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Abstract

Path integral formulations for gauge theories must start from the canonical formulation in order to obtain
the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In
this article we review this rather involved procedure in full generality. Moreover, we demonstrate that the re-
duced phase space path integral formulation formally agrees with the Dirac’s operator constraint quantisation
and, more specifically, with the Master constraint quantisation for first class constraints. For first class con-
straints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised)
constraints which is always possible locally in phase space. Generically, the correct configuration space path
integral measure deviates from the exponential of the Lagrangian action. The corrections are especially se-
vere if the theory suffers from second class secondary constraints. In a companion paper we compute these
corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.
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1 Introduction

Path integrals for scalar Quantum Field Theories (QFT) on Minkowski space are supposed to compute the S — Matr
for the Hamiltonian in question. A standard Folklore says that heuristically one should simply consider all “paths”
between some initial and final scalar field configuration on a spatial hypersurfaces labelled by moments, of time
respectively and integrate over the exponential tifres) the action with “Lebesgue measure” in order to obtain the
evolution kernel. More specifically, |€ be a (normalised) ground state (provided it exists) for the Hamiltdtian

a Hilbert spacéeH, let Q be the configuration space of spatial scalar field configurations with “configuration Lebesgue
measure’tlq, letQy t; = Xie[y, 11 Q be the set of paths, 1eDO] = [Ty, +;; A the “path Lebesgue measure”, then
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andS; ¢, is the classical (Lorentzian) action integrated over the time inteygl][ Here by Lorentzian action we

mean the Legendre transform
tf

S[g.q] :=extrp { [ dif{pg - H(p, 9]} (1.2)

t
wherep denotes the momentum conjugatetandH the Hamiltonian. This “theorem” is wrong for several reasons.
First of all, from the mathematical point of view, there is no Lebesgue measure on infinite dimensional spaces
Therefore one would like to considddQ] exp(iS/#) as a (complex) measure éhbut this does not work because
the modulus of a complex measure [2] is supposed to be normalisable which is obviously not the case here. If th
Hamiltonian is bounded from below, it is therefore much more promising to consider, instead of the unitary group
R — B(H); t — exp(tH/A) the contraction semigrouR, — B(H); t — exp(tH/A). Here B(H denotes the
algebra of bounded operators Bf Under these circumstances another Folklore theorem states that
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where novati'%tf denotes the “Euclidean” action, that is, the Legendre trandform
E . tf . .
S™[a.q] := extrp { ) dtfipg — H(p, o]} (1.4)
While even under these circumstances the partition function
2= fQ [Dq] &S/ B[aiN] Qla()] (15)

diverges, under fortunate circumstances it is possible to assigﬁEto[Dq] /Z a well defined measure theoretic
meaning on a proper—algebraQ (with repect to whictSE is usually not even measurable). Whenever (1.3) can be
made rigorous, it is called the Feynman — Kac formula [3, 4].

However, as it is well known [5], also from the physical point of view, (1.1) or (1.3) are wrong in general. This
is because the strict derivation (see e.g. [6]) of, say (1.3) requires a skeletonisation of the time tpteivahd

1Usually one obtains the Euclidian action by Wick rotatiors it. However, we insist on this definition because it does not rely on an
analytic structure of the fields in the time coordinate which is not justified anyway. Our definition is formally correct also in circumstances
where the Hamiltonian is not only quadratic in the momenta with constafitaieets, see below.



corresponding resolutions of the identity in terms of (generalised) position and momentum eigenvectors. That is t
say, a priori one has to consider the complex hybrid action

s
Slq. pl = f dtfipg - H(p. o)) (1.6)
ti

which is integrated over both momentum and configuration coordinatesddfpends omp only quadratically with
constant cocients, then one can perform the Gaussian integral and up to an (infinite) constant which drops out ir
the fraction (1.3) one arrives at the Folklore result. However, in more general situations the resligtaatdiFor
instance, the Hamiltonian could still be quadratigibut with q dependent cdicients which leads to a nontrivial
modification of the “measure’jq]. More generally, however, the Hamiltonian may not be quadratic or even analytic
in p in which case an exact configuration space path integral representation is not available, only a saddle poil
approximation is available (plus the corresponding perturbative treatment of the non Gaussian corrections). Notic
that the saddle point approximation and subsequent integrating out of the momentum variables reproduces (1.4) up
a non trivial measure factor.

So far we have only considered scalar QFT on Minkowski space and even here we saw that the only correc
derivation of the path integral proceeds via the Hamiltonian formulation, as stressed for instance in [5]. Additional
technical and conceptual complications arise when we consider gauge theories and/or other background spaceti
metrics. The simplest problem occurs for Yang — Mills type of gauge theories: Here the action is gauge invariant an
if the measure is anomaly free (is gauge invariant as well) then one should divide by the (in general infinite) volume
of the gauge group in order to give sense to both numerator and denominator in (1.3). If one considers QFT o
non stationary background spacetimes then no natural Hamiltonian and vacuum exists [7] and the conceptual sta
of the path integral as a means to calculate scattering amplitudes becomes veiled. Even more veiled the situati
becomes for totally constrained systems such as General Relativity on spatially compact four manifolds admittin
globally hypebolic metrics when there is no true Hamiltonian at all. In this case certainly also the notion of a Wick
rotation breaks down which on Minkowski space allows to reconstruct the Lorentzian Wightman functions from the
Euclidian Schwinger functions via the Osterwalder — Schrader reconstruction theorem [1]. Parts of the reconstructio
theorem, namely the construction of a Hamiltonian and a Hilbert space from a measure satisfying a natural backgrout
independent generalisation of the OS axioms, can be generalised to background independent theories [8].

It transpires that especially in the context of realistic physical theories, that is, General Relativity coupled to
(standard) matter, it is neither clear what the heuristic Ansatz (1.1) or (1.3) computes nor whether it is the correc
formula for what it is supposed to do. One possibility to deal with these problems is to try to solve the constraints
classically and then to quantize the reduced phase space equipped with the (pull back of the) Dirac bracket [6]. Th
can be done in two ways. The first option is to impose suitable gauge fixing conditions in order to render the syster
totally second class and then to quantize the corresponding pull back of the Dirac bracket together with the induce
reduced Hamiltonian. The second option is to determine explicithffecismt number of Dirac observables and to
guantise the symplectic structure induced by the Dirac bracket. While for rare examples independent means exist
determine those gauge invariants, for most systems the only practical way to deternfii@estsaumber of Dirac
observables is via a choice of gauge fixing. Namely, as we will review in the next section (see also e.g. the append
in the second reference of [10]), there is a one to one correspondence between a choice of gauge fixing and a prefer
set of gauge invariant functions which generate the full algebra of gauge invariant functions. In that sense the tw
methods, gauge fixing and this so called relational approach, are completely equivalent. The method is physical
very interesting because it not only provides a suitable algebra of gauge invariant objects but also a gauge invaria
Hamiltonian which drives the time evolution of those invariants. Here the question of equivalence befigeemt di
choices of gauge fixing arises. As we will review in the next section, the preferred algebras of invariants that one
obtains via dierent choices of gauge fixing are isomorphic. Of course th@rdn their physical interpretation
but as Poisson algebras they are isomorphic, the physical quantum kinematicdfisated &y the choice of gauge
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fixing. The difference arises in the physical Hamiltonian, that is, in the quantum dynamics. The explicit form of the
physical Hamiultonian as a function of the invariant generators of the algebra of gauge invariant functions depenc
absolutely sensitively on the choice of gauge fixing and therefore even classically the evolution of the invariants wil
differ drastically from each other forftirent choices. For some choices the Hamiltonian may be explicitly time
independent and leads to a conservative reduced system, for others it may not be. Even more crucial the choice
gauge fixing becomes in the quantum theory. Already for finite dimensional systems, depending on the choice ¢
gauge fixing the physical Hamiltonian and other composite invariants built from the generators of the gauge invariar
algebra may have discrete or continuous spectrum [9]! Notice that we here talk about compaosite invariants that hay
the interpretation of a given non invariahimeasured in terms of another non invariinfthe so called clock). If

we changeT to T’ then its spectrum may switch from continuous to discrete or vice versa even though we talk
about the samé and about the same Hilbert space representation!. In infinite dimensional situations the choice of
gauge fixing has an even stronger influence for not only do we have to find a representation of the generators of
algebra of observables but in addition that algebra should support the physical Hamiltonian. One way to read Haag
theorem [11] is that Hamiltonians with different interaction terms cannot be implemented on the same Hilbert space
Thus generically dierent choices of gauge fixing will force us to choodedént representations. For instance one
may want to construct a cyclic representation built from application of the generators to a vacuum (ground state c
the Hamiltonian). That vacuum of course depends on the Hamiltonian and even for free field theories those cycli
representations are typically unitarily inequivalent. In case that the physical Hamiltonian is explicitly time dependent
one is in addition confronted with the usual problem of QFT on curved spacetimes, namely that one has to decide |
which point of time one wants to select a vacuum vector.

All of this certainly strongly fiects the resulting reduced phase space path integral because it is based on the
selected Hilbert space representation and the transition amplitudes between physical states do depend on the phys
Hamiltonian. For any such choice, the path integral then does have the interpretation of (1.1) or (1.3) in terms of th
reduced Hamiltonian.

An additional complication that we have not mentioned yet is the case of a system with second class constraint
Such a system is to be canonically quantised with respect to the Dirac bracket rather than the Poisson bracket. Ty
cally the Dirac bracket destroys the canonically conjugacy of the global coordinates of the phase space that one star
from. Since to find representations of such complicated Poisson algebras is usually prohibfficelyate is forced
to switch to local Darboux coordinates (by means of a canonical transformation with respect to the original Poisso
bracket) which is always possible locally [6]. Such coordinates may be fgoulito find in practice. Assuming this
to have done nevertheless, one can then construct the reduced phase space using a choice of gauge fixing as alr
described above and after having chosen a Hilbert space representation subordinate to that gauge fixing, the transit
amplitudes in terms of the induced physical Hamiltonian.

From here on then mostly one proceeds rather formally. One assumes that one can choasdiray&chepre-
sentation based on the reeduced Darboux configuration space. By using well known skeletonisation techniques o
then basically writes the transition amplitude between initial and final 8¥atés, as a path integral over the reduced
Darboux phase space, replacing the reduced Hamiltonian operator by its classical function which results in the exp
nential of the reduced Hamiltonian Darboux action. In order to make contact with (1.1) one wants to rewrite this patt
integral as a path integral over the unreduced, original configuration space and in terms of the original Lagrangian. £
is well known, this can be formally done and we will review this rather involved procedure in section 3. Basically one
first extends the reduced Darboux phase space to the unreduced Darboux phase space thereby ifttisdticing
tions of the constraints and the gauge fixing condition as well as measure factors which cancel the Jacobian that ari
when solving the distributions. One then observes that, in presence af thstributions the reduced Hamiltonian
action can be written as the unreduced symplectic potential, in terms of the unreduced Darboux coordinates. Inte
estingly, the measure factors and étdistributions combine in just the right way as to make the resulting expression



independent of the gauge fixing condition when considered as a measure on gauge invariant functions. This is simil
to the Fadeev — Popov theorem [6] and we will review this result in section 3. This seems to be in contradiction to wha
we have said above about the dependence of the transition amplitudes on the gauge fixing condition. The resolution
that at this point the integral it over gauge invariant functions, it is an integral o¥e®¥’; which are functions at

initial and final points of time of the reduced Darboux coordinates which are not gauge invariant. More generally, ir
applications to scattering theory, we may be interested also in n-point functions so that the path integral is over func
tions of the reduced Darboux coordinates also at intermediate times (in fact we will use the method of a generatin
functional so that there is a dependence on the reduced Daroux coordirsditéinats). One may, in the presence of
the § distributions, extend the non gauge invariant, reduced Darboux coordinates to gauge invariant functions whic
use the chosen gauge fixing condition. However, these extended functions now display a complicated dependen
on all unreduced Darboux coordiantes which makes this extension practically useless. Even if one did perform tt
extension, while one can now change the dependence on the gauge fixing condition in the measure, one cannot get
of it in the gauge invariantly extended functiéngn any case, one next performs the canonical transformation that
leads from the Darboux coordinates back to the original canonical coordinates which ddéschtite symplectic
potential and the Liouvile measure butfiiects the initial and final states. Then one exponentiatesfthmetions and,

by the technique introduced in [12], gets rid of the secondary second class constraints which leads to further chang
in the measure. Finally, one integrates out the momenta. This is only possible if the reduced Darboux configuratio
coordinates, as functions of the original canonical coordinates, do not depend on the original momenta and if they ¢
not leads in general to further changes in the measure while now the exponential of the covariant Lagrangian actic
appears.

The point of mentioning these in principle well known facts is twofold. The first is that we wish to stress that
even if all the assumptions that we have listed can be verified, the correct Langragian configuration space meast
may difer drastically from the naive one in (1.1). These deviations depend crucially on the dynamical content of the
theory and cannot be discarded. The second point that we want to make is the dependence of the transition amplituc
on the chosen gauge fixing. This dependence is at first astonishing because one is used from Yang — Mills theory tt
the path integral does not depend on the gauge fixing and it even sounds dangerous because it seems as if this de|
dence implies that gauge invariance is broken. However, this is not the case: The dependence on the gasige fixing
physically correct. The reason is that in generally covariant systems the dynamics mixes with gauge invariance. |
Yang — Mills theory this is not the case, there one has a gauge invariant Hamiltonian at one’s disposal which is nc
generated by a gauge fixing condition, it is simply there without further input. Gauge invariant functions in Yang —
Mills theory can also be easily constructed without ever mentioning any gauge fixing, for instance Wilson loops ol
flux tubes between quarks. The gauge fixing condition comes in only when cancelling an otherwise infinite constan
This introduces a gauge fixigglistribution and a Fadeev — Popov determinant into the measure whose combination is
independent of the gauge fixing by construction, similar as in our discussion above. In contrast, in generally covarial
systems a gauge fixing condition can be seatefining a preferred algebra of observables and a preferred dynamics
thereof Gauge invariance is not at all broken, the dynamical system consisting of reduced Darboux phase space al
reduced Hamiltonian as defined by a gauge fixing is in one to one correspondence with a dynamical system consti
of a preferred algebra of Dirac observables and a gauge invariant physical Hamiltonian defined via the same gau
fixing (now interpreted as a choice of clocks). The two descriptions are equivalent. The gauge fixing dependenc
comes in because one needs a gauge fixing in order to arrive at the very notion of a dynamics, or in other word
at the very notion of an observer. This observer dependence of the classical and quantum theory has already be
stressed in [13] and will be discussed in more detail in [14]. Let us stress again, as we have already said, that simil

2A special situation arises if one considers gauge transformations that tend to the identity in the infinite past and future and that the onl
non gauge invariant functions in the path integral are located at the infinite past and future. This is not the case for the n-point functions or tf
generating functional but for the rigging kernel between two kinemtical states. Now the dependence on the gauge fixing formally disappeat
from the path integral, of course modulo the representation theoretic caveats that we have mentioned.



as in Yang — Mills theories the gauge fixing dependence ofrbasuredisappears when we restrict it (as a linear
functional) to gauge invariant functions. However, the choice of those gauge invariant functions themselves and tt
corresponding physical Hamiltonian, in other words the physical interpretation of the theory, induced by a choice o
gauge fixing (clock) is what makes the description gauge choice dependent. In contrast, in Yang — Mills theories suc
achoice of clocks is not necessary in order to arrive at useful gauge invariant functions. In principle, the generator
of the algebra of gauge invariant functions for one choice of gauge fixing can be written as complicated functions o
the generators for any other choice. However, this involves an infinite series of commutator functions about whos
convergence nothing is known and which therefore is practically useless if not mathematically ill —defined.

