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(Dated: September 15, 2010)

We show that N = 1-supersymmetric BF theory in 3d leads to a supersymmetric spin foam
amplitude via a lattice discretisation. Furthermore, by analysing the supersymmetric quantum
amplitudes, we show that they can be re-interpreted as 3d gravity coupled to embedded fermionic
Feynman diagrams.

I. INTRODUCTION

Whilst supergravity theories go a certain way to tame the infinities of their non-supersymmetric cousins,
they also generalise these theories by coupling fermionic degrees of freedom to the original gravity theory.
One can easily see this at the continuum classical level. We want to investigate this issue in the discrete
quantum case. Thus, in this paper, we shall analyze a rather simplified model: Riemannian supergravity in
three dimensions. As is well known, the conventional metric-dependent action may be recast as a particular
gauge theory action, which is dependent on the triad and the spin connection: BF theory. Extensive
work on the discretisation and quantisation of this theory, with SU(2) chosen as the gauge group, arises
in the literature (see [1, 2] and references therein). One can see that the theory maintains its topological
nature once quantised, and the discrete quantum model is the Ponzano-Regge model. Several approaches to
coupling matter within spin foams were embarked upon [2–7] (see also [8–10] which use the group field theory
formalism for spin foams). The most tractable and indeed most successful of these procedures embedded
the Feynman diagrams of the field theory into the spin foam. Remarkably, summing over the gravitational
degrees of freedom, the effective matter amplitudes were seen to arise as the Feynman diagrams of a non-
commutative field theory [11]. To add to this position, it was shown that an explicit 2nd quantised theory
of this gravity-matter theory could be provided by group field theory, while later the non-commutative field
theory was seen to arise as a phase arising when one perturbs around a classical solution of a related group
field theory [12]. Of course, one may approach the subject with the view that one should discretise the matter
field directly on the spin foam, since in the continuum theory, we expect that this field has a non-trivial
energy-momentum tensor and should affect the state sum globally. This method has yielded to a succinct
initial quantisation for Yang-Mills and fermionic theories [4–6], but due to the non-topological nature of the
resulting amplitudes, further calculations proved unwieldy. Now, it was not our intention that our work in
this paper would or should settle this debate, but we find that the analysis of this supersymmetric theory is
more in line with the arguments of the first (embedded Feynman diagram) approach.

The path we follow in our analysis is to start from continuum BF theory with gauge group UOSP(1|2),
discretise and quantise. Once this lattice gauge theory quantisation has been completed, we Fourier transform
to uosp(1|2) representation space. Owing to its algebraic structure, there is an su(2) structure embedded
within uosp(1|2) [13–15]. We may rewrite the amplitudes to make this dependence explicit. The aim of the
game is then to give an accurate interpretation of these amplitudes in terms of matter coupled to gravity.
To do so, we Fourier transform again, but this time to functions on the group SU(2). In this form, we can
identify within the state sum Feynman diagrams of a massless spin- 1

2 fermionic field. Therefore, we arrive at
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a lattice discretisation of gravity coupled to a fermionic field where the supersymmetric nature of the theory
is hidden.

II. THE SUPER PONZANO-REGGE MODEL

In 3d, we can rewrite the gravity action (with zero cosmological constant) as an SU(2) gauge theory:

S[E,W ] =
∫

M
tr(E ∧ F [W ]), (1)

where E is the triad, W is the connection, while F [W ] = dW +W ∧W is the curvature. Both E and W
are 1-forms valued in su(2), and tr is the trace over the Lie algebra: tr(LiLj) = − 1

2δij .
1 In this paper, we

update the analysis to 3d supergravity with zero cosmological constant:

S[B,A] =
∫

M
Str(B ∧ F [A]), (3)

where B is the supertriad, A is the superconnection, while F [A] = dA+A∧A is the supercurvature. Str is
its supertrace. The minimal supersymmetric extension of 3d gravity is to take the gauge algebra: uosp(1|2).
This type of theory was first conceived in the context of non-zero cosmological constant where it is equivalent
to a super Chern-Simons theory devised by Achúcarro and Townsend [16].

The supergravity fields written in terms of generators of the algebra are

B = EiJi + φAQA, A = W iJi + ψAQA, (4)

where E and W are the triad and connection, while φ and ψ represent the fermion field. A ∈ {±} and
i ∈ {1, 2, 3}. The action may be rewritten in terms of these variables as

SN=1[E,W, φ, ψ] =
∫

M
Str

(
E ∧ (F [W ] + ψ ∧ ψ) + φ ∧ dWψ

)
, (5)

where F (W ) = dW +W ∧W is the gravitational curvature, and we define the operator as dW = d +W∧.
This action describes a fermion field propagating on a manifold M endowed with a dynamical geometry.

Let us conclude our classical analysis by saying a few words on the equations of motion. In supersymmetric
form they are:

F [A] = 0 and dAB = 0. (6)

Thus, they record that the classical solutions satisfy the condition that the superconnection is super-flat and
super-torsion-free. Breaking this up into components we see that:

F [W ]i +
i

2
(σi)AB ψ

A ∧ ψB = 0, (7)

dψA +
i

2
(σi)B

AW i ∧ ψB = 0, (8)

dWEi +
i

2
(σi)AB ψ

A ∧ φB = 0, (9)

dφA +
i

2
(σi)B

AW i ∧ φB +
i

2
(σi)B

AEi ∧ ψB = 0, (10)

1 The su(2) algebra has generators satisfying: [Li, Lj ] = −εijkLk , and in the fundamental representation has the form:

L1 =
i

2

„
0 1
1 0

«
, L2 =

i

2

„
0 −i
i 0

«
, L3 =

i

2

„
1 0
0 −1

«
. (2)
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where (σi)A
B are the Pauli matrices. Going in descending order, we see that the curvature of the su(2)

connection is non-vanishing, it picks up a contribution from the matter sector (7). Furthermore, the fermion
field, acting as a source for the curvature, is covariantly constant with respect to the su(2) connection (8).
Equation (9) states that su(2) connection is not torsion free, while (9) and (10) together, show that any
change in the triad is compensated by a change in the fermionic fields. This complementary viewpoint shall
come into play later in Section III.

The aim of the game is to rigorously define the path integral:

ZM =
∫
DADB eiSN=1[B,A] “ = ”

∫
DA δ(F [A]). (11)

In order to embark upon our course of discretisation and quantisation, we must first introduce a number of
structures:

• We replace the manifold M by a simplicial manifold ∆ of the same topology. Since BF theory is a
topological field theory and does not have any local degrees of freedom, we expect that this substitution
will preserve the information contained in the continuum theory. In three space-time dimensions, we
can triangulate any manifold. We label the 0-,1-,2- and 3-subsimplices as v, e, f and t, respectively.

• Another important constituent is the topological dual ∆∗ to the simplicial complex. We label sub-
elements of this structure as v∗, e∗, f∗ and t∗, respectively. Furthermore, the dual 2-skeleton ∆∗

2 ⊂ ∆
is defined to be {v∗, e∗, f∗}.

• We subdivide the dual 2-skeleton ∆∗
2. The edges e∗ ∈ ∆∗ intersect the triangles f ∈ ∆. We label these

points of intersection by v∗f . Likewise, the edges e ∈ ∆ intersect the faces f∗ ∈ ∆∗. We label these
points of intersection by v∗e . Changing viewpoints, the vertices v∗f split the edges e∗ into two parts,
which we label e∗t . Furthermore, we join v∗f to v∗e which an edge labelled by e∗e,f . This allows us to
demarcate the wedges w∗ ⊂ f∗ which are circumscribed by a combination of edges e∗t and e∗e,f - the
details are drawn in Fig. 1. To summarise, a wedge is that part of a face f∗ contained in the interior
of a single tetrahedron.

v∗

e∗

v
e

w∗ e∗t
v∗

e

v∗
f

e∗e,f

FIG. 1: The various elements of the simplicial complex and its dual.

The fields B and A are replaced by configurations that are distributional with support on subsimplices of
∆ and its topological dual ∆∗. We integrate these fields over the appropriate subsimplices. The definition
of the integrated fields is:

B → Bw∗ =
∫

e∼w∗
B ∈ uosp(1|2),

A → ge∗ = Pe
R

e∗ A ∈ UOSP(1|2),

F [A] → Gw∗ =
∏

e∗⊂∂w∗

g
ε(e∗,f∗)
e∗ ∈ UOSP(1|2),

(12)
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where ε(e∗,f∗) = ±1 depending the relative orientation of e∗ and f∗. The super-flatness constraint F [A] = 0
translates into the triviality of holonomies: Gw∗ = I. At the discrete level, we expect to replace the δ(F [A])
constraint by δ(Gw∗) constraints, with the discrete Bw∗ variables still playing the role of the Lagrange
multipliers. Following [2], the action on the simplicial manifold then reads:2

S∆[Bw∗ , ge∗
t
, ge∗

e,f
] =

∑

w∗∈∆∗

Str(Bw∗Gw∗). (14)

An important factor in rigorously defining the path integral is the measure:

DA →
∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

where dg = 1
π2 (1− 1

4η
�η) sin2 θ sinψ dθ dψ dφ dη� dη,

DB →
∏

w∗

dBw∗ where dB = db1 db2 db3 db
� db,

(15)

where η�, η, b�, b are odd Grassmann variables while the rest are even and parameterise the SU(2) sub-
group (we refer to Appendix A 3 for more details). Thus, the path integral for a discrete manifold takes the
form:

Z∆,UOSP(1|2) =
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

dBw∗ e
iS∆[Bw∗ ,ge∗t

,ge∗
e,f

]
. (16)

Our next step is to integrate over the supertriad:

Z∆,UOSP(1|2) =
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

(p�
w∗ pw∗) δ3(~pw∗)

=
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

[
δ(p�

w∗) δ(pw∗) δ3(~pw∗)
]

=
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

[
−1

8
η�

w∗ ηw∗ (cos θw∗ + 1)
]
δ3 (sin θw∗ ~nw∗) ,

(17)

where sin θ ~n is the vector parameterizing the SU(2) subgroup. By inspection, we find that the above
integrand is peaked on Gw∗ = I, with the correct numerical factor. This is in marked contrast with the
SU(2) case, where one must insert an appropriate Gw∗-dependent observable to kill a second peak for which
the SU(2) part of the holonomy is equal to −I instead of +I.3 The fact that the path integral of the discrete

