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Abstract

The need to keep long wind musical instruments compact imposes the

bending of portions of the air column. Although manufacturers and

players mention its effects as being significant, the curvature is gener-

ally not included in physical models and only a few studies, in only

simplified cases, attempted to evaluate its influence. The aim of the

study is to quantify the influence of the curvature both theoretically

and experimentally. A multimodal formulation of the wave propagation

in bent ducts is used to calculate the resonances frequencies and input

impedance of a duct segment with a bent portion. From these quanti-

ties an effective length is defined. Its dependence on frequency is such

that, compared to an equivalent straight tube, the shift in resonance

frequencies in a tube with bent sections is not always positive, as gen-

erally stated. The curvature does not always increase the resonances

frequencies, but may decrease them, resulting in a complex inharmonic-

ity. An experimental measurement of the effect of the curvature is also

shown, with good agreement with theoretical predictions.

PACS numbers: 43.75.Ef, 43.75.Fg 43.20.Mv,
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I. INTRODUCTION

Long wind musical instruments are often made with bends to keep them compact.

Although it is generally stated, following Rayleigh’s argument, that “straightness is not

a matter of importance,”1 bending portions of the air column may affect the tuning in a

musically significant way. Several authors attempted to quantify the effect of the curvature

on the tuning. Nederveen2,3 and later Keefe and Benade4 showed that in a bent duct, in the

long wavelength limit, the inertance is lowered relative to its value in a straight duct having

the same cross-section. The curvature induces an increase in resonance frequencies. In

other words, the length correction due to the curvature in a duct is negative. Experimental

studies reported in the litterature3–5 confirm this qualitative result at low frequency.

Following these studies, methods for compensating bends in air columns when designing

wind instruments have been proposed, as, for example, a reduction of the bore diameter at

bends, combined with a lengthening when the frequency is to be the same as the straight

duct of the original length.2,3,5,6

However, reducing the bore diameter at bends to compensate for the tuning change

supposes that this change is weakly frequency-dependent, or, at least, that the frequency

shift, or the length correction, remains the same sign over the musically useful frequency

range.

It is shown in this paper that the frequency shift in a bend may vary significantly over

frequency and that its sign changes. The curvature does not always increase the resonance

frequencies, but may decrease them, resulting in a complex inharmonicity. Two ways of

characterizing the effect of the curvature are described in the following: the direct compu-

tation of the resonance frequencies in a duct with a bend, and the computation of its input

impedance. Both quantities are calculated using several theoretical or numerical methods

a)Electronic address: simon.felix@univ-lemans.fr
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that are first described to detail all the necessary quantities and notations (Sec. II). Then

results are given and discussed (Sec. III), followed by an experimental verification (Sec. IV).

II. METHODS

A. General formulation

For simplicity and in order to clearly point out the effect of bending, the air column

is supposed to have a constant, circular, cross-section. Since any such waveguide can be

represented by a succession of cylindrical and toroidal segments, we will consider in the

following the duct drawn in Fig. 1. The curvature of the middle segment is quantified by

the adimensional axis curvature κ = a/R0, where R0 is the axis radius of curvature.

s = 0

s = L

a

lu

R0

lb

ld

FIG. 1. Duct with a bent portion. s is the abscissa along the waveguide axis, measured

from the input of the duct (top), and L = lu + lb + ld is the total length of the duct axis.

The waveguide is filled with an inviscid and homogeneous medium, with density ρ0 and

sound velocity c0 (in Sec. IV, approximations of the viscothermal losses are introduced to al-

low the comparison with experimental results). Under the assumption of linear propagation,

the acoustic pressure and axial velocity in the waveguide are the solutions of the coupled
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equations [the time dependence exp(−jωt) is omitted]

