
HAL Id: hal-00643157
https://hal.science/hal-00643157

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Free core nutation resonance parameters from VLBI and
superconducting gravimeter data

Séverine Rosat, S. B. Lambert

To cite this version:
Séverine Rosat, S. B. Lambert. Free core nutation resonance parameters from VLBI and supercon-
ducting gravimeter data. Astronomy and Astrophysics - A&A, 2009, 503, pp.287-291. �10.1051/0004-
6361/200811489�. �hal-00643157�

https://hal.science/hal-00643157
https://hal.archives-ouvertes.fr


Astronomy & Astrophysicsmanuscript no. 11489 c© ESO 2009
May 8, 2009

FCN resonance parameters from VLBI and superconducting
gravimeter data

S. Rosat1 and S. B. Lambert2

1 Institut de Physique du Globe de Strasbourg, IPGS - UMR 7516,CNRS et Université de Strasbourg (EOST), 67084 Strasbourg, France
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ABSTRACT

Context. The free core nutation (FCN) can be observed by its associated resonance effects on the forced nutations of the Earth’s figure axis, as
observed by very long baseline interferometry (VLBI), or onthe diurnal tidal waves, retrieved from the time-varying surface gravity recorded
by superconducting gravimeters (SG).
Aims. In this paper, we study the sensitivity of both techniques tothe FCN parameters.
Methods. We analyze surface gravity data from 15 SG stations and VLBI delays accumulated over the last 24 years.
Results. We obtain estimates of the FCN period and quality factor thatare consistent for both techniques. The inversion leads to aquality factor
centered on∼16 600 with an uncertainty of∼3 500 from SG and of∼900 from VLBI, and to a resonant period within [−423.3, −430.5] days
for SG and [−427.8,−431.4] days for VLBI (3σ interval).
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1. Introduction

The free core nutation (FCN) is a rotational normal mode of the
Earth that exists because of the presence of the fluid core inside
the visco-elastic mantle. In a space-fixed reference frame,the
resonant period of the FCN is close to 430 days retrograde,
leading to an amplification of the Earth’s nutational and defor-
mational responses to tidal forcing.

The resonance associated with the FCN has been widely
studied in time-varying gravity data recorded with relative
gravimeters, mainly superconducting gravimeters (SG) of the
Global Geodynamics Project (GGP; Crossley et al. 1999). The
first analysis of the FCN effects in gravity data was performed
by Neuberg et al. (1987); attempting to determine the resonant
period, they obtainedTFCN = −431± 6 days and a quality fac-
tor QFCN = 2 800±500, defined such as the complex frequency
reads (0.99727/TFCN − 1)(1− i/2QFCN) in cycle per sidereal
day. This study was followed by many others (e.g., Cummins
& Wahr 1993; Sato et al. 1994; 2004; Ducarme et al. 2009).
Defraigne et al. (1994; 1995), using a combination of very long
baseline interferometry (VLBI) nutation and SG gravity data,
obtained a period of−433± 3 days and a quality factor larger
than 17 000. More recently, Ducarme et al. (2009) analyzed the
European SG data, and yielded a period of−430± 2 days and
a quality factor of 15 000± 8 000.

The signature of the FCN in the forced nutations was stud-
ied in the past by Herring et al. (1986) and Gwinn et al. (1986)
using VLBI observations. The authors interpreted the enhance-
ment of the amplitude of the retrograde annual nutation in-
duced by the resonance in terms of a departure of the core-
mantle boundary from its hydrostatic figure. Using an im-
proved theoretical background, Mathews et al. (2002) builta
nutation model (hereunder referred to as MHB) based on a lim-
ited number of parameters describing the Earth’s interior and
adjusted to VLBI data up to 1999. Comparisons of the VLBI
nutation time series with this model reveal differences of the
order of 200 microarc seconds (µas) in rms. These residuals
are the consequence of various mismodeled or unmodeled in-
fluences in the observational strategy as well as in geophysi-
cal processes (see e.g., Dehant et al. 2003). The authors found
a FCN resonant period of−430.21 days and a quality factor
of 20 000. The values of the FCN period and quality factor
were confirmed by Vondrák et al. (2005) using a combination
of VLBI and GNSS-derived nutation amplitudes and inverting
only the resonance parameters (to which the nutation ampli-
tudes are the most sensitive within the diurnal band). However,
Lambert & Dehant (2007), who analyzed VLBI data sets pro-
duced independently by various VLBI analysis centers, noticed
a smaller value forQFCN. (Note that in their paper, the values
of the quality factor were incorrect due to a sign error in the
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code: their symmetric with respect to 20 000 must be consid-
ered, leading to values around 17 000 instead of 23 000). The
values of other geophysical parameters estimated in MHB were
recently confirmed by Koot et al. (2008) using a longer VLBI
data set and a different estimation method. Though the FCN
period found in the latter work is close to the MHB value, the
quality factor appears to be lower by∼30%. The reason for the
discrepancy has not yet been cleared up.