In this paper we want to illustrate the complications sketched above for a general theory which will be the first
result of this paper. While certainly bits and pieces of our description appear in various places in the literature, w
hope that assembling them in the form presented here may add a certain amount of clarity to the question how reduc
phase space and path integral quantisation fit together.

The second result of this paper will be to sketch how the path integral is related to Dirac’s operator constraint quanti
sation [15] and a patrticular incarnation of it, the so called Master Constraint Programme [16] for first class systems
As already mentioned, the reduced phase space rarely admits a global Darboux coordinate system and hence a gt
tisation of the unreduced phase space is much simpler. The price to pay is that one has to impose them as nor
anomalous operators on that Hilbert space in order to compute the physical Hilbert space. There are certain heuris
group averaging methods [17] available in the literature which, as the name suggests, apply when the constrair
form a Lie algebra. If they do not (structure functions), then not only are the constrdfitslidio define without
anomalies because of factor orderinffidillties but also group averaging is not applicable. It is for that reason that
the Master Constraint Programme (MCP) was introduced. In the MCP, all constraints are enconded into one singl
Master constraint. The Master Constraint is a classically equivalent platform and is automatically free of anomalie
so that group averaging (or direct integral decomposition) methods apply.

The central ingredient of the group averaging method is a (generalised) “projector” (or rigging map) from the kine-
matical Hilbert space into the physical one, equipped with an associated physical inner product. It can be expressed
terms of a path integral which in case of a true Lie algebra is readily recognised as (1.1) or (1.3) respectively. In cas
of the Master constraint that can also be established, however, the proof is somewhat more involved. Not surprising|
the key to the understanding of how all of these methods fit together is how the reduced phase space description ari:
from the constraints and a suitable gauge fixing condition which in turn allows for a local Abelianisation of the con-
straints. It may seem astonishing that the gauge fixing condition enters the interpretation of the physical Hilbert spac
in such a prominent way. The reason for why that happens is that the physical Hilbert space can be considered as
closure of the set of vectors that one obtains by applying the algebra of gauge invariant observables to a cyclic physic
state. However, the construction of that algebra and the interpretation of its elements is faciliated by considering th
gauge invariant extension of the kinematical algebra as induced by a gauge fixing condition. In other words, while i
the operator constraint method one only deals with manifestly gauge invariant objects, their interpretation again relie
on a gauge fixing condition or equivalently on a choice of rods and clockerdit such choices result in the same
algebra but its generators (elementary observablégy étr each choice.

To summarise:

The correct path integral formula and its interpretation can only be obtained by following the Hamiltonian path, oth-
erwise one misses important corrections to the measure. In the context of spin foam models [18] for Loop Quantur
Gravity [19] this has been pointed already in [20] (see also [21, 22]). The corrections to the measure are not man
festly covariant as first indicated in [23] but seem to be required in order to maintain at least some form of spacetim



covariance as claimed in [24]. They should therefore be taken seriously in any realistic spin foam model for Genere
Relativity. Work is now in progress which tries to implement these corrections. See also [22] where the covariance
the path integral with respect to the Bergmann — Komar group is discussed.

This article is organised as follows.

In section two we review Dirac’s analysis of gauge sytems and the relation between gauge fixing and a gauge ir
variant description.

In section three we derive the path integral from the quantisation of the reduced phase space based on the natt
generators of the algebra of invariants defined by a choice of gauge fixing conditions.

In section four we derive the same path integral starting from the unreduced (with respect to the first class cor
straints) phase space and implement the rigging map. In case that the first class algebra of constraints involv
structure functions, using the rigging map technique requires to pass to new constraints that form an algebra. This
always (locally) possible because one can always (locally) Abelianise constraints.

In section five we use as an alternative route the MCP and show that again one arrives at the same path integr
This is to be expected because both constraint rigging and Master constraint rigging should provide the generalis
projector on physical states, however, the technical mechanism by which this works is somewhat involved.

Finally in section six we summarise and conclude.

2 Classical Preliminaries: Gauge Fixing Versus Gauge Invariant Formulation

In an attempt to make this article self — contained we start with the classical theory. We will neeed the correspondin
notation anyway for the path integral formulation. First we summarise the main ingredients of Dirac’s algorithm.
Then we display the relation between the reduced phase space of gauge invariant observables and the pull back pr
space as induced by a gauge fixing. As we will see, the two formulations are equivalent for suitable choices of gaug
fixing.

2.1 Brief Review of Dirac’s Algorithm

We consider a theory with Lagrangia(g?@(t), v2(t)) and corresponding action

S= ﬁ Y dt L(?(t), VA(t)) (2.1)

Here the indexa takes values in a general set which may comprise discreterammhtinuous labels. We are interested
in a theory with gauge symmetries so that the Lagrangian will be singular, that is, we cannot solve all the velocitie:

v = ¢ for the canonical momenta
oL

Pa = A
By solving a maximal number of velociti®& (whose number is equal to the rank of the ma#ixv2ov°), i.e. a
maximal number of the equations (2.2), in terms of the mompgtand the remaining velocities, that is,v* =
u?(g?, pe; V) such that @) = (v, V) (i.e. the indicesr andi take values in index sets that partition the index set
associated witl) we obtain the primary constraints

(2.2)

Ci=p- [j—;]w:ua (2.3)



which does not depend on tileby assumption of the maximality of th& and contain they only linearly. The
canonical Hamiltonian (total Hamiltonian)

Hr = [V*pa — L(0, V)]vooue (2.4)

always has the structure [15, 19]
Hr = Hy(g, p) + VCi(a, p) (2.5)

that is, it is an &ine function of the/ .

The further analysis of the system is now governed by Dirac’s algorithm [15]:
One requires that the constraints are preserved by the Hamiltonian ftéw ¥henevefHt, C;} = 0 is not satisfied
on the constraint surface, there are two possibilities: EitheiH, Ci} does not involve the velocities or 2. it
does. In the first case we must afddlr, Ci} to the list of constraints in the second we solve all the equations of
type 2 for some of the velocitiaé (assuming that the system of equations is not overdetermined). Iterating like this,
one ends up, in general, with further constraf@tswhich are called secondary constraints, and the velocities are
restricted to be of the fornd = Vi(q, p) + A™i (g, p). HereV' = i solves{Hr,Cj} = {Hc,Cy} = O for all j,J
on the constraint surfad€; = C; = 0V}, J} and {,,)m is a maximal linearly independent set of solutions of the
systemV{C;, Cj} = V/{C;i,C;} = 0 for all j, J (on the constraint surface). The @ibgents,, are free and phase space
independent.

It follows that the

Fm:= Vi (2.6)

are first class constraints, i.e. they weakly (i.e. on the constraint surface) Poisson commute with all constraints. B
taking linear combinations of the constrai@sC, (with phase space dependent fficents) we isolate a maximal
number of first class constraints. The constraiftsare called primary first class constraints, the additional ones
Fwm are called secondary first class constraints. The remaining constraints among @heCsetvhich are linearly
independent of the sefff) := (Fm, Fm) are called second class constraints and are denot&4 oy (

The canonical Hamiltonian can now be written

Hr = HY + A™Fp 2.7)

where
Hy = Hj + VyCi (2.8)

is of first class by construction. It may therefore be fiima function of the~, (with phase space dependentfiee
cients)
Hy = Ho + f“F, (2.9)

The pieceHy is referred to as the true Hamiltonian because it is not constrained to vanish. In totally constrained
systems such as General Relativity it vanishes identically, that is, the canonical Hamiltonian is a linear combinatio
of first class constraints. Notice that only the primary first class constraints appear in the canonical Hamiltonian witt
arbitrary co#ficientsA™ and so one would associate gauge invariance only with respect to them. However, this is
in general inconsistent because the Poisson algebra of primary first class constraints generically does not close, 0
the full set of first class constraints always does. In other words, since the Poisson bracket between two first cla:
functions is first class and @ is weakly invariant under thEy, then also &, {Fnj, O}} = {{Fm, Fn}, O} should be
weakly zero. Furthermore, the time evolutionivith respect tdH. should be gauge invariant which gives

{Fm9 {HT’ O}} = _{HT’ {O’ Fm}} - {09 {Fm9 HT}} ~ {{Fm, Hé’}’o} ~0 (210)

Hence gauge invariant quantities should be those that weakly Poisson commute with the minimal subset of first cla:
constraints generated by the Poisson brackets betwe@rthE} (and higher order brackets with;) and between
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the first class primary constraints among each other. For most systems of physical interest this exhausts all first cla
constraints and we will assume this to be the case here. In that situation théiffi@¢¢he Hamiltonian in (2.9)

will therefore generically contain all secondary first class constraints as well, that is, the corresponding phase spa
functions f# will be non — vanishing. See [6, 27, 28] for a discussion when this so called Dirac conjecture can be
proved.

As far as the second class constraints are concerned, they are not associated with any gauge freedom. It is
fact inconsistent in general to require an observable to sdfisfyO} ~ 0 as an application of the Jacobi identity
reveals. This means that observables are not first class functions, they only have to weakly Poisson commute wi
the first class constraints, not with the second class constraints. Hence, to solve the second class constraints
simply have to restrict ourselves to the corresponding constraint surface. In other words, once we have computed t
functions on phase space which have weakly vanishing Poisson brackets with all first class constraints, we shou
restrict them to the constraint surface defined by the second class constraints only. The induced symplectic structt
between such observablésf’ on the total constraint surface is simply the pull back of the symplectic structure on
the unconstrained phase space by the embedding of the constraint surface defined by the second class constraints
the full phase space. More precisely, fetlenote the unconstrained phase spacefand {m € #; Sg(m) = 0 VE}
the constraint surface defined by the second class constraints. Consider the corresponding einbe@iding. If
Q denotes the symplectic structure BrthenQ~ := J*Q denotes the pull — back symplectic structureforThis is
again a symplectic structure because it is closed and non degenerate which follows from the fact that the matrix

Azy = {82,82/} (211)
is non degenerate. The corresponding Poisson bracket is given by
(I, 3"}y = J{f, f'}* (2.12)

where
(f, £/} == {f, f} = {f,Ss} (A™H)™ (Sy, ) (2.13)

denotes the Dirac bracket on the full phase space. We will prove this for the convenience of the reader in the ne:
section.

The reduced phase space is defined by the Poisson algebra of gauge invariant observables, which are not wee
vanishing (i.e. which are not linear combinations of first class constraints) equipped with the pull-back of the Dirac
bracket to the constraint surface defined by the second class constraints. Notice that the Dirac bracket generica
changes the symplectic structure for the observables as compared to the Poisson bracket. However, it does not cha
the equations of motion defined by the canonical Hamiltonian as the Dirac bracket and the Poisson bracket betwe
two functions coincide whenever at least one of them is a first class function.

2.2 Reduced Phase Space and Gauge Fixing

In principle the description of the previous subsection entails the complete information about the dynamics and th
physical (gauge invariant) content of the theory. However, it does not provide an explicit description of the ob-
servables. Moreover, in totally constrained systems the equations of motion for the observables with respect to tt
canonical Hamiltonian are trivial which means that some important ingredient is missing in that case: A non van
ishing physical Hamiltonian which drives the time evolution of the observables. In this section we give an explicit
construction of the reduced phase space, provide a physical Hamiltonian and display the relation of our framework 1
gauge fixing.

We saw that we eventually obtain a constrained Hamiltonian system with first class conBiyaints second class
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constraintsSy on a phase space with canonical paifs jfg), a = 1, ..,n; m < n with respect to the original Poisson
bracket. As shown in [27], there always exists a local canonical transformation (with respect to the Poisson bracke
from the canonical pairg|{, p.) to canonical pairs@?, Pa), (¢, m,), (X7,Ys) such that

Ss=0 © =0 (2.14)

where the indexr takes half the range of that Bfand where we denoted eithet or y,. by zz for some value oE.
Itis then clear that at least weakly the Dirac bracket and the Poisson bracket coincide@rthed) and thatz has
zero Dirac bracket with anything.
Next, if there is a true, gauge invariant Hamiltonkdgin (2.9) (not constrained to vanish) enlarge the phase space
by an additional canonical pairfgo) and additional first class constrafg = po + H. The reduced phase space
and dynamics of the enlarged system is equivalent to the original one, hence we consider without loss of generali
a system with no true Hamiltonian (totally constrained system). The canonical Hamiltonian of the system is then :
linear combination of the first class constraints
Hr = p'F, (2.15)

Here we have setM = fM for secondary first class constraints @fd= f™ + A™ for primary first class constraints
wheref# is defined in (2.9).
A gauge fixing is defined by a set of gauge fixing functi@swith the property that the matrix with entries
M, = {C,,G,} has everywhere (on the unconstrained phase space) non vanishing detérniimdice that we
allow for gauge fixing conditions that display an explicit time dependence. The conservation in time of the gauge

fixing conditions
d 0 0 .
0= &Gﬂ = a X aGM +p Myﬂ (216)

uniquely fixes the “Lagrange multipliers” to be the following phase space dependent functions

Gy + {Hc, Gy}

o= —% (MY = gf (2.17)

At this point one may be puzzled by the following issue: The functigredready depend on the phase space through

f4. For thep™ we can always solve (2.17) for the free functish But for thepM the solution (2.17) leads to a
consistency condition on the already imposed gauge fixing conditions, in other words we should impose independe
gauge fixing conditions only for the primary first class constrainihis is indeed true as far as fixing the free
codficients in the canonical Hamiltonian is concerned. However, in view of the fact that all first class constraints
generate gauge transformations, one has to eventually reduce with respect to all their gauge motions. Therefc
it is mathematically and physically equivalent and mathematically much more convenient to regérdsafree
parameters, that is, to drop the phase space dependence fof.thgence to fix the gauge we need gauge fixing

®ldeally, the gaugé6, = 0 should define a unique point in each gauge orbit.