∂

∂s

 p

Avs

 =

 0 jkZchs

− hs
jkZc

(∆
(κ)
⊥ + k2) 0


 p

Avs

 , (1)

where A = πa2 is the cross-section area, Zc = ρ0c0/A is the characteristic impedance, and

k = ω/c0 is the wavenumber. In the bent segment, ∆
(κ)
⊥ is the transverse Laplacian in the

toroidal coordinates (s, r, θ), with s the abscissa along the waveguide axis and (r, θ) the polar

coordinates in the transverse cross-section:7,8

∆
(κ)
⊥ =

1

rhs

[
∂

∂r

(
rhs

∂

∂r

)
+
∂

∂θ

(
hs
r

∂

∂θ

)]
, (2)

with hs = 1 − κr cos θ/a. In the cylindrical segments, κ = 0 and ∆
(0)
⊥ is the transverse

Laplacian in cylindrical coordinates:

∆
(0)
⊥ =

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
. (3)

The resonances of the duct combination can be studied in two ways:

1. by a direct calculation of the resonance frequencies,

2. or by calculating the impedance at the input of the duct.

1. Resonance frequencies

The general principle for calculating the resonance frequencies is the following. From

the coupled equations (1), one deduces a relation between the acoustic fields at each end

of the duct. For example, the pressure and axial velocity field at the output (s = L) are

written as function of the fields at the input (s = 0):

(p(L, r, θ), vs(L, r, θ)) = H
(
p(0, r, θ), vs(0, r, θ)

)
, (4)

with H an operator and frequency dependent. Then, given this relation and the boundary

conditions at each end of the duct, a dispersion relation is written, the solutions of which
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are the resonance frequencies f (κ)
i (i = 1, 2, 3, . . .) in the duct combination. Practically, this

problem is solved by discretization of the solutions (cf. § II.C) or the differential operators

(see § II.D) in Eq. (1), so that Eq. (4) and the dispersion relation become linear matrix

equations.

In the following, the curvature induced shift of the resonance frequencies will be ex-

pressed as a correction to the length L of the duct:

∆Li =

(
f
(0)
i

f
(κ)
i

− 1

)
L, (5)

where the f (0)
i are the resonance frequencies in a cylindrical duct having the same radius

a and length L as the duct, with the same boundary conditions imposed at the ends. For

simple end conditions, the f (0)
i are known analytically. For example, if one imposes at

the input end (s = 0) a Neumann condition ∂p/∂s = 0 and, at the output end (s = L),

a Dirichlet condition p = 0 as the simplest, non radiating, open end condition, then the

resonance frequencies of this "closed-open" duct are

f
(0)
i =

(
i− 1

2

)
c0
2L
, i = 1, 2, 3, . . . (6)

for frequencies under the cutoff of the first superior mode in the duct, that is, fc = γ10c0/2πa,

with γ10 ' 1.8412 the first positive zero of the first derivative of the Bessel function of the

first kind J1.

2. Input impedance

Classically, the resonator composing of a wind instrument is characterized by calculating

or measuring its input impedance

Z
(κ)
in = p̄(0)/Av̄s(0) (7)

as a function of the frequency, where p̄(0) and Av̄s(0) are, respectively, the mean pressure

and volume velocity at the input end of the duct. The impedance proves valuable to study
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the linear acoustic properties of the instrument, since, in particular, its peaks are strongly

linked to the playing frequencies of the instrument.

In a cylindrical duct, assuming that only plane waves can propagate (f < fc), the input

impedance reads as

Z
(0)
in = Zc tanh

(
−jkL+ arctanh

[
Z(L)

Zc

])
, (8)

with Z(L) the value of the impedance at the output end of the duct. If the curvature of

some region of the duct is not zero, then the input impedance cannot be written analytically.

Therefore, approximate analytical solutions (cf. Sec. II.B) or more complex formulations (cf.

Sec. II.C) are used.

Once the input impedance Zin is computed, it can be recalculated into a length correc-

tion. Using Eq. (8), an effective length of the duct is defined:

Leff. = Re

[
− 1

jk

(
arctanh

[
Z

(κ)
in

Zc

]
− arctanh

[
Z(L)

Zc

])]
, (9)

leading to the length correction

∆L(f) = Leff. − L. (10)

Following are explained three methods to solve the general equations given above and

characterize the effect of the curvature on the resonances of the duct.

