dimensional Brownian motion, defined on a proba-
bility space(Q, F,P). Fort > 0, let F; denotes ther-algebras(W;;0 < s < t), augmented with th&-null
sets of 7. The Euclidean norm oR¢ will be denoted by.|. The operator norm induced By on the space of
linear operators is also denoted oy The notatiorE; stands for the conditional expectation given Forp > 2,

m € N, we denote further

e SP(R™), or S when no confusion is possible, the space of all adapted psesg);).c(o,r; with values
in R™ normed by|[Y|| s, = E[(sup,¢(o,1y [Y;)P]V/P; S (R™), or S, the space of bounded measurable
processes;

o MP(R™), or MP, the space of all progressively measurable proce§8gsc(o; with values inR™
normed by|| Z| v = E[([y |Zs|” ds)P/2]! /P,

In the following, we keep the same notatiorfor all finite, nonnegative constants that appear in our agatons.
In this paper we will consideX the solution to the SDE

t t
Xi=x —|—/ b(s, Xs)ds —|—/ o(s)dWs, (1.1)
0 0

and(Y, Z) € 8? x M? the solution to the Markovian BSDE

T T
n=axw+/‘ﬂaxgnjﬂu—/ Z,d,. (1.2)
t t

2 A unigqueness and existenceresult

For the SDE (1.1) we use standard assumption.

Assumption (F.1). Letb: [0,7] x R? — R% ando : [0, 7] — R*? be continuous functions and let us assume
that there existg(;, > 0 such that:

1. vt €[0,7],|b(t,0)] < C,
2.Vt €[0,T),¥(z,2") € R x RY, |b(t, x) — b(t,2')| < Ky |x — 2'] .

Let us assume the following for the generator and the tedmoradition of the BSDE (1.2).

Assumption (B.1). Letf:[0,7] x R? x R x R*¢ — R andg : R? — R be continuous functions and let us
assume moreover that there exist five constants], o > 0, 5 > 0,y > 0 and K, > 0 such that:

1. foreach(t,z,y,y',2) € [0,T] x R x R x R x R1*4,
|t 2y, 2) — ft o,y 2)| < Kpyly — 9]
2. foreach(t,z,y, z,2') € [0,T] x R? x R x R¥4 x R1*4,

[t ,y,2) = Ft g, 2 < (C+ 202l + 1)) 12— 215
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3. foreach(t,z,2’,y,2) € [0,T] x R? x R? x R x R1*4,

) = Sl < (€4 Sal 41017 ) o=,

&%
l9(2) —9(a)| < (O + G (=l +12/1'") | — ']

1

T .
at+Th< A1/ K+ K )T || L1/

Sometimes we will also consider stronger assumption.

Assumption (B.2). Letf:[0,7] x R? x R x R4 — R andg : R? — R be continuous functions and let us
assume moreover that there exist five constants], 0 <r < $,a > 0,8 > 0,7 > 0 andKy, > 0 such that:

1. foreach(t,z,y,y',2) € [0,T] x R x R x R x R1*4,
|f(t,$,y,2) - f(t,:E,yl,Z” < Kf,y |y - y/|7
2. foreach(t,z,y,2,2') € [0,T] x R x R x R4 x R1xd,
[t y,2) = Fay, ) < (C+ S0l + 1)) 12 = 213
3. foreach(t,z,2,y,2) € [0,T] x R? x R% x R x R1*,

U@%%d—f@fwwﬂ<(C+§WV+WD)M—fL

« r T
l9(@) = 9()| < (C+ Fal” + ') o —a'|.
Remark 2.1 Assumption (B.2) implies assumption (B.1). Moreover, tradeatic case corresponds to= 1.

Proposition 2.2 We assume that assumptions (F.1) and (B.2) hold. ThersedstiutionY, Z) of the Markovian
BSDE (1.2) inS? x M? such that, for alk > 0,

|Z] < Ao + [e<Kb<1+T>+Kf,v><T—t> (o + BT) o, + 5} X", Vtelo,T],
where A, is the unique strictly positive fixed point of the function
x5 Ce + Ce(a+ BT)? + [e(Kb(1+r)+Kf,y)(T—t)(a + 8T) |U|C1):r AT 4| 2,

and C. is a constant that does not dependxqny and 8. Moreover, this solution is unigue amongst solutions
(Y, Z) such that

o YV €S2

o there existg; > 0 such that

2
E [0 2P o o
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Proof of the proposition  First of all, let us remark that if we have a solutifri Z) such that
|Z:] < C(1+4|X4]"), vt € (0,77,

then, for allc > 0,
E [ec f0T|Zs\ZZdS:| < E [CeCSUPogth‘Xt‘ZZT} < 400 (21)

becauselr < 2 (see e.g. part 5in [6]). Now, let us start by the uniquenesslteWe consider two solutions
(Y',z')and(Y?, Z?) suchthat®, Y2 € §?, | Z'| < C(1 + |X|") and there exists > 0 such that

E [e<%+n>§ f(fIZiI”ds] < 4o

We defineY := Y! —Y?andZ := Z! — Z2. By considering the difference of the two BSDEs, the classic
linearization method gives us

T_ B T_
¥, = /stUs+ZsVsds—/ ZudW,,
t t

that is to say

T
v, = - / ef Uutn Z (W, — Vids), (22)
t

where(U, V) takes value iR x R¢ and
U <Ky V<O 2(|2 +|22)).

By applying Young's inequality, Hélder’s inequality and 12, we have

Z;

2
E[e%fflvslzﬂ < E[e%foT(C’LC ”+<1+n>%|Z§I”>ds]

2LdS:|

2Lds:| 1/PE |:e(%+77)§f07‘

12! 140 v2 (T2
Z5|"ds 51 fy |28

< CE [ec Iy

z; z:

< CE [eCpf()T

1/q
21dsj|

with ¢ = (1/2 + n)(1/2 + n/2)~!. This estimate shows us that Novikov’s condition is fulfilland so we are
able to use Girsanov’s Theorem in (2.2) that gives us diyéltitY = 0. Then it is standard to show that= 0.
Finally we obtain the uniqueness result.

Now, let us show the existence result. Firstly we will appneate our Markovian BSDE by another one. Let
(YM ZM) the solution of the BSDE

<  +o00,

T T
Y;]\/I = gM(XT) +/ fM(SvaaszM7 Zé]u)ds - / Z;deN (23)
t t

with gy = gopar @andfy; = f(., pas (L), ., .) wherepy, is a smooth madification of the projection on the centered
euclidean ball of radiud/ such thatpy;| < M, |[Vpa| < 1 andpy(z) =  when|z| < M — 1. Itis now
easy to see thafy, and fy; are Lipschitz functions with respect to Theorem 3.1 in [26] gives us that™

is bounded by a constant, that depends oM/ in the quadratic case. In fact this result stays true in ouremo
general framework. More precisely we have this propositiat we will show in the appendix.

Proposition 2.3 We assume that (F.1) holds. We also assume that[0, 7] x R? x R x R'*? — R and
g : RY — R are continuous functions such that:

e gis K,-Lipschitz,
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e fis Ky .-Lipschitz with respect te, K ; ,-Lipschitz with respect tg and locally Lipschitz with respect to
2. there exists an increasing functign: Rt — R+ such that for eaclit, z,y, z, 2’) € [0,T] x R? x R x
Rlxd X Rlxd

[f(t 2y, 2) = [t 2.y, 20 < L+ @(|2]) + @(12']) |2 — 2]

Then, there exists a unique solutidi ) to the BSDE (1.2) i5? x M? such that” is bounded. Moreover,
we have
|Z| g eQKb‘i’Kfyy |O'|Oo (Kg —+ TKfz)

Thanks to this lemma we know that there exists a unique soiyli', ZM) to the BSDE (2.3) (in the
appropriate space) arfff is bounded by a constadt, that depends of/. Moreover,f,, is a Lipschitz function
with respect to: and BSDE (2.3) is a classical Lipschitz BSDE. Now we will shitv following Lemma.