4As an example, in General Relativity the primary constraints demand that the momenta conjugate to lapse and shift vanish, the seconde
constraints are the spatiaffdgiomorphism and Hamiltonian constraints respectively. All constraints are first class and the canonical Hamiltonian
is a linear combination of all of them, in particular lapse and shift play the role of'thfer the Hamiltonian and spatial fi2omorphism
constraint respectively. A consistent gauge fixing would now be to first prescribe four functions purely built from the intrinsic metric and their
conjugate momenta (independent of lapse and shift). Such conditions have vanishing Poisson brackets with respect to the primary constrai
Therefore equation (2.17) can be computed and prescribes lapse and shift as a function of intrinsic metric and conjugate momentum alor
The remaining four gauge fixing conditions for the velocities (Lagrange multipliers) of lapse and shift which aréittierdsef the primary
constraints are now that they are the time derivatives (Poisson brackets with the canonical Hamiltonian) of the already prescribed functions f
lapse and shift. These conditions are then consistent with the equations of motion, i.e. that the Lagrange multipliers are the time derivative
of lapse and shift. The corresponding matff, G,} in this case is block diagonal. We could also have prescribed lapse and shift in the first
place as functions of intrinsic metric and conjugate momentum and then would have to find four additional gauge fixing conditions on thost
variables whose equations of motion lead to the prescribed values of lapse and shift.
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conditions for all first class constraints. We will see explicitly in the path integral formulation that one is forced to this
point of view and that nevertheless one can restore the phase space dependent¥ wiftbe eventually reducing
the path integral as one over configuration space (rather than the phase space). This will be detailed in section 2
where we will also see how it can be achieved that the original Lagrangian (which knows only about the primary
constraints) is obtained in the exponent although one gauge fixes the secondary first class constraints as well.

By construction of the Dirac bracket, we can simply ignore the variakfieswhat follows and set them equal
to zero where ever they occur. In terms of the remaining canonical pairs we carkrgceivg, = 0 for r,, ¢* (and
define the new constraift, G)

F.=n,+h(QP)=0, G,:=¢"-"(Q,P)=0 (2.18)

for certain functiond, ~ which generically will be explicitly time dependent. The variabies are called the gauge
degrees of freedom an@, P are called the true degrees of freedom (although typically neither of them is gauge
invariant).

The reduced HamiltoniaH¢4(Q, P), if it exists, is supposed to generate the same equations of motiQnPas
the canonical Hamiltonian does, when the constraints and the gauge fixing conditions are satisfied and the Lagran
multipliers assume their fixed values (2.17), that is,

{Hrea. f} = {Hean f}F=G=p—po=0 = [0 {Fu> f}]F=G=p—po=0 (2.19)

for any functionf = f(Q,P). For general gauge fixing functions the reduced Hamiltonian will not exist, the system
of PDE’s to which (2.19) is equivalent to, will not be integrable.

However, a so called coordinate gauge fixing condi@n= ¢* — v with 7 independent of the phase space
always leads to a reduced Hamiltonian as follows: We can always (locally) write the constraints in the form (at leas
weakly)

Fu= My (m, +h(¢,Q,P)) = My, F, (2.20)

whereﬁ,,(Q, P) = (¢ = 7,Q, P). Notice that the locally equivalent constraiffsare actually Abelian by a general
argument [6]. Then, noticing th,,, ~ {F,,G,}, (2.19) becomes

{Hred, f} = [p/aMuv{hv’ f}]F:G:p—po:O = [bu{h;u 1:}]G:O = {,Olh,;, f} (221)
with F]M = h,(¢ = 7, Q,P) and we used thdtonly depends oQ, P. This displays the reduced Hamiltonian as
Hred(Q, P;t) = 7()h. (¢ = 7(t), Q. P)) (2.22)

It will be explicitly time dependent unless is time independent anld, is independent o, that is, unless those
constraints can be deparametrised for which# 0. Hence, deparametrisation is crucial for having a conserved,
reduced Hamiltonian system.

On the other hand, let us consider the gauge invariant point of view. Following the general framework [29, 30,
31, 32, 10, 33] it is possible to construct a gauge invariant extension of any gauge variant flf@tiehoff the
gauge sectiop = 7 by the following formula

O1(7) = [expB*Xy) - flp=r—¢ (2.23)
where we have denoted the Abelian Hamiltonian vector figldby X, = {x, + h,,.}. It is easy to check that
{Of(7), Fu} = 0. Consider a one parameter family of floivs 7#(t) then withOx (t) := O (z(t)) we find

d . o LB
5010 = Tﬂ(t)n; S XXy Xy | (2.24)
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On the other hand, considel,(t) := O, (7(t)), then [32]

{H(), O¢ ()} = Oty (7(1)) = Opp,,.1)(7(1)) = Ox,.+ (z(1))

sl M1 n
OO r‘f”
n=0 ’

X, Ky Xy - (2.25)

Here the brackett, .}* denotes the Dirac bracket associated with the second class s¥stéep)( In the second step
we used that neithdt, nor f depend omr,, in the third we used thdt does not depend aff and in the last we used
the commutativity of theX,. Thus the physical Hamiltonian that drives the time evolution of the observables is simply
given by
H(t) := 7 ()h,(7(t), Oq(t), Or(1)) (2.26)

where we used that (2.23) is a Poisson automorphism [32], that is,
{O£(7), Oy(1)} = Oyt,gi(7) (2.27)

Here{f, g}* = {f, g} for functions ofQ, P only was exploited. This is exactly the same as (2.21) under the identification

f & 0O4(0). Hence we have shown that for suitable gauge fixings the reduced and the gauge invariant frameworks a
equivalent. Notice that it was crucial in the derivation tigét £,,) and @Q*, Pa) are two sets of canonical pairs. If that
would not be the case, then it would be unclear whether the time evolution of the observables has a canonical generat

The power of a manifestly gauge invariant framework lies therefore not in the gauge invariance itself. Rather, it
relies on whether the gauge fixing can be achieved globally, whether it can be phrased in terms of separate canoni
pairs, whether the observer clock$ are such that reduced Hamiltonian system is conserved and whether they do
display the time evolution of observables as viewed by a realistic observer. See [10, 14] for a discussion of this poin
Our description sketched above shows that a useful, manifestly gauge invariant formulation implicitly also relies
on a system of gauge fixing conditions. Namely, the gauge fixing conditions equip us first with a physical interpre-
tation of the Dirac observables and second with a physical time evol@ig) has the meaning of that relational
observable, i.e. gauge invariant quantity, which in the gauge takes the valuef. Its time evolution in terms of
is driven by a gauge invariant Hamiltonian which arises by solving the constraiat8 in terms of the momenta
conjugate tap. The gauge fixing condition thus prominently finds its way into the very interpretation of the physical
(reduced) phase space. If we would choo$ieuint clocksy’ then diferent observabled’ (r) would result. Due to
(2.27), the algebra of th@¢(r) among each other and of tk#,(r) among each other respectively are isomorphic
provided thatf and f” only depend on the respective true degrees of freedom. In particular, bo@y{e)( Op,(0))
and O’Q,A(O), O ,A(O)) respectively provide a (local) system of coordinates on the reduced phase space and therefor

one can translate between the $wdHowever, their physical interpretation and physical time evolution is entirely
different. This crucial fact will also be reflected in the interpretation of the path integral.

Remark:

50One maybe tempted to run the following contradictory arguen@yit:) obviously coincides withf in the gaugey = 7. Since it is also
gauge invariant and since any other gauge can be reached #anone may think that it takes the valfién any other gauge, say= 7’ which
is obviously not the case by inspection. The catch is that in order to reach theggaugérom ¢ = 7 one must apply a gauge transformation
to O (r) which mapsp to ¢ + 7/ — 7 = ¢ + 67 and f to its corresponding imagke+ ¢ f under this gauge transformation. By gauge invariance
we obtainO;(7) = O¢.s¢(r + 67). Hence in the gauge = 7’ the observable takes the val@ier §f and notf. This is not in contradiction
with gauge invariance becauge- 6f and f are evaluated at fierent points on the same gauge orbit just in the right way as to give the same
numerical value.

5Notice that when choosingfiirent clock variableg’, 7’ we also have to choosefidirent true degrees of freeddp, P’. The algebra of
the O,,(0), Op(0) is notisomorphic to the one dq(0), Or(0), rather we hav¢O;(0), O5(0)} = Olpgy (0) where{., .}’* denotes the Dirac
bracket associated witf ¢’. Thus, whileOp(0), Og(0) andO, (0), Oy (0) are conjugate pair€);(0), O,(0) are not.
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Before closing this section we should mention that most of what we have sketched above is local in nature. Man
issues in quantum theory are, however, of a more global nature and in order to capture those aspects one has to ¢
eralise the framework, using for instance techniques developed in [36]. Such an extension is, however, non ftrivi
and unfortunately beyond the scope of the present paper whose main purpose is to remindiafuhieslithat one
generically faces when going from the canonical framework to the path integral formalism.

3 Reduced Phase Space Path Integral

This section is subdivided into three parts. In the first we make some general remarks about scattering theory |
ordinary QFT which is closely related to the path integral and how this applies to our case. In the second we for
mally derive the reduced phase space integral as the generating functiorgloirfit functions. This path integral
is an integral over the reduced phase space. In the third section we unfold this path integral and integrate over tl
unconstrained phase space whereby proper gauge fixing conditions and constraints have to be imposed.

Most of the material reviewed in this section is standard and the familiar reader can safely skip it. However, we
tried to assemble this material in a way so that it is hopefully useful to researchersffienendiscientific communities
and such that the paper is self contained.

3.1 Remarks about Scattering Theory

The central object of interest in QFT is the scattering matrix. Rigorous scattering theory is in fact a difficult subject
even in ordinary QFT on Minkowski space. First of all, there is a notion of a free and interacting feld¢
respectively which evolve according to the free and interacting HamiltdhjamdH respectively. Here free means
that Hp does not contain any self — interaction. The physical assumption is that in the fartfuterec and far

pastt; — —oco any outgoing and ingoing particles respectively do not interact. This is, of course, not really true.
However, using the methods of local quantum physics, assuming that the theory has a mase gap prove that

the vacuum correlators of the asymptotic fields reduce to those of the free field, where vacuum really means th
interacting vacuum.

This means that the asymptotic fields generate from the interacting vacuum a Fockpabéech in general
could be a proper subspacefdf These states can be thought of as the rigorous substitutes for the states generated b
the non existing asymptotic free field from the free vacuum. This is the famous framework of Haag and Ruelle, se
[11] and references therein. The rigorous S — matrix is then defined by the scalar product between these asympto
Fock states which one interprets as vector states in the Heisenberg picture under the free dynamics. The rigoro
relation between the S — matrix elements and the time oraerpdint functions is then provided by the famous LSZ
formula [11] which rests on the assumption of asymptotic completgrtbasis, H = H..

In most textbooks on QFT, the Haag — Ruelle theory is barely mentioned. Rather, one somehow postulates that ti
free and interacting fields can be implemented on the same Hilbert space. Then one can consider Rocksstdtes
created from the free vacuum by free field creation operators which one considers as vectors in the Heisenberg pictt
in the infinite past and future respectively because they are time independent. To obtain the correspordimg&chr”
picture states in that limit one just has to evolve via the free Hamiltonian to algiéin= ot/ yH ast — +co. To
map a Schodinger state from the far past to the far future one should however use the interacting Hamiltan@n
get the evolved Schdinger picture vector stag!t—1/"yS(t;). Thus the scattered Heisenberg picture state would

"The four momentum squared operator should have a pure point spectrum which is separated from the continuum.

8More in detail, in order to derive the LSZ formulae one needs the LSZ asymptotic conditions which state that the matrix elements of the
interacting field between vector statestfi and7H_ respectively converge to those of the free field. If asymptotic completeness holds, this is
just weak convergence o which is implied by the strong convergence of the Haag — Ruelle theory.
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be given by
wchattered: ti“m S(t., t )y (3.1)

where _
S(ts,t) = V(tr)" V(&) V(t) = expitH/h) exp(tHo/h) (3.2)

The formally unitary operator¥(t) in principle map the evolving free Heisenberg field operators to the evolving
Heisenberg field operators. Using the differential equatiotJ{orand solving the resulting Dyson series one can
formally derive the Gell — Mann and Low magic formula [11] for the scattering operator

S = T{exp( f dt [H(t) - Hol)}, H(t) = eHot/n 4 gHot/? (3.3)
R

where the time ordering symbal asks to order the latest operator to the left. Unfortunately, all of this is mathe-
matically ill — defined: A tiny subs&if the Haag — Kastler (or Wightman) axioms isfstient to establish that the
operatorV(t) is the identity operator (up to a phase). This is Haag's famous theorem [11]. In other words, either
there is no interaction or the magic formula is wrong. Indeed, (3.3) is ill — defined in perturbation theory and need:
renormalisation. In order to avoid the implication of Haag’s theorem one can, as a regularisation, break translatio
invariance of the Hamiltonian in an intermediate step by multiplying its density by a function of compact support and
then extend the support to infinity. This is also the technique underlying causal renormalisation theory [34].

It transpires that in ordinary QFT the scattering matrix is directly related to the time ordered n — point functions.
As we are interested in applications to quantum gravity, we are in a some\fkatmti situation because we do not
have the axiomatic framework of ordinary QFT at our disposal which relies on the metric considered as a backgroun
field. However, one can consider a Born — Oppenheimer type of approach with a representitianniich the

three — metric operataracts by multiplication (see [35] for first steps towards a technical implementation). Then, at
fixed metric argument of the vector state under consideration one can consider the resulting matter part of the Ham
tonian and apply the techniques of QFT on curved (in this case ultra — static) backgrounds [7] and the correspondir
perturbation theory [37] in order to define scattering theory for matter. In particular, LSZ type of formulae then again
apply. To define scattering theory for gravity in a background independent way one should consider background ir
dependent semiclassical states which are concentrated on a given three geometry and extrinsic curvature and iden
their excitations with scattering states, see [35].

3.2 Path Integral for n — point functions

We are thus interested in the time ordenedpoint functions. More in detail, suppose we have a representation of
the* algebral generated by the elementary fiel@$, P4 (or the corresponding *Galgebra of Weyl elements) on a
Hilbert spaceH which supports the Hamiltoniad of the (conservative) system. We will assume tHas bounded
from below and has at least one normalisable vac@yiine. a unit vector state of minimal ener§y= inf(c(H)))
which is a cyclic vector foRl. Without loss of generality we redefitté such thate = 0. Consider the Heisenberg
picture operator€/\(t) = e”H/" QA gHt/h - As motivated in the previous subsection, we are interested in the time
orderedn—point functions

Ay, ) =< Q T{QM ). QN ()R > (3.4)
Forn > 1 and pairwise distinct times we have
n-1
(s, te) = ] 1000 = taee )] WAOAO - ) (3-5)
neSy k=1

%It is sufficient to retain the 1. uniqueness of the vacuum and 2. spatial translation invariance of the Hamiltonian (part of thee Poincar”
algebra) and 3. spatial translation invariance of the vacuum.
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where we have defined the unordered Wightman functions
WAty ) 1=< Q, QM (1) QN (t)Q > (3.6)

We should allow for more general operator insertions@f(t) contains information abou®*(0) = [H, Q*]/(i%)
which knows abouP,, hence any scalar product between vector states in the dense s¥kRQqucebe approximated
by linear combinations of the functions (3.6). Conversely, given suitable positivity requirements on the Wightman
functions and their transformation properties under time translations we can recoftrézt H via the GNS
construction. The latter arises via Stone’s theorem from the fact that we can define a strongly continuous unitar
group of time translations.