B. Low frequency approximation

Considering the problem in the long wavelength limit, Nederveen2,3 assumes the pressure

field in a bend to be constant over the circular cross-section: p(s, r, θ) = p̄(s). Then, Eq. (1)

can be simplified by removing the term involving ∆
(κ)
⊥ p, and the integration of the equation

over the cross-section leads to

∂

∂s

 p̄

Av̄s

 =

 0 jkα(κ)Zc

jk/Zc 0


 p̄

Av̄s

 , (11)
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where

α =
1
2
κ2

1−
√

1− κ2
< 1. (12)

Then, the effect of bending a duct is shown as a perturbation to the inertance, lowered

relative to its value in a straight duct. By decomposing the toroidal waveguide into a set

of parallel rectangular slices, Keefe and Benade4 propose in 1983 another expression of the

inertance correction, that is shown to be analytically identical the Nederveen’s formula.3

This low frequency approximation of the evolution equations for p and vs is amenable to

an analytical solution for the input impedance3 and, as it will be shown later in the paper,

it gives a good approximation of the propagation constant of the first bend mode in the long

wavelength limit. However, the assumption of a uniform pressure over the cross-section is a

strong assumption, since, even below the cutoff frequency fc, the variations of the pressure

and velocity over the cross-section are not negligible.7,9. Therefore, this solution is limited

to a very low frequency range and cannot account for the dependence on frequency of the

effect of curvature.

To take into account the transverse variations of the pressure and velocity fields, higher

order modes, even though they are evanescent, must be taken into account. This is the aim

of the following method.

C. Multimodal method

The wave field in a straight duct is commonly written as a series decomposition on the

basis of the transverse modes

φ(0)
n (r, θ) = ΛnJµ(γµν

r

a
) sin

(
µθ +

σπ

2

)
, (13)

where Λn is a normalizing factor and γµν is the (ν + 1)th zero of J ′µ, the derivative of the

ith-order Bessel function of the first kind [the modes are sorted in increasing order of their

cutoff frequency, such that n is a integer index, referring to the triplet (µ, ν, σ) of the usual

circumferential, radial, and symmetry indexes.7,8 σ is either 0 or 1. n = 0 denotes the plane

wave mode]. These modes are the well known eigenfunctions of the transverse Laplacian
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∆
(0)
⊥ in the two-dimensional (2D) circular cross-section of the waveguide. In a bend, the

transverse Laplacian ∆
(κ)
⊥ is not separable in toroidal coordinates; therefore the bend modes

φ
(κ)
n cannot be calculated analytically. However, since the basis {φ(0)

n }n≥0 is a complete

orthogonal basis of the circular cross-section, it can be used as a local transverse basis to

exactly decompose the wave field:

p(s, r, θ) =
∑
n≥0

φ(0)
n (r, s)Pn(s), (14)

Avs(s, r, θ) =
∑
n≥0

φ(0)
n (r, s)Un(s). (15)

The projection of Eq. (1) on the basis {φ(0)
n } gives the matrix coupled equations for the

vectors ~P and ~U of the components Pn of pressure and Un of volume velocity:

∂

∂s

 ~P

~U

 =

 0 jkZc(I − κA)

1

jkZc

[
H2(I − κA) +

κ

a2
B
]

0


 ~P

~U

 , (16)

where I is the identity matrix, H is a diagonal matrix given by H(0)
nn = jk(0)n , k(0)n =√

k2 − (γµν/a)2 the propagation constant of the mode φ
(0)
n , and A and B are constant

matrices, functions of {φ(0)
n }.

This formulation calls for several comments:

• Taking only one mode into account in Eq. (16) does not give Eq. (11). This is because

projecting p and Avs on the plane wave mode φ(0)
0 only is equivalent to assuming that

both the pressure and axial velocity are uniform over the cross-section. Logically, no

effect of the curvature arises at this order of the modal decomposition.