2 Remember that:

Str(BG) = bi pi + b� p� + b p, where ~p = − 1
2

“
1 − 1

8
η�η

”
0
B@

i (u32 + u23)

u32 − u23

i (u22 − u33)

1
CA

and p = − 1
4

“
η� + η� u22 + η u23

”
,

(13)

and the definitions of uij are given in Appendix A 3.
3 In fact, even here, the delta function over the even sector of UOSP(1|2) has two peaks. The other peak is:

Ĩ =

0
@

1 0 0
0 −1 0
0 0 −1

1
A .

Fortuitously, the delta-function over the odd sector contains a factor (cos θ + 1) which kills the second peak. Such a factor
was introduced by hand for the SU(2) Ponzano-Regge model in [17] in order to kill this same second peak.
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supersymmetric action automatically kills the second peak in the group element is a noticeable improvement
on the standard SU(2) discrete path integral which leads to a δ-function over SO(3) thus peaked on both
+I and −I from the SU(2) viewpoint [2]. This could only be resolved by adding suitable measure factors in
the path integral in order to remove this second peak by hand (e.g. see [17]). Here, in our supersymmetric
framework, it is the presence of matter itself that takes care of this issue. Intuitively, the equation of motion
(8) imposes that the fermionic field ψ has a trivial parallel transport, and thus distinguishes between +I
and −I holonomies since we are dealing with spinors. Maybe such a feature can be generalised beyond
the supersymmetric theory and we could conjecture that the SU(2) holonomy is necessarily peaked on +I
whenever fermions are present in the theory. The partition function may be written as:

Z∆,UOSP(1|2) =
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

δ(Gw∗). (18)

As an aside, we note that we integrate with respect to the ge∗
e,f

variables, we in essence glue the wedges
within a face together and the amplitude becomes:

Z∆,UOSP(1|2) =
∫ ∏

e∗

dge∗

∏

f∗

δ(Gf∗). (19)

For UOSP(1|2), there also exists a Plancherel measure, with respect to which the δ-function may be decom-
posed as:

δ(G) =
∑

j∈ 1
2 N0

Sdimj Sχj(G), (20)

where Sdimj = (−1)2j is the superdimension, N0 = {0, 1, 2, . . .} and Sχj(G) is the supercharacter, that is,
the supertrace of the representation matrix jT (k m)

(l n)(G) (see Appendix A 2 for details).
Having performed the Peter-Weyl decomposition on each δ-function, we are left to manipulate the repre-

sentation functions and integrate with respect to the group variables. This is necessarily an arduous task in
the supergroup case since permuting matrix elements may introduce factors of (−1) if the matrix element
is an element of the even or odd sector of the Grassmannian algebra. Fortunately, there exists an efficient
method to manage the bookkeeping of such factors. This is a graphical calculus prevalent in some approaches
to braided monoidal categories, and presented for the supergroup case in [3]. We shall not review it in all
its glory here, but shall give just a bare bones description.

First of all, let us draw the template upon which we shall illustrate a sample of all our subsequent
amplitudes. Consider a triangle in the simplicial complex along with the faces dual to its three edges.
Moreover, consider the wedges which constitute each of these faces:
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g
e∗
e,f

g
e∗
t

jw∗

FIG. 2: Sample of the labelling of the simplicial complex and its topological dual.

As we see from (18), the edges of the wedge are labelled by group elements ge∗
t

and ge∗
e,f

. Also, a
representation jw∗ labels each wedge. As for the amplitude itself, to each supercharacter in (18), we note
that there is a loop labelled with the representation jw∗ and the holonomy around the wedge. (Since the
factor Sdimjw∗ is actually the supercharacter of the identity element, we should include another loop with
trivial argument for each wedge, but to simplify the illustration, we include this implicitly.) Importantly,
we can see that several wedges may share the same group element. The ultimate power of this formalism is
that one can manipulate the diagrams using the rule:

(l1n1)(k1m1)

(lrnr)(krmr)

j1

jr

g =

(l1n1)
(k1m1)

(lrnr)(krmr)

j1

j1 j1

jrjr

jr

FIG. 3: Diagrammatic rule to convert representation functions to intertwiners.

where:

Ij1
(k1m1)

...

...
jr
(krmr)

=

j1

jr

(k1 m1)

(kr mr)

FIG. 4: Graphical representation of intertwiner.

I is an intertwiner on the representation space of UOSP(1|2).4 Applying this rule everywhere possible we

4 There is a computational subtlety in producing the above rule explicitly in terms of objects in the representation theory of
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find that representations attached to the wedges within a given face f∗ are forced to coincide leaving just
one which we shall denote je = jf∗ . On top of this, the diagram factorises as follows:

Z∆,UOSP(1|2) =
X

{j}

Y

f∗

Y

e∗

Y

v∗

-1

Thus, it is just a matter of evaluating these subdiagrams. We do this explicitly in Appendix D and to
conclude, the amplitude is roughly a product of supersymmetric {6j}-symbols and takes the following form:

Z∆,UOSP(1|2) =
∑

{j}

∏

e

(−1)2je

∏

f

(−1)bje1+je2+je3cf

∏

t

[
je1 je2 je3

je4 je5 je6

]

t

. (21)

III. ANALYSIS OF N=1 SUPERSYMMETRIC BF THEORY

We continue the investigation of N = 1 supersymmetric spin foams, initiated in [3]. In Section II, we de-
rived the UOSP(1|2) spin foam model directly from a discrete path integral. Ultimately, the amplitude takes
the form given in (21). Considering the amplitudes of the sub-simplices of ∆ individually, the edges, triangles
and tetrahedra carry the weights: (−1)2je (the superdimension); (−1)bje1+je2+je3cf (the normalisation of the
supersymmetric {3j}-symbol); and the supersymmetric {6j}-symbol, respectively. Moreover, given a fixed
triangulation ∆, the sum ultimately includes all admissible configurations of irreducible UOSP(1|2) repre-
sentations attached to the edges of the triangulation. These configurations are labelled {je} (je ∈ N0

2 ). To
be an admissible configuration, the representations must satisfy triangle inequalities but the familiar closure
condition is relaxed. That is to say, if e1, e2, e3 ∈ ∂f , then:

|ja − jb| ≤ jc ≤ ja + jb, where a, b, c are a permutation of e1, e2, e3.
but

je1 + je2 + je3 ∈ N0, or je1 + je2 + je3 ∈ N0 + 1
2 .

(22)

The spin foam amplitude is a function of these representations, as is conventional.
From the classical standpoint, we derived this quantum amplitude beginning with an action displaying

supersymmetric gauge invariance. But since the gauge group UOSP(1|2) is built upon the familiar SU(2) Lie
group, there is a nice SU(2) structure nested inside this overarching supersymmetric one. As we uncovered
in Section II, upon making this SU(2) structure explicit, one sees that this theory is one describing gravity
coupled to Grassmann-valued spin- 1

2 fields. Now that we have the quantum amplitude in a well-defined
discrete setting, we expect that within the supersymmetric partition function lie amplitudes pertaining
to gravity coupled to these spin- 1

2 fermionic fields. Indeed, our main aim in this paper is to clarify this
correspondence.

Perhaps some intuition for what might happen can be gained by examining a generic parallel transport
matrix in a given representation je, namely jeT (keme)

(lene)(ge∗). Since each tetrahedron contains its own
frame of reference, this matrix describes the change in certain properties pertaining to the edge e ∈ ∆ as
one moves from one tetrahedron to the next along e∗ ∈ ∆∗ . One such property is the length of the edge,
e, as seen in each tetrahedron, which is given by the SU(2) sub-module (labelled by ke, le) pertaining each
tetrahedron. To spell it out, jeT (keme)

(lene)(ge∗) : V le → V ke , so that the length of the edge as viewed from
the initial tetrahedron is le + 1

2 , while from the final tetrahedron is seems that the edge has length ke + 1
2 .5

At a hand-waving level, the fact that different observers (here tetrahedra) see different lengths for the same
edge comes from a non-vanishing torsion in the theory. Since both ke, le can take the values je, je− 1

2 freely,

UOSP(1|2), which we describe in Appendix E.

5 In pure gravity, the length an edge of the spin foam is given by
dimke

2
= ke +

1

2
.
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the length of the edge may change from reference frame to reference frame. Note, however, that the matrix
elements fall into two classes. On the one hand there are the cases where the edge length does not change:
jeT (je me)

(je ne)(ge∗) and jeT (je− 1
2 me)

(je− 1
2 ne)(ge∗). For example, let us examine:

jeT (je me)
(je ne)(ge∗) = (1− 1

4
je η

�
e∗ηe∗) jeDme

ne(Ωe∗), (23)

where Ω = {ψ, θ, φ}. Each element is even in the Grassmann algebra. We propose that the O((η�
e∗ηe∗)0)

term corresponds to no-fermion propagation, while the O((η�
e∗ηe∗)1) term corresponds to the propagation of

both a fermion and an anti-fermion, which together yield a bosonic contribution. On the other hand, there
are the cases where the edge length does change: jeT (je me)

(je− 1
2 ne)(ge∗) and jeT (je− 1

2 me)
(je,ne)(ge∗). this

time, let us examine:

jeT (je me)
(je− 1

2 ne)(ge∗)

=

[
−1

2

√
je + ne +

1
2
η�

e∗
jeDme

ne+ 1
2
(Ωe∗)− 1

2

√
je − ne +

1
2
ηe∗

jeDme
ne− 1

2
(Ωe∗)

]
.

(24)

Note that each term is linear in an odd Grassmann variable, so we shall interpret this as the propagation
of a fermion or an anti-fermion. Albeit a somewhat loose description of what is happening, it is essentially
correct and once we describe this in terms of an SU(2) lattice gauge theory coupled to Grassmann fields, we
shall see this prescription become more precise.