UsingHQ = 0 we may write

WAt 1) =< Q, el DRI QMg Qfdhtning > (3.7)

for anyt.. By inserting resolutions of unity it follows that for suitable choicesyfgiy: and timest;, t we are
interested in the matrix elements

<y, Uty =ty >4, U(t) = exptH/n) (3.8)

of the evolution operator between initial and final vectors prepared at initial and finaktitpgsspectively.

The path integral substitute for (3.8) is heuristically obtained by skeletonisation of the time intetyjpfdl-
lowed by insertions of unity in terms of generalised position and momentum eigenvectors respecBpalifically,
assuming that{ is a representation in which the operat@fsact by multiplication, for time steps= (t; —t;)/N and
integration variable®y := Q(ti + ne), P, := Q(t + ne) we obtain formally

N N N
<y Ut —t),yi >= f ([ JlaQu (] [1dPal v @) vi(Q) [] | < Qu€"Pa><Pp,Qra>]  (3.9)
n=0 n=1 n=1

where formally!

[dQ = [ [dQ [dP =] [dPa (3.10)
A A
The assumption is now that &s— co we may approximate
< Qn €M, >x< Q, Py > @HQnPo/h (3.11)

which can be heuristically justified by expanding the exponential in powetadering momentum and configura-

tion operators to right and left respectively and neglecting all higlserrections. For certain Hamiltonian operators

of Schidinger type one can actually prove (3.11) (Trotter Product formula [4]) but in general this is a difficult subject.
Making this assumption and using the position representation of the momentum eigenfunction

expiQ”Pa/n)
<Q,P>=| ] = "AT (3.12)
==

0This assumes that the operat@sP obey the canonical commutation relations. For more general algebras generalised eigenvectors may
not exist because e.g. momenta do not commute with each other. In this case one miitraese risolutions of the identity. We will here
assume thall obeys the CCR, CAR and more general algebras can be treated analogously.

"There is no Lebesgue measure in infinite dimensions. However, if the Hilbert $paseigorously defined as ab, space with a
probability measure on a distributional extension of the classical configuration space, then (3.10) can be given a meaning. We will not consid
these issues for our heuristic purposes and confine ourselves to drawing attention to the missing steps involved.
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we obtain formally

N N
<or Ut =101 >= [ 1] JQu [ Loy V201 7@ (@)
n=0 n=1
e N QA - QA
exp(-iz > ([ ———""Par] ~ H(Qn. Pn)) (3.13)

n=1 A €

One now take® — oo and formally obtains
- Al .
< Uty =t >= [ [DQI[DP/ VERZH Q) Q) expéy [ dti[)] @l ~HQP))  (3.14)
i A

where

(pQl= [ ] []ddte (3.15)

te[ti,ts] A

and similar for PP]. If the Hamiltonian is at most quadratic Pithen one can formally perform the momentum
integral. As an example, consider a Hamiltonian of the form

H(QP) = 56" *(QPAPs + V(Q) (316)

Examples of such Hamiltonians are for example the Hamiltonian constraint in General Relativity (neglecting the issu
of gauge invariance for the moment) where the non trivial “superme®€{Q) is the Wheeler — DeWitt metric and
the potentiaV(Q) is related to the Ricci scalar of the three me@iqIn)famously, neiheG norV are positive definite
so that the Hamiltonian is not bounded from below in General Relativity.
In any case, for Hamiltonians of type (3.16) we can formally perform the Gaussian integral and obtain

i

0t ([5G *Q° - V(Q))
(3.17)

< Ut Ut —t). 05 >= N f (DQ) [ VATE)) (@) () expt-i |

whereN is an (infinite) numerical constant (a power aféhd#) and

[VdetG)] = [ | VidetG)] (3.18)

te[ti tf]

is the functional determinant of the superméttic
Notably, if G is a non trivial function ofQ then it isnot truethat

<y, U(ts = 1),y >= Nf [DQ] ¢+ (Q(tr)) ¢i(Qcti)) exp(—%S[Q,Q; [ti, t¢]]) (3.19)

with the classical action

. s . . 1 L
S[Q.Q; [ti, t]] := t dt L(Q.Q), L(Q.Q) = E(G_l)ABQAQB -V(Q) (3.20)
Even worse is the case that the momentum dependence of the Hamiltonian is higher than quadratic so that the mom
tum integral can no longer be performed exactly. In that case one can at best perform a saddle point approximatic
or one has to rely on perturbation theory. We see that the correct path integral in general is over the phase space ¢

2In fact there is a sign factor involved which accounts for the signatue Bfjuation (3.17) is only correct if the signature@tloes not
depend orQ.
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involves the Hamiltonian action and not only over the configuration space involving only the Lagrangian action, sc
we will stick with (3.14) in what follows.
We still must provide a path integral formulation for tirepoint functions. However, this is easy by noting that

WA, ) = | ] f [dQJ < QU - t)IQr > Q* X
k=1

n-1
] | < QU - )i Quia > Q51 < QulU(th— L) > (3.21)
k=1

whereQAQ >= QAQ > was used. Combining (3.21) with (3.14) results in (or t; > ..ty > t_)

WAty . to)

f [DQ] [DP/ V2AO(Qm) AQL)) x

. t, . n
expt; [ dtr), QPal - HQ P [ [ Q6 (3.22)
- A k=1
where
Q=[] []dw (3.23)
teltt.] A

and similar for DP].

It is worth mentioning that in a rigorous setting [1, 8] one does not really consider matrix elements of the unitary
operatorU(t) = exp(tH/%). Namely, consider the analytic continuatipn— ity for tx > 0, that is, the Schwinger
functions

ShrAa(ty, . tn) 1= WA M(ity, .., itp) (3.24)

These are correlators of te&!/"Q”e /" and now the same formal manipulations as before lead us to consider the
contraction semi — group— V(t) = exp(tH/#), t > 0. One now obtains instead of (3.22) the formula

SAM(, ) = f [DQ] [DP/ VZA QL)) Q)
t, _ n
expty [ dtili Y QP+ HQPI) [ [ Q4w (3.25)
t A k=1

For Hamiltonians of the form (3.16) with positive definlieV (subtract the energy gap if necessary) the formal
Gaussian integration now gives

§MA (...t = N[ [DQI[VERIB) BQEY) QL) exp3SelQ Gl t]) [ [ (3.26)
k=1

with the “Euclidean” action
i

SIQOilttill = [ dtLe(@ Q) Le(@ Q) = 3G Ha@M® + V(Q) (327)

&
The path integral (3.26) has better chances to be rigorously defined because the “measure” has a damping factor rat
than an oscillating one and so in the rigorous settingdefieeq3.22) by backwards analytic continuation of (3.26)
(when possibléf. Equation (3.26) (when it can be proved) is called the Feynman — Kac formula [1, 3, 4]. In what
follows we therefore consider the Euclidian point of view.

Bt is worth mentioning that in the axiomatic framework of local quantum physics [11] on Minkowski space the Schwinger functions are
automatically symmetric although the Wightman functions are not which is a consequence of the locality axiom (bosonic operator value
distributions supported at spacelike separated points commute) and analyticity. In GR one does not expect to construct a Wightman QFT d
to background independence which is why we insigt onty. ;.
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In order to avoid any infinite constants we divide the contraction matrixby @, Q >=< Q,V(t, —t_)Q > and
obtain formally

[ [DQ] [DPIOQL) AQL)) exped [ dt {[i £a QAPal + H(Q, PY) TTL, Q%(t)
[ [DQ] [DPIQ(QM)) AQL)) exp2 [ dt {[i S QAP + H(Q,P)})

Even if one cannot integrate out the momenta in general, formula (3.28) reveals that what we are interested in is tt
measure formally given by

ShM(ty, . 1) =

(3.28)

4(Q) = 5 [DQ] exp(-Se[Ql/A) Q) AQL) (3:29)
where L
expt-Se[Q/) = [ [OF] exp-y [ dtili Y QP + HQP) (3:30)
t A

is the exponential of theffiective Euclidian action and

Z:= | [DQ] exp(=Se[Q]/h) Q(Q(t:))(Q(L)) (3.31)

is the partition function. None of the three quantitiB€)], Sg, Z exists but in fortunate cases their combination can
be rigorously defined as a measure on a suitable distributional extension of the space of configuration @ariables
The measurg is known if we know all its moments or equivalently its generating functional

il = f du(Q) & Za K dir0W (3.32)

from which the moments follow by (functional) derivation at zero curjent

The apparent drawback of the these formulae is that they involve the exact ground sfatiee interacting
HamiltonianH which is difficult if not impossible to compute analytically. However, and here is where the Euclidian
formulation again is helpful, notice that so far the choiced.favere arbitrary except that € [t_,t,], in particular,
in the original correlator the dependencetois throughe " Q = Q ande-"Q = Q. Now suppose in addition that
exp(tH) for t > 0 has a positive integral kernel, i.e. maps a.e. positive functions to strictly positive functions which
is usually the case. Then it follows from [38] that= 0 is a simple eigenvalue and the unique (up to a phase) ground
stateQ is a strictly positive function. It can be obtained from any a.e. poditive # via the strong limit

g tH Qo

Q= lim ———
t=e0 et Q||

(3.33)

It follows that by taking the limit, — +co we can replac® by Qg in (3.29) — (3.32) because the factorgi@f™ Q||
cancel in numerator and denominator. We will assume this to have done for what follows. Remarkably, the choice ¢
the reference vectdeg is rather arbitrary.

Having justified the replacement 6f by Qg in the Euclidean regime, we analytically continue the time parame-
ter backwards to define the time ordered n-point functions and thus the exponential becomes a pure phase.
3.3 Unfolding the Reduced Phase Space Path Integral

We would like to rewrite the path integral over the reduced phase space coordinatised by the chosen true degre
of freedom in terms of the unconstrained phase space. This is of course standard, see e.g. [6], but we review tt
procedure here for the sake of completeness. It is, however, a rather involved procedure.
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3.3.1 Preliminary Results

The virtue of the gauge fixing conditiodkis that the syster® := {S, F, G} is now a total second class system so
that one can treat all constraints on equal footing. We will do this first in the adapted system of Darboux coordinate
(QA Pa), (¢, 7,) (X7,y,) which is related to the original systemp(p,) by a (local) canonical transformation and
then show that the resulting expression is actually invariant under canonical transformations.

Theorem 3.1.

Let C = {C4) be a second class system of constraints on a phase space with canonical coordanadesymplectic
structurew on the unconstrained phase spateDenote the constraint surface by= {meT; Cx(m) =0V A}
which is a submanifold df. Consider an embedding:JI" — T with J(I') = T wherel is a model manifold of with
coordinates for T.

i.

& = J*wis a symplectic structure dn

ii.

LetQ* be the degenerate symplectic structurd afefined by the Dirac bracket corresponding to C. Letd CL(D).
Then J({f,g}*) = {J*f, J*g}" where{., .} is the Poisson bracket associated with

iil.

The relation between the Liouville measytesindfz, onT andI respectively is

a[J"f] = p[vdet(C, C}) 6(C) f] (3.34)
for any measurable function f.
We note that the right hand side of (3.34) does not make any reference to the chosen enibedding

Proof.
i.
Obviouslyd® = J*dQ = 0 establishes closure. Non — degeneracy follows from the facl theg maximal rank.
ii.
Let
Mag = {Ca,Cg} (3.35)

thert4
[w]" = 0 + (M0 0w’ CakdCs (3.36)

wherewMw;k = ). Using thatf, g} = ' f 39, and
(£, 0o = (I f); (379 = I} £, 30 g, (3.37)
with &' @ = 6|j(, we see that the claim is equivalent to
AN P (3.38)

on M. To verify (3.38) we notice that # := (Ca), i := (w3 Jf) is a linearly independent set of one formshn
and it sdfices to check (3.38) in this basis. FrdiC 4 = 0 for all A we immediately have

JiCa =0 (3.39)

140ur conventions are as follows; w + d f := 0 defines the Hamiltonian vector field associated td while {f, g} := —y¢[g] = -i,,dg=
iy;igw defines the Poisson bracket. The corresponding matrix is denoted by (7, 2’}
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on M and by construction of the Dirac bracket it is nafidilt to see that contraction of (3.38) withy results in
zero on both sides. Contraction witho;j results in the identity

M I I oy ojy =M g iy = 0y

= [w1Y i ojy =" i oy = 0 wik wiL in( J"‘j WLK in( J"‘j (3.40)

where we used (3.39) and
wij = (J'w)ij = wiy J’Ii Jj- (3.41)

iil.
Recall that for finite (B-) dimensional systems the Liouville measure is simply:= A"w = Pf(w)[dZ where
Pf(w) = Vdetw)) denotes the Pfaan of the matrixw;;. We adopt here the same formula for infinite dimensions,
ignoring as ususal that the Lebesgue meagidadpes not exist. Using (3.35) we solve thdistribution in (3.34)

in terms of the embedding which we write in the forme = (x,y) = J(X) = (X, Y(X)). Herex,y are separate sets of
canonical pairs so that;; becomes block diagonal and the block matrioeg, wij are constant. We obtain

[ VIRHC.CN 6(C) 1] = f [d4 et detM)(2)5C(2) 1(2) = f [dﬂ(\/% HAK)  (3.42)

wherecsg := C4.3. Here we use€ 4(X,y) = Ca(x, Y(X)) + cagly — Y(X)]Z + .. = cagly - Y(X)]® + ... We have
_ _ CD e, Co .
My(z; =w Cy{JCg,J = w Cy[,(;CB,Z) + w Cy(y,CB,J (343)

Equation (3.39) takes the form

Cai+CasYi =0 (3.44)
so that (3.43) can be written
Masg = CacCaplw™ + o YSY?] (3.45)
Let us introduce the abbreviations
Y=Y Yy = wasl YY (3.46)
then
Mag = CacCapw™ 8% — YE Y] (3.47)
Consider now the matrices _ _
Kg‘ = Yij‘Y'B, Ig‘ = Yij‘Y;l (3.48)
The key identity is now
det(1- K) = det(1- k) (3.49)

To prove this we use the identity (supposing thhagas rankm)
det(1-K) =1+ > (-1) s{2.6" K k) (3.50)
=1

The same formula holds for det{K) just thatK may have a dierent rankn and that summation indices aferather
thani. Now each term in the sum of (3.50) is a polynomial in the the track3,tr( > O with a codficient that does
not depend om. However, tiK") = tr(K") for anyr. So the only possible fierence in the two quantities is the range
of |. However, notice that

i1 il in gl oyl il v v _ vt vl v A
St Oy KK = YRLY R Y Y = Y LY Y Y (3.51)
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is completely skew in either set of indices, hence the sum anyway extends ta m)inQly.
We conclude with detf) = det((wj)) det(wxg)) that

det@w) det(M)

det@ det((wi)) det(6 — k') = det(wij — wasY{'Y?) = det(;)) (3.52)

O

Corollary 3.1.
The measureig onI" defined by (3.34) in terms of a gauge fixing condition G, as a linear functional is in fact
independent of the gauge fixing condition when restricted to gauge invariant functions f.