Lemma 2.4 We have, for alk > 0,
‘Zt]u‘ < An + Bn |Xt|r 9

with (A,,, B, )nen defined by recursionB, = 0, A, defined before,

By = S0 K )T = (o 4 BT 0| + ¢,

An+1 _ C+ C(OL +BT)2 + |:€(Kb(1+r)+Kf’y)(T7t)(O[+/BT) |O_|(1>2>T rr +e A:Ll,

where(' is a constant that does not dependigry, 5 and M.

Proof of thelemma Let us prove the result by recursion. Foe= 0 we have already shown the result. Let us
assume that the result is true for some N* and let us show that it stays true fort+ 1. Firstly we assume that
forallt € [0,7],b(t,.),gandf(t,.,.,.) are differentiable. TheX and(Y™, Z*) are differentiable with respect
to x (see e.g. [14]), we have

T
vYM = Vgu(Xr)VXr — / vZMaw,
t
T
+ / Vo far (s, X, Y, ZMVV X+ Vy far(s, X, Y, Z)VYM + V. far (s, X, Y, 22V 2 ds,
t
andz} = VYM(VX,)~'o(t) as.. SinceZM| < Ay, we have

V. far(s, X, Y, 2| < 1+ | 2] < ©

and so we are allowed to apply Girsanov’s Theordt::= W, — fg V. fu(s, Xs, YM, ZM)ds is a Brownian
motion under a probabilit®?. We obtain

VM = Y|l Vi XY AN g (X) V X

)

T
Jr/ eJi VubuXu Y20 duy g o XYM 7MY X, ds
t

and finally

T
|ZM| < C + KoK (T=) |O_|OOE(9M [a Xr[ + ﬂ/ X" ds] (2.4)
t
becaus&’ X, (VX;)~! is bounded by’ »(T=%)_ Let us come back to the SDE:

XS:XH-/ b(u,Xu)du—i—/ a(u)qu—I—/ o(u)V f(u, X, YM, ZM)du,
t t t

|X5|<|Xt|+0+/ Kb|Xu|du+‘/ o(u)dW,
t t

+|U|Oofy/ |A,, + By, |Xu|7“|ldu, (2.5)
t

B [0 < 1+ O+ Ko [ BRIl dut (14 9ol ool + O | [ B X ],
t t
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thanks to the recursion assumption. Young's inequalitggivs
CeBL|Xu|" < C-BY + 2| X,
with 1/p + 1/q = 1 andrlq = 1 (let us recall that! < 1). Thus, we obtain
EQ” [|X,]] < |Xi| + C + K, / EQ" [|Xu[]du+ (1+¢)|o| AT A, + CBY + eEL" [/ |X.| du} .
t t
Gronwall's Lemma gives us
P [IX)] < O+ SO0 (14 ) o] 7T 4} + OBY + |X4])
and so
BP0 < (B2 X)) < O+ e aT=0 (14 2) o] 4" T7 ATl + CBP + |X,[")
because < 1. By introducing this inequality into (2.4) we obtain
1ZM] < C+Cla+ BT) + KoKt rEFT=0 (04 BT) o] (1 +€) |o] v T A} + CBLP + | X4[) .

Finally,
By = et Kaaytr(Eote)(T=t) (o 4 BT |o| _,
and, thanks to the recursion assumption,
Api1 =C+Cla+BT)? + (1 + e)eFo Ky trEete)(T=t) (o 4 BT |o| 1" 47T AL,

oo

Since these equalities are true foraf 0, the result is proved. Whel g and f are not differentiable, we can
prove the Lemma by a standard approximation and stabiliyltefor Lipschitz BSDEs. U

Sincelr < 1, the recursion function that defines the sequéntg),, > is a contractor function and sb,, —
Ao whenn — 400, with A, that does not depend avi. Finally,

|Zt]\/f| g Aoo + |:6(Kb(1+7‘)+Kf,y)(T—t)(a+/8T) |o_|OO +e |Xt|’l“ ) (26)

Now, we want to come back to the initial BSDE (1.2). We will shihat (Y™, Z™),cn is @ Cauchy sequence
in the spaces? x M?2. We have, thanks to the classical linearization method,

T
Ythrq - Ytp = gp+q(XT) - g;D(XT) + / fPJrq(S’ XSv Yserqv Z§+q) - fp(s’ XSv Yserqv Z§+q)d5
t
T T
+/ (ysp-kq _ Ysp)Ug),q + (Z§+q _ Zg?)vsp,qu _/ Z§+q _ Zdes,
t t
that is to say

T 17P:4q,
Y;p-i_q_y;tp = el UL [9p+q(XT) — 9p(X7)]

T
+/ el UL du [prrq(SaXs,Yserquerq) - fp(S’X&Yserq’Zerq)] ds
t

T
- [ etz gy aw, - vras),
t

with p,q € N, [UP9| < Ky, and |V < (1 + |zp|" + |Z§+q|l). Thanks to (2.6), Novikov's condition is
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fulfilled and so we are able to apply Girsanov’s Theorem:
p,q T pP,q
Y vy < B [V gy (Xa) - gp(X0)] |

+ [EY”

T
/ eff UP%du I:fp+q(s7XS7Y5p+q) Z§+q) _ fp(S7XS7Y5p+q; Z§+q)} ds]
t

< B TEY [1g 10 (X 1) — gp(X7)]
T
el / EF ([ fota(s, Xo, YIH, Z079) = fi (s, X, YT, Z049)|| ds
t
T
< CEY [(1+|XT|T+1)]1\XT\>1)—1}JrC/ B [(1+|XS|TH)]1'X8'>P—1} ds
t
pia - 1/2 D,q 1/2
< OEF 1 xR (1]
T p,q 1/2 p,q
+C/ E; [1+|Xs|2r+2} EY" [1jx,5p) /* ds
t
» o 1/2 EQIMI XT 1/2
T . 1/2 EQIMI Xs 1/2
+c/“E9 (141X, 7] -i—%%AL—“'
t

By the same calculus than in the proof of Lemma (2.4) usingtpgori estimate or¥’?:? and Z?, we are able to
show that
EF X" < C+|X|")

for all a > 1 with a constant' that depends oa but does not depend gnandg. Finally

p—+oo

—— 0.

E| sup [vPHe - Ytp‘Q

r4+3/2
] C(1+E [SUPogth X[ / ) C
< < —=
0<t<T

p1/2 = p1/2

By applying Itd’s formula to the proce$s? 7 — YP|2 and using the same calculus, it is rather standard to show
n—-+o0o

that(Z"),cn is a Cauchy sequence im?. Finally, it is easy to check that’ ", Z™) ——= (Y, Z) the solution
of the initial BSDE (1.2) and our estimate ¢f* stays true folZ:

| Z4] € Ao + |eFOUIIHELDT (o 4 BT) |o| 4] | Xl
0

Theorem 2.5 We assume that assumptions (F.1) and (B.1) hold. Thersexstlution(Y, Z) of the Markovian
BSDE such that, for alk > 0,

|Z,| < C. + e(Kb(l‘Fl/l)JrKf,y)(T*t)(a +B8T) ol +¢ |Xt|1/l, vt € [0, 7).

Moreover, this solution is unique amongst soluti¢FisZ) such that
oY cS8?

o there exists; > 0 such that
EFmﬂﬁﬁ%%ﬂ<+m

Proof of thetheorem We will mimic the proof of Proposition (2.2). Let us start bhyetuniqueness result. We
consider two solutiongY'*, Z') and(Y?, Z?) such that!, Y2 € S? and

1 2
z Vs

s

E |:€(2+77)§ Jo 21’15} +E [6(2*'")4 I Zlds} < +00.
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As in the proof of Proposition (2.2) we consider the BSDEs$#til by processes andZ and we introduce the
two processe#” andV. Now we just have to show that Novikov’s condition stays figél: by applying Young’s
inequality and Hoélder’s inequality we have

E [e% ff\vsﬁds} < E [e% f5<0+<2+n>§|Z§|21+<2+n>§|z§|“>ds]

N

2 21 2 21
CE [;mmm ds 2232 (7|22 ds]

z;

z:

2 1/2 2
< CE {6(2-%77)77 Iy 21‘15} E [6(2-%77)% I

1/2
2Ld8:|

The remaining of the uniqueness proof is unchanged. Nowdethow the existence result. We will consider
again the solutioriy ™, Z*) of the BSDE (2.3). We have already remark thaf is bounded by a consta6t,,
that depends on/. Now we want to obtain an estimate @i’/ that does not depend . Thanks to assumption
(B.1) we have, foralt- € [0,1/1],

< —Ho00.