Some studies also tried to identify a time variation of the
frequency of the FCN resonance, either in VLBI nutation or in
SG gravity data (Roosbeek et al. 1999; Hinderer et al. 2000).
In both papers, the authors concluded that the apparent time-
variation is not real but due to the time-variable excitation
of the free mode. Vondrák & Ron (2006), and Lambert &
Dehant (2007) have shown that the resonant period is stable
around−430 days within half a day. The former authors argued
that the FCN period being given by the internal structure of the
Earth (mainly the flattening of the core), it is highly improbable
that it is much variable in time.

In the studies listed above, large discrepancies appear be-
tween VLBI- and SG-derived values ofQFCN. This paper aims
at investigating these differences. To that purpose, we check the
sensitivity of both gravity and nutation data to the Earth’sinte-
rior parameters. The functions describing the response in grav-
ity and in nutation to the tidal forcing, and their sensitivity, are
addressed in Section 2. In Section 3, the FCN resonance param-
eters are retrieved from the gravity and nutation data. Results
are discussed in Section 4.

2. Response in gravity and nutation to the tidal
forcing

2.1. Tidal gravity

The tidal variations observed at the Earth’s surface are induced
by the direct effect of the tidal potential, the deformation and
the mass redistribution in the mantle due to this potential.The
(direct, deformation and mass redistribution) effects of the cen-
tripetal potential due to the Earth’s wobble must also be consid-
ered. Besides, the inertial pressure at the core-mantle boundary
(CMB) due to the differential rotation between the mantle and
the core induces a deformation of the CMB as well as mass re-
distribution in the mantle that generate also time variations of
the gravity field. Summing all these effects and dividing by the
gravity variations for a non-rotating rigid Earth lead to the tidal
gravimetric factor (Neuberg et al. 1987; Hinderer et al. 1991;
Legros et al. 1993):

T (g)(σ) = δ2(1− e) −
eN2

σ′ − s2

[

δ2σ
′ + δ1

A
A f

]

, (1)

hereafter referred to as the gravimetric transfer function, where

N2 =
A f

Am
(e − γ), s2 = −

A
Am

(e f − β). (2)

In the above expressions,s2 is the complex resonant fre-
quency of the FCN,e ande f the flattenings of the Earth and
the fluid outer core, respectively, andA, Am andA f the equa-
torial moments of inertia of the whole Earth, of the mantle and

of the fluid outer core, respectively. The complex parameter
N2 represents the strength of the FCN resonance. The compli-
ancesγ andβ characterize the deformability of the CMB un-
der tidal forcing and the centrifugal forcing associated with the
wobble of the fluid outer core relative to the mantle. One has
γ = q0h f /2 andβ = q0h

f
1/2, whereh f ≈ 1.14 is the Love

number expressing the deformation of the CMB induced by a

volumic potential evaluated at the CMB, andh
f
1 ≈ 0.35 is the

Love number expressing the deformation of the CMB under
an inertial pressure (Dehant et al. 1993). The Love numberδ2
represents the static response of the Earth to the tidal potential
of degree two, andδ1 is the Love number which characterizes
the elastic response (effect of mass redistribution+ deforma-
tion; δ1 = h1 −

3
2k1) of the Earth to the inner pressure acting

at the CMB. Because the mantle should possess some anelas-
ticity (Hinderer et al. 1991) that would also contribute to the
damping of the FCN, the gravimetric factorδ1 is complex.