Let us begin to analyze the quantum amplitudes directly. We shall first make the embedded SU(2)
substructure explicit at the level of representations by expanding the UOSP(1|2) {6j}-symbols in terms of
SU(2) {6j}-symbols (C4):

[
j1 j2 j3

j4 j5 j6

]
=

∑

ki
1≤i≤6

(−1)
P6

a=1 2(ja−ka)(λa+1)Bj1j2j3
k1k2k3

Bj5j6j1
k5k6k1

Bj6j4j2
k6k4k2

Bj4j5j3
k4k5k3

{
k1 k2 k3

k4 k5 k6

}
,

where we choose the parity λa = 2ja and we sum over ki = ji or = ji − 1
2 . Since each triangle is shared by

two tetrahedra, we may repartition the amplitude as follows:

Z∆,UOSP(1|2) =
∑

{j,k}

∏

e

(−1)2je

∏

f

[
(−1)bje1+je2+je3cB

je1 je2 je3
ke1ke2ke3

B
je1 je2 je3
k′

e1
k′

e2
k′

e3

]
f

×
∏

t

[
(−1)

P6
a=1 2(jea−kea )(2jea+1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]

t

, (25)

where the appropriate definitions are given in Appendix B. Let us insist that although we sum over one
label je per edge, we are also summing over one label ke,t per edge e and per tetrahedron t 3 e to which the
edge belongs.

For future reference, let us scrutinise the triangle amplitude:

A
{j}
f ((ke1 , ke2 , ke3 ; k

′
e1
, k′e2

, k′e3
) =

[
(−1)bje1+je2+je3cB

je1 je2 je3
ke1ke2ke3

B
je1 je2 je3
k′

e1
k′

e2
k′

e3

]
f

(26)

There are a number of forms this can take depending on the values of ke and k′e. But there are certain basic
forms that they follow. To save space, let us denote the element k = j by ↑ and k = j − 1

2 by ↓. Thus,
A

{j}
f (je1 , je2 , je3 ; je1− 1

2 , je2− 1
2 , je3 ) = A

{j}
f (↑, ↑, ↑; ↓, ↓, ↑). We note also that the amplitudes are symmetric

with respect to the interchange of {k1, k2, k3} and {k′1, k′2, k′3}. The possible configurations are (up to flipping
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entirely {k1, k2, k3} with {k′1, k′2, k′3}):

je1 + je2 + je3 ∈ N0

A
{j}
f (↑, ↑, ↑; ↑, ↑, ↑) = (−1)J(je1 + je2 + je3 + 1)

A
{j}
f (↑, ↓, ↓; ↑, ↓, ↓) = (−1)J(−je1 + je2 + je3 )

A
{j}
f (↓, ↑, ↓; ↓, ↑, ↓) = (−1)J(je1 − je2 + je3)

A
{j}
f (↓, ↓, ↑; ↓, ↓, ↑) = (−1)J(je1 + je2 − je3)

A
{j}
f (↑, ↑, ↑; ↑, ↓, ↓) = (−1)J+(2je1+1)

√
(je1 + je2 + je3 + 1)(−je1 + je2 + je3)

A
{j}
f (↑, ↑, ↑; ↓, ↑, ↓) = (−1)J+(2je2+1)

√
(je1 + je2 + je3 + 1)(je1 − je2 + je3)

A
{j}
f (↑, ↑, ↑; ↓, ↓, ↑) = (−1)J+(2je3+1)

√
(je1 + je2 + je3 + 1)(je1 + je2 − je3)

A
{j}
f (↑, ↓, ↓; ↓, ↑, ↓) = (−1)J+(2je1+1)+(2je2+1)

√
(−je1 + je2 + je3)(je1 − je2 + je3)

A
{j}
f (↑, ↓, ↓; ↓, ↓, ↑) = (−1)J+(2je3+1)+(2je1+1)

√
(−je1 + je2 + je3)(je1 + je2 − je3)

A
{j}
f (↓, ↑, ↓; ↓, ↓, ↑) = (−1)J+(2je2+1)+(2je3+1)

√
(je1 − je2 + je3)(je1 + je2 − je3 )

(27)

and

je1 + je2 + je3 ∈ N0 + 1
2

A
{j}
f (↓, ↓, ↓; ↓, ↓, ↓) = (−1)J− 1

2 (je1 + je2 + je3 + 1
2 )

A
{j}
f (↓, ↑, ↑; ↓, ↑, ↑) = (−1)J− 1

2 (−je1 + je2 + je3 + 1
2 )

A
{j}
f (↑, ↓, ↑; ↑, ↓, ↑) = (−1)J− 1

2 (je1 − je2 + je3 + 1
2 )

A
{j}
f (↑, ↑, ↓; ↑, ↑, ↓) = (−1)J− 1

2 (je1 + je2 − je3 + 1
2 )

A
{j}
f (↓, ↓, ↓; ↓, ↑, ↑) = (−1)J− 1

2+(2je1+1)
√

(je1 + je2 + je3 + 1
2 )(−je1 + je2 + je3 + 1

2 )

A
{j}
f (↓, ↓, ↓; ↑, ↓, ↑) = (−1)J− 1

2+(2je2+1)
√

(je1 + je2 + je3 + 1
2 )(je1 − je2 + je3 + 1

2 )

A
{j}
f (↓, ↓, ↓; ↑, ↑, ↓) = (−1)J− 1

2+(2je3+1)
√

(je1 + je2 + je3 + 1
2 )(je1 + je2 − je3 + 1

2 )

A
{j}
f (↓, ↑, ↑; ↑, ↓, ↑) = (−1)J− 1

2+(2je1+1)+(2je2+1)
√

(−je1 + je2 + je3 + 1
2 )(je1 − je2 + je3 + 1

2 )

A
{j}
f (↓, ↑, ↑; ↑, ↑, ↓) = (−1)J− 1

2+(2je3+1)+(2je1+1)
√

(−je1 + je2 + je3 + 1
2 )(je1 + je2 − je3 + 1

2 )

A
{j}
f (↓, ↓, ↑; ↑, ↑, ↓) = (−1)J− 1

2+(2je2+1)+(2je3+1)
√

(je1 − je2 + je3 + 1
2 )(je1 + je2 − je3 + 1

2 )

(28)

where J = je1 + je2 + je3 . There are 32 configurations in total (20 are shown here and the other 12 are
obtained by utilizing the symmetry given above). These configurations split into two subsets depending
on whether J ∈ N0 or J ∈ N0 + 1

2 . Thus, 16 are admissible at any instance. Following on from what
we mentioned just a little earlier, if the first three arrows do not differ from the second three, then the
amplitude contributes to the even or ‘bosonic’ sector of the theory, while if there are two flips, then the
amplitude contributes to the fermionic sector. Remember that there can not be one or three flips due to the
parity condition for the existence of SU(2) intertwiners. Thus, the top four listed in each subset above are
‘bosonic’ amplitudes while the rest are ‘fermionic’ amplitudes.
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Let us examine a bosonic amplitude:

A
{j}
f (↑, ↑, ↑; ↑, ↑, ↑) = (−1)J(je1 + je2 + je3 + 1). (29)

The amplitude comes about from the coupling of je1T (je1me1 )
(je1ne1 )(ge∗), je2T (je2me2 )

(je2ne2 )(ge∗) and
je3T (je3me3 )

(je3ne3 )(ge∗). Therefore, as we can see from (23), in the product of these three factors, the
coefficient of (η�

e∗ηe∗) is (je1 + je2 + je3 + 1) (remembering that there is a (η�
e∗ηe∗) term in the measure).

In fact, we interpret that this coefficient gets contributions from four different sources. There may be no-
fermion propagation or fermion - anti-fermion propagation on the edge e1 or the edge e2 or the edge e3
(which contribute the 1, je1 , je2 , je3 pieces, respectively).

Now for a fermionic amplitude:

A
{j}
f (↑, ↑, ↑; ↑, ↓, ↓) = (−1)J− 1

2+(2je1+1)
√

(je1 + je2 + je3 + 1)(−je1 + je2 + je3). (30)

Once again we see that this arises from coupling je1T (je1me1 )
(je1ne1 )(ge∗), je2T (je2me2 )

(je2−
1
2 ne2 )(ge∗) and

je3T (je3me3 )
(je3−

1
2 ne3 )(ge∗). It is not possible to see how the coefficient of η�

e∗ηe∗ comes about directly, but
for our interpretational purpose here, the coefficient gets a contribution from a fermion or anti-fermion
propagation on both edges e2 and e3 while there is no-fermion propagation on edge e1.

To conclude this section, while all the tetrahedra sharing an edge are colored with the same UOSP(1|2)
representation je, they need not necessarily share the same SU(2) label ke. This is to be expected since the
SU(2)-modules lie within larger UOSP(1|2)-modules. Heuristically, we can divide the triangle amplitudes
into two classes, differentiated by the condition kea = k′ea

for each edge of the triangle (keeping in mind that
the triangle belongs to two tetrahedra). Those which satisfy this condition are ‘bosonic’, while those triangles
for which this condition is not satisfied are ‘fermionic’. We shall now make this interpretation precise, by
Fourier transforming to the space of functions on SU(2). It is rather difficult to do this succinctly, but we
shall circumvent some of the clumsiness by jumping to the other side of the computation and working back.
Indeed, it is more instructive to do so.

A. SU(2) spin foam amplitudes

The SU(2) Ponzano-Regge state sum amplitudes have the same fundamental building blocks as their
UOSP(1|2) counterparts. In terms of lattice gauge theory variables, one can write the amplitude as in (19):

Z∆,SU(2) =
∫ ∏

e∗

dge∗

∏

f∗

δ(gf∗). (31)

After integration, we once again see a diagram like Fig.2 but this time it is labelled by irreducible repre-
sentations and group elements of SU(2). As usual, after manipulation using an analogous rule to Fig.3, the
amplitude factorises and we arrive at:

Z∆,SU(2) =
X

{k}

Y

f∗

Y

e∗

Y

v∗

-1

Upon evaluating the corresponding diagrams, one gets the familiar Ponzano-Regge ampitude:

Z∆,SU(2) =
∑

{k}

∏

e

(−1)2ke(2ke + 1)
∏

f

(−1)(ke1+ke2+ke3 )f

∏

t

{
ke1 ke2 ke3

ke4 ke5 ke6

}

t

, (32)

To make a connection with supersymmetric amplitudes, we must first rewrite this amplitude more appropri-
ately to the supersymmetric context. As pointed out in [3], one has some freedom in the properties of the
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representations occurring in the decomposition of functions over the group. For a start, one may endow the
representations with a Z2-grading, so that vectors in V ke , ke ∈ N0 + 1

2 are odd and vectors in V ke , ke ∈ N0

are even. Moreover, one can choose the inner product on an irreducible representation to be either positive
definite or negative definite. None of these possibilities affects the decomposition of the δ-function. Let us
denote the usual characters by χ and the grades ones by χ± where ± labels the choice of inner product,
then:

dimk χk(g) = dimk,± χk,±(g) (33)

where dimk,± := χk,±(I). So, we may write:

δ(g) =
∑

k

dimk χk(g) =
∑

k

dimk,± χk,±(g) =
1
2

∑

j∈N0+ 1
2

(
dimj,+ χj,+(g) + dimj− 1

2 ,+ χj− 1
2 ,+(g)

)

+
1
2

∑

j∈N0

(
dimj,+ χj,+(g) + dimj− 1

2 ,− χj− 1
2 ,−(g)

)
.