Ml/l—r ” ,
|fM(t7x7y)Z) - fM(ﬁa$I,y7Z)| < (C + BT(LTl + |.Z'/| )) |ZC — JJ/|,

OéMl/l_T

Xl + 1)) o - .

Since assumption (B.2) holds, we are now allowed to applp®sibion 2.2: for all- € [0, 1/([ we have

l90(2) — gar ()] < (c n

|ZtIL[| <D, + {e(Kb(lJrT)JrKf,y)(Tft) (a + ﬂT)Ml/lfr |U|oo + E} |Xt|r 7 (27)
whereD,. is the unique strictly positive fixed point of the function
e O + CEM2(1/Z7T)(O[ +6T)2 + {e(Kb(lJrr)JrKf,y)(Tft)(a _’_BT)Ml/lfr |o_|i:—7' ,err +5:| .Z’Tl.

Now we want to consider a sequeneg)ien such that LEAE:N 1/1. To study the behavior dfD,, )ren We

use a lemma that we will show after in the appendix.

Lemma 2.6 Let us consider three sequend®s)ren, (ar)ren and (bg)ren such thaty € [0, 1], p Jtoo, 1,

ap >0, a 222 4 by € [0, b] with b < 1 andby, koteo y Forallk e NU {+oc}, we also consider the
unique fixed point,;, > 0 of the function: — ay, + br2™. Thenuy, Ftoo, Uso -

For e sufficiently small we have
(Ko (14+1/D+ Ky ) (T—1) (a+ BT) |O_|(1>;r1/l,yl/lT1/l Te<l,

because in assumption (B.1) we assume

1
A /1e((IH+1/D Ky + K )T |J|1+1/l T/

a+T6 <

Thus we have, thanks to Lemma 218, hodoo, D, the unique strictly positive fixed point of the function

23 Co + Co(a+ BT)? + [E(Kb(1+1/l)+Kf,y)(T7t)(a+5T) |J|(1>:1/171/1T1/z +€} -

Finally, whene is small enough, we obtain an estimateZo¥ that does not depend av by lettingr — 1/l in
2.7):
1ZM| < Dy + |:6(Kb(1+1/l)+Kf,y)(T—t)(a + 8T) o] —i—E} |Xt|1/l. 2.8)

To conclude we have to show th@t", Z"),,cy is a Cauchy sequence in the sp&ex M?2. As in the proof of
Proposition 2.2 we consider the BSDE satisfied by proceggeés — Y? and 2?4 — ZP and we introduce two
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processes&’P-7 andV? 9. Now we just have to show that Novikov’s condition stays fldtl: by applying Young's
inequality and Holder’s inequality we have

E e%fflvw?ds} < ]E[e%f5<c+<2+n>f|Z§“I”+<2+n>f|Z§|“>ds] 2.9)
< CE [6”2"12 S|zt as 25 2 foTIZEIZZdS] (2.10)

24n) 22 [T|zrta)? s 1/2 22 1y gopag]
< CE [e< % o |28 } E[e(2+")Tfo 1221 d@} . (2.11)

Thanks to estimate (2.8) we have, for &ll € N ande small enough,

2
E e(2+77)§ foT|Zy|ZldS] < CE [exp <(1 + 7])%te(Kb(l"'l/lHKf’y)T(a + BT)% |O’|ilo T sup e 2Kt |Xt|2)] .

Since we have

_ 2 - 2
sup (e 2t | x| ) < sup <e ot qup | X >,
0<I<T 0<I<T 0<s<t

a slight modification of the proof of Lemma 4.1 in [13] givesthat the left term in the penultimate inequality is
finite for » small enough when

1
202 T

(oo}

2
%ezl(Kb(1+1/z)+Kf,y)T(a + BT)QZ |‘7|iiT <

which is always true because we assume in assumption (Eatl) th

1
AL/ Le((+1 /D Ky +K )T |J|1+1/l T/

a+T6 <
Finally Novikov’s condition is fulfilled and we are allowed use Girsanov’s theorem. The remaining of the
existence proof is unchanged. 0

Remark 2.7 In (B.1), our assumption

1
A1 /L) Kyt K g )T |U|1+1/l T1/1

a+TB <

is exactly the one we can find in the article [13] for the quadraase (i.e/ = 1). In this case, this assumption is
optimal because we need it to obtain a sufficient exponemimashent for the terminal condition and the random
part of the generator. Let us also remark that in [13] assum are more general because they are about the
growth of f and g instead of the growth of derivatives ffandg.

Remark 2.8 With the same machinery it is possible to treat a little moemeyal framework than the one of
assumption (B.1): indeed it is possible to replace pointa@ & with

2. foreach(t,z,y,z,2') € [0,T] x RY x R x R1*4 x R1xd,
(2., 2) = f (629,20 < (O fal + 31l +121) 2 = 15
3. foreach(t,z,2',y,2) € [0,T] x R x R? x R x R'*4,
t,0,009) = £,/ 2) < (C 4 81al+ 50 411 ) o = 1,

(&%
l9(2) — 9(a)| < (€ + (el + 121" | = ']

and the point 4 with an Ad hoc assumption. We decided to doe@tdth this little more general setting because
the proof is already technical and we do not want to compéiéatinnecessarily.
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3 Someresultswhen o israndom

The main restriction in the previous part is about the fuorcti that is assumed to be deterministic. In this section
we will give some partial results when the SDE is given by

t t
X = x—i—/ b(s,Xs)ds—i—/ o(s, Xs)dWs. (3.1)
0 0
We will consider classical assumptions on this SDE.
Assumption (F.2). Letb: [0,7] x R? — R? ando : [0,T] x R? — R4*? pe continuous functions and let us
assume that there exi&f, > 0, K, > 0 andM, > 0 such that:
1. vVt e€[0,7T],|b(t,0)| < C,
2.Vt €[0,T),¥(z,2") € R x RY, |b(t, z) — b(t,2')| < Ky |z — /|,
3.Vt €[0,T),Vz € RY, |o(t,z)| < M,,
4. vt €[0,T],V(z,2') € RT x RY, |o(t,2) — o(t,2")| < Ko |z — 2|

Before giving our first result, let us point out why we are nbleato use the same machinery than in our first
part. Whery is deterministic, the starting point is Proposition 2.3 véhee show tha¥ is bounded under good
assumptions. To prove this result we deeply use the factM¥ais bounded. Now, whea is not deterministic,
VX is not necessarily bounded and so Proposition 2.3 does wessarily remain. Finally, the first question to
answer is: does the proceBgemains bounded whepand f are Lipschitz with respect te?

3.1 Boundednessof Z when T issmall enough
In this part we will give a partial answer to the previous dices

Proposition 3.1 We assume that (F.2) holds. We also assume that[0,7] x R? x R x R'*¢ — R and
g : R — R are continuous functions such that:

e gis K -Lipschitz,

o fis K;,-Lipschitz with respect ta, K ,-Lipschitz with respect tg and locally Lipschitz with respect
to 2: there exists an increasing continuous functipn R* — R such that for eacht,z, vy, 2, 2') €
[0,7] x R% x R x R4 x R1*4,

[f(tw,y,2) = f(t 2,9, 20 < (Kpe 4 0(12]) + 9(12]) |2 = 2]

Then, forT” small enough, there exists a unique solutidh Z) to the BSDE (1.2) i5? x M? such thatZ
is bounded.