An Earth made up of a mantle, a fluid core and a solid inner
core admits three additional resonances. Two of them are in
the low-frequency band: the Chandler wobble (CW) and the
inner core wobble (ICW); the remaining one, the free inner core
nutation (FICN), lies in the quasi diurnal band. To the model
proposed in Eq. (1), we could add these resonance effects (see
for instance Legros et al. 1993, Mathews et al. 1995). However,
their effects would be far smaller than the error of the gravity
data, so we have decided not to include them.

Equation (1) allows one to compute how much theT (g)

is sensitive to departures of the various parameters from their
‘standard’ values. We compute the sensitivityS (σ; p) to a pa-
rameterp incremented by∆p at the frequencyσ as

S (σ;∆p) =| T (g)(σ; p + ∆p) − T (g)(σ; p) | . (3)

The two-dimensional functionsS are drawn in Fig. 1 for pa-
rametersTFCN, QFCN, N2 (central values taken in the MHB
paper), andδ1 (central value taken in Rosat et al. 2009). The
white, vertical pattern showing up in the plots reflects the FCN
resonance. Tidal waves away from the resonance are generally
poorly (if at all) affected by departures of the parameters from
their central values. Nevertheless, it appears that small effects
of a few tenth of percent are expected forδ1 and, to a lesser
extent, forN2. Small departures of the FCN parametersTFCN

andQFCN will mainly affect tidal waves that are very close to
the resonance (i.e., within the white, vertical bands crossing
the two upper plots). The functionT (g) is therefore primarily
sensitive to the gravimetric factorδ1 and toN2 for tidal waves
away from the FCN resonance, but mainly sensitive to the FCN
parameters immediately around the resonance.

2.2. Nutation

The frequency domain response of the space motion of the
Earth’s figure axis to the tidal potential can be written witha
transfer function that expresses the ratio between rigid and non-
rigid nutation amplitudes (resp.ηR andη; see, e.g., Mathews et
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Fig. 1. Sensitivity of the gravimetric transfer functionT (g) to the pa-
rametersTFCN, QFCN , N2, andδ1.
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Fig. 2. Sensitivity of the nutation transfer functionT (n) to the parame-
tersTFCN , QFCN , N2, andTFICN .

al. 2002). One hasη(σ) = T (n)(σ) ηR(σ), wherein, neglecting
the ICW effects,

T (n)(σ) =
e − σ
e + 1

[

1−
σ′s1/e
σ − s1

+
σ′N2

σ′ − s2
+
σ′N3

σ′ − s3

]

, (4)

where the last three bracketed terms express the CW, FCN, and
FICN resonance, respectively, with

s1 =
A

Am
(e − κ), s3 =

A
Am

(α2es + ν). (5)

The flatteninges is relevant to the solid inner core. The
complianceκ is expressed asek/ks, wherek and ks are the
elastic and fluid Love number, respectively. It expresses the de-
formability at the surface under degree 2 tidal forcing. Thefull,
much complicated expression for the strengthN3 can be found
in, e.g., Dehant et al. (2005).

The sensitivity analysis ofT (n) to parametersN2, s1, s2, and
s3 (Fig. 2) reveals that the nutations are primarily sensitiveto
the FCN frequencys2, then to its amplitudeN2, and less sensi-
tive to the Chandler frequencys1 (not shown in the figure) and
to the FICN frequencys3.

3. Determination of the FCN resonance parameters

3.1. Tidal gravity

Since we are looking for global Earth’s interior parameters,
we take advantage of worlwide records in order to minimize
local effects. Thus, we analyze 15 datasets from the SG lo-
cated in Boulder (USA), Bad-Homburg (Germany), Cantley
(Canada), Canberra (Australia), Esashi (Japan), Matsushiro
(Japan), Moxa (Germany), Membach (Belgium), Medicina
(Italy), Metsahovi (Finland), Potsdam (Germany), Strasbourg
(France), Vienna (Austria), Wettzell (Germany) and Wuhan
(China). For all, the record length is more than 5 years.