Proof. By definition of a gauge fixing conditioB for a first class constraint sgt}, it defines a section of the first

class constraint surface (i.e. it defines a hypersurface that intersects each gauge orbit in precisely one point) anc
can be reached from any point on the same gauge orbit. Hence any two gauge@iX@igse related by a gauge
transformationy which can be written as a composition of canonical transformations of the forgt e@xp(}) for

real valued (phase space independent) parameters. By the first class property, there existLydtitasich that

¢-F, = L;F, ande- Sy = M'Sy, + N F, whereL, M are non — singula?. In matrix notations-F = L-F, ¢-S =

M-S+ N - F. This can be inverted

F=(UL™Y(¢-F),S=M:[(¢-9)-N-(LH(p-F)] (3.53)

By assumptionf is (weakly) gauge invariant(m) ~ f(¢ - m) and the Liouville measure is invariant under canonical
transformations (since the symplectic structuredg) (¢ - m) = du (m).
We exhibit the dependence of the measure (3.343 by us. Notice that in terms ofC} = {F, G, S} we have

{F/u Fv} {F/u Gv} {F/l’ SZ'} 0 {F/u Gv} 0
det(C,C})c-o = detl {G,,F,} {G,.G,} (G, Sx} =det] {G,,F,} {G.G,} {G, Sy}
{Se. By} {S:.G} {85,552} ) 0 {S2.Gy} (S5, Sy} ),
= ([det(F,G))]* det(S, S})c-o (3.54)

15At least forg* close to zero.
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Using the automorphism property of canonical transformatipng(m) = f(¢ - m) etc. and (3.53) we have

ﬂ¢-e(f)=fM dur (M) 6(S(M)) 6([¢ - GI(mM)) 6(F(m)) | det(F, ¢ - G(m))| vdet(S, S}(m)) f(m)

fM du (M) (M~ - S = NL Y - F])(m) 6(G(e - m)) S((L ™ - FI)(m)) | det(L "¢ - F, o - GH(m))|

Jdet(M-1{g - S - NL-2g - F1. M- S - NL-p- F])(m)) f(p - m)

fM du (m) | detM)(m)] I(detL)(M)Is([e - SIM) 6(Ge - M) 6([¢ - FI(m)) | det( e - F.o - G| x

et - S - SIMY)T — NL-Hg - - SIM4)T
“Mp- S FINC T + NLHg - Fop- FINCDT(m) fe - m)
[ (m) 1 deta)m Kot - SIm) (Gl m) o FIm) Idet(L g Fop- G(m

JdetM-2g - S, - SIM-1)T)(m) f( - m)

fM dua (M) 5((¢ - S(m)) 6(Gle - ) (Lo - FI(m)) | det({p - Foo- GH(M)] x
Vdet(e - S, ¢ - S)(m) (e - m)

fM du (- m) 6(S(e - M) (Gl - M) 6(F (o - m) | det((F. G - m)] x

\(det(S, S))(g - m)f(e - m
ua(f) (3.55)

where in the third step we used that Poisson bracketslwith N do not contribute since the-distributions have
supportaty - F = ¢ - S = 0, in the fourth we used the first class property and again the supportdéisieibutions,

in the fifth we cancelled the determinants of the matrlcdd, in the sixth we exploited the Poisson automorphism
property ofy as well as the invariance of the Liouville measure and in the last we performed a trivial relabeting.

The statements of theorem 3.1 and corollary 3.1 show that the mgasB=34) is the correct extension to
the full phase space of the pull — back measure defined by a gauge fixing condition and that correlators among gau
invariant functions are actually independent of the gauge fixing condition. For instance, in terms of the gauge invariar
observabIeQ(G> where we have exhibited the dependenc&pwe haVQuG/[O(G)] = pg[O(G)] foranyG’' = ¢ - G.

This can also be understood geometrlcally Given two gauge fixing condiidiswe obtainug = Jsw, b =
Ji, w from the corresponding embeddings: M — Mg, Jo : M — Mg Now clearly

me M; S(m)=F(m)=¢"G(m) =
me M; M~Y(m)[S(p(m)) - N(m)L" 1(Im)F(so(m))]L L (p(m) = G(e(m)) =
me M; S(e(m)) = F(e(m) = G(e(m)) =
“He(m) € M; S(p(m) = F(ep(m) = G(so(m)) =0}
¢~(Mg) (3.56)

Moc =

{
{
{
%

so that
JoG = go_l oJs (3.57)

and therefore from the fact thatis canonical*w = w

Wy = g = Jow = @ (3.58)

61n abuse of notation we write- m = ¢(m) i.e. we identify the action of the exponential map with the correspondifgpdiorphism.
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Remark:

The fact thatp is canonically generated by first class constraints featured crucially into this argument. This has the
following relevance:

Suppose we are given a system which as gauge symmetry has spig@indirphism invariance iD spatial direc-

tions. Suppose that the field content consists, possibly among other things, of GR minimally couplecatar
fields¢1, .., ¢n. From the curvature of the metric and higher derivatives we can alsodaigebraically independent
scalarsRy, .., Ry. Suppose that at least locally they define a coordinate system sowhat(x) = (¢1(X), .., #n(X))

andx — R(x) defines a (local) éieomorphism. Pick any fixed fi@omorphismypg. Then bothG = ¢ — ¢g and

G’ = R— ¢p are bona fide gauge fixing conditions. However, there does not exist any canonically genffesded di
morphisme; = exp({f dPx £3(X)Ca(x), .}) with phase space indendensuch thatp; - G = G’. The reason is that

the spatial dieomorphism constraint does not mix field species. It is true that we can find a phase space dependel
functioné[¢, R] defined byps 0 ¢ = Rsuch thatd, -G],_; = G’, however, due to the phase space dependentit isf

not true thatLbé:O]‘f:g_. = pzo. The latter is also a canonical transformation with generﬁthx £3C, but it does not
generate the searched for field dependdialinorphism, provided it exists at all. Notice that corollary 3.1 remains
true for field dependent, just the matrices, M, N look different, this is not the point, the point is that it is not clear
that a canonical transformation exists which mage R. It may therefore be true that gauge fixings separate into
equivalence classes depending on whether such phase space dependent gauge transformations exist or not. If that
the case, then it would not be true that the measure (3.34) as a linear functional on gauge invariant functions would |
independent of the gauge fixing condition, it would depend at least on the equivalence class.

3.3.2 From reduced Darboux coordinates to unreduced Darboux coordinates

In order to combine the results of sections 3.2 and 3.3.1 we notice that the parameter nhifdiidh is the same
for any gauge fixing) can be identified with the manifold equipped with Darboux coordii@fteBa}. These are
adapted to our choice @ such thatr = G = 0 or equivalentlyF’ = G = 0 can be solved fofp*, 7} in terms of

{Q3, P} which also defines the embeddidg. In particular, if f only depends ofiQ”, Pa} then we can form our
preferred observablea(f?) and due to the identity = Jgo(ffs) we find from (3.34)

Alf] = 1uelOP] = ppc[OF] (3.59)

where corollary 3.1 was used. Of course, for practical calculations the precise express]lé?? forterms of
QA, Pa, ¢, 7, is rather cumbersome to use. However, due t@ttiistributions(G) involved inug obviously

Al f] = 2clO] = ol f] (3.60)

so that we can drop the gauge invariant extension under the path integral at the price of having to keep the G depe
dence inusG becausd is not gauge invariant so that corollary 3.1 does not apply. Even if we@&f?émther thanf,

still the G dependence does not disappear because while we can dropgfrivomemains ino(ff;) which is a specific
type of Dirac observable which uses the strucirdhis is in accordance with what we said in the introduction.

We are now ready to extend the reduced Darboux coordinate phase space path integral of section 3.2 to all Darbo
coordinates: The Liouville measure used there is precisely given bgcause in Darboux coordinates dgtE 1.
Furthermore, for our choice of gauge fixi6§ = —¢* + () andF, = m, + h/ (¢, Q,P) we have det(F’,G})| = 1
and sinceS,. = zz = (X7, Y,) in Darboux coordiantes are canonical pairs we havéQleg’}) = 1. Itis therefore
trivial to write the generating functional of-point functions as a path integral over the entire phase space by simply
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using formula (3.34) at each point of time

Z[i]
Z[0]

f[DQ DP D¢ Dr Dx Dy] 6[G] 6[S'] 6[F'] |det[F’, G}l ydet][S’, S'}] Qo(Q(+0)) Qo(Q(-e)) X

xli]

Z[]]

exptiy [ LY, QPal - HedQ.Pi)) & 2020 (361)
R A
where for instance
S[F'] = ]—[ S(F’(t), det[S’,S'}]:= ]_[ det(S’(t), S'(t)}) (3.62)
t t
and .
6"x[ ]

SArAa(ty, 1) = i7" lio (3.63)

A (t2)-- Ja,(tn)
Here we have explicitly kept d¢&’, S’}) = 1 because we will see that (3.61) is covariant under changing to equivalent
constraints. To remind the reader, we recall that the possibly explicitly time dependent reduced Hamiltonian is givel
by
Hred(Q, P;t) = 7 ()N, (¢ = 7(t), Q,P)) (3.64)

whereF, atS = 0 or equivalenthys’ = 0 was brought into the equivalent foffy) = x,, + I, (¢, Q, P) which motivated
the use of a gauge fixing of the foil@t = #(t) — ¢*.

Formula (3.61) achieves the goal to extend the reduced phase space path integral to the full phase space, alk
in the specific, local Darboux coordinates that were picked by motivations from quantunt freeatythe constraint
structure of the theory and in terms of the convenient equivalent cons®aifts

3.3.3 Restoring the Original Canonical Coordinates and Constraints

The next step will be to restore the original Darboux coordinafe$4) as well as the original constrairsF rather
thanS’, D’. To that end we notice the identity

f dt [PAQ” = Hred(r: Q. P)]

f dt [PAQ - #h,(r; Q. P)]

f dt [PAQA + 7, ¢ + m, [ — ¢*] — T[n, + hu(7; Q, P)]]

f dt [PAQ™ + m,¢* + 1, G — 7F,] (3.65)

Since the path integral is supportedz#t=t - ¢* = 0, F, = n, + h), = 0, S = zz = (X7, Y,r) = 0 we can rewrite
(3.65)under the integrain the form

f dt [PAQ™ + mu ' + Vo] (3.66)
Now for certain, phase dependent, non singular mathéé we haveF’ = M - F, S’ = N - S. But then
S(F") det{F’, G})| = 6(F)| det(F, G})l, §(S)vdet(S’,S’}) = §(S) vdet({S S}) (3.67)

"Due to the second class constraints, the use of such coordinates is mandatory because otherwise the representation theory of the red
symplectic structure becomes todhdiult.
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is covariant under change to equivalent constraints. This allows us to immediately restore the original constraints |
(3.61) although everything is still written in terms of the unreduced and adapted darboux coor@R)tgg (r), (X, ).
However, that system of coordinates originates from the original system of canonicalgpaixy by a canoni-
cal transformation [6]. Accordingly, by applying the inverse canonical transformatiere can restore the sys-
tem of coordinatesqg( p) which leaves the Liouville measure in (3.61) invariant, which leaves (3.66) invariant up
to a total diterential which we assume to vanishtatwhich reexpressei, G, S in terms Darboux coordinates in
terms of the original coordinates and finally is covariant with respect to the Poisson brackets involved because e.
a({F, G}) = {a(F), @(G)}. Therefore, (3.61 can be rewritten as
oo 2]
xlil = Z10]

Z[]] f[Dq Dl 6[G] o[S] S[F] | detfF, G}| detfS, S}] Qo(Qla, PI(+e0)) Qo(Ql, PI(—e)) X

exp(_'% fR dt[ Y iPpal) €k O TR0 (3.68)
a

Notice that the fiect of the reduced Darboux coordinates did not completely disappear: The initial and final state
depend o as well as the exponential involving the currgnBut Q = Q[q, p] may be a complicated function of the
original canonical coordinateg p.

Remark:

Notice that at this stage we can formally get rid of the gauge fixing condition in (3.68) by the “Fadeev — Popov trick”
if we pay a price: As we have already remarked before, due to the presedicg] @fe may replace everywhere

the non gauge invariaQ by OE?G). Then the exponent, as a symplectic potential and the med3gf¢Dp], which

is formally the Liouville measure associated with is gauge invariant since gauge transformations are canonical
transformations. Als¢S, S}, F are weakly gauge invariant due to the first class property and since canonical trans-
formations preserve Poisson brackets. Hence, after the gauge invariant exte@sitimeasnly non — gauge invariant
ingredient of the integrand & j] in (3.61) isé[G]. In fact, a3(G) = G — g where we have introduced the gauge
transformationsys := exp{“{F,, .} which, since the constrainks’ are Abelian, have the Abelian grodpstructure

ag o ag = ag.p. Since the remaining ingredients are all gauge invariant, we may replagexs(G) for anyp.

Now extend both numerat@ j] and denominatoZ[0] by the infinite “gauge volume” constaﬂDﬁ] with “Haar
measure” PB]. We can then trivially integrate out ti#as(G)] = 6[G - 5] and find

20

Z[0]

f [Dq] [Dp] 6[S] 6[F] det[[S. SI] Qo(0F[a. pl(+o0)) Qo(OF[a pI(-0)) x

expiy [ dt )] g po &k IO (3.69)
a

x[i]

Z[]]

The price that we have to pay is that we have to repRitey Og) =: Ogn etc. which is an even more complicated
function ofq, p. This makes this method of getting rid of the gauge fixing condition useless in practice. The only
exception is when we consider zero currg¢nt 0 and restrict to gauge transformations that are the identity in the
infinite past and future. Then the gauge invariant extension in the argum@gtaoid more general boundary states

is not necessary and the argument just displayed goes through. The restriction to such asymptotically trivial gauc
transformations however means that we set the constraints to zero by hand on the kinematical Hilbert space.
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3.3.4 Restoring the Lagrangian

The idea is now to exponentiate the constraints and to rewrite the total resulting exponent in terms of the classic
action. Thus we introduce Lagrange multipligrsfor all first class constraints apd for all second class constraints
and write

Z[j]

Al = Z
21j] = f [Dq] [Dp] [DA] [Dy] 6[G] | detiF, G} /det][S, SJ] Qo(QIa, pl(+<)) Qo(Qlg, P(-<)) X
exp(—% fR dt[)] Ppa— Y A'Fu = ) u*Sy)]) €k hOTan (3.70)
a M z

The final task is to remove the secondary constraints so that the action appears in covariant form after Legend
transformation, i.e. with primary constraints only. The technique for doing this is well known [12]. We will not treat
the general case with secondary constraints of arbitrary high but finite order N (i.e. one has secondary, tertiary, .. M
ary constraints). For a systematic classification of such systems and a convenient choice of basis of those constrai
see e.g. [39] and references therein. Here we pick a typical situation of particular interest for General Relativity. The
general case will be even more complicated with even more modifications to the measure than we encounter below
We assume that the canonical Hamiltonian has the following structure

H=Hj+vs FO v 8O, HO = g, . F@ (3.71)