Proof of the proposition  Once again, we will use a classical truncation argumentdgeeahe proof of Theorem
4.1in[12]). Our truncation functiop,, is a smooth modification of the projection on the centeredieesn ball
of radiusM such thatpy/| < M, |[Vpar| < 1 andpy(z) = 2 when|z| < M — 1. We denotg Y| ZM) the
solution of the BSDE

T T
Y = o)+ [ s, X ¥ 220 — [ 2w,
t t

wherefy := f(.,.,.,pm(.)). Now, this BSDE is also Lipschitz with respect4oFirstly we assume that for all
t €10,T],0(t,.),gandf(t,.,.,.) are differentiable. TheX and(Y, Z) are differentiable with respect ta we
have

T
vyM = Vg(XT)VXT—/ vZzMaw,
t

T
+/ vwa(SaXS7Y;~1w7Z£[)VXS+vyfﬂf(s7XS7Y;~MaZ£w)vY;~k[+vzf]\/I(S7XS7Y;~MaZ£w)vZ£[dS7
t
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andzZM = VYM(VX,)"lo(t,X;) a.s.. SINCEV, f is bounded byK; . + 2¢ (M), we are allowed to apply
Girsanov's TheoremiV;, := W, — fot V. fu(s, Xs, YM, ZM)ds is a Brownian motion under the probabilify’.
We obtain

VYM = B (el T XX 2T g (X 9 X

)

T
" / el VP u Xy ZNdug £ (5 X, VM, ZMYV X ds
t

and finally

/1 T /1
|ZM| < KT, (KEQ (U] + K / EY" (U, ] ds> ,
t
with (Us).<s<r the solution to the SDE
U, = Id+/ Vb(Xu)Uudu+/ > Vo (X,)ULdW
t toi=1

= Id+/ Vb(Xu)Uudu+/ Zvai(Xu)Uu(deiJr(szM)i(UvXUaYuM,Zi”)du)
¢ toi=1

where the superscripidenotes thé-th column. A classical estimate GEPM [|Us|] gives us
E?”I U, < CeKoT+(Kp+ Ko (Ky.24+2¢(M))*T?
ForT" small enough, the function
2 1+ CeRtaT M (K, + K o T)e e Kot Ko (K 2 420(@) T

has, at least, one positive fixed point. Let us dendtethe lowest positive fixed point of this function. Then
ZM < M — 1 and(YM, ZM) is a solution to the initial BSDE. Uniqueness follows frone timiqueness result
for Lipschitz BSDEs. 0

Remark 3.2
e In general, itis not possible to stick local solutions toaihta solution(Y, Z) with Z bounded for allT".

e The biggest’ that allows the existence of a fixed point for the function
25 1+ CeXrvT M (K, + Ky, T)eKaTH Kt Ko (Kyat20(2)*T7

strongly depends oK ,. So, it is not possible to treat the caseyaind f locally Lipschitz with respect to
by using the same machinery than in the previous part.

3.2 A simpleexample

In this part we will see that when we consider a simple quadBSDE with an explicit solution, the procegs
remains bounded whepand f are Lipschitz with respect to. More precisely, we will consider the following
guadratic BSDE:

T |Z |2 T
Y, :g(XT)+/ Tsds —/ ZdWs. (3.2)
t t

Proposition 3.3 Let us assume that (F.2) holds and tlgeis a K 4-Lipschitz function. Then there exists a unique
solution(Y, Z) to the BSDE (3.2) i8? x M? such that the process is bounded.
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Proof of the proposition Itis well known that (3.2) can be explicitly solved with anp@nential transform, also
called Cole-Hopf transform in PDE theory. More preciselg, nave

Y; = log E, [eg(XT)} . Zy=e V7,

whereZ is given by the martingale representation theorem apptigti¢ martingaldE; [¢9(X7)]) _,_ . Y'is
well defined becausgis Lipschitz and for allC' > 0

E [eC|XT|} < 400,

sinceo is bounded (see e.g. part 5 in [6]). The uniqueness is stendarin previous proofs, we assume in a first
time thatg, b ando are differentiable with respect ta Then we have

E, [Vg(X7)VX7(VX,) Les1)]
E; [e.‘](XT)}
o [[VX7(VX;)~! | es1)]

|Zs| =

O'(t, Xt)

< Ey [e9(X7)]
1/2 B, [e29(xm)]'/?
< CE[|VXr(VX) ™[] %

Et I:eg(XT)}

becausé/g, o are bounded an(V X (VX;)~!):<s<r Solve the SDE
S d S . .
U, = Id+/ Vb(s,XS)Usds—i—Z/ Vo' (s, X ) U dW?,
t i=1 t

SoE; “VXT(VXt)*lﬂ is bounded. Let us denofé the solution of the ordinary differential equation (with a
random initial condition)

)_(S:Xt—i—/ b(u, Xu)du, t<s<T.
t

Sincey is Lipschitz andX is F;-measurable, we obtain

1/2 1/2

eg(XT)]Et |:€2C|XT_XT|:| Et |:€20|XT_XT|:|

|Zi| < C (3.3)

eg(XT)Et {e—C|XT—)’(T|} = E, {6_0|XT—)’(T|} .

. We have

Let us estimaté, |:€2C|XT7XT|:|

)

‘XSfXS‘:O+Kb/S|Xquu|du+ sup
t

t<r<T

/ o(u, Xy)dWy
t

and we deduce from Gronwall's lemma the inequality

sup ’XS — XS’ < C sup
t<s<T t<s<T

/ o(u, Xy)dWy,
t

It follows from the Dambis-Dubins-Schwarz representattoorem that, fon > 0,

/t o, X;mdwum

E sup MWl
0<s<loll2,T

E {exp <)\ sup

t<s<T

/ o(u, Xy)dWy
t

) ‘}‘t,Xt = xo} = E, [exp ()\ sup

t<s<T

N

< +00
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where(X!*0), .7 stands for the solution to the SDE (3.1) that starts fignat timet. We remark that the right
term in the last inequality does not depenci@rso
/ o(u, X)) dWy, )]
t

is upper bounded. By the same type of argument we have that

/ o(u, Xy,)
¢
E; [6205upt<s<T|ff ”(“’X”)dwuq -

E, {exp (C’ sup
t<s<T

E; [exp (—C sup

t<s<T

is lower bounded by a strictly positive constant. Finally3j3ecomes

|Z:| < C

<0,
E, |:efcsupt§S<T|jt o’(u,Xu)qu|:|

and soZ is bounded. Finally, wheg, b and o are not differentiable, we can prove the result by a standard
approximation. U

Remark 3.4 Thanks to this estimate dfj, it is possible to use the same machinery than in the pregection to
show estimates off wheng and f are locally Lipschitz with respect to. This simple example is a good argument
to postulate that Theorem 2.5 or Proposition 2.2 could stag tvhen we replace (F.1) by (F.2), at least in the
guadratic case.

3.3 Thecase of bounded terminal conditions

In this part we will restrict our study to the quadratic casd we will assume that the terminal condition and the
generator are bounded with respecttdn this case we are able to obtain estimateg/dhanks to the additional
tool of Bounded Mean Oscillation martingales (BMO martilegafor short). We refer the reader to [20] for the
theory of BMO martingales and we just recall the propertied tve will use in the sequel. Lét, = fo G dWs,

for ¢t € [0,7T], be a real square integrable martingale with respect to thesdan filtration. Then® is a BMO

martingale if
1/2
]:T] < 400,

where the supremum is taken over all stopping timd8.ifi'] and(®) denotes the quadratic variation®f In our
case, the very important feature of BMO martingales is thieviang lemma:

T
19l prro = sup E[(@)r — (@) F]"? = Sup]El/ ¢ads

T€[0,T] T€[0,T

Lemma 3.5 Let® be a BMO martingale. Then we have:

1. The stochastic exponential

t 1 t
5(<I>)t=&=exp(/ ¢des—§/ |¢sl2ds), 0<t<T,
0 0

is a uniformly integrable martingale.

2. Thanks to the reverse Hoélder inequality, there exists 1 such thatr € LP. The maximap with this
property can be expressed in terms of the BMO norih.of

We will work under following assumptions on coefficients @i (5.6) and BSDE (1.2).
Assumption (F.3). Letb: [0,7] x R? — R? ando : [0,7] x R? — R4*? pe continuous functions and let us
assume that there exi&f, > 0, K, > 0, M, > 0 andx € [0, 1] such that:
T}, [b(t,0)] < C,
], V(z,2") € R
|, Vo € RY, |o(t, z)| < My (1 4+ |z|7),
,V(z,2") € R x RY, |o(t,z) — o(t,2')| < Ky |z — /).