(34)

Thus, instead of viewing the decomposition as a sum over irreducible representations V k, one can view it
as decomposed over the representations Rj = V j ⊕ V j− 1

2 , where the representations are graded, and the
inner product on V j ⊂ Rj is positive for all j, while that on V j− 1

2 ⊂ Rj is positive for j ∈ N0 + 1
2 and

negative for j ∈ N0. This choice is compatible the tensor product operation, and mimics the structure in the
supersymmetric theory. Thus, the SU(2) Ponzano-Regge spin foam amplitude may be recast as an amplitude
depending on Rj . Upon integration of the group elements in (31), we obtain the same diagrams as before,
but the evaluation of the loop, theta, and tetrahedral diagrams depends on the grading and inner product,
and we find that we can write the amplitude as:

Z∆,SU(2) =
∑

{j}

∑

{k}

∏

e

(−1)2je(2ke + 1)
∏

f

(−1)
P3

a=1[2(jea−kea )(2jea+1)+kea ]
f

×
∏

t

[
(−1)

P6
a=1 2(jea−kea )(2jea+1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]

t

,
(35)

We must stress, however, that although the amplitude looks different, it is merely a repartitioning of the
original state-sum. We evaluate the diagrams explicitly in Appendix D.

Let us insist also on the fact that both the je’s and ke’s depend only on the chosen edge: it is the same
ke all around the corresponding plaquette and it does not change from tetrahedron to tetrahedron. The
fluctuations of ke around the plaquette that occur in the supersymmetric theory will come in when we insert
fermions in the model, as explained below.

B. Coupling matter: massless spinning fields

Of course, looking at the SU(2) theory from the lattice gauge theory perspective, a group element cannot
map between different irreducible representations. In other words, the edge length cannot change as we
move from tetrahedron to tetrahedron. Thus, the non-trivial matter is to allow for a change in edge length
and this is where we expect the fermionic degrees of freedom to come into play. We wish to insert fermionic
observables into (35) so as to get contributions to Z∆,UOSP(1|2). This section will be concerned with the
construction of these observables.

Noticing that the odd generators of UOSP(1|2) carry a spin- 1
2 representation of SU(2), we follow that

argument to its natural conclusion and trace a spin- 1
2 representation through the spin foam. Furthermore,

remembering the points expounded earlier, we expect that it should be embedded at the gluing point of two
tetrahedra, and that if there is no change in edge length then there are either zero or two fermionic lines,
while if the edge length changes then there is a single fermionic line embedded there. Indeed, this is how
things turn out in the end.

To begin, we need to have a wedge formulation in terms of holonomies and representations Rj . One
might expect that this is a trivial manipulation of (31), but to maintain the Rj structure, requires us to
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navigate certain subtleties. Consider two adjacent wedges within a face, w∗
1 and w∗

2 . Each has an assigned
reducible representation Rjw∗

1 and R
jw∗

2 . Whether a fermion observable is inserted or not, we wish wedges
to couple only if jw∗

1
= jw∗

2
. This is naturally the case for irreducible representations of SU(2), but not for

reducible ones. To see this, one need only notice that V jw∗ is contained in Rjw∗ and Rjw∗+ 1
2 . Therefore,

R
jw∗

1 and Rjw∗
2 will couple for jw∗

2
= jw∗

1
, jw∗

1
± 1

2 . We can cure this ambiguity by inserting a projector into
the holonomy matrix attached to each wedge. It projects onto the highest weight state for V j ⊂ Rj and
onto the lowest weight state for V j− 1

2 ⊂ Rj . This projector is illustrated by:

±,kw∗

= |kw∗ ,±kw∗〉 (−1)2(jw∗−kw∗ )(2jw∗+1) 〈kw∗ ,±kw∗ |

and it is inserted at the point v∗e in Fig.1.
In effect, when one integrates over the ge∗

e,f
variables, one gets a factor of δjw∗

2
,jw∗

1
± 1

2
= 0 from the

projectors. Only the jw∗
1

= jw∗
2

term survives. Now, we insert the fermionic observables OF :

Z∆,SU(2),OF =
∫ ∏

e∗
t

dge∗
t

∏

e∗
e,f

dge∗
e,f

∏

w∗

∑

{j}

Aw∗(gw∗ , jw∗) OF ({g}, {j}). (36)

So let us proceed to the definition of these observables. Diagrammatically, we shall denote a segment of
the fermionic observable by a dashed line. Furthermore, we shall need to introduce the projector onto the
spin-up and spin-down states:

±
=

˛̨
˛̨1
2
,±1

2

fl fi
1

2
,±1

2

˛̨
˛̨

One would expect this projection to occur as part of the propagator for spin- 1
2 fermions [2, 18]. These

projectors are inserted into the diagram once again at the points v∗e and are joined by parallel transport
matrices, which closely follows the procedure for the insertion of matter observables in [2]. This charts
the progress of the particle in the spin foam formulation. We shall examine more clearly the geometric
space-time interpretation of this fermionic path shortly. The dashed line runs along between the wedges,
since we want to allow for a change in edge length by 1

2 as we move between tetrahedra. Furthermore, the
fermionic observable knows about the gravity sector. We must insert an operator to extract various factors
of edge-length: dimk

2 . We shall denote this graphically by a clasp joining the fermion projector and the
gravity projector:

±,kw∗

We give some motivation as to why one would expect such factors of edge length in the observable. Although
the matter theory is massless, if one analyzes the classical field theory, one sees that the matter sector has
a non-trivial energy-momentum tensor. In fact, the Hamiltonian for the system is:

H =
1
2
ei

ae
j
b√

eiei
εijk

(
F [W ]kab +

i

2
(σk)ABψ

A
a ψ

B
b

)
where ei =

1
2
εijkε

abej
ae

k
b . (37)

We note at this point that the e-dependent prefactor has dimensions of length. So from this argument, it
comes as no surprise that the presence of matter should mean the insertion of a factor of length (that is, a
factor linear in k) multiplying the holonomy.
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Of course, there many possible combinations of insertion, but if we break them down into segments, then
there are essentially three basic building blocks. We are ready to draw these:

FIG. 5: Sample of the fermionic Feynman diagram insertions.

We begin with the no-fermion case in the top left. In going to the wedge formulation of the amplitude we
actually already started to process of modifying the amplitudes. The gravity projectors remove the factor
of dimension in Ae since they project just onto the highest/lowest weight state and therefore kill the sum.
Furthermore, the factors of (−1)2(j−k)(2j+1) occurring in the projectors kill the same factors occurring in
the triangle amplitudes Af . Notice that the gravity projectors are all at the center of the face. This is to
ensure that the final amplitude for the edges e is correct. The amplitudes for the various sub-simplices are
now:

Ae = (−1)2ke , Af = (−1)(ke1+ke2+ke3 )f

At =
[
(−1)

P6
a=1 2(jea−kea )(2jea+1)

{
ke1 ke2 ke3

ke4 ke5 ke6

}]

t

.
(38)

Then there is the fermionic loop insertion, which also contributes to the bosonic sector of the theory, and
which is illustrated in the top right. The fermionic line traces a loop which is inserted between two wedges
in one face. Thus, the insertion does not map between SU(2) modules. In fact, using the standard retracing
identity, we can remove the fermionic line altogether, but the non-trivial part is the clasp which extracts a
factor of (−1)2(j−k)+1(2k + 1) for V k ⊂ Rj . Thus, the only difference between the no-fermion amplitude
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and the amplitude containing this fermion loop is the amplitude for one triangle:

Af = (−1)(ke1+ke2+ke3 )(−1)2(je1−ke1 )+1(2ke1 + 1), (39)

where the loop was inserted around edge e1. Let us take a specific example, say kea = jea for all a, and
let us sum up the four contributions: the no-insertion and the loop insertions on e1, e2, e3. The resulting
amplitude is exactly −A{j}

f (↑, ↑, ↑; ↑, ↑, ↑). For the triangle given above, ultimately, the amplitude arising
from summing over the no-insertion and the three possible loop insertions will lead to all possible bosonic
amplitudes depending on whether the edges are in the upper or lower modules.

Let us move onto the fermionic contributions, which rely on non-trivial propagation of the fermion along
edges of the simplicial complex. There is essentially one type of diagram, variations of which give the other
23 possibilities occurring in (27) and (28). We displayed the insertion in the center bottom of Fig.5. We
shall reproduce the following amplitude: A{j}

f (↑, ↑, ↑; ↑, ↓, ↓). This triangle amplitude is made up from several
sub-diagrams:

j2

j3

j1

j2− 1
2

j3− 1
2

−1

−1

−1 −1

1
2

1
2

1
2

1
2

= (−1)j1+j2+j3+(2j1+1)
p

(j1 + j2 + j3 + 1)(−j1 + j2 + j3) (40)

which we note is just minus the amplitudes for which we were hoping. We stress that the diagrams in this
equation all contribute to the triangle amplitude Af . We get a tetrahedral diagram, because we have coupled
an extra spin- 1

2 between the wedges. The square root of the loops come from factors of dimension which
we saw, in the gravity case, arise upon decomposition of the δ-functions. Therefore, we have successfully
reproduced the triangle amplitudes, which was our goal at the outset.

Thankfully, this allows for a thorough description of all the supersymmetric amplitudes. All we need is to
take the pure gravity ampliudes and insert all the possible fermionic observables consistent with the above
rules and as such we arrive at the supersymmetric amplitude.