As the notation suggests® is a vector with entries consisting of primary first class constraints \Bfilés a vector
with entries consisting of primary second class constraints. The \Fétds related to a set of secondary second class
constraints that we will derive shortly. Usuaf§t), S simply express the fact that the momeptaps conjugate to
ds, gs respected vanish because the Lagrangian does not depend on the velgeifidsis also usually the case that
F@ does not depend agt, ps, ps but ongs. Thus we assume that (we do not denote indices)

(FO E@y = (FD) sy = (sO sy = (pM E@y = 0 (3.72)
while the terms not proportional 1), S() of
S@ .= (F@) s (3.73)

defines a vector of secondary second class constraints. We abuse notation by identifying that vector with (3.73)
order not to have to introduce indices. Notice that

{H, F(l)} — {Hé’ F(l)} — |f(2) (374)

thus justifying the name secondary first class constraint.
It is also often the case that thé? close on themselves, that is

(E@ E@y o E@ (3.75)
which we also will assume. Correspondingly,

{H,F@} = (H, FP) + {vs- SB, FP} o« F?), 5@ (3.76)
does not produce tertiary constraints. These assumptions imply by the Jacobi identity that

{F(l), 5(2)} — _{|E(2)’ {S(l), |:(1)}} _ {S(l), {|:(1)’ |E(2)}} =0 (3.77)
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Finally
{H, 5(2)} =qs - {|E(2)’ 5(2)} + Vg - {S(l), 5(2)} (3.78)

and we assume that the matt&®), S@} is invertible. Hence the Dirac algorithms does not produce any tertiary
constraints and the velocity must be fixed in order to equate (3.78) to zero. Accordingly the Hamiltonian becomes

H=qs- [|E(2) _ {|E(2)’3(2)}[{5(1)’3(2)}]—1 . S(l)] + Vs - F —- qr - F@ 4 Vi - FM (3.79)

a linear combination of first class constraints. Thus in terms of the previous notation, the first class coRgtraints

compriseF(, F@), the second class constraifiscompriseS(®), S and finally the primary constrain® comprise
FA s@),

This is a simple but non trivial situation often encountered in concrete models and this concrete form now enable
us to explicitly carry out the steps outlined in [12]: In (3.65) by an obvious change of notation we write

L1
Z[0]

f [Dq] [Dp] [DA1] [DA2] [Dpa] [Dpz] S[G] | detfiF, Gl det[[S, S}] Qo(Qld, pl(+0)) Qo(Ql, PI(—o0)) x

1 — o
exp(-2 fR G {Ti(Y 7 pa— A1 - FO — dp- FO - 1y - SO — - SO o o 2t 0@ apl)
a

xli]

Z[]]

= f[DQ] [Dp] [DA1] [DA2] [Dua] [Dpz] S[G] | detffF, G| vdet][S, S}] Qo(Qa, PI(+0)) Qo(Qld, pl(—e0)) x

1 . . ~ . .
expt-; fR dt i) g*pa— A1 FO = - FO — iy - 8D — iy - s@)]p) & o A WO [PI0) (3.80)
a

where in the second step we have shifted the integration vayialieorder to absorb the contributiqry - S® =
EQ _ §f@)

We now perform a canonical transformation with generﬁlﬁors(l)//l’2 at each time € [t_, t,] which we assume
to become the identity at. Here., is the unique component @ such thati, - {F®, S} = 1,5@ modulo terms
proportional toF®), S, This transformation preserves the Liouville measure, the symplectic potémtiahd®
and Qo(Q[q, pl(+0)) Qo(Q[q, pl(—c0)) €k O since in this example under considerati@f is among the
coordinates independent @f. If we assume thaB = G, G@ do not involvegs then alsoG is invariant. Indeed,
one can choos8™®, G to be gauge fixing conditions mﬁl) ‘= Qf andq(fz) respectively which are both independent

of gs = q(sl) so thatq(sl),qu),q(fl),q(fz), Q* comprises a complete system of configuration coordinates. Furthermore,
clearlyF®, S are invariant. But, denoting the canonical transformatioa,bwe have

1
nz 1S, SP) -z + 0G5 FY, sU)

a(lp- F@Y = 2, . F® — 1y, . 5@ :
24,

(2~ S®) = 2 SO + <> (8%, S o + O (3.:81)
2
Since integrating again ovey, u; enforcess@® = SM = 0 we can drop terms proportional &Y, S@).
Next,a({F, G}) = {a(F), a(G)} = {a(F), G} under the assumptions made. This will in general depend non trivially
on u» througha(F®@). Likewisea({S, S}) = {a(S), (S)} will in general depend non trivially om througha(S®).
Consider det(fF, G})|, Vdet(S,S}) as expanded in powers @f. Also, since

~ ~ 1
(g FO 4y - S@) = 2, - FO 4 Srhe (SM, 8@} 41y + O@3) (3.82)
2
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let us power expand(s(F))s(S)) around that quadratic term and perform the Gaussian integral. Sin¢®, 8¢X(=
det(SW, S@})2 this yields

Z[j] = f [Dq] [Dp] [DA1] [DA2|5*?] [Dua] 6[G] | det(F, G} Vdet[(S, S}] V Qo(Qla, pl(+0)) Qo(Q[g, p(=0)) x

expl- fR At (i) oFpa—A1- FV = 1o - F® iy - SO)))) € fe SO TapI0 (3.83)
a

where the local factov accounts for the additional contributions just mentioned. The integralppverF®, ps =
S producess(1; — vi)d(u1 — Vvs) and cancels the integral over, u;. Denoting{q®} = q(fz), q(sz), QY. Py} =

{q(z) a?, QA1 we are left with

Z[j] = f [Dq] [Dp] [DA2l5/Y2] 6[G] | detfF, G} vdet[[S, S}] V Qo(Q[a, pl(+0)) Qo(Q[q, pl(—0)) X

expiy [ dtili(), py - dg - FO)) & ot O an0 (3.84)
a

Now, by definition (see also section 2.1), solvigig= dL(q”, g, gs; V#)/0v'® for V@ yieldsV' = u (g, gy, gs; P;)
and

Ho = arF@(a®, a”; pp) = VP, - L@”. ar, Gs; VE)lv v (3.85)
As is well known, the inverse of this Legendre transformation is
= [Vp,, — Hy(@®. 1. ds: 03] p=aLsov (3.86)

Therefore a saddle point expansion about the extrepiumiL/dv' of the exponent in (3.84) yields

Z[j] = f [Dq] [DA2l25Y?] 6[G] | det]F, G} vdet[(S, S}] V' Qo(Qlal(+o0)) Qo(Q[a](~0)) x
exp(; [ U = 2. vy &k oA (3.87)
R

whereV’/V accounts for the additional modifications that come from the saddle point approximation and the corre-
sponding corrections\otice that a possible dependence on p fnp@hibits the saddle point approximation beyond

its zeroth order termAssuming thatQ” is independent op as it is the case in this example under consideration and
assuming thaB® really is a coordinate condition ap and noticing thaF, S, G, V’ do not depend og; we have

after relabelingl; — g

Z[j] = f [Dq] [ig;[¥2] 6[GP] | det[[F, G} v/det[iS, S}] V' Qo(Qla](+e0)) Qo(Qlal(~0)) x
exp(% f dt L(gr, g, ¢ v?)) € k 4t IaOQ AW (3.88)
R
which is our final result.

To summarise:

The path integral can be brought into a form only involving a configuration integral and the exponent of the covarian
action, but there is a non trivial measure factor depending, 8nG, V' which accounts for the correct implementa-

tion of the dynamics. Missing that factor means qunatising an entif@égrafit system. The measure is not covariant
with respect to the Lagrangian symmetries, however, by construction it is covariant with respect to the Hamiltoniar
symmetries generated by the first class constraints [22]. As is well known from classical Noether theory, these tw
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symmetries coincide only on shell, that is, when the equations of motion hold, i.e. in the semiclassical sector of th
path integral (critical points of the action). But that is hardly surprising. The quarfanis that is, the fluctuations

and higher correlations will receive corrections coming from the measure factor and one completely misses them
one postulates the naive covariant meastigegxp(iS). Notice also that the path integral remembers the gauge fixing
condition explicitly through the dependence of the wave functions, as well as the exponential of the cu@nt, on
only, rather than all ofi?, which are adapted 8.

Finally we should mention that performing the momentum space integral will be technically impossible to do
exactly and the saddle point approximation may only be a poor substitute for it yielding large errors the possibilty for
which we indicated by’ which, however, will also be hard to do exactly or even perturbatively. Even if it can be
done perturbatively, the corresponding series may not converge. Especially in such situations, a naive quantisatit
based on the configuration space path integral with the exponent of the classical action as weight may have little to ¢
with the correct quantisation of the system.

4 Operator Constraint Quantisation Path Integral

In this section we are going to derive the path integral formulation using Dirac’s operator constraint formalism in the
language of rigging maps using the always locally available lineraised constraints. For more global, rigorous result
see e.g. [40].

As already mentioned, in the presence of second class constraints, operator constraint quantisation is in gene
impossible if one does not pass to local Darboux coordinates with respect to the Dirac bracket because othe
wise one does not find representations of the canonical commutation relations. Hence we assume that we ha
passed from the global conjugate paird (§) to local conjugate pairgs) = (X7, Y,), (¢ 7)., (QA Pa) in terms

of which the second and first class constraints respectively can be reformuldigd-add < 2z = 0 and

F,. =0 & F,=m+ hL(¢; Q,P) = 0. The F, are Abelian{F/;, F/} = 0 and first clas§F’u,zz} = 0 while

{Vors X} = 65’ and thus the Dirac bracket on functionssof, Q, P reduces to the Poisson bracket.

On the assumption that the constraiRfscan be quantised without anomalies on the kinematical Hilbert space
Hyin = L2(dQdD), that is, F/,, F/] = 0 we define a rigging map heuristically as (one has to be careful with domains
and ranges ang should be defined as anti — linear map, however we do not need to enter the discussion of thes
niceties here, see [17] for further information)

n: Hiin = Honys ¥ = [n(¥)](¢. Q) = f [d8/(2m)] [€7 Fry](¢, Q) (4.1)

In the case at hand we can easily bring (4.1) into a form from which it is obvious that it solves the corsiainGs
First of all we notice that (4.1) can be formally written as

nw) = | o(F, (4.2)
u

where the order of thé distributions is irrelevant due to the Abelianess of the constraints. This is not the case for
the F, which is why the heuristic projector defined in [41] does not solve the constraints. This is already a hint that
(4.1) indeed solves the constraints. To actually prove it we noticeffaiy(¢) = v(¢ — B) and so (we suppress the

Q argument in what follows)

W)(0) = f [d8/(20)] V(8) (o — ) = f [d8/(2n)] V(& — B) w(B) .3)

where
V(B) = &l (9)] g 1B 7 (4.4)
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Using

7 hi(g)e ™ = (g - ) (4.5)
we derive 1V (p)
T V@B, (¢ - ) (4.6)

DenotingB(t) := B1 + t(B2 — B1) it follows

tod ( :
Vi) ~V(e) = [ eV =1 [ d ViB) 5O - 6t) @4.7)
where we noticed thai(t) = 3(0) = 8> — 81 =const. Equation (4.7) can be iterated into a Dyson series: We need

By (tz2) = B1 + 12(B(t1) — B1) = B1 + at2(B2 — B1) = B(tato) (4.8)

so that

V(B(t1)) - V(B1)

1 d 1 .
fo iy V(B 1) = fo dto V(B(tit2) b3 (O, (6 — B(tat)

1 .
| fo iy V(B(t2)) O, (¢ - B(t2)) (4.9)

Accordingly we obtain for ang,, p1

1
V(B V(B2) = T expl fo it [82 — Bal* M,(6 — B1 — (B2 — B))) (4.10)

where the path ordering symbBl orders the earliest time to the left. Choosfhg= ¢, 82 = ¢ — 8 we find

1
V(ig-B) =V() T EXID(—if0 dt g h,(18)) =: V($)U(B) (4.11)

where, using again (4.10) wit = ¢, 81 = 0 and noticing from the definition (4.4) thd(0) = 1

1 1
V(g)=T eXpro dt ¢ h(¢(1-1))) =T; eXpro dt ¢ hy,(¢t)) (4.12)

where we have performed the change of variablesl — t which switchedT| to T, which orders the earliest time to
the right. For later use we notice the identity

uE)=vet=veE)' (4.13)

which establishes unitarity &f(8) (as an operator oh,(dQ)) and can easist be demonstrated by writit{g) in the
form _ _ _ _
V() = lim enP®) en A enP (A | enf (A (4.14)
N—oco

The point of these manipulations is that we can now write
[7()I(¢, Q) = V(&) WI(Q), [7'W)I(Q) = f [dB/(20)] V()™ w(8, Q) (4.15)

Obviouslyn’(¥) no longer depends afso that the rigging map essentially produces functions whaEpendence
is restricted to be of the fori(¢)¥(Q) for suitable? € L,(dQ). In order to show that such functions really solve
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F/, = Oitis very crucial thatf,, F] = O, otherwise this doe not hold. Essentially, the proof boils down to showing

(we again suppress tli@2dependence)

[% i @)IV($) = 0 (4.16)

This almost looks like a parallel transport equationpogpace with respect to a one foraih;, (¢) with values in a

Lie algebra of (anti — self adjoint) operators lbs(dQ) defined on a common dense and invariant domainvimil

looks like its holonomy along the path- t¢. The diference with the parallel equation is of course that the latter is

an ODE while (4.16) is a system of PDE’s so that the issue of integrability arises and so the following theorem is no
trivial (notice that wedo notneed to assumq,,h;] = 0). Its validity rests on the fact that

[F,. Fi1 = —{20p,(=ih}; + [(=ihy), (-ih))]} = 0 (4.17)
i.e. that the curvature of the connectieitn/; vanishes.

Theorem 4.1.
Equation (4.16) holds pointwise dnspace on a dense set of analytic vecfofsr the operator Hg¢) = ¢, (9).