>
1.vVte <

2. Vte

)

[0
0,7 4 x RY, |b(t, ) — b(t,2')| < Ky |z — 2|,
3.Vtel0, T
4. Vte[0,T

)
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Assumption (B.3). Letf:[0,7] x R? x R x R*¢ — R andg : R? — R be continuous functions and let us
assume moreover that there exist seven constast®*, o« > 0,5 > 0,v > 0, Ky, > 0, My > 0andM, > 0

such that:

1. foreach(t,z,y,y’,2) € [0,T] x R? x R x R x R1*4,

|f(t,z,y,2) — f(t,x, 9, 2)] < Kpyly — o'l

2. foreach(t,z,y, z,2') € [0,T] x R? x R x R¥4 x R1*4,

[t 2,y,2) = f 0y, )] < (C+ 22l +12D) |2 = 2/

3. foreach(t,z,2’,y,2) € [0,T] x R? x R? x R x R1*4,

by, 2) — f(b e y.2)] < (o+ GﬂHxH)wa

l9(@) = 9@ < (C+ S (al” + ') o = ']

4. foreach(t,z,y,z) € [0,T] x R? x R x R1*4,

£t 2y, 2)| < Mp(1+ [yl + |21%),
lg(z)] < M.

Theorem 3.6 We assume that assumptions (F.3) and (B.3) hold. Thersexstlution(Y, Z) of the Markovian
BSDE inS? x M? and this solution is unique amongst solutiqit§ Z) € S? x M? such thatY” is bounded.
Moreover we have

and

|Zt| < C(l + |Xt|r+n)7 vt e [OvT]a

’ / Z.dW,
0

<C,
BMO

where the last constart depends only on/,, My and Ky ,,.

Proof of thetheorem For the existence and uniqueness result we refer the reaflet,t23]. The estimate for
the BMO norm ofZ is shown in [4, 1]. It just remains to prove the estimatenAs in previous proofs, we
firstly assume thaf, g, b ando are differentiable with respect ta Then, according to [4, 11X and(Y, Z) are
differentiable with respect to, we have

VY, =

T
Vg(X7)VX7 — / YV Z,dW,
t

T
+/ vmf(stSa }/Sv ZS>VXS + vyf(sts; }/Sv ZS>V}/S + sz(stSa }/Sa ZS)VZSd‘Sv
t

andZ; = VY;(VX,) 'o(t, X;) a.s.. Sincgf;, Z,dW, is BMO and

|VZf(SaX57Y55 Z5)| g C(l + |ZS|>

thenfo V.f(s, X, Ys, Zs)dW, is BMO and we are allowed to apply Girsanov’s Theorem thaoksimma 3.5:
W, = fo V.f(s, Xs,Ys, Zs)ds is a Brownian motion under the probability

We obtain

Q=¢ (/ V. f(s, Xo, Yo, Zs>dWs) P.
0 T

VY, = EP leff Val X Y Z2)AG o (X 1)V X

T
+/ el Vil wXuXuZu)dug (s X, Y,, Z,)V X ds
t

)
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and then it comes

Q 2] /2 T Q 2r] /2 Q 112 12 K
1Z < C[1+E [|XT| } +/ o [|XS| } ds | ES Lsup IVX,(VX,)! ] (1+]X]%)
t

<s<T
(3.4)
by using assumptions (F.3), (B.3) and Cauchy-Schwarztpiakty. Let us denote

T

T
1
gt,T = €exp </ sz(S,XS,YS, Zs)d”s - 5/ |vzf(57XSa}/57Zs)|2 dS) :
t t

Thanks to Lemma 3.5, there exigts> 1 (that does not depend @ such thaﬁEt[Et’jT] < +o0. But, by using
Holder’s inequality and classical estimates on SDEs we have

T T 1/q T
ER [|X.17"] < Bolel VPR [|X77] 7 < o+ 1Xd™),

and
1/q

B9 | sup [VX.(V07 ] < Bler o | s [Vx(0x07] <
t<s<T ’ t<s<T

By putting th two last inequalities into (3.4) we obtain tesult. Finally, wherb, g and f are not differentiable,
we can prove the result by standard approximations andisgalesults for quadratic BSDES (see e.g. [18])[]

4 Application to quadratic and superquadratic PDEs

In this section we give an application of previous resultsassning BSDEs to semilinear PDEs which have a
qguadratic or superquadratic growth with respect to the igradf the solution. We will restrict our study to
deterministic functions. Let us consider the following semilinear PDE

{ opu(t,z) + Lu(t,z) + f(t,z,ut,x),! Vu(t,z)o(t)) =0, xeRItel0,T], 4.1)
U(Ta )=9 '
where/, is the infinitesimal generator of the diffusion’* solution to the SDE
X0 =g+ / b(r, XE*)dr —|—/ o(r)dW,, t<s<T.
t t
The nonlinear Feynman-Kac formula consists in proving thafunction defined by the formula
Y(t,z) € [0,T] x RY,  w(t,z) == Y" (4.2)

where, for each(tq,z¢) € [0,7] x R?, (Yoo Zto.70) stands for the solution given by Theorem 2.5 to the
following BSDE

T T
Ytto,l'o _ g(X;P’wO) Jr/ f(S,Xét,O"zO,Y;O’zO,Z;U’IU)dS 7/ Z;O"zodWS, 0<t<T,
t

t

is a solution, at least a viscosity solution, to the PDE (4Fijstly, let us study the growth and the continuity of
this function.

Proposition 4.1 Let assumptions (F.1) and (B.1) hold. The functiodefined by (4.2) has a polynomial growth
and is a continuous function. More precisely we hax(e, ', z, z') € [0,7]? x R? x R,

Jult, )| < C(1+ |27,

lu(t,z) — u(t',2')] < CQ+ 2" + 12/ [V & — 2| + O+ |o) T+ 2/ e — )2
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Proof of the proposition  To show the first point, it is sufficient to prove the estimate

E { sup \Y;vmﬂ <C (1+]aP0H0) . (4.3)
t<s<T
By a very classical method we can easily show the estimate

E[sup ‘Y;Zﬂ < CE

t<s<T

T
o)+ |f<s,xz’w,o,z;@>|2ds] .
t

Since|Z|"* < C(1 + |Xtvx|1/l), we obtain, by using the growth gfand f and classical estimates on SDEs,

E[ sup |Yst””‘2] < CE [1—1— sup ‘Xﬁ’zf(lﬂm]

t<s<T t<s<T

< C (1 n |$|2(1+1/l)) _

Now, let us show the second part of the proposition. By a syinnagument we are allowed to suppose that
t' > t. Then

ult ) — ult',a') = B[V - vi7] + B [vie - v,
Cauchy-Schwarz’s inequality and growth assumptiong andg give us
2

t/
E[v —yse] [ = IE/t fls, X0P,YP", Z0%)ds

t/
< |t - 2(’-/|E [/ ’f(SaX?IaY;t’zaZ;@)f ds
t
< Clh-rB |1+ s (1L ).
t<s<T

Thanks to a priori estimate afj, a classical estimate on SDEs and (4.3), we obtain
B[V — Vo] P < Ot — ] (1 + |220HD),

Now we will study the terni€ [Yf,’”” - Yt‘f/’””/} . We have, thanks to the classical linearization method,

Y;z B thl’ml — oJu UDT du [g(X;z) B g(X;’z/)}

T !
el (s, XE VI, Z87) - f(s, XEYE", Z200)] ds
t/

T ’ ;o ’
_/ efts/ Ug® du(Z:z _ Zi T )(dWs o VS%I dS),
t

’

Yt,z Yt/,z/
v

< CEY [|oxi) - g0y

’ ’ ’ ’ l . . . . .
with ’U?z ‘ < Kypyand|VE® | < 2(1+ |Z§7I|l + ‘Zﬁ o ‘ ). Since Novikov’s condition is fulfilled, we are able
to apply Girsanov’s Theorem. We obtain, by using the fadt fhandg are locally Lipschitz,
T a:/ T ’ !
+CBF | [ | X0 v 2 = s, XU Y 2 ds
t/

z,z’ 2/[ 1/2 z,z’ i 2/l 1/2
< C 1+IE9 [sup ‘Xﬁz’ ] +IE9 [sup ‘Xﬁz }
' <s<T ' <s<T
2] 1/2

< CIEE;Q;)Mr [ sup (1 + ’Xﬁ,"zll/l + ‘Xﬁl’xl

t'<s<T

1/l / /
) ‘ngf _xthe

’
Q™* t,x tx’
xEy sup | X" — X;

t'<s<T
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Let us recall thafV:**'
to obtain finally

<C (1 + | X5*| + ‘Xﬁ’»z’

). Once again we are able to use classical methods on SDEs

x /fL'/ fL‘ll xT xT
v = v <o x| ) (10 - | =) o X

+ 1)
Classical estimates on SDEs allow us to conclude:

E Yt,w _ Yt/,x/
t’ t’

<O+ lal + 1) (Jo = o/l + [t = ¢ (1 + [l + ')
U

Proposition 4.2 Let assumptions (F.1) and (B.1) hold. The functiodefined by (4.2) is a viscosity solution to
the PDE (4.1).