As promised, we conclude with a description of the geometric properties of the fermionic observables.
Consider two adjacent wedges. Their intersection is an edge e∗e,f , joining the center of a triangle f ⊂ ∆ with
the midpoint of an edge e ⊂ ∆. The path of the fermion in the spin foam, the dashed line, contains only
such edges (see Fig.6 for details). The obvious spacetime picture is that the particle propagates along the
edges e which are intersected by the e∗e,f . This is a perfectly self-consistent propagation and gives a nice
geometric viewpoint to the amplitude.

−→

FIG. 6: From spin foam to spacetime picture.
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At the end of the day, for the purposes of characterising the properties of a propagating fermion, one need
only examine insertions illustrated by the bottom diagram in Fig. 5. In the partition function, let us consider
a contribution which consists of a closed loop of such insertions. This loop in the spin foam is mirrored by a
graph embedded in the triangulation. This is the fermionic Feynman diagram. More precisely, one arrives at
sets of closed loops of edges, such that two consecutive edges on a loop belong to a same triangle. Equivalently,
this means that we can think of the fermionic loop as a closed sequence of triangles (once again, a loop in
the spinfoam complex). Then, let us consider an edge e upon which a fermion propagates. The plaquette f∗,
to which it is dual, consists of wedges that are labelled by SU(2) representations kw∗ . Corresponding to the
propagation of this fermion along e, there arises a non-matching of kw∗ once the wedges are glued. (In pure
gravity, the kw∗ all equal after group integration.) In fact, the fermion propagation triggers a 1

2 -shift between
two adjacent kw∗ , and this happens twice around the plaquette, once by a + 1

2 -shift, once by a − 1
2 -shift. For

example, starting with kw∗ = je, the − 1
2 -shift will send it to kw∗ = je − 1

2 and then the + 1
2 -shift will bring

it back to kw∗ = je. Vice-versa, starting with kw∗ = je − 1
2 , the + 1

2 -shift will increase it to kw∗ = je while
the − 1

2 -shift will bring it back to its initial value kw∗ = je − 1
2 . Furthermore, the intersection of two wedges

picks out a triangle in the triangulation, and the two 1
2 -shifts coincide with the two triangles of the Feynman

diagram sharing the edge e. We can have an arbitrary number of fermionic loops in the Feynman diagram
and they can actually share the same edges, since there is no fermionic interaction term here. Thus, the only
interactions are between the fermionic field(s) and the gravitational degrees of freedom. In general, there
can be several pairs of ± 1

2 -shifts as one goes around a plaquette, each corresponding to a separate fermionic
Feynman diagram. The last step is to sum over all possible Feynman diagrams in order to reconstitute the
full supersymmetric spinfoam amplitude.

This picture is finally slightly different from the one initially envisioned in [3]. In the present work, we
have clearly identified the Feynman diagram for the fermionic degrees of freedom.

IV. CONCLUSIONS

Starting from the topological spinfoam model for N = 1 supergravity in 3d gravity, we have analyzed
in detail the structure of these spinfoam amplitudes. We have first shown how to derive these spinfoam
amplitudes from a discretised BF action on a triangulation by extending the standard bosonic construction
of a discretised action for the SU(2) Ponzano-Regge model [2] to include for fermionic degrees of freedom
in the connection and triad. In particular, this showed how including fermions can resolve the standard
ambiguity that the usual discretised action leads to SU(2)/Z2 ∼ SO(3) and not exactly to SU(2).

Then we explicitly decomposed all supersymmetric amplitudes into a superposition of the standard SU(2)
amplitudes. This is done by decomposing UOSP(1|2) representations into irreducible representations of
SU(2). The most striking result is that although a single spin je is associated to each edge of the triangulation,
the actual length of that edge is a priori different seen from the viewpoint of each tetrahedron to which it
belongs: it can be either ke = je or ke = je − 1

2 depending whether a fermion is traveling through this
tetrahedron or not. Pushing this decomposition into SU(2) amplitudes as far as possible, we finally showed
that the supersymmetric amplitude can be seen as the coupling of fermionic Feynman diagrams to the
gravitational background. Let us emphasise that the geometry is not static but when a fermionic line is
inserted, it creates length shifts as mentioned previously.

If we were to go further in the understanding of these N = 1 supersymmetric spinfoam models, we could
analyze the asymptotics of the susy {6j}-symbol and see how the Regge action and the fermionic fields
appears in the large spin limit [19]. We should also compare our approach to the standard insertion of
particles with spin in the Ponzano-Regge model [2] (the actual difference is that our framework takes into
account explicitly the feedback of the fermionic fields on the gravitational fields) and to the more recent
gravity+fermions models developed in [4, 5]. The Feynman diagrams for the fermionic field derived in the
latter work [4, 5] are not exactly the same as the ones that we obtained from our supersymmetric model
and the comparison between the two formalisms is not straightforward but would be a key point to study
in details in future work.

Finally, the most interesting application to our formalism would be to study the insertion of actual physical
non-topological fermionic fields. Starting in 3d, in the present work, we have tracked from the initial contin-
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uum action down to the final discretised spinfoam amplitude how the explicit fermionic Feynman diagrams
get inserted in the spinfoam amplitude. These fermionic observables come with precise weights (see e.g. eqn.
(39)-(40)). These weights are fine-tuned so as to ensure that the full model ‘gravity+fermions’ is topological.
That shows that these spinfoam amplitudes provide the correct quantisation for our supersymmetric theory
and that they have the correct (semi-)classical limit as transition amplitudes of the superymmetric N = 1 3d
supergravity. As soon as we modify these weights, we would get non-topological amplitudes and it would be
interesting to see how we could modify them in order to insert more physical fermionic fields. More precisely,
comparing with other works such as [4, 5], we do not discretize the fermionic field in an arbitrary chosen
way, but we follow the standard discretization procedure for topological BF theory, which ensures that we
obtain the correct transition amplitudes at the quantum level. Therefore, we actually derive -and we do
not assume- what are the Feynman diagrams for the fermionic field coupled to the gravitational/geometrical
fields. Thus the natural generalization to non-topological fermionic fields would be to keep the same struc-
ture for the Feynman diagrams, with the torsion and the fermionic degrees of freedom encoded in ± 1

2 shifts
of spin around plaquettes, and change the particular spinfoam weights associated to these shifts in order
to obtain non-topological fermions. This way, we would also control the degree to which the fermions are
non-topological. Then, we hope to apply the same procedure to the four-dimensional case by first deriving
the spinfoam quantisation of supersymmetric BF theory and studying how the fermions are coupled to the
spinfoam background, and then seeing how this structure is maintained or deformed when we introduce the
(simplicity) constraints on the B-field in order to go from the topological BF theory down back to proper
gravity.

Another interesting outlook is to push our analysis to N = 2 supersymmetric BF theory, already in three
space-time dimensions, following the footsteps of [7]. Indeed, such a theory already include a spin-1 gauge
field, and we could study in more detail how the full supersymmetric amplitudes decomposes into Feynman
diagrams for the fermions and spin-1 field inserted in the gravitational spinfoam structure. Then we would
see how it is possible to deform this structure in such a way that the spin-1 field represents standard gauge
fields. This road would provide an alternative way to coupling (Yang-Mills) gauge fields to spinfoam models,
which we could then compare to the other approaches developed in this direction [6].
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APPENDIX A: MATHEMATICAL PRELIMINARIES

1. Grassmann algebra

A Grassmann algebra G, with N generators ξ1, . . . , ξN satisfies ξiξj + ξjξi = 0. (N may be both finite
and infinite.) The element:

α =
∑

m≥0

∑

i1<···<im

αi1...imξi1ξim , (A1)

is called even if only the coefficients with even m are non-zero and odd if only the coefficients with odd m
are non-zero. The sets of even and odd elements are denoted G0 and G1 respectively, and G = G0 ⊕ G1.

The parity function λ(α) is defined on G as:

λ(α) =
{

0 if α ∈ G0,

1 if α ∈ G1.
(A2)

We define a complex conjugation operation, �, on G with the following properties:

(αβ)� = α�β�, (c α)� = c̄ α�, (α�)� = (−1)λ(α)α, (A3)
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where α, β ∈ G and c ∈ C and c̄ denotes standard complex conjugation on C. There are a number of ways
to define such an operation on a Grassmann algebra, so one must pick one and adhere to it.

We can define an integration theory for functions f : G → G. First of all, analytic functions on C have a
natural extension to superanalytic functions on G:

f(α) =
∑

n≥0

f (n)(α∗)
n!

(α− α∗)n, (A4)

where α∗ is known as the body of α in DeWitt’s terminology [20]. It is the m = 0 term in (A1) (while the
remainder α − α∗ is its soul). We can define a measure to integrate functions on G. For even elements, the
body plays a special role:

α = α∗ +
∑

m≥2

∑

i1<···<im

αi1...imξi1 . . . ξim , (A5)

Then, the measure is:
∫
dα :=

∫
dα∗, (A6)

where one also replaces α by α∗ in the integrand. Clearly, odd elements have no body. Thus, we need a
different definition of the measure. The most general superanalytic function of an odd element is: f(α) =
(c1 + c2α). For odd elements, the measure is defined as:

∫
dα (c1 + c2α) = c2, which means that

∫
dα α f(α) = f(0), (A7)

where δ(α∗) is the standard distributional one on C. Hence, we can define a delta function on G. For the
functions on G0:

∫
dα f(α) δ(α) :=

∫
dα∗ f(α∗) δ(α∗) = f(0), (A8)

and for functions on G1, we can see that δ(α) := α, as can be seen in (A7).

2. Super Lie algebra osp(1|2)

The algebra osp(1|2) is a super Lie algebra [13, 14]. There is a parity function defined on osp(1|2) which
divides its elements into even and odd subsets:

λ(X) =
{

0 if X ∈ osp(1|2)0
1 if X ∈ osp(1|2)1.

(A9)

The set osp(1|2)0 ∼ su(2) contains three generators J1, J2, J3, while the set osp(1|2)1 contains two generators
Q±.