Proof. LetVo(¢) := 1 for N € Ng and forN > 0

N 1 fho1
V@) =1+ Y 1" [ d o) [ oo B () (4.18)
n=1

Clearly limy-,. Vn(¢) = V(¢) converges on analytic vectors f(¢) := ¢*h,(¢). We define folN > 0 the remainder

N 1 th-1 N-1
Ru(@#) = <M1 fo dty @1, (126) ... fo o tog™ ([, 1, 1}t ) . fo diy ¢ IV, (tng)  (4.19)
n=1

and prove by induction fdl > 0 that

9, VIN(9) = ih,(¢) VN-1(9) + Rn(9) (4.20)

By definition, on analytic vectors df (¢) the norm of the remainder converges (pointwise §pace) to zero (it is of
order Y[(N — 1)!]) so that once that (4.20) is established, the proof is complete.
ForN = 1 we obtain

1
aNi(e) = i fo dt [V (t6) + 6" (0,1)(t9)]

. 1 d , \% /
= fo dt [ [t P (t9)] + 206" (9 M) t9)]
1
= i)~ [ dtie @A)

= ih,(¢)Vo(r) + Ru(¢) (4.21)

where in the third step we used

[F/'l, Fl=0 & 2i6[ﬂh;] + [h/’l, h)]=0 (4.22)

18A vectory is called analytic for an operat@rif |A"y|| < oo for all nandy,,_o t" [|A"|/(n!) < co for somet > 0.
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Assuming that (4.20) holds up dwe compute

1 N
3, (Vns1 — W) = iN19, f dty ¢"h;, (t19) ... dtnsa ™00y (tneag)
0 0

N+1 tn

tnfl
= v " ¢, (49) ... dta[,(tnd) + tnd™ (0D J(tag)] .. | dlnas @™ N (tneag)
0 0

N+l

d
~ v f 1, 00) [ AUl () + 2 N, )

" dtva ¢"™hy L (i)

N+1 tho1

tn—2
- N+1Z f dt; ¢'h), (tag) .. fo dip-g 9" 1h,(tnad) | dtn[%(tnh;(tn@)] X

tn N

X dtn+l¢yn+1 h:/ml (tn+l¢) dtN+1 ¢VN+1 h;m1 (tN+l¢)
0 0

N+1

) f d "1, (t9) ... fo

= RN+1+|h (P)[Vn(g) — Un-1(9)]

N+1 —

LAY f iy 6, (00) o [ s 6, (t010) o 1)

N
iy " (M., D(to)] ... fo s 6N (tnend)

th-1 N

X dtn+1¢"”*1h’yn+l(tn+1¢) dinsa @™ (1)
0

tn-1

tn2
vy f dy ¢"h), (t1g) ... f dta-1 ¢"2h],  (tr-10) 5 dty th),(tng) ¢"H, (tng) X<
n=1

th tN

X dtar2 @72, (thi2g) ... dtnsa @™ N (te1e)
0 0

= Rus1 +iN(#)[VN() - Vn-1(0)]

IN-1

N 1 tn—l
Nty fo dty ¢"h(, (1) ... fo dtn ¢" ], (tng) tn N, (tnd)) ... fo dty ¢, (tng)
n=1

N 1 fn-1 tn-1
AN f dty ¢, (t29) ... f dty tah,(tag) ¢"N), (tng) .. f dty ¢™h), (tng)
=1 YO 0 0
= Rus1 + 10 (#)[Vn(4) — Vn-1(9)] — Ry (4.23)

In the fourth step we have separated two contributions and the second is easily recognized as the ddRgition of
The non trivial step was the fifth one where we performed an integration by parts in the first contribution which
produces two sums. We have et 1 in the first sum and in the second in the last term the integraltQvgetc. is
just unity. In the sixth step we have relabeled in the first sum in the n-thtterm t,, .., tno1 — ty and then reset
the summation range to= 1,..,N. In the second sum in the n-th term we have relabgled— tn.1, .., tny1 — tn
which combines the two sums #dry.

Thus, by assumption (4.20)

6;1VN+1 = [6;1VN - ih//lVN—l - RN] + ih//lVN + RN+1 = ih//lVN + RN+1 (4.24)
O

Having shown that the rigging map is well defined and produces solutions to the con§tfairgsan compute
the physical inner product between staj@g) defined by (we drop the factorg(2r) as the physical inner product is
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defined only up to a scale)
<nW),n(W’) >phys = < y¥n’) >kin
- [ 14 [ 4QTEQ b Ne.Q)

_ f [d] f [dQ 7.9 V@I @)I(Q
_ f [06] < v(6.). V(T W) > Lo

- < f [d6] V(#) ™ (6. ) ') L0
= <A W) >0 (4.25)

wherer’ (¥) was defined in (4.15). This calculation demonstrates that the physical Hilbert space can be identified witt
the Hilbert spacéqq := L2(dQ) which we obtained also in the reduced phase space approach. The identification is
established by

W Hied = Hpnys F(Q) = V(4)¥(Q) (4.26)

Hpnys Can also be recognised as the (closure of the) set of equivalence classes of vefgigrsviterey ~ v’ iff
7 (¥) = i’ (y’) are the same,(dQ) functions. Notice thay’ is not a projector,;f]? is ill defined.

It is worthy pointing out the importance of the knowledge of the map (4.26): Often one only knows a path
integral expression fox n(y),n(¥’) >pnysin terms of the boundary statgsy’ which, however, lack any physical
interpretation, they are not gauge invariant. The veejg@rsare gauge invariant, however, the path integral expression
which we will also derive below is not in terms gfy) but in terms ofy, n(y) is often not known explicitly. In the
case considered hergy) is known explicitly: Neglecting about the details of the domains of the maps we have
n(Hyin) = W(Hreq) and sincelV just operates by a unitary operator with a spegifalependence, all the non trivial
physical information is contained H;eg.

To make the link with the path integral formulation now does not require much further work. P#r®hy Hieq
pick ¥, ¥’ € Hyin With /() = ¥, 1’ (¥’) = ¥’. Any such¥ is generated from the cyclic vacuum vecibfa ground
state vector under the time evolution, i.e. a stationary vector uhdgt) for some fixed value of, in the case of
a conservative system, the choice of this irrelevant) by operating with (limits of) polynomiafsof the operators
Q". On the other hand, from the point of view Blnys the operator®” are ill defined because they are not gauge
invariant, or in other word®”n(y) is not annihilated by the,,. The following operators, however, presetgnys

Q" = [exp(B'F,)Q" exp(-iB'F' )] p=s (4.27)

which is the quantisation of the corresponding classical formula (2.23) upon replﬁpj@f}(n» by [F. QM /i".
To show that F/,, @] = 0 we notice that sincer[, Q%] = 0 we have with the definition 6f(8) (4.4)

QA

[exp(p"F;) €7 QPP explip!F))ls=g
V(@)QV(e) ™ (4.28)

Notice thatQ” is self-adjoint OMHpnysif QA is onHreq. Since any physical state is of the fow(y)¥(Q) it is obvious
thatQ* preservesynys by theorem 4.1. We conclude

<P >eq=< Q, F(Q)f F/(QQ >re=< WP, WY >phys=< WQ, f(Q)Jf f,(Q)WQ >phys (4.29)

We see that the physical scalar product can be directly related to the reduced Hilbert space inner product. Now w
just need to relate the latter to the n-point functions already derived in the previous section. But this is easy: Evidentl
(4.29) is a finite linear combination of monomials of the form

<Q,QM .. QMO >eq (4.30)
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which is the coincidence limit of an n-point function
im <0, QM(ty) ... QM(t)Q >red (4.31)
1sesin™>

for arbitraryt. In interacting Wightman QFT's it is expected that such equal time correlators are too singular [11].
On the other hand, if the theory can be canonically quantised at all then such limits must exist as otherwise the notic
of equal time commutation relations is meaningless and therefore presumably violates at least one of the Wightmz
axioms, e.g. the uniqueness of the vacuum. In any case, we derived a path integral formula for the right hand side
(4.31) in terms of a path integral for the generating functional.

There is also a more direct derivation for a path integral formula fefiy), (") >pnys for which, however, the
relation to the reduced phase space path integral is less clear. On the other hand that alternative derivation makes
connection to the Master constraint path integral clearer. We will thus display it here for completeness. We start fror
the definition of the rigging map (4.1), choose some arbitrary but fixed reference Qgetod normalise the physical
inner product by asking that the norm:gfy) be unity. Thus we have to divide (4.1) by a constant up to which the
inner product is anyway undetermined and obtain

[1d8] <y, @FFiy’ >y,
[ 1dB] < Qo, &P FiQg >yin

Notice that (4.32) is not a path integral oy&irit is just an integral at fixed time of the Lagrange multipligfs In
order to introduce a path integral of Lagrange multipliers we introduce an arbitrary time paramtieh we will
eventually send teo and multiply both numerator and denominator of (4.32) by the infinite constant

;
C= f [DA] ]:[ S( I ] de (b)) (4.33)

which is a path integral over paths» A(t), t € [-T, T]. By shifting the integration variablé(t) = A'(t) — %ﬁ for
any constant patB/(2T) we see tha€C can also be written

§
c:f[m] ]:[ 6(L dt () — B4 (4.34)

whereg is arbitrary. Inserting this into (4.32) and interchanging &][[dB] integrals we obtain

J1d8] <, € Fig’ >y [f [DA] T, 8(f 7 dev(®) - p]

J1d8] < Q0. €#FiQo >win [f [DA] T1,, 8([ 7 dea(t) - p)]

[IDA] <y & WOFLy sy [ [d8] T, o[ due) - p)]

[IDA] < Qo &UT WOFiQy i [ [dB] [T, o(f duw(t) - p)]

DA < zp,ei[f_TT O A

<), n(’) >phys= (4.32)

< (W), n(y") >phys

_ — (4.35)
f [DA] < Qq, é[LT dwl(t)]F’,‘QO >kin
By writing
T N-1
[f dtA”(t)]F/ = lim L Z AH(nT/N)F/, (4.36)
T H N-oo 2N ' H
we finally obtain using the usual skeletonisation techniques
—_— LT : . ,
, [DQ DP D¢ Drr DA] $(Qr, 1) ¥/ (Q_1,¢_7) € [r 4lPA Qs #-¥F(QPom]
<n@),ny’) >= / (4.37)

[ [DQ DP D Drt DA] Bo(Qr. #1) Qo(Qr. 9-7) € L1 9UPa Py #-1F (@R
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Notice that all canonical coordinates and Lagrange multipliers are integrated over paths in time in the+#itgfJal [
and that the operatd¥, has been replaced by the classical function in (4.36). In this expression the paramseter
arbitrary and we can take — oo.

In order to invoke the gauge fixing conditio@g = 7#(t) — ¢* we will make use of the Fadeev — Popov procedure:
Leta,w = exp¢(IF,(1),.}) whereF,(t) = F/(u(t)) is the constraint on the copy of the phase space atttamel
u(t) = (Q(), P(1), #(1), #(t)). Thena, ) (GH(t)) = GH(t) + ¥#(t) so that in this case trivially

f 0N [ | sleyn(@®) =1 (4.38)
tu

We multiply both numerator and denominator of (4.37) by this unity. Assuming.Jigv(x=T) = 0 the kinetic term

in the exponential of (4.37) is invariant (being a symplectic potenfgl)s invariant due to the Abelianess and the
Liouville measure at timeis invariant under the canonical transformatiané). Thus after a change of variables
fromu — «,(u) and sinced, (G)](u) = G(a,(u)) nothing depends op anymore and the integral ovBry can be
dropped. We obtain

[ [DQ DP D¢ Dx] #(Qr. 1) ¢/(Q_1. 6.7) 6[F'] 6]G] & L7 4Pa Qem, 1
J [DQ DP Dy D] GofQr. #1) Qo(Q-1.6-7) J[F] 4[G] & L 9P o]

where we have also integrated oder
Finally, in order to invoke the second class constraints in the s (x7,y,) = 0 we simply insert &
distributiond[z] and integrate over. This yields

<n(),nW') >= (4.39)

J [DQ DP Dy Dx Dx Dyl #{Qr, ¢7) ¥/(Q 1. ¢-7) 3IF] 6[G] o2] € L o8P o 3k
J [DQ DP D¢ Dx Dx Dy] 2o(Qr. #1) Qo(Q-1. ¢-1) 5[F'] 5[G] o[z] & [r 4P Qo 5]
(4.40)
Next we observe that d¢K’, G}), det(z z}) are constant in the system of coordinates chosen so we can multiply
numerator and denominator of (4.40) by these constants. As established in section 3, the expression

S[F'] 5[G] 6[z] | det(fF’, G))| vdet(z z) (4.41)

is invariant under any mapping’, G, z) — (F, G’, S) as long as both triples reduce to the same gauge cut of the same
constraint surface. We may therefore restore the original first and second class cofs@Baivtise keepingG = G’
provided we keep the determinant factors in (4.41). Finally we can restore the original system of coaytlipates
which arise from ¢?, p) = (Q4, Pa), (¢, 7m,), (X7,Y-) by a canonical transformatiam because the symplectic
potential in the exponent of (4.40) as well as the Liouville measure remain invariant and the Poisson brackets al
simply expressed in the new coordinates, e.g.

{S.S)(d, P') = {S.S}(e(a. p)) = {So e, Soal(a, p) (4.42)

(by S we denote the origin&g expressed in whatever canonical coordinates). Accordingly

J— T -a
J [Dg Dpl ¥(Qr. ¢7) ¥/(Q-1.¢-1) 6[F] 8[G] 6[S] | det(F. G})| VAKTSS)) € [+ dt el

—_— . T ~a
J [Dq Dpl Qo(Qr, ¢7) Qo(Q-1, ¢-7) 6[F] 6[G] 5[S] | det(F, G))| VAeT(S,S)) € Lr 4t ma

(4.43)

Notice that due to the gauge fixing conditiGft) = 7(t) — ¢(t) the integral over is anyway concentrated at the
fixed pathr(t) so that it is allowed to assume thaty’, Q are actually independent ¢f In this sense the final result
(4.43) precisely agrees with (3.70) with the understandingythat in (4.43) can be generated from the generating
functional (3.70) by suitable functional differentiation with respect to the cujranj = 0 at coincident points of
time =T in the limit T — oo.

<nW).nly’) >=

<nW).nl’) >=
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5 Master Constraint Path Integral

The Master Constraint Programme (MCP) was originally designed precisely in order to be able to cope with gaug
systems whose classical first class constraint algebra involves structure functions [16] and for which therefore grou
averaging techniques do not work. It is true that locally the first class constrag#a be replaced by equivalent
ones whose algebra is Abelian and we have made heavy use of that fact in the two previous sections. However, f
the case of interest, namely General Relativity, in vacuum the Abelian constraints are rather non local on the spati
manifold, algebraically difficult to deal with and not explicitly known even classically [42]. Even with standard matter
this is true. It is for this reason that in [10, 33] non standard matter (Brown — Klels143]) was used in order to
achieve the Abelianisation in a local form and such that the resulting expressions remain practically manageable. T
MCP does not rely on Abelianisation and thus is both more global (on phase space) in character and does not requ
any special type of matter. In principle it does not even require that the constraints are quantised without anomalie
and even second class constraints can be treated by the MCP [16]. Since the Master Constraint is a weighted sum
squares of the first class constraints, we expect that its kernel is empty when the constraints are not quantised withc
anomalies. In that case one could consider the Hilbert “subspace” corresponding to the lowest “eigenvalue” as tt
suitable substitute for the anomaly free situation. See [16] for further discussion. In that sense the MCP may b
considered as a much more flexible approach to constrained systems with structure functions.

While for a wide range of models the MCP has been tested versus the more traditional operator constraint methc
[16], its equivalence with the latter is so far lacking. On the one hand, the equivalence seems to be obvious sinc
both the Master constraint and the individual constraints are supposed to define the same (common) kernel. Ont
other hand, the equivalence is rather not obvious because the formulae for defining the physical inner product «
equivalently the rigging map are totally different. For the individual constraints in Abelianised form the rigging map
is defined in (4.1) while for the MCP it is heuristically defined%y

M Hiin = Hipus ¥ Hf My (5.1)

where the Master constraint is defined by

M= K Fy (5.2)
uy

The symmetric (possibly operator valued) makighould be so chosen such tivhis positive and such that it arises

from a classically positive definite matrix valued function on phase space. There is great flexibility in the choice of
K and while all (stficiently differentiable) positive definite classical matrices are equivalent, in quantum theory this

flexibility must be exploited in order to arrive at well defined master Constraint Operators [16]. Normally we require

thatF, is quantised as a self adjoint operator but in the case of structure functions this must be relaxed [16] which i
why we included the adjoint in (5.2).