Since we are able to use Girsanov’s transformation in theBSE2 have a comparison result. Moreover, Propo-
sition 4.1 gives us that is a continuous function. So the proof of the propositiomtsalty standard: for example,
it can be easily adapted from the proof of Theorem 4.2 in [14].

5 Time approximation of quadratic and superquadratic Markovian BS
DEs

5.1 approximation of theinitial BSDE by a Lipschitz one

In a first time, we will consider the deterministic case foe fanctiono and we will approximate the solution
(Y, Z) of the BSDE (1.2) by(Y' ™, Z™) the solution of the BSDE (2.3). The aim of the following prsjimn is
to study the approximation error given by:

er(M):=E | sup |Yt—YtM\2]+1E

0<t<T

T
/ |2, —ZtM|2dt] . (5.1)
0
Proposition 5.1 If we assume that assumptions (F.1) and (B.1) hold, ther tdsts\ > 0 such that
e1(M) < Ce= M*,

Proof of the proposition Let us define processé¥ :=Y — Y™ andéZ := Z — Z™. We have

T T
§Y; = g(X1) — gar (X7) +/ (5. Xo, Yo Z0) — far(s, Xo, Y, ZM)ds —/ 52,dW, .
t t

The classical linearization method gives us

T T
6Yt:59+/ 5f5+5YSUSM+5ZSVSMdsf/ 8 ZydWs, (5.2)
t t

with
69 = g(XT) - gM(XT)7 6f5 = f(SaXMY;‘a Z&) - fM(SaXMY;‘a ZS)7

(UM, VM) with value inR x R? and
UM< Kpye VM <O+ 012 1|22,
We can easily show that Novikov's condition is fulfilled o by doing the same calculus than fg#:¢ in

the proof of Theorem 2.5 (inequalities (2.9) to (2.11)). ®e,are allowed to apply Girsanov’s theoref; :=
Wy — fg VM ds is a Brownian motion under the probabilify’ . Thus, by applying Cauchy-Schwarz's inequality
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and Markov’s inequality we obtain

M
Y, = EP
t

T
eli USMdS(Sg + / elt Uyd“éfsds] ,

M
6| < CE?

T
(1+ |XT|1+1/Z)]1|XT|>M +/ (1+ |Xs|1+1/l)1|Xs>k[d51
t

E9M [62/\|XT|2} 1/2

< C (1 S [IXTIQUH/”DUQ o

M ,11/2
+C/tT (1 +E2” [|XS|2<1+1/1>D1/2 B [j:; | } s, 5.3

Then we use the following lemma that we will prove in the apgjen
Lemma 5.2 We assume that assumptions (F.1) and (B.1) hold. We have
e Va € [1,400[,3C > 0,

EY" [ sup |XS|“] <O +|X|%), vtelo,T),

t<s<T
e 3C > 0,31 > 0,Vu € [0, i,

E?M [ sup e“Xsﬂ < CelHXl |y e [0, 7.
t<s<T

Now (5.3) becomes,

1+1/1
O+ X" )eC)\\XtF

|5}/t| < eAM2

By using Cauchy-Schwarz’s inequality, we obtain foralk 1 and for all0 < A\ < X\ with A small enough,

C 1
E |: sup |6Y;5|p:| < WE |:(1 + sup |Xt|p(1+1/l))eCp)\ bup0<t<T|Xt2:|
0<t<T ep 0<t<T

1/2
< ¢ (1 +E [ sup |Xt|2p(1+1/l)} ) E [eCp)‘S“p“@éTlX”Q} 1/2.

ePAM? 0<t<T
Let us remark thaf’ depends on but does not depend on By using classical results about SDEs (see e.g. the

beginning of part 5 in [6]) we have, for all > 1,

1/2
E[ sup |Xt|2p(1+1/l):| < +oo,
0<t<T

and, forA small enough,

E |:eCp/\5uP0<t<T|Xt|2} vz < +400.
Finally we obtain that
C
=, 7] < e

To study the error ot we come back to (5.2) and we apply Ité’s formula:

T T T
|5Yt|2+/ 02| ds = |5YT|2+/ 25YS(5fS+5Y5USM+5Z5VSM)dsf/ 20Y,0ZsdW.
t t t
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We obtain by applying Cauchy-Schwarz’s inequality

T
E / 1624 dt
0

T T T
< E[|5YT|2]+2E / §Y;d fedt| + 2K / 0Y, > UMdt| + 2E / 8Y;0Z, VM dt
0 0 0

1/2 1/2
< (1+2Ky,)E [ sup |(5Yt|2] + 272K [ sup |5Y}|2} E[ sup |(5ft|2]

0<t<T 0<t<T 0<t<T
T
2
/ [0Z:]7 dt
0

6f,] < O+ | X"

1/2

1/4 L4
+2E E{ sup |5Yt|4] E{ sup ‘5VtM‘ ] .

0<t<T 0<t<T

Thanks to inequalities

and
VM <O+ 20zl +[2M]) < o+ X,

it is easy to see that

E { sup |5ft|2] +E [ sup |5VtM|4} <C
0<t<T 0<t<T

with C' that does not depend avi. Then, by applying (5.4) and the inequalityb < “—22 + 2b% we have

IET52d<C © ET52d1/20
C 1 T )
< —= +=E 07" dt| .
o+ 5E | [ 1oz
Finally we obtain
T 9 C
E /O [0Z:]7 dt gW. (5.5)
To conclude, (5.4) and (5.5) give us the result. 0

Now we want to obtain the same type of estimate in the quadcase whemw is random. Since is not
necessarily bounded;, could be unbounded evengfand f are Lipschitz functions with respect io So, we will
approximate the solutiofY, Z) of the BSDE (1.2) byY™, Z*) the solution of the BSDE

T T
YM = g(ppporin-1 (X1)) +/ f(s,pMum—l(Xs),YsM,pM(ZSM))dS*/ ZMaw;, (5.6)
t t

wherep), is a smooth modification of the projection on the centerediégeen ball of radius\/ such thatp,| <
M, |Vpum| < 1 andpy(z) = z when|z| < M — 1. The aim of the following proposition is to study the
approximation error given by:

e1(M) ::E[ sup ’Y} —ﬁM‘Q] +E

0<t<T

T
/ |2, —ZtM]th] . (5.7)
0

Proposition 5.3 If we assume that assumptions (F.3), (B.3) hold ard< 1 — r, then there existd > 0 such
that
él(M) < Ce_’\M2.