• Since the matrix coefficients in the system (16) are constant along the axis, the solu-

tions for the wavefield, the scattering matrix or the impedance matrix (see below) can

be obtained algebraically, as functions of the matrix7,8,10

M = (I − κA)
[
H2(1− κA) +

κ

a2
B
]
. (17)
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• In the case of a straight waveguide segment (κ = 0), the matrix M reduces to H2,

then the solution of Eq. (16) is the classical modal decomposition mentioned above.

• The bend modes φ(κ)
n appear as the basis that diagonalizes the matrix M when an

infinite number of modes is taken into account.9,11 It is thus possible to approximate

these modes and their propagation constants k(κ)n by computing the eigensolutions of

the truncated matrixM.

1. Resonance frequencies

In order to derive a dispersion relation and calculate the resonance frequencies in the

duct, the vector field ~P at the left and right ends of the segment is split into ingoing waves

~A and outgoing waves ~B. The scattering matrix relates outgoing waves to ingoing waves: ~Bleft

~Bright

 = S(f)

 ~Aleft

~Aright

 . (18)

For the kinds of duct we are interested in (toroidal and cylindrical segments), S can be

algebraically calculated.7 Since the same basis {φ(0)
n } is used for the modal decomposition in

each segment, whatever the value of the curvature, writing the continuity at the interfaces is

straightforward. The vector pressure and volume velocity fields ~P (s) and ~U(s) are continuous

and, as a consequence, the scattering matrix of a set of connected segments can be explicitly

written as function of the scattering matrices of each segment.7 Once the scattering matrix

of the duct combination is calculated and given the boundary conditions, the dispersion

relation is written. For example, for the "closed-open" waveguide, the boundary conditions

are ~Bleft = ~Aleft and ~Bright = − ~Aright, then

det

S(f)−

 I 0

0 −I


 = 0, (19)

where I is the identity matrix and det denotes the determinant. The resonance frequencies

are the solution of Eq. (19).
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In the case of a straight duct, using 12 modes φ(0)
n , the solutions of Eq. (19) differ from

the theoretical results (Eq. 6) by less than 10−12 %, thus mainly limited by the numerical

precision of the computer.

2. Input impedance

In the frame of the multimodal formalism, an impedance matrix can be defined, fulfilling

~P (s) = Z(s)~U(s) (20)

(throughout this paper, the classical scalar impedance is denoted with a roman capital Z,

while a script letter is used to denote the impedance matrix, as well as all matrix variables).

It is governed by a matrix Riccati equation,9,12,13 a solution of which can be written alge-

braically in the case of a bent or straight segment as studied in this paper. The impedance

matrix is continuous at the interfaces between two segments.

Once the boundary condition at the output end is expressed as a matrix Z(L), the input

impedance matrix Z(in) of the duct is calculated. As, by definition, P0 = p̄ and U0 = Av̄s,

we can write

p̄(in) = Z(in)
00 Av̄(in)s +

∑
n>0

Z(in)
0n Un. (21)

Below the first cut-off and far from discontinuities, sources, or other regions where a mode

coupling may occur, Un>0 → 0. Thus, providing that lu is large enough, the scalar input

impedance zin can be approximated by the top left value Z(in)
00 of the impedance matrix:

Z
(κ)
in =

p̄(in)

Av̄
(in)
s

' Z(in)
00 . (22)

In the case of a straight duct, using 12 modes φ(0)
n to compute the impedance matrix,

its corner value Z(in)
00 differs from the analytical solution (8) by roughly 10−12 % over the

frequency range of interest (from 0 to the cutoff fc), certainly depending on the computer

precision.
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D. Finite difference method

Resonance frequencies of pipe combinations were independently computed numerically

using the finite difference method (FDM). A discretization grid is fitted in the tube combi-

nation, as schematically shown in Fig. 2.

C

C

N

N

S

S

W

W

E
E

B

B

T

T

h

h

R

torus cylinder

FIG. 2. Grid layout for the FDM solution in a bent segment connected to a straight segment.

