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Abstract

Path integral formulations for gauge theories must start from the canonical formulation in order to obtain
the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In
this article we review this rather involved procedure in full generality. Moreover, we demonstrate that the re-
duced phase space path integral formulation formally agrees with the Dirac’s operator constraint quantisation
and, more specifically, with the Master constraint quantisation for first class constraints. For first class con-
straints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised)
constraints which is always possible locally in phase space. Generically, the correct configuration space path
integral measure deviates from the exponential of the Lagrangian action. The corrections are especially se-
vere if the theory suffers from second class secondary constraints. In a companion paper we compute these
corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.
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1 Introduction

Path integrals for scalar Quantum Field Theories (QFT) on Minkowski space are supposed to compute the S – Matrix
for the Hamiltonian in question. A standard Folklore says that heuristically one should simply consider all “paths”
between some initial and final scalar field configuration on a spatial hypersurfaces labelled by moments of timeti , t f

respectively and integrate over the exponential of (i times) the action with “Lebesgue measure” in order to obtain the
evolution kernel. More specifically, letΩ be a (normalised) ground state (provided it exists) for the HamiltonianH on
a Hilbert spaceH , let Q be the configuration space of spatial scalar field configurations with “configuration Lebesgue
measure”dq, letQti ,t f = ×t∈[ti ,t f ]Q be the set of paths, let [Dq] =

∏
t∈[ti ,t f ] dqt the “path Lebesgue measure”, then

< ψ f , ei(t f −ti )H/~ ψi >H=

∫
Qti ,t f

[Dq] ψ f [q(t f )] ψi[q(ti )] eiSti ,t f [q,q̇]/~

∫
Qti ,t f

[Dq] Ω[q(t f )] Ω[q(ti)] eiSti ,t f [q,q̇]/~
(1.1)

andSti ,t f is the classical (Lorentzian) action integrated over the time interval [ti , t f ]. Here by Lorentzian action we
mean the Legendre transform

S[q, q̇] := extrp {
∫ t f

ti
dt[pq̇− H(p,q)]} (1.2