If moreover2s < 1 — r, then there exisk > 0 ande > 0 such that

&1 (M) < Ce M,
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Proof of the proposition Thanks to BMO tool, we have a comparison theorem that givesestimate foe; .
Indeed, we can apply Lemma 3.2 in [18]: there exists 1 such that

2q 1/q
el(M) < CEUg(XT)_g(pM(l—re)*l(XT))’ }

2q 1/q

T
Her </0 ‘f(S’XS’Y57ZS>f(&%ﬂl»)1(Xs),Y5,PM(Zs>)|dS> . (5.8)

Assumptions (F.3), (B.3) and the estimatesgive us

(52 X0 Yor Z0) = £ pag0smrs (Xo), Yoo par(Z0)| € OO XMy gt + CC+ |Z) 7
< C(l + |XS|T)]1|XS\T+“2]M
+C(1+ |Xs|r+n)]l\xs\r+“>M/C—1
< C(1+ sup |XS|T+n>lsup0<S<T|X5|T+”>M/C71

0<s<T

and
IQ(XT) - g(pM(l—nrl (XT))’ (1 + |XT|T)]1|XT\>M<T+H>*1

r+K
C(1+ sup |Xo|"™) gy x> Myc—1-
0<s<T <<

<
<

By using Hélder’s inequality and the fact that, for alt> 0,
E{$m|xm]<+m,
0<s<T

(5.8) becomes

/

q
e1(M) < CP < sup |X.|"T > M/C — 1) (5.9)
0<s<T

with ¢’ > 1. To conclude, we will use the following lemma that will be pedl in the appendix.
Lemma 5.4 We assume that (F3) holds. There exists 0 such that
E {exp ()\ sup |Xt|2(1'{)>} < +o0.
0<t<T

Since we have assume that « < 1 — k, Markov’s inequality and previous lemma give us, fdrbig enough,

A SuPo<a < Xs 2T C
<

r+K
P < sup | X >M/C—-1 eAM/C—1)2 S eAM2’

0<s<T
Then, the first part of the Lemma is obtained by putting thégjinality in the estimate (5.9). Whent- < < 1 — &,

we denote ;= }Jr;: — 1> 0 and we obtain, fol/ big enough,

eksupoéng\X€|mlfﬁ) C
<

r+K
IP’( sup | X > M/C -1 AT < e

0<s<T
Finally, the last part of the Lemma is proved by putting thisquality in the estimate (5.9). (]

Remark 5.5 When2x > 1 — r itis possible to show with the same proof that there eXists0 such that
C

aM) < ————~
exp ()\MQW)

Whenk = 1, it is also possible to recover the result obtained by Ingtedind dos Reis in [18] (they assume in
addition thatr = 0): for all & € N, there exist&' > 0 such that

C
MFE
Let us remark that our result is more precise than the one 8f find our proof is more simple since we do not
have to study the second order Malliavin differentiabitfythe BSDE.

e1(M) <
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5.2 timeapproximation of the BSDE

In a second time, we will approximate our modified BSDE by &wdite time one. We denote the time step by
h = % and(t, = kh)o<r<n Stand for the discretization times. One needs to approxitkidby a Markov chain
X™ which can be simulated. For example, we will consider thesital Euler scheme given by

X = =z
{X{LH = X{L—i—hb(tk,X&)+o(tk,X&)(Wtk+l—Wtk), 0<k<<n—1.

We denotdY M:n ZM:m) (resp.(Y M ZMm)) our time approximation ofy ™, ZM) (resp.(Y™, ZM)). These
couples are obtained by the classical explicit dynamic nwmgning equation:

Y;JT\I,Ln = gM(Xn)a
Z = R [V W, W], o<k <,
yMn = [Ytﬁ? n th(tk,Xg;,Y'tfif,zM")} 0<k<n,
and v
Ytn.' = g(pM(TJm) 1(Xt7;>>a
2y = AR, [N Wi, —Wa)] L 0< k<,
V= By [T Bt pagernmr (X2, T pn(ZY)] 0 <k <

In a classical framework, there is already results abousfieed of convergence of BSDE time approximation.
Let us precise the classical result shown by [3, 29, 22].

Proposition 5.6 Let us assume that assumption (F.1) or (F.3) holds. We alsonas that
e gis K,-Lipschitz,
o fis K ,-Lipschitz with respect t@, Lipschitz with respect tg and K s .-Lipschitz with respect to.

We denotéY ™, Z™) the time discretization dfY, Z) given by the classical explicit dynamic programming equa-
tion. The error discretization is given by

tht1 9
e(n) = oillignE UYt - Y, | } +ZE [/ |21 — Zy| dt] .

Then, there exists a constafitthat does not depend di,, K ;. and K¢ . such that

T
/ |Z,? dt
0

This proposition will be proved in the appendix. Now, the afithis section is to study errors of discretization
e(M,n) ande(M,n) given by

e(n) < Ce“Kis |1+ K2+ K3, +E h.

+E { sup |Yt|2}
0<t<T

2] nol bt 2
e(M,n) := sup E{ Mantk ]JrZE[/ Zt]\f’" Zy dt]
0<k<n =0 th
and
tht1
(M) = s B |[72 ¥, ]JrZE[/ "ol al

Theorem 5.7 We assume that assumption (F.1) holds &xid’, Z*) is the solution of BSDE (2.3).
e Letassumption (B.2) holds. We have

C Cec‘]\/jzrl

M,
e(M,n) < —mp +——

In particular, for all 1 < p < (rl)~", if we takeM = (logn)?/? thene(M,n) = o(h'~¢) for all ¢ > 0.
e Letassumption (B.1) holds. We have

CoM?
e(M,n) < ¢ e .

) )\601M2 n

C1
In particular, if we takeM = m\/logn thene(M,n) = o(h€1+cz),
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Proof of thetheorem It is easy to see that

e(M,n) < 2(e; (M) + ea(M,n))

9 n—1 thi1 y u
] +Y E U zMn _ 7]
k=0 tk

with e; (M) defined by (5.1) and

ea(M,n) = sup IE[
0<k<n

M,n M
vy

ty

2
.

The errore; (M) is already studied in Proposition 5.1. Concerning the eV, n) let us remark thaty ™, ZM)

is the solution of a BSDE with Lipschitz coefficients: indeegg, and f), are Lipschitz with respect to andy,
far is locally Lipschitz with respect te and Proposition 2.3 gives us that? is bounded. Thus, we are allowed
to apply Proposition 5.6:

tr -

CeCK - (1 + K2

T 112 712
gm + KJ%M,I +E |:f0 ‘Ztk[‘ dt:| +E [SupothT ‘}/tlu‘ ])
n
with K ,,, the Lipschitz constant afy,, andKy,, ., K,, . the Lipschitz constants ofy; with respect tor and

z. Estimations onZz™ given by Proposition 2.2 and Theorem 2.5 show us E%fOT \ZtM\Q dt} is bounded by

eQ(Mv n) <

a bound that does not depend bh Thanks to 1td’s formula applied e/ /v }YtM}Q and estimations o

given by Proposition 2.2 and Theorem 2.5 it is also possibkhbw thatk {supogtg \YtMﬂ is also bounded
by a bound that does not dependiah Thus, we have

CK?
Ce fZ\/I!Z (1 + K;]\l + K?IVI-,:E)

n

ea(M,n) <

Under assumptions (F.1) and (B.2) we have, thanks to Pripo&i.3,K,,, < C(1+M"), Ky,, » < C(1+M")
andKy,, . < C(1+ (C(1+ M"))Y) < C(1 + M™). Finally, we obtain

CeCM*
e2(M,n) S ————

n
Under assumptions (F.1) and (B.1) we have, thanks to Primo&.3,K,,, < C(1 + MY, K¢, . < C(1 +
MY andKy,, . < C(1 + (C(1+ MY < C(1 + M). Finally, we obtain

C CM?
es(M,n) < ==

n

O

Remark 5.8 Sinceos is a deterministic function, Euler and Milshtein schemes equal, so the discretization
error on X is better. In this situation, authors of [15] show that theatetization error for the BSDE is on the
same order than the discretization error for the SDE if weuass extra smoothness assumptions,an g and f.
More precisely, we could obtain the better estimate

CeCM2

62(M7 n) < n2

Theorem 5.9 We assume that assumptions (F.3) and (B.3) hold(and, Z!) is the solution of BSDE (5.6).

e If we assume thatx < 1 — r then there exists such that

C CeM*
S eCM2Fn '

e(M,n) -

In particular, for all (2 +7)~! < p < 1/2, if we takeM = (logn)? thene(M,n) = o(h'~¢) forall e > 0.
e |f we assume tha@x = 1 — r then we have

C | CeM
< eC1 M2 .

e(M,n) "

C1
In particular, if we takeM = m\/logn thene(M,n) = o(h€1+cz),
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Proof of thetheorem It is easy to see that
e(M,n) < 2(e1 (M) + (M, n))

with e, (M) defined by (5.7) and

a(Mon) = swp |70 - 7

0<k<n

) _ 12
ZMn _ zM ‘ dt} .