The central point C is surrounded by points to the north (N), south (S), west (W ), and

east (E), and perpendicular to the plane through these points by top (T ) and bottom (B)

points3. In the cylindrical part the mesh is Cartesian with a mesh size h. In the toroidal

part, R is the local radius of curvature, R0 the radius of curvature of the center line at which

radius the mesh size is equal to h, so the angle between two adjacent grid lines is h/R0.

The discretization equation for the Helmholtz equation in the toroidal part in cylindrical

coordinates is

(
1 +

h

2R

)
pN − pC
h2

+

(
1− h

2R

)
pS − pC
h2

+

(
R0

R

)2
pE − 2pC + pW

h2
+
pT − 2pC + pB

h2
+k2pC = 0.

(23)

The conditions in the cylindrical part are found by letting R tend to infinity while ξ =

R/R0 → 1. At the connection of the two areas where a torus joins a cylinder, the conditions

are more complicated. The terms of the Laplacian are obtained from the flow through the

boundary planes of a control volume formed around the central point.14,15 For example, for
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a western torus connected to an eastern cylinder, the first three terms of Eq. (23) change

into [
1 + ξ

(
1 +

h

2R

)]
pN − pC
(1 + ξ)h2

+ . . .[
1 + ξ

(
1− h

2R

)]
pS − pC

(1 + ξ)h2
+ . . .

2
pE − pC
(1 + ξ)h2

+

(
2

ξ

)
pW − pC
(1 + ξ)h2

. (24)

Studied were the situations with ideal open end and closed end. In the first case the

pressure is set to zero at the pipe end. In the second case the velocity is zero. To find the

condition at the boundary consider point C to be located in the boundary on the right-hand

side of the cylinder (Fig. 2). The pressure in a point 2h to the west of point C is denoted

p2W . For the first and second derivatives in the axial direction p′ and p′′ we have16,17

p′ = (p2W − 4pW + 3pC)/2h, (25)

p′′ = (p2W − 2pW + pC)/h2. (26)

The condition of zero velocity is p′ = 0. Eliminating p2W from the two equations gives

p′′ = (2pW − 2pC)/h2. (27)

This result can also be obtained by imagining a virtual point E which acts as a mirror of

pointW in which the pressure is the same. More elaborate expressions are possible;16,17 they

were tried, but were not found to give better results. Similar expressions are used at the side

walls, where the flow is parallel to the boundaries. The mesh dimensions can be adapted

to the curved walls, but for simplicity it was preferred to use the same mesh and stepwise

to approximate the curved walls. The resulting ragged boundaries cause fluctuations which

vary depending on the number of points.

The resulting set of equations are arranged in a matrix and solved on a computer. From

the ratio of pressure and velocity at the entrance the input impedance is calculated; mean

values are taken over the cross-sections at distances 0, h and 2h from the entrance. The

velocity at the input, 0, is proportional to the local gradient, which is obtained by applying
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Eq. (25) to the pressure values at positions 0,1 and 2, giving p′0 = (−3p0 + 4p1 − p2)/2h.

The number of points was increased up to the capacity limit of the computer, about 40000

points. The results were plotted against the reciprocal number of points. The irregular

fluctuations due to the rectangle-filled circular cross-section were leveled; the error due to

the limited number of points was minimized by extrapolation to zero, i.e. to an infinite

number of points.

The effect of the bend was found by comparing two pipe combinations of the same length,

one without and one with a bend. The frequency was varied until either the input pressure

or the input velocity was zero, corresponding to zero or infinite impedance. Although the

frequency of the straight pipe can also be determined analytically, the FDM results were

preferred, since the limited number of grid points resulted in small systematic errors; they

were assumed to be the same for straight and curved pipes. The frequency corrections

were recalculated in length corrections with Eq. (5) and referred to the tube radius a. At

higher frequencies the wavelength is no longer large compared to the grid size, reducing the

accuracy. The accuracy of the final result is estimated to be 0.02a at the lowest, increasing

up to 0.1a at the highest frequencies.

III. RESULTS

Consider a duct combination with the same dimensions as the duct drawn in Fig. 1:

lu/a = 3, lb/a = 4π/3, ld/a = 2, with an ideal open end at the output: p(s = L, r, θ) = 0.