The task of the present section is to connect with the results of the previous two sections. Those sections ma
use of the Abelian constrainks, and we will therefore use those in order to build our Master Constraint. We assume
as in sections 3 and 4 thif is self — adjoint since thE,, are supposed to be quantised without anomalies. As in the
previous section we choose a reference veeoand define the Master Constraint physical inner product by

oy~ fR dt < Qo, e'“V'Qo >Kin

<nm®), mm ') > (5.3)

To see that (4.1) and (5.3) formally coincide, recall [4] that for any self — adjoint opératoa (separab®) Hilbert

9Again there are subtle domain issues which we neglect here and moreover one should switch to a direct integral represéfptation of
subordinate tM; see [16] for details.
2%In LQG the Hilbert space is not separable but the operator M preserves the separable subspaces into which the Hilbert space decompos
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space there exists a unitary transformation (generalised Fourier transform)
U H o= | ) O HE: 4 G esecty (5.4)
pec

from H to a direct integral of Hilbert spacg4} (possibly with diferent dimensions for eachbut in a measurable
way, hence more general than a Hilbert bundle) with respect to a probability mgasutke spectrum spe&) of A.
Herey (1) e HS. The correspondence between the inner products is

O o< BT i [ ) < BT (5.5)
specf)

The point of this spectral decomposition is tHaBU~1](1) = Ay(1), i.e. A acts by multiplication byl onHy If (the
spectral projections of) two self — adjoint operatar$ commute thet BU™1 preservesH{ and we may apply the
just quoted theorem which then tells us that there exists a joint probability melagareg) on the joint spectrum
spec(A, B}) = specf) x specB) of A, B and a representation @&{ as a direct integral of Hilbert spacésji\, 25 ON
which A, B respectively act by multiplication by, Ag respectively.

Iterating like that we obtain the statement that for a (countable) family of mutually commuting self — adjoint
operators~,, there exists a unitary operatdrfrom Hin to H® which is the direct integral with respect to a measure
w on the joint spectrum of thie;, of Hilbert space§{ea 2, ON whichUF, U~ acts by multiplication byl,. This is the
key to link (5.3) and (4.1). Namely we formally obtaln for (4.1)

[ 18] <y, &P Fiy’ >y

[ 1dB] < Qo,€”Fic Qg >yin

Jipecgery QA <UD (1) >4 [ [dB] €74]
Jepecery A < Qo(1A). Qo((A)) >4 [ [dB] €4'4]
Jpoeqery AU < FUD G (A) > 6(1A))
Jopeogery (i) < Qo(ia)). Qo)) > 6(1))

P((0) < G0N, ¥ (10) >4
P((0) < 0({0)). Qo((0) >y
< (0D, ({10}) >0,

= — - (5.6)
< 3o((01), Bo(0]) >4

<), n’) >phys =

where formallydu({A}) =: p({4})[d1]. Notice thatp({1}) can have distributional contributions if the spectrum has a
pure point part, see [16, 25]. Of course there are measure theoretic issues such as: if 0 lies in the continuous spectr
of someF), then{0} hasu measure zero anﬂ{%} is not well defined without further assumptions spelled out in [16].
For the purposes of this paper we take a formal attitude and simply let the formal cancelatigr({@}lie numerator

and denominator of (5.6) take place as indicated. For a more careful definition see [25].
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On the other hand we have

[ dt <y, @My >y,

[ dt < Qq, &M Qg >y

Jepecgrry Q) < dU (W) >4, [f dt € 2urKT0]
Jepeoery () < Qo(i), Qo)) >z [[ dt & Zer " 4ts]
Jpecqery GAA) < I (D) >p 6(E,, KA,
Jepecery () < Qo(ia)), Qo) >z 6(3,,, KW, A,)
p(10}) J(10}) VOI(S) < ({0). ¢ ({0)) >y

p(101) I(101) VOI(S) < Qo((0}). Qo((0}) >y

< g0, ¥ ({0) >y,

= — . (5.7)
< Go((01), Bo((0]) >4

< nwv (l//)’ UM(W’) >2/|hys =

where J({1}) is the Jacobian that arises by switching frébh to polar coordinates adapted to the radius squared
r2 .= 2y K 2,4, Of course we have assumed that is just a complex valued positive definite matrix. B)I(

is the volume of the corresponding sphere. For countably rkarte volume of the infinite dimensional sphere
vanishes as well as the Jacobian at zero. To justify (5.7) less formally one has to take a limit as the\nofhier
approaches infinity so that VoIts?) is finite and one also has to regulari#) by (M — €2) and takes — 0 as to
makeJ(e) finite. See [25] for the details and also (5.10) below for a sketch.

Hence (5.6) and (5.7) agree with each other modulo formal manipulations and thus give rise to the same path i
tegral formulation. Our method of “proof” above used spectral theory. We will now provide a more direct (but also
formal) “proof” using only path integral techniques. The idea is the same as at the end of section 4 and was alreac
sketched in [16]. First of all we use the same technique as used between (4.32) and (4.37) in order to write (5.3) as

[DA] <y, dll dutiMy, o
<) W) >y / al

JIDA < Qo ey M@, 5y,

{IDQ DP D¢ Dr DA] ¥(Qr, ¢7) ¥ (Q-1,6-7) € [T di(PAQM+m,#)(H-AOM(QE).PO).4(0). (D]
[[DQ DP D¢ Dr DA] Go(Qr. #7) Qo(Q_1.¢7) & - T dH(PAQA+7, ) ()~ AOM(QU). PO).4().7(0)]
JIDQ DP Dy D] #1Qr,97) ¥ (Q1,6-7) [Tiet-ry S(M)] € Lv AP md)0)

= — — (5.8)
JIDQ DP Dy D] Qo(Qr. ¢1) Qo(Q-1.¢-1) [eer1y S(M(D)] & L AUPAL 70

whereT is again an arbitrary parameter which we takesteventually. If in (4.37) we perform the integral ovisthen
the only diference between (4.37) and (5.8) is that instea@Fof the distributions] M] appears in both numerator and
denominator. But clearly the two distributions have the same supporth’(¢, Q, P). Let us therefore explicitly do
the integral in both (4.37) and (5.8) and compare the resultsffiltesito do this at fixetbecause boté distributions
factories over{T, T]. We consides(M) as the limitN — o0, e — 0 of

Sne(M) = 6( Z KW Fy F - €9) (5.9)

u,v<N

Let f = f[x] be any functional ofr,, u = 1,.,N. TheN x N submatrixKy" = K*’; u,v < N is also positive
definite on the corresponding vector subspace. Hence its square root and inverse is well defined. Thus, by shiftir
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the integration variable and switching to radia@nd polar coordinates respectively we obtain with the unit vector
Xu/r = N(SD)

f dN7r 6n.e(M) f ()
RN

dNx 8(x" Ky x—€2) f(=h + )

RN
1
= — dVx o(x" x - €2) f(=h + KX
Tt Jon ( ) ( NX)
1 N-1 2 _ 2 f ’ -1/2
= — rTdr o(re — dvol(y) f(-h"+ Ky7“rn
ol i (2-€) [, dvelte) F(- + K 2m(e)
N-2 i
= — dVol(e) f(-h + K M2en 5.10
VT Jers AVOIE) T+ K en(e) (5.10)
In the limite — O this approaches
€N—2
—————— VoI(SNY) f(-h 5.11
NG (™) f(=h) (5.11)
and in that sense we may write
(M) = —S oISV 6u(F), Sn(F) BEGH (5.12)
N,e = N , ON = .
2+/detKyn) s

SinceKy is a phase space independent constant, when inserting (5.12) into (5.8), the prefactor cancels in both nume

ator and denominator and we arrive at (4.37) in the lemit 0 andN — oo.

6 Conclusions and Outlook

The three tasks accomplished in the present paper are:

1. We have demonstrated that within the limits of the formal nature of the manipulations that are usually employec
when dealing with path integrals, three canonical quantisation methods, namely the reduced phase space —,
operator constraint and the Master Constraint quantisation all lead to the same path integral formulation fo
the physical inner product. In order that rigging map techniques can be employed to the operator constrair

approach, in the case of structure functions one has to pass to Abelianised constraints.

2. The resulting path integral can be written in terms of the classical Lagrangian from which the classical theory
descends. However, the correct measure to be used is not the naive Lebesgue measure on path space, rather
measure must be corrected by factors that depend on the first and second class constraints as well as the ga

fixing condition.

3. The gauge fixing condition is in one to one correspondence with the choice and interpretation of a convenier
choice of an algebra of physical observables and a physical Hamiltonian. It is possible to do without gauge
fixing conditions provided one finds alternative methods to construct an algebra of Dirac observables. Howeve

the resulting algebra is almost surely algebraically more complicated, nfidcaltfo quantise, lacks an a priori

physical interpretation and is not equipped with a preferred physical time evolution. In particular, if one wants
to talk about the scattering matrix between physical states, the dependence on the gauge fixing is unavoidak

because it determines the physical time evolution of the chosen “basis” of gauge invariant operators.
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As we have already stated in the introduction, certainly not all the results and techniques derived and used in tt
present paper are new, bits and pieces of it are already in the literature. However, we believe we have assembled
material in a new and fruitful way in order to better understand the relations between the four quantisation method
discussed in this paper. Also we think that the mathematical and physical influence of the gauge fixing condition ha
been described in this paper from a new angle.
As we have seen explicitly, both methods of proof in section 5 actually relied on the fact that the Kniatrix

a constant function on phase space. However, this is not the case for the concrete Master Constraint for Gene
Relativity studied in [16]. Namely, there one considered an expression of the form

f \/W (6.1)
whereC is the Hamiltonian constraint ands the intrinsic three metric of the hypersurfaceThe “matrix” K(X,y) =
8(x.y)/+/det@)(x) is chosen here in order to make (6.1) invariant under spaffabdiorphisms and is clearly a
non — trivial function on phase space. In view of the analysis of the previous section, rather than the Hamiltoniar
constraint in its original fornC, in the presence of the dust matter one would choose it in the locally equivalent
form C’'(x) = n(x) + h'(g(x), P(x)) whereq,P are the gravitational degrees of freedom anid one of the dust
momenta. Notice that for this type of mattérdoes not depend on the dust configuration figldsd therefore dust
deparametrises the system and leads to a conserved physical Hamiltonian. Howe@risadsscalar density and
thus to make the corresponding Master constraint spatidtyodnorphism invariant, one would again need a phase
space dependent matrix of the type considered above. Thus it appears as if the analysis of the present section does
apply to GR.

However, this is not the case: Namely, the dufdrs the possibility to completely abelianise the full constraint al-
gebra including spatial diffeomorphisms. Thus in contrast to the usual situation in which the sffatiadatphisms
form a subalgebra of the constraint algebra but not an ideal, it is possible to completely solve the sgatial diff
morphism constraint before solving the Hamiltonian constraint. In particular it is possible to perform a canonical
transformation to coordinates such t@aonly depends on spatially diffeomorphism invariant fields [10]. It is there-
fore no longer necessary to choose a density weight minus one Kathfe can simply take an orthonormal béasjs
of Ly(o, d®x) and consider the;, :=<b,,C’ >. Then one chooses any phase space independent Kétsubject to
certain fall df conditions in index space (typicall should be trace class [16]). The fact tRathas density weight
one ensures th&’ can be quantised on the unique [44] LQG Hilbert space [45] as was shown explicitly in [33]. That
guantisation, however, is most probably too naive in order guarantee anomaly freeness and must be improved. Y
since the anomaly is a@ncorrection to the classical result, the relation between the MCP (which also works in the
anomalous case) and the path integral formulation derived in the previous section, remains correct in the semiclassit
limit. An alternative to working withC’ already reduced with respect to the spatial diffeomorphism constraint is to
keep the unreduced and the unreduced Abelianised spatial diffeomorphism conslﬂ’:ii[tt@]. The caveatin LQG
to quantising the classical generator of spatifitedmorphisms which arises due to strong discontinuity of the one
paranmeter unitary subgroups of spatial diffeomorphisms on the LQG Hilbert space is circumventetﬂjésmaﬂe
a density one covector but a density one scalar and thus can be quantised on the LQG Hilbert space [47], albeit it
difficult, similar toC’, to achieve anomaly freeness.

This paper has been the starting point for further analysis. In [21] we have computed the correct measure for th
Holst action and have checked explicitly that it is consistent with the analysis of [20] for the Plebanski action. In
[25] the relation between the Master Constraint Programme and the operator constraint programme for Abelian ar
anomaly free constraints and with phase space independent Kats analysed with higher mathematical preci-

sion at the level of the canonical theory and it is shown that under certain technical assumptions the two methoc
lead to the same result, thus partly removing the formal character of the analysis of section 5. Finally, in [26] it was
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formally checked by using available semiclassical techniques [46] that the Master Constraint Programme for Gener
Relativity leads also to the expected path integral formula up to a local measure factor when one considers pha
space dependent matrid€sand non — Abelian constraints. However, the results here are less strong (more formal)
than in the Abelianised case.

Many further questions arise from the present paper:
Since the Master Constraint can in principle also accommodate (sums of squares of) second class constraints if
subtracts a suitable normal ordering constant [16], one could ask whether the separate treatment of first and secc
class constraints could be unified and if yes how the corresponding path integral would look like. Secondly, in appli
cations to path integral formulations of LQG one should really take the unavoidable measure factor derived in [21
and following the general theory summarised here seriously and define a corresponding spin foam model. Work is |
progress in order to achieve that. Next, due to the measure factor the theory lacks manifest spdiastimegphism
invariance. On the other hand it should be manifestly invariant under the gauge transformations generated by the fi
class constraints which in General Relativity corresponds to the Bergmann — Komar “group” [48] (more precisely
it is the enveloping algebra generated by the secondary first class constraints of GR). The two groups are known
coincide when the classical equations of motion hold and this is the reason why the Lagrangian and Hamiltonia
descriptions are equivalent classically. Howeversbéll there is no particular relation between these two “groups”
and it is consistent with the classical theory that the spacetifis®diophism group is not a symmetry of the quantum
theory. In [22] it is further analysed in which sense the Bergmann — Komar group is a symmetry of the Hamiltonian
path integral. It seems that the attempt to construct a spacetime covariant path integral of GR has no chance to be
rived from a canonical platform which is the only systematic starting point that we have and it would be interesting to
understand better the implications of this conclusion. In some sense it is clear that spa¢ktonmeddhism invari-
ance is far from dfficient in order to guarantee that one has a correct quantisation of a given classical theory. Many
Lagrangians are spacetime diffeomorphism covariant (e.g. higher derivative theories) but all of therfidran¢ di
Hamiltonian constraints (evenffiirent numbers of degrees of freedom). Thieat of this will show, in particular, in
the local measure factor that we have exhibited.
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