o1 n-l th1
|+
k=0 tk

The errore; (M) is already studied in Proposition 5.3. Concerning the erra¥/, n) let us remark thaty ™, ZM)
is the solution of a BSDE with Lipschitz coefficients: inde@tp,,—.,-1(.)) and f(., py;a-ny-1 (), par(.))
are Lipschitz with respect to, y andz. Thus, we are allowed to apply Proposition 5.6:

CeoHie (1 K3+ K, B[ 12 dt] + & [spocicr [7])

ey (M. 1) <
€2(M,n) -

with K, the Lipschitz constant af(p, ;-1 (.)), andK ,, K. the Lipschitz constants ¢f(., p, ;i —-1 (), -, par (1))
with respect tar andz. Classical estimates on solutions of quadratic BSDES stsothatE [supogth ]YtMﬂ

andE [fOT \Z{”]Q dt} are bounded by a bound that does not dependifoiThus, we have

CeORie (14 K2 + K3,

n

Under assumption (B.3) we havi,, < O(1 + M™ %), K;, < C(1 + M™=®) andK;, < C(1 + M).
Finally, we obtain
cM?
ea(M,m) < &

n

O

Remark 5.10 When2x > 1 — r, the error estimate foe; (M) given in remark 5.5 is not sufficient to obtain a
“good” speed of convergence: the estimatea§i/, n) becomes, fod! well chosen,

C

e(M,n) < ——,
e( 7”) (logn)k

for all k£ € N*. This phenomenon is already explained in introductionstiflas [26, 18].

A Appendix
A.1 Proof of Proposition 2.3

To show the result we will use a classical truncation argur(ese e.g. the proof of Theorem 4.1 in [12]). Our
truncation functiorpy is the projection on the centered euclidean ball of raditis R'*¢, We denotédY ™V, ZV)
the solution of the BSDE

T T
YN = g(Xp) + / (5, X YN oy (2))ds — / ZNaw,.
t t

Now, this BSDE is also Lipschitz with respect4oBy the same calculus than in the proof of Theorem 3.1 in [26]
we can show thaZ " is bounded by

|ZN] < BEHEIT o (K + TK ).

This bound does not depend dhso pn(ZY) = ZV for N big enough. Then a uniqueness result for BSDEs
with Lipschitz coefficients gives us that, Z) = (Y, ZV) and the result is proved. |
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A.2 Proof of Lemma 2.6

We have
[ug — Uoo| = |ak — Goo + b (ug)P* — bootoo]
< ag — Goo| + |br(ur)P* — brtico| + [0 — boo| [tioo ]
< Jag = Goo| + 0 [(ur)P* — Uoo| + [br — boo |Uco|
< Jak — ool 4+ b[(Ur)?* = (too)P* | + [(thoo)”* — Uoo| + [br — bool [tco] -

Itis easy to show that

1

T—

Thus, we obtain

— — Pr _ —
gy — tioo| < lak — ass| + (1/pr — 1) + |(U00_) Uoo| + bk — bool [tioo| k=400 0.
1-b
U
A.3 Proof of Lemma 5.2
Thanks to the estimate ofi of Theorem 2.5 we easily show
X, = Xt—i—/ b(u,Xu)du—i—/ o(u)[dW, + VM du)
t t
[Xs| < | Xy +C+C’/ | X 0| du + / o(u)dW,
t t
sip [Xo| < |X|+C+C [ sup |X,|du+ sup / o(w)dW,| |
t<r<s t t<r<u t<r<T |Jt
and we deduce from Gronwall's lemma the inequality
sup | X, < C (1 + | X¢| + sup / o(u)dW, )
t<r<s t<r<T |Jt
The first part of the lemma is easily proved thanks to the previnequality. Moreover, we also have
M 2 M s ~ 2
E2 [e“suPt@éleT‘ } < CeCHIXIRD l sup exp <Cu / o(u)dWy, )1 .
t<s<T t
It follows from the Dambis-Dubins-Schwarz representatimeorem and Doob’s maximal inequality that
s 2
E?M sup exp | Cu / a(u)qu <E sup eCHWIT 1 4R [ec“la‘lewl‘ } ,

t<s<T t 0<s< o) (T —t)

which is a finite constant i€ |U|io T<1/2. 0

A.4 Proof of Lemmab5.4

Let us consider the process
Y, = (1 + |Xt|2)T = F(X,).
[t6’s formula gives us
btXb(s, Xs) I
Yo+ (1— n)/ — 2 ds+ —/ trace (V2F(X,)o(s, X,)'o(s, X,)) ds
0 (1+]X,%)"=" 2 Jo ( )

bt X o(s, X,
+(1—m)/ szzmczws
o (1+[Xs]7)=

Y:

t t
Yo Jr/ b(s,XS)der/ a(s, Xs)dWs,
0 0
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with |5| < C and‘B(t,z)‘ < C(1+ |z|'™"). Then, we have

t
/ 5 (s, X o) AW,
0

I;(t,Xt)’ ds + sup

0<t<u

u
sup Vi < |Yo|+/ sup
0<t<u 0 0<t<s

u
< |YO|+CT+C’/ sup |X;|" " ds+ sup
0 0<t<s 0<t<T

t
/ (s, Xs)dWy
0

u

< Yl+CT+C sup |Yi|ds+ sup
0 0<t<s 0<t<T

t
/ 5 (s, X)W,
0

).

Sinces is bounded, we are able to fit the end of Lemma 5.2 to show tkeat xists\ > 0 such that

)

and we deduce from Gronwall's lemma the inequality

sup Y3 < C <1 + sup
0<t<T 0<I<T

t
/ (s, Xs)dWy
0

E [exp ()\ sup |Y}|2)} < 400.

0<t<T

Since|Xt|(1_”) < |Y:|, the proof is complete. O

A.5 Proof of Proposition 5.6

Itis already proved in [3, 29] for the implicit scheme or irR]Zor the explicit scheme thatn) = O(h). We just
have to rewrite the proof to show where constdiiis K¢, and Ky , appear precisely. For the readability of this
article we will only give few key steps. Firstly, for the eria Y we find, forh small enough,

T
sup E|Y,, —Y'|" < CeCKi- (1+K?72)hE[ sup |Yt|2} +(1+ K}, )hE / \Z,|? dt
0<k<n 0<t<T 0
n-1 trya _
+CK]%7ZZE[ /t |2y — Zy,| dt} : (A1)
k=0 k

with Z;, = %Etk j;t:“ Z,dt. For the error inZ we find, forkh small enough,

n—1 tht1 T
Z]E/ Z—2zp [Pdt < Ch 1+K?I+K§+E{sup |Yt|2]+KJ%_ZE / | Z,|? dt
=0t ' 0<t<T ’ 0

n—1 tht
+CY E U
k=0 k

2 - 2, dt} +CK}, swp B[V, - Y7 (A2)
t

sk<n

The study of the erroy ;. _) E {jf:“ |2 — Z, \2 dt} was done by Zhang in [29]. Theorem 3.5 in [26] improve
a little bit the estimate by studying hoW, appears in the constant. Let us rewrite the proof of thisrér@o
We suppose in a first time that o, g and f are differentiable with respect te, y andz. ThenY andZ are

differentiable with respect to and we obtain that
T
/ IV Z,|” dt ) .
0

Thanks to classical estimates onto the solution of the BSi\eed by(VY, VZ) we have

T
/ |VZ,|* ds
0

trt
k

n—1 1
> E U | Z, Ztk|2dt] <SCh(1+ K+ K7 ,)(1+ K7 ). (A3)
k=0 t

tht1
k

n—1
Y E [/ Zi — Zy|? dt} < Ch (Kj +Kj,+(1+K7,)E
k=0 t

E SC(+K;+K;,)(1+K7,).

Thus, we obtain
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By standard approximation and stability results for LigscBSDES this estimate stays true whierr, g and f
are not differentiable. Finally, by putting together (A.@A.2) and (A.3), we have

T
/ | Z,|? dt
0

and the final result can be easily deduced. (]

e(n) < Che“%7- | (1 + K§ )1+ K2+ K3,)+ (1+ K% )E

3

U KLIE| s V]

0<t<T
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