We define a bracket on this algebra by:

[X1, X2] = (−1)λ(X1)λ(X2)+1[X2, X1] (A10)
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and which satisfies a super Jacobi identity.6 All together, the generators satisfy the algebra:

[J3, J±] = ±iJ±, [J+, J−] = 2iJ3,

[J3, Q±] = ± i
2Q±, [J±, Q±] = 0, [J±, Q∓] = iQ±,

[Q±, Q±] = ∓ i
2J±, [Q±, Q∓] = i

2J3

(A12)

We define a supertranspose operation ‡ on osp(1|2; C), which has the properties:

(c1X1 + c2X2)‡ = c̄1X
‡
1 + c̄2X

‡
2 , [X1, X2]‡ = (−1)λ(X1)λ(X2)[X‡

2 , X
‡
1 ], (X‡)‡ = (−1)λ(X)X‡, (A13)

where Xi ∈ osp(1|2) and ci ∈ C. There are two such operations for the generators of osp(1|2):

J‡
i = −Ji, Q‡

+ = (−1)εQ−, Q‡
− = (−1)ε+1Q+, (A14)

for ε = 0, 1.
We define a grade adjoint operation † on osp(1|2;G) = osp(1|2;G0)0 ⊕ osp(1|2;G1)1:

(α1X1 + α2X2)† = α�
1 X

‡
1 + α�

2 X
‡
2 . (A15)

For our purposes, we confine to a subalgebra G̃ ⊂ G, such that every element of uosp(1|2) := osp(1|2; G̃)
satisfies X† = −X . Therefore, depending on the choice of grade adjoint operation, the elements are of the
form:

X = α1 J1 + α2 J2 + α3 J3 + (−1)εα�Q+ + αQ−, (A16)

where α�
i = αi and (α�)� = −α.

Primarily, the representations of uosp(1|2) are labelled by a half-integer j and a parity λ ∈ {0, 1}. One has
a certain freedom as to the inner product one chooses for a given representation, which is parametrised by
two more numbers ρ, τ ∈ {0, 1}. We shall denote such a representation by: Rj,λ,ρ,τ . These representations
can be decomposed over the even subalgebra: uosp(1|2)0 ' su(2). Each representation Rj,λ,ρ,τ of uosp(1|2)
comprises of the direct sum of two representations of su(2).

Rj,λ,ρ,τ = V j,λ,ρ,τ ⊕ V j− 1
2 ,λ+1,ρ,τ . (A17)

A generic basis element is |j; k,m >, where k ∈ {j, j− 1
2}, m ∈ {−k, −k+1, . . . , k} and we have suppressed

the labels λ, ρ, τ for simplicity. The action of the operators on the representation Rj,λ,ρ,τ is:

J3|j; k,m > = im |j; k,m >,

J±|j; j,m > = i
√

(j ∓m)(j ±m+ 1)|j; j,m± 1 >,

J±|j; j − 1
2 ,m > = i

√
(j − 1

2 ∓m)(j + 1
2 ±m)|j; j − 1

2 ,m± 1 >,

Q±|j; j,m > = ∓ 1
2

√
j ∓m|j; j − 1

2 ,m±
1
2 >,

Q±|j; j − 1
2 ,m > = − 1

2

√
j + 1

2 ±m |j; j,m±
1
2 >,

(A18)

6 The super Jacobi identity is:

(−1)λ(X1)λ(X3)[X1, [X2,X3]] + (−1)λ(X2)λ(X1)[X2, [X3, X1]] + (−1)λ(X3)λ(X2)[X3, [X1,X2]] = 0. (A11)
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where J± := Ji ± iJ2 and |j; k,m > has parity λ + 2(j − k). The inner product, Φ(ρ,τ)( · , · ), on such a
representation is defined by:

Φ(ρ,τ) (|j; k,m >, |j; k′,m′ >) := (−1)2(j−k)ρ+τ δkk′
δm

m′ = (−1)ϕδkk′
δm

m′ , (A19)

where we define ϕ := 2(j − k)ρ+ τ for later convenience. One can show that there is a consistency relation
among ε, λ and ρ:

ε+ λ+ ρ+ 1 ≡ 0 (mod 2). (A20)

Therefore, once two of these parameters are chosen, the final one is fixed. From a spin-statistics viewpoint,
we would like to endow the integer representations with even parity and the half-odd-integer representations
with odd parity, that is, λ ≡ 2j (mod 2). Furthermore, in the near future, we shall wish to define a measure
on the supergroup that can be used to integrate all representation functions. Thus, we must have just one
definition of grade adjoint; we shall choose ε = 0. We conclude that ρ ≡ 2j + 1 (mod 2). Ultimately, we are
free with our choice of the overall sign τ , but we must include both choices. The reason for this will appear
shortly when we consider tensor products of representations. In fact, these choices mean that for integer
representations, one does not acquire a positive definite inner product on the representation space:

< j, τ ; k,m|j, τ ; k′,m′ >= (−1)ϕδkk′
δm

m′ =
{

(−1)2(j−k)+τ δkk′
δm

m′ for j ∈ N0,

(−1)τδkk′
δm

m′ for j ∈ N0 + 1
2 .

(A21)

Furthermore, the tensor product of two representations of uosp(1|2) satisfies a rule analogous to that of su(2)
except that the sum over j goes in half-integer steps

Rj1,τ1 ⊗Rj2,τ2 =
⊕

|j1−j2|≤j3≤j1+j2

Rj3(j1,j2),τ3(τ1,τ2). (A22)

Using the properties of the inner product on the representation space, we find that:

τ3(τ1, τ2) = τ1 + τ2 + 2(j1 + j2 + j3)λ3 + λ1λ2. (A23)

Thus, we see our initial requirement that we include both values of τ is justified; we cannot restrict to one
particular choice of τ since we will obtain both under tensor composition. We also choose that in the matrix
realisation:

j,τT (km)
(ln)(X) := < j, τ ; k,m|X |j, τ ; l, n > =

(
uosp(1|2)0 ← uosp(1|2)0 uosp(1|2)0 ← uosp(1|2)1
uosp(1|2)0 ← uosp(1|2)1 uosp(1|2)1 ← uosp(1|2)1

)
.

(A24)
The supertrace of a matrix operator j,τM (km)

(ln) (in the representation Rj,τ ) is defined as:

Str(j,τM) =
∑

k,m

(−1)λ+2(j−k) j,τM (km)
(km) =

∑

k,m

(−1)2k j,τM (km)
(km). (A25)

This means that the supertrace of the identity operator is: Str(j,τ I) = (−1)2j . With these choices, the matrix
elements of the generators in the fundamental representation R

1
2 ,0 = V 0 ⊕ V 1

2 are:

J1 =
i

2




0 0 0
0 0 1
0 1 0


 , J2 =

i

2




0 0 0
0 0 −i
0 i 0


 , J3 =

i

2




0 0 0
0 1 0
0 0 −1


 ,

Q+ =
1
2




0 0 −1
−1 0 0
0 0 0


 , Q− =

1
2




0 1 0
0 0 0
−1 0 0


 .

(A26)
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The supertrace in the fundamental representation is:7

Str(JiJj) =
1
2
δij , Str(JiQA) = 0, Str(QAQB) =

1
2
εAB . (A27)

The measure over the algebra is:

dB = db1 db2 db3 db
� db, (A28)

where B = biJi + b�Q+ + bQ−.

3. Super group UOSP(1|2)

Elements of UOSP(1|2) have the form:

g = uξ, where u = eθ~n·~J and ξ = eη�Q++ηQ− , (A29)

and ~n = (sinψ cosφ, sinψ sinφ, cosψ). More explicitly:

u =




1 0 0

0 cos θ + i
2 sin θ cosψ i

2 sin θ sinψ e−iφ

0 i
2 sin θ sinψ eiφ cos θ − i

2 sin θ cosψ


 and ξ =




1 + 1
4η

�η 1
2η − 1

2η
�

− 1
2η

� 1− 1
8η

�η 0

− 1
2η 0 1− 1

8η
�η




(A30)
Thus, we arrive at:

g =




1 + 1
4η

�η 1
2η − 1

2η
�

g21 (1− 1
8η

�η)u22 (1− 1
8η

�η)u23

g31 (1− 1
8η

�η)u32 (1− 1
8η

�η)u33


 with

g21 = − 1
2η

�u22 − 1
2ηu23,

g31 = − 1
2η

�u32 − 1
2ηu33,

(A31)

Interestingly, elements of group UOSP(1|2) satisfy the relations g†g = gg† = I and g‡ζg = ζ, where ζ :=
diag(I1x1, ε2x2).8 From the second relation, we can see the origin of the description orthosymplectic.

The representation matrices of the group elements are denoted j,τT (k m)
(l n)(g) = j,τT (k m)

(l n)(Ω, η�, η),
where Ω = {ψ, θ, φ} and have elements:

j,τT (j m)
(j n)(g) = (−1)τ (1− 1

4j η
�η) jDm

n(Ω),

j,τT (j m)
(j− 1

2 n)(g) = (−1)τ
[
− 1

2

√
j + n+ 1

2 η
� jDm

n+ 1
2
(Ω)− 1

2

√
j − n+ 1

2 η
jDm

n− 1
2
(Ω)

]
,

j,τT (j− 1
2 m)

(j n)(g) = (−1)ρ+τ
[
− 1

2

√
j − n η� (j− 1

2 )Dm
n+ 1

2
(Ω) + 1

2

√
j + n η (j− 1

2 )Dm
n− 1

2
(Ω)

]
,

j,τT (j− 1
2 m)

(j− 1
2 n)(g) = (−1)ρ+τ (1 + 1

4 (j + 1
2 ) η�η) (j− 1

2 )Dm
n(Ω),

(A33)

7 The spinor indices follow the north-west convention so that φA = εABφB and φA = φBεBA. The metric on the spinor space
is the anti-symmetric tensor εAB with ε+− = ε+− = 1. This implies εABεBC = −δA

C .
8 The grade adjoint and supertranspose are:

g† =

0
BBB@

1 + 1
4
η�η g31 −g21

1
2
η� (1 − 1

8
η�η)u33 −(1 − 1

8
η�η)u23

1
2
η −(1 − 1

8
η�η)u32 (1 − 1

8
η�η)u33

1
CCCA and g‡ =

0
BBB@

1 + 1
4
η�η −g21 −g31

1
2
η (1 − 1

8
η�η)u22 (1 − 1

8
η�η)u32

− 1
2
η� (1 − 1

8
η�η)u23 (1 − 1

8
η�η)u22

1
CCCA .

(A32)
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where ρ = 2j + 1 and Dj(Ω) is the jth representation of the SU(2) group element pertaining to Ω. Matrix
multiplication, complex conjugation and the grade adjoint operation satisfy the following relations:

j,τT (km)
(ln)(g) = j,τT (km)

(ln)(g1g2) = j,τT (km)
(k′m′)(g1) j,τT (k′m′)

(ln)(g2)

j,τT (km)
(ln)(g)� = j,τT (km)

(ln)(g�) = j,τT(km)
(ln)(g)

j,τT (km)
(ln)(g)† = j,τT (km)

(ln)(g†) = j,τT (ln)
(km)(g)

(A34)

Indices are raised and lowered using a metric and its inverse:

j,τr(km)(ln) = (−1)2(j−k)(2j+1)+k−m δklδm+n,0,
j,τr(km)(ln) = (−1)2(j−l)(2j+1)+l−n δklδm+n,0.