Fig. 3 shows the impedance at the input end of the duct as a function of the frequency,

and the corresponding length correction, together with the length corrections calculated

with Eq. (19) and the FDM. This plot clearly points out the strong dependence with

frequency of the mistuning induced by the bending. As reported in earlier studies,2–6

the length correction at low frequencies is negative. When increasing the frequency, it

becomes smaller in absolute value (some oscillations can be observed, they are discussed

in the following), to reach zero at a frequency close to fc/2. Then its sign changes and
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it increases, until it reaches, near the cutoff, a value that is generally comparable to its

value at zero frequency, with opposite sign. Furthermore, in this example, the length

correction is far from negligible, varying in absolute value from 0 to a quarter of the radius a.

It may be noted that the solid curve is not drawn until the cutoff frequency. This is

because the procedure of calculation of the length correction [Eqs. (9) and (10)] fails as

soon as the higher order modes, although still evanescent, can no longer be considered as a

small perturbation.

When varying the curvature of the bent portion, while keeping constant the lengths

lu, lb and ld, the evolution with frequency of length correction is roughly the same, with

mainly the overall amplitude of the curve changing: the larger the curvature, the larger

the length correction, or, in other words, the stronger the mistuning (Fig. 4). At a given

frequency, the length correction increases roughly as the square of the curvature κ (Fig. 5).

Besides, the curves in Fig. 4 display particular behaviors that are almost independent

of the curvature:

A. the length correction passes through a minimum in absolute value - nearly zero - at

the vicinity f = 0.2fc,

B. the sign of the length correction changes at a frequency close to fc/2.

A. Minima of the length correction

Following the low frequency description made by Nederveen2,3 and Keefe and Benade4

(cf. Sec. II.B), one may expect the effect of curvature to vanish, or at least be lowered, when

the position of the bend in a duct coincides with a node of the longitudinal velocity field.

Indeed, if one supposes that the velocity node is located at the center of the bend in the

15



100
f

fc1

|Z(κ)
in |

10−2

102

0
f

fc1

ϕ(Z
(κ)
in )

−π
2

π

2

(a) Input impedance

0

f

fc1

∆L

a

−1

4

1

4

(b) Length correction

FIG. 3. (a) Input impedance (modulus and phase) of the duct shown in Fig. 1, with lu/a = 3,

lb/a = 4π/3, ld/a = 2, and the "open" boundary condition p = 0 at the output end. The

results, given for a curvature κ = 0.5 of the bend axis and computed with 12 modes taken

into account (solid curve), are compared with the input impedance of a straight duct (κ = 0,

dashed) with the same axis length L/a. (b) Length correction, in tube radius unit, for the

same duct. Solid curve: length correction as defined by Eqs. (9-10), ’◦’: solutions of the

dispersion relation (19) with a "closed" or "open" condition at the input end, ’×’: finite

differences method.
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0

f

fc1

∆L

a

−1

1

0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

κ ↗

FIG. 4. Influence of the curvature on the length correction, as defined by Eqs. (9-10). The

value of κ is increased from 0.1 (the curve, not labeled, is close the abscissa axis) to 1, in

steps of 0.1.

κ2

0.01 0.1 1

∆L

a

0.01

0.1

1

f

fc
= 0.7

f

fc
= 0.05

f

fc
= 0.45

FIG. 5. Influence of the curvature on the length correction, as defined by Eqs. (9-10): ∆L

increases as, roughly, the square of κ, at a given frequency.
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example of Fig. 3, it follows that λ/4 = lb/2 + ld, where λ is the wavelength. Thus,

f

fc
=

πa

(lb + 2ld)γ10
' 0.2084. (28)

If one varies the distance ld from the output to the bend while keeping constant the curvature

κ, the axis length of the bend lb, and the overall length of the duct L, one observes a

displacement of this local minimum of |∆L| according to Eq. (28). The length correction

does not exactly reach zero because at this frequency, the wavelength (λ/a ' 16.4) is not

large compared with the length of the bend (lb/a ' 4.2). Thus, the velocity field is not zero

or negligible in the whole bend.