The SG time-varying gravity records have been corrected
for any gap, spike, step and other disturbance so that a tidal
analysis with the ETERNA software package (Wenzel 1996)
is possible. Before the tidal analysis is done, the minute data
are decimated to 1 hr (using a filter with a cut-off period of
3 hrs). ETERNA then performs a least-square fit to tides, local
air pressure and instrumental drift to give complex gravimet-
ric factors, residual gravity, an adjusted barometric admittance,
and a polynomial drift function. The data to be inverted are
the complex gravimetric factors corrected for the ocean tide
loading effect according to the FES 2004 ocean model (Lyard
et al. 2006). An example of tidal gravimetric factors obtained
at Strasbourg and corrected for the ocean loading effect is su-
perimposed to the observed nutation amplitudes in Fig. 3.The
errors on the imaginary parts of the tidal waves Ψ1 and Φ1,
which are the closest to the resonance, are very large, while
the corresponding nutation amplitudes (annual and semi-
annual retrograde) are well determined.

We use optimized linearized least-squares based on the
Levenberg-Marquardt algorithm (Marquardt 1963; Defraigne
et al. 1994; 1995). To force the quality factor to be positive, we
introduce the variablex = log10(QFCN). The least-squares im-
plicitly suppose that the parameters are Gaussian distributed,
which is not the case forQFCN (Florsch & Hinderer 2000), but
it should be the case forx if the data had weak errors (Rosat et
al. 2009). Besides, Rosat et al. (2009) have demonstrated that
there is a good agreement between the linearized Levenberg-
Marquardt results and the Bayesian statistic method.

Because of the strong correlation ofN2 with δ1 (99%),
and the poor number of tidal gravity data (only 9 diurnal tidal
waves), we will not invert this parameter from gravity tidalfac-
tors but rather fix it to the value obtained from the inversion
of the nutation data. Indeed, the value ofN2 has been well
constrained previously in MHB or Koot et al. (2008). Thus,
the inversion is carried out forx, TFCN, δR

1 andδI
1. Finally, we

getδ1 = (0.03407− i 0.0031)± 1.0× 10−4. The period of the
FCN is TFCN = −426.9 ± 1.2 days and its quality factor is
QFCN = 16 630± 3 562. (The errors correspond to 1σ.)

3.2. Nutation

Nutation time series were obtained by a single inversion of
ionosphere-free VLBI delays accumulated during∼3 800 24-
hr observing sessions of routine geodetic VLBI observations



4 S. Rosat and S. B. Lambert: FCN resonance parameters from VLBI and SG data

13 13.5 14 14.5 15 15.5 16 16.5

1

1.1

1.2

1.3
R

ea
l

13 13.5 14 14.5 15 15.5 16 16.5

−0.04

−0.02

0

0.02

0.04

deg/h

Im
ag

in
ar

y

Fig. 3. Observed transfer functions for nutation (dots) and gravity
(stars) obtained from VLBI and SG measurements, respectively. The
corresponding theoretical ones are plotted in solid line for nutation,
and in dashed line for gravity.

spanning 1984.0–2008.71. Earth orientation parameters were
estimated once per session, while station coordinates and ve-
locities and most of radio source coordinates were estimated
as global parameters over the 24 years. The celestial frame
was maintained by a no-net rotation constraint over the coor-
dinates of 247 sources selected by Feissel-Vernier et al. (2006),
ensuring a relative time stability of the frame axes. Doing
so, one avoids contaminating the estimated nutation offsets
by radio source instabilities. All the calculations used the
Calc 10.0/Solve 2008.12.05 geodetic VLBI analysis software
package developped and maintained at NASA/Goddard Space
Flight Center, and were carried out at the Paris Observatory
IVS Analysis Center (Gontier et al. 2008) as part of the
International VLBI Service for Geodesy and Astrometry (IVS;
Schlüter & Behrend 2007).

Prograde and retrograde amplitudes of the terms listed in
Table 1 of the MHB paper, jointly with a linear trend on each
component, were obtained by a weighted least-squares fit to the
time series. To get realistic errors on data, we inflated the vari-
ance of each data point by an additive variance of 0.015 mas2,
and a scale factor of 1.8 (see Herring et al. 1991; 2002; Lambert
et al. 2008). The obtained nutation amplitudes were corrected
from effects that are not, or non linearly, linked to non rigidity,
including the geodetic nutation, the S1 atmospheric tide, and
contribution of second order terms in the dynamical equations
of the Earth’s rotation. The relevant values were taken from
the Table 6 of the MHB paper for the former two effects, and
in Lambert & Mathews (2006; 2008) for the latter. The ratio
of the observed (fitted) nutation amplitudes to the rigid ones
taken in the REN 2000 theory (Souchay et al. 1999) are plotted
in Fig. 3. Note the good agreement between the observations
and the MHB transfer function usingTFCN = −430.21 days
andQFCN = 20 000.