(A35)

The representation functions are orthogonal:
∫

UOSP(1|2)
dg j1,τ1T (k1m1)

(l1n1)(g) j2,τ2T(k2m2)
(l2n2)(g) = δj1j2δτ1τ2 j1,τ1δ(k1m1)

(k2m2)
j1,τ1δ(l1n1)

(l2n2)

(A36)

APPENDIX B: SUPER {3j}-SYMBOLS

We can derive the Clebsch-Gordan coefficients quite easily from relations given above [15]. The UOSP(1|2)
coefficients are defined as:

|j3(j1, j2), τ3(τ1, τ2); k3,m3 > = Ĩj1
(k1m1)

j2
(k2m2)

(k3m3)
j3

[
|j1, τ1; k1,m1 > ⊗ |j2, τ2; k2,m2 >

]
. (B1)

where the coefficients are:

Ĩj1
(k1m1)

j2
(k2m2)

(k3m3)
j3

= B̃j1j2j3
k1k2k3

C̃k1
m1

k2
m2

m3
k3
, (B2)

where C̃k1
m1

k2
m2

m3
k3

:= (< k1,m1| ⊗ < k2,m2|)|k3,m3 > defines SU(2) Clebsch-Gordan coefficients and B̃j1j2j3
k1k2k3

are factors given by:

j1 + j2 + j3 ∈ N0 j1 + j2 + j3 ∈ N0 + 1
2

︷ ︸︸ ︷ ︷ ︸︸ ︷

B̃j1j2j3
j1j2j3

=
√
j1 + j2 + j3 + 1

2j3 + 1
,

B̃j1j2j3
j1j2− 1

2 j3− 1
2

= (−1)λ1

√
−j1 + j2 + j3

2j3
,

B̃j1j2j3
j1− 1

2 j2j3− 1
2

=
√
j1 − j2 + j3

2j3
,

B̃j1j2j3
j1− 1

2 j2− 1
2 j3

= (−1)λ1+1

√
j1 + j2 − j3

2j3 + 1
,

B̃j1j2j3
j1− 1

2 j2j3
= (−1)λ1+1

√
−j1 + j2 + j3 + 1

2

2j3 + 1
,

B̃j1j2j3
j1j2− 1

2 j3
=

√
j1 − j2 + j3 + 1

2

2j3 + 1
,

B̃j1j2j3
j1j2j3− 1

2
= (−1)λ1+1

√
j1 + j2 − j3 + 1

2

2j3
,

B̃j1j2j3
j1− 1

2 j2− 1
2 j3− 1

2
=

√
j1 + j2 + j3 + 1

2

2j3
,

(B3)
This means that:

[
< j1, τ1; k1,m1| ⊗ < j2, τ2; k2,m2|

]
|j3(j1, j2), τ3(τ1, τ2); k3,m3 >

= (−1)(λ1+2(j1−k1))(λ2+2(j2−k2))+ϕ1+ϕ2 Ĩj1
(k1m1)

j2
(k2m2)

(k3m3)
j3

.
(B4)
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These objects do not have simple transformation properties under permutation. On the other hand, the
{3j}UOSP(1|2)-symbols do (by definition):

Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

:= Bj1j2j3
k1k2k3

Ck1
m1

k2
m2

k3
m3
, where: (B5)

(B6)

Bj1j2j3
k1k2k3

:= (−1)(λ3+1)(2(j2−k2)+2(j1+j2+j3))
√

2k3 + 1 B̃j1j2j3
k1k2k3

, (B7)

Ck1
m1

k2
m2

k3
m3

:=
(−1)k1−k2−m3

√
2k3 + 1

C̃k1
m1

k2
m2

k3
−m3

, (B8)

and Ck1
m1

k2
m2

k3
m3

are the {3j}SU(2)-symbols. Under permutation, they satisfy:

I
jσ(1)

(kσ(1)mσ(1))

jσ(2)

(kσ(2)mσ(2))

jσ(3)

(kσ(3)mσ(3))
= (|σ|)

P3
a(2(ja−ka)(2ja+1)+ka)Ij1

(k1m1)
j2
(k2m2)

j3
(k3m3)

, (B9)

where |σ| = ±1 is the signature of the permutation and is similar to the SU(2) case. Reversing the magnetic
indices, we find:

Ij1
(k1−m1)

j2
(k2−m2)

j3
(k3−m3)

= (−1)k1+k2+k3Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

. (B10)

Also, we can raise and lower indices using the invariant metric on the representation space Rj,τ provided by:
[
< j1, τ1; k1,m1| ⊗ < j2, τ2; k2,m2|

]
|0, 0; 0, 0 >= (−1)2(j1−k1)(2j1+1)+k1−m1δj1j2δk1k2δm1 −m2 (B11)

This has been mentioned already in (A35). Additionally, they satisfy a pseudo-orthogonality relation:

∑

k1,k2
m1,m2

(−1)(λ1+2(j1−k1))(λ2+2(j2−k2))+ϕ1+ϕ2 Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

Ij1
(k1m1)

j2
(k2m2)

j′3
(k′

3m′
3)

= (−1)ϕ3(ϕ1,ϕ2) δj3j′3δk3k′
3
δm3m′

3
,

(B12)

where ϕ3(ϕ1, ϕ2) := 2(j3 − k3)ρ3 + τ3(τ1, τ2). This implies:
∑

k1,k2,k3
m1,m2,m3

(−1)Θ Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

= 1, (B13)

where:

Θ := (λ1 + 2(j1 − k1))(λ2 + 2(j2 − k2)) + 2(j3 − k3) + ϕ1 + ϕ2 + ϕ3(ϕ1, ϕ2). (B14)

As expected, Θ is invariant under permutation.9

9

Θ ≡
3X

a=1

(λa + 2(ja − ka))(λa+1 + 2(ja+1 − ka+1)) + λaλa+1 + 2(ja − ka)(λa + 1),

≡
3X

a=1

4kaka+1 + λaλa+1 + 2(ja − ka)(2ja + 1)

(B15)
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APPENDIX C: SUPER {6j}-SYMBOLS

The supersymmetric 6j-symbol is defined as the matrix relating two ways of coupling three representations:

Rj1,τ1 ⊗Rj2,τ2 ⊗Rj4,τ4 =





j3+j4⊕

j5=|j3−j4|

j1+j2⊕

j3=|j1−j2|

Rj5(j3(j1,j2),j4),τ5(τ3(τ1,τ2),τ4)

j1+j3⊕

j5=|j1−j3|

j2+j4⊕

j3=|j2−j4|

Rj5(j1,j3(j2,j4)),τ5(τ1,τ3(τ2,τ4))

. (C1)

The states are related by:

|j5(j1, j6(j2, j4)), τ5(τ1, τ6(τ2, τ4)); k5,m5 >

=
∑

j3

(−1)(I+1)I2,4+λ1I2,4+λ4I1,2+b I
2 c

[
j1 j2 j3

j4 j5 j6

]
|j5(j3(j1, j2), j4), τ5(τ3(τ1, τ2), τ4); k5,m5 >,

(C2)

where:

I = 2(j1 + j2 + j4 + j5),
I1,2 = 2(j1 + j2 + j3), I1,6 = 2(j1 + j6 + j5),

I2,4 = 2(j2 + j4 + j6), I3,4 = 2(j3 + j4 + j5),
(C3)

and b I
2c is the integer part of I

2 . This means:
[
j1 j2 j3

j4 j5 j6

]
:=

∑

ki,mi
1≤i≤6

(−1)
P6

a=1[(ka−ma)+2(ja−ka)(λa+1)]

× Ij1j2j3
(k1m1)(k2m2)(k3m3) I

j5j6j1
(k5−m5)(k6m6)(k1−m1)

Ij6j4j2
(k6−m6)(k4m4)(k2−m2)

Ij4j5j3
(k4−m4)(k5m5)(k3−m3)

,

=
∑

ki
1≤i≤6

(−1)
P6

a=1 2(ja−ka)(λa+1)Bj1j2j3
k1k2k3

Bj5j6j1
k5k6k1

Bj6j4j2
k6k4k2

Bj4j5j3
k4k5k3

{
k1 k2 k3

k4 k5 k6

}

(C4)
The SU(2) {6j}-symbol is:

{
k1 k2 k3

k4 k5 k6

}
:= (−1)[

P6
a=1(ka−ma)]Ck1k2k3

m1m2m3
Ck5k6k1

−m5m6−m1
Ck6k4k2

−m6m4−m2
Ck4k5k3

−m4m5−m3
(C5)

One finds that the supersymmetric {6j}-symbol has the same symmetry properties as its SU(2) counterpart.

APPENDIX D: DIAGRAM EVALUATION

We have seen in the main text that a spin foam diagram generically factorises upon integration of the
group variables and that we can evaluate the amplitude by considering simpler diagrams. First of all, let
introduce some basic elements of the diagrammatic calculus, without justification, for general vector spaces
V, W . We denote their duals by V ∗, W ∗, respectively. A map f : V → W and its dual map f∗ : W ∗ → V ∗

are denoted by:

V

V

V

V

VV

VV

W

W W

W

f f∗
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A diagram is always read from top to bottom. We note the direction of the arrows on the diagram, downward
arrows map to and from the vector spaces, while upward arrows pass to and from the duals. Composition
of maps follows as one would expect. The identity maps IV : V → V ; v 7→ v and IV ∗ : V ∗ → V ∗;φ 7→ φ are
drawn above also. Finally, we mention the crossing map ΨV,W : V ⊗W → W ⊗ V .