Besides, one can deduce that the length correction for a long duct with a bent portion

will exhibit a large number of local minima (Fig. 6). In this case, the first minima appear

at long wavelengths, compared with the bend size, therefore the length correction |∆L| is

close to zero at these frequencies.

0
f

fc ' 5.7 kHz

∆L

a

−1

1

FIG. 6. Length correction, in tube radius unit, for a duct with 2a = 0.035 m, κ = 0.78,

lu = 1.3 m, lb = πa/κ, ld = 1 m (the duct is somewhat similar to the air column of a

contrabass clarinet), and an "ideal open end" condition p = 0 at the output end (s = L).
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B. Frequency of the sign change

For frequencies below, and not too close to, the cutoff frequency fc, the properties of

the bent segment, notably the way the length correction varies with frequency, are mainly

related to the characteristics of the first bend mode φ(κ)
0 . As mentioned before (cf. Sec. II.C),

it is possible to approximate this mode and its associated propagation constant k(κ)0 , by

computing the eigenmodes of the truncated matrixM (Eq. 17). The propagation constant

k
(κ)
0 is an increasing function of the frequency, that is lower than the propagation constant

k
(0)
0 = k of the plane wave in a cylinder at low frequencies and higher near the cutoff (Fig. 7).

A similar observation was made by Cummings18 in bends with rectangular cross-section, and

borne out by El-Raheb.19 Therefore, if one assumes that the effect of the curvature at low

frequencies is, roughly, to replace the plane wave propagating with a propagation constant

k
(0)
0 = k by a quasi-plane wave propagating with the propagation constant k(κ)0 , this explains

qualitatively the variations of ∆L and the sign change.

0

f

fc1

k
(κ)
0 − k
kc0.1

' 1

2

[
1−

(
βκ

2

)2
]

FIG. 7. Evolution with frequency of the propagation constant k(κ)0 of the first bend mode in

a bend with curvature κ = 0.5, computed with 12 modes taken into account (kc = 2πfc/c0).

If one takes into account only two modes in the multimodal formulation - the plane wave

mode φ(0)
0 and the first evanescent mode φ(0)

1 - an approximation of k(κ)0 can be analytically

calculated:

k
(κ)
0 =

[
k2(1 + β2κ2) + . . .

1

2

(√
k4c − 8β2κ2k2(k2c − 2k2)− k2c

)]1/2
(29)
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where

β =
1

γ210

√
1

2

(
1− 1

γ210

) ' 0.5. (30)

It differs from the “converged” value, computed with 12 modes (Fig. 7), by less than 0.3%.

The frequency at which k(κ)0 = k is

fs =
fc
2

[
1−

(
βκ

2

)2
]
. (31)

It is weakly dependent of the curvature: the relative shift from kc/2 varies between 0 and

∼ 6%.

Of course, from this result, the rigorous calculation that would lead to the properties

of the length correction itself is not straightforward, but this gives basic elements to better

understand how a bend can modify the propagation and resonances in a duct.

Another remark can be made from the results on k(κ)0 : the inertance correction (12) was

first deduced by Nederveen2 from a simplified formulation of the conservation equations in

the long wavelength limit [Eq. (11)]. If, in a rough approximation, a low frequency wave

in a bend is assumed to propagate with a propagation constant k(κ)0 , then the coefficient

α should be related to the zero frequency limit of (k
(κ)
0 /k)2. Indeed, the relative difference

between α and this limit remains under 5% until κ ' 0.96 (Fig. 8).

IV. EXPERIMENTAL VERIFICATION OF THE FREQUENCY SHIFT

DUE TO THE CURVATURE

To test the results, a duct was made in the workshop with a constant diameter

2a = 35 mm and a toroidal bend with a κ of 7/9, somewhat similar to the bend in a contra-

bass clarinet (Fig. 9). Its input impedance was measured using a set-up developed jointly

by LAUM (Laboratory of Acoustics, Université du Maine, Le Mans, France) and CTTM

(Center for Technology Transfer, Le Mans, France).20 It consists in placing at the input
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1
0

κ
1

−0.5

FIG. 8. Solid curve: zero frequency limit of (k
(κ)
0 /k)2, as approximated by its value at

f/fc ' 5.10−6, computed with 12 modes taken into account, as a function of the curvature.