From the fitted set of nutation amplitudes, we estimates1,
N2, s2, ands3. These geophysical parameters are correlated and
the highest correlation (∼0.9) shows up between the FCN and
the FICN frequenciess2 ands3.

1 The data set and its description file are available via anonymous
ftp at ftp://ivsopar.obspm.fr/vlbi/ivsproducts/eops/opa2008d.eops.gz,
ftp://ivsopar.obspm.fr/vlbi/ivsproducts/eops/opa2008d.eops.txt.
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Fig. 4. Joint probability density functions ofx, TFCN, s1 and N2 esti-
mated from the nutation amplitudes.

In order to check that the inverted parameters are Gaussian
distributed, we compute their probability density functions
(pdfs) using the full transfer function of the resonance as de-
fined in Eq. (4). As our knowledge of the parameters is im-
perfect, we consider them as probabilistic rather than deter-
ministic. The resulting joint pdfs are represented in Fig. 4
for the parametersx, TFCN, s1 and N2. The χ2−test shows
that the distribution for x can be supposed Gaussian with
an error of 5%. Note also the tilted shape of the pdfs be-
tween the real and imaginary parts ofs1 and N2 that indi-
cates a correlation between these parameters. The Levenberg-
Marquardt least-squares giveTFCN = −429.6 ± 0.6 days,
QFCN = 16 683± 884, N2 = (0.0490+ i 0.0015)± 2 × 10−4,
s1 = (0.00261− i 0.00126)± 3 × 10−5, TFICN = 1 139± 736
days,QFICN = 550± 171, with the error corresponding to 1σ.

A joint inversion of VLBI nutation and SG gravity data
has also been performed to determinex andTFCN . However,
the amplitudes of the tidal waves that best constrain the FCN
frequency and damping (mainlyΨ1 andΦ1) are weak while
the corresponding nutation amplitudes (mainly the annual and
semi-annual retrograde) are substantial. Besides, the ocean
loading effect is a main source of error on the gravity signal
while the effect of the tidal ocean on the Earth’s nutation is
weak. Thereforex andTFCN are better estimated using VLBI
data than using surface gravity data, and a joint inversion does
not improve the results obtained using VLBI data alone.

4. Concluding remarks

Estimates of the FCN resonance parameters from nutation or
gravity measurements are comparable within the error bars
(Table 1). The FCN period is close to−430 days using VLBI
and slightly lower by a few days from gravity data. The FCN
quality factor estimated either from nutation or from gravity
data tends to be around 17 000 with error bars of∼1 000. Tidal
gravity observations bring additional constraints to the Earth’s
interior by leading to an estimate of the internal pressure Love
number. Interpretation of these estimates in terms of dissipative
torques at the core boundaries needs more assumptions and in-
ternal modeling to separate the respective parts of electromag-
netism and viscosity. This problem will not be addressed here.

Our study has shown that surface gravity is as sensitive
as the nutation to the FCN resonance frequency and damp-
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Table 1. Values of the FCN resonance parameters obtained from nu-
tation and gravity measurements.

Nutation Gravity
TFCN −429.6± 0.6 days −426.9± 1.2 days
QFCN 16 683± 884 16 630± 3 562

ing factor. The discrepancy between gravity and nutation is
due to the large errors arising from the diurnal tidal waves
determination which are the closest to the FCN resonance.

As time elapses, improvements in both techniques progres-
sively wipe out systematics that produced discrepancies inesti-
mates of the same geophysical quantities. Geophysical param-
eters estimated from VLBI will certainly improve in the next
five or ten years, not only because of a better quality of records
or reference frame realization, but also because the longertime
span will permit one to decorrelate the 18.6-yr tidal term and
the linear trend. Concerning SG data,longer time-series will
enable to better determine Ψ1 and Φ1 tidal waves but im-
provements are also necessary in the modeling of the ocean
loading effects in the diurnal frequency band.
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