In our case, we must define evaluation and coevaluation maps along with their duals:

coevV : C → V ⊗ V ∗ ; 1 7→
X

m

em ⊗ fm,

evV : V ∗ ⊗ V → C ; fm ⊗ en 7→ fm(en) = δm
n,

= coev∗
V : V ⊗ V ∗ → C ; coev∗

V := evv ◦ ΨV,V ∗ ,

= ev∗
V : C → V ∗ ⊗ V ; ev∗

V := ΨV ∗,V ◦ coevV ,

where em is a basis for V with fm its dual basis.
We are interested in othogonal and symplectic vector spaces, that is, vector spaces endowed with either an

orthogonal (symmetric, non-degenerate) metric or or a symplectic (anti-symmetic, non-degenerate) metric
sr:

or : V ⊗ V → C ;
or

or

= sr : V ⊗ V → C ;
sr

sr

= −

where the diagrams demonstrate the (anti-)symmetry. The existence of a non-degenerate metric allows us
to define maps between the vector spaces and their duals, namely, the raising and lowering operators. The
raising operator is given by:

] : V → V ∗ ; v 7→
{

or(v, .),
sr(v, .),

(D1)

while the lowering operator [ is defined such that [ ◦ ] = IV and ] ◦ [ = IV ∗ . Thus from a map f : V → W ,
we can form another map f [ : V ∗ → W ; f [ := f ◦ [. Moreover, once such a metric has been defined, there
is a natural definition for the crossing map:

ΨV,W (v ⊗ w) = (−1)|v||w|w ⊗ v, where |v|, |w| =
{

0 for V orthogonal,
1 for V symplectic. (D2)

Thus, we can now give a more explicit definition of the dual evaluation and coevaluation maps:

coev∗V (em ⊗ fn) = (−1)|em||fn| fn(em) = (−1)|em||fn| δn
m,

ev∗V (1) =
∑

m

(−1)|em||fm|fm ⊗ em
(D3)
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Now, let us specialise to the representation spaces of SU(2) and UOSP(1|2). It has been shown in [1] that in
order to obtain a topological state-sum in the SU(2) case (the Ponzano-Regge model), one must choose the
carrier spaces V k, k ∈ N0, to be symplectic and the V k, k ∈ N0 + 1

2 , to be symplectic. The representation
spaces for UOSP(1|2) fit nicely in with this choice, since the Rj are endowed with an orthosymplectic metric
osr, that is, it is orthogonal on V k ⊂ Rj , k ∈ N0, and symplectic on V k ⊂ Rj , k ∈ N0 + 1

2 . The metric and
its inverse for the vector spaces of SU(2) in their standard bases are:

krmn = (−1)k−m δm+n,0,
krmn = (−1)k−n δm+n,0.

(D4)

Note that the orthogonal and symplectic nature of the metric is taken care of implicitly in the definition
and we can drop the subscripts. In the course of this work, we must as some point consider the irreducible
representations of SU(2) within the larger reducible representations Rj , and we also may change the inner
product on V k by an overall sign:

j,k r̃mn = (−1)2(j−k)(2j+1)+k−m δm+n,0,
j,k r̃mn = (−1)2(j−k)(2j+1)+k−n δm+n,0.

(D5)

We have already stated the metric for UOSP(1|2) in (A35).

1. Simple loop

= coev∗
V ◦ coevV .

We are ready to evaluate this diagram in the three different contexts: for SU(2) with the standard
irreducible representations, for SU(2) with the altered inner product (denoted S̃U(2) in the following); and
for UOSP(1|2). We shall compute the SU(2) case explicitly:

coev∗V k ◦ coevV k : 1 7→ kem ⊗ kfm 7→
∑

m

(−1)|
kem||kfm| kfm(kem) = (−1)2k(2k + 1). (D6)

Completing an identical calculation yields again (−1)2k(2k + 1) for S̃U(2) and (−1)2j for UOSP(1|2).
Once we start coupling matter, we start seeing the appearance of loops on S̃U(2) with projector maps:

ke±k
kf±k : v 7→ ke±k

kf±k(v) = ke±k v
±k.

�
�
�
�± = coev∗

V ◦ (ke±k
kf±k ⊗ IV ∗) ◦ coevV ; 1 7→ (−1)2k

Moreover, it is a projector so it does not matter how many times it occurs in a loop, the result is the same.

2. Theta

This amplitude labels the triangles. This involves the definition of a new map:

��
��
��
��

��
��
��
�� Ck1k2k3 : V k1 ⊗ V k2 ⊗ V k3 → C,
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with components Ck1
m1

k2
m2

k3
m3

. Dualising and applying the lowering operator, one arrives at a map:

��
��
��
��

��
��
��
�� eCj3j2k1 : C → V k1 ⊗ V k2 ⊗ V k3 ,

which, in our cases, we know has components C̃m3
k3

m2
k2

m1
k1

= Cm3
k3

m2
k2

m1
k1

. Thus, the amplitude for the theta
diagram is:

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

SU(2) : Ck1
m1

k2
m2

k3
m3 Cm3

k3

m2
k2

m1
k1

= (−1)k1+k2+k3 ,

fSU(2) : Ck1
m1

k2
m2

k3
m3 Cm3

k3

m2
k2

m1
k1

= (−1)
P3

a=1[2(ja−ka)+ka],

UOSP(1|2) : Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3) I

(k3m3)
j3

(k2m2)
j2

(k1m1)
j1

= (−1)bj1+j2+j3c.

(D7)

When one embeds the fermion diagrams, some edge amplitudes are no longer labelled by a loop but by a
certain type of theta diagram. The following is such an example:

�
�
�
�

�
�
�
�

�
�
�
�

���� ��

+ − = (−1)2j+1(2j + 1) C j
j

1
2

− 1
2

(j− 1
2 )

(−j+ 1
2 )

C
(−j+ 1

2 )

(j− 1
2 )

− 1
2
1
2

j
j = (−1)2j

since:

C j
j

1
2

− 1
2

(j− 1
2 )

(−j+ 1
2 )

= (−1)2j+1

√
1

2j + 1
. (D8)

So we see that the clasp is just to counteract the factor of 1
2k+1 in the denominator of the {3j}-symbol.

There is also further types of diagram contributing to the bosonic sector:10

�
�
�

�
�
�

����

+
= (−1)2(j−k)(2j+1)(−1)2k(2k+1)

3. Tetrahedron

The tetrahedral diagram turns out to be rather simple contraction of four intertwiners:

SU(2) :

(
k1 k2 k3

k4 k5 k6

)

fSU(2) : (−1)
P6

a=1(2(ja−ka)(2ja+1))

(
k1 k2 k3

k4 k5 k6

)

UOSP(1|2) :

"
j1 j2 j3

j4 j5 j6

#

10 Remember that the fermion lines are missing due to the retracing identity.
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Following the trend set so far, when we couple fermionic Feynman diagrams, we find that some triangle
amplitudes are in the form of a tetrahedral graph. For example:

k2

k3

k1

k2− 1
2

k3− 1
2

= (−1)2k1+2(j1−k1)(2k1+1)

(
k1 k2 k3

1
2

k3 − 1
2

k2 − 1
2

)

occurs when we pass from representations in the upper module on the right to the lower on the left. Fur-
thermore, given that:

{
k1 k2 k3

1
2 k3 − 1

2 k2 − 1
2

}
= (−1)k1+k2+k3

√
(k1 + k2 + k3 + 1)(−k1 + k2 + k3)

(2k3 + 1)(2k3)(2k2 + 1)(2k2)
(D9)

we can see form the numerator that we are starting to get the amplitude A{j}
f (↑, ↑, ↑; ↑, ↓, ↓) state explicitly

in (30). There are factors of the square root of various dimensions, but there are factors of dimension
multiplying each wedge at the beginning (before integration) and there is exactly the correct factor left over
to deal with this denominator.

APPENDIX E: THE INTEGRATION OF THREE REPRESENTATION FUNCTIONS

We mentioned in the main text that there was a non-trivial step in passing from a product of represen-
tation functions to intertwiners on the space of representations. One examines the representation functions
occurring in the integral:

Ae∗
t

=
∫

UOSP(1|2)
dge∗

t
T j1,τ1

(k1m1),(l1n1)
(ge∗

t
) T j2,τ2

(k2m2),(l2n2)(ge∗
t
) T j3,τ3

(k3m3),(l3n3)
(ge∗

t
), (E1)

for each choice of ki and li as given in (A33). Integrating with respect to η, η� and Ω, one should arrive at:

Ae∗
t

= Ij1
(k1m1)

j2
(k2m2)

j3
(k3m3)

Ij1
(l1n1)

j2
(l2n2)

j3
(l3n3)

, (E2)

as stated in the text. The subtlety becomes clearer when one realises that on the right hand side of (A33),
there is no concept of change of SU(2) module. Fortunately, there exist relations between the SU(2) {3j}-
symbols, which provide the missing link between (E2) from (E1):

[(
−j1 + j2 + j3 + 1

2

) (
j1 − j2 + j3 + 1

2

)] 1
2 C

j1− 1
2 j2j3

n1n2n3

= −
[(
j1 + n1 + 1

2

)
(j2 + n2)

] 1
2 C

j1j2− 1
2 j3

n1+ 1
2 n2− 1

2 n3
−

[(
j1 − n1 + 1

2

)
(j2 − n2)

] 1
2 C

j1j2− 1
2 j3

n1− 1
2 n2+ 1

2 n3
,

[(j1 + j2 − j3) (j1 + j2 + j3 + 1)]
1
2 C

j1− 1
2 j2− 1

2 j3
n1n2n3

=
[(
j1 + n1 + 1

2

) (
j2 − n2 + 1

2

)] 1
2 Cj1j2j3

n1+ 1
2 n2− 1

2 n3
−

[(
j1 − n1 + 1

2

) (
j2 + n2 + 1

2

)] 1
2 Cj1j2j3

n1− 1
2 n2+

1
2 n3

,

[(j1 + j2 − j3) (j1 + j2 + j3 + 1)]
1
2 Cj1j2j3

n1n2n3

= − [(j1 − n1) (j2 + n2)]
1
2 C

j1− 1
2 j2− 1

2 j3

n1+ 1
2 n2− 1

2 n3
+ [(j1 + n1) (j2 − n2)]

1
2 C

j1− 1
2 j2− 1

2 j3

n1− 1
2 n2+

1
2 n3

.

(E3)
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