Dashed curve: inertance correction α (Eq. 12).

of the measured instrument a piezo-electric source with a small closed cavity at its back.

While a first microphone measures the pressure at the input of the instrument, a second

microphone measures the pressure in the back cavity. Assuming the latter to be propor-

tional to the volume velocity of the source, the input impedance of the measured object is

then calculated from the transfer function between the two microphones, assuming that the

motion of the piezo-electric transducer results in equal but out of phase volume velocity on

both sides of the transducer. The reader may refer to Ref.21 for details on this set-up.

35 mm

10 mm

50
m

m 30
m

m

FIG. 9. Dimensions of the duct designed for the experiments. The axis curvature of the

bend is κ = 7/9 and the duct is closed at the output.
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The frequency range of interest, from zero to the first cutoff fc ' 5.76 kHz, is decomposed

in four overlapping intervals, in order to maximize the signal-to-noise ratio (SNR) without

saturation of the measured signal. For each interval, a 1 s long logarithmic chirp is used

as input signal, leading to a frequency resolution of 1 Hz. The temperature in the tube is

determined from a prior measurement of the input impedance of a closed cylindrical tube of

known dimensions. For each tube, the acquisition is repeated five times and averaged. The

calibration of the impedance sensor is described in the paper by Macaluso and Dalmont.21

The residual error is evaluated by calculating the difference between the measured input

impedance of the straight tube with the theoretical value. Then the difference is used

(except at its "singularities," that is, at the resonances of the straight tube) as a correction

to the measured input impedance of the curved tube.

The measured input impedance is shown in Fig. 10(a). It is compared with the theoret-

ical input impedance, computed as described earlier in the paper. To take into account the

visco-thermal losses at the walls in the multimodal formulation, the purely real or purely

imaginary propagation constants of the modes φ(0)
n are replaced by complex propagation

factors.13,22 Note, however, that this way of introducing the losses is not fully rigorous, since

it assumes that the wall on which the boundary layer lies is locally plane. Therefore, the

effect of the curvature of the boundary layer is not taken into account. Further investiga-

tions will be made on this particular aspect. In Eq. (9) the wavenumber k is replaced by a

complex wave number, as classically done.23

Fig. 10(b) shows the comparison of the measured length correction with the theoretical

and numerical results from the multimodal and finite difference methods. The agreement is

good over the whole frequency range. The shift of about 0.05 between the two curves can

be explained by a possible temperature difference between the two measured tubes and the

uncertainty in the temperature evaluation from the input impedance of the straight tube.
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FIG. 10. (a) Input impedance (modulus and phase) and (b) length correction for the duct

shown in Fig. 9. Solid: experimental results. Dashed: theoretical results (the theoretical

and experimental impedance curves are almost superimposed). Dotted: theoretical input

impedance of a straight duct having the same radius and length. ’◦’: Solutions of Eq. (19)

with a "closed" or "open" condition at the input end. ’×’: Finite differences method.
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V. CONCLUSION

The effects of bending a portion of a duct have been investigated theoretically and

experimentally. Results show that the frequency shift induced by the curvature is not

always small and, moreover, is strongly frequency dependent. It notably exhibits a sign

change, so that the first resonance frequencies in a bent tube are shifted towards higher

values, while they are shifted towards lower values near the cutoff. It has been shown that

the magnitude of the frequency shift varies, roughly, as the square of the curvature, and that

the frequency of the sign change is weakly dependent on the curvature. In this paper, only

lossless or weakly lossy cases have been considered, with an approximate description of the

visco-thermal losses at walls. Earlier studies have shown, however, the significant influence

of the curvature on the wave propagation in a lined bend, notably the effect of localized wall

losses8. Future studies of this matter should then involve a more comprehensive study of

the lossy propagation in a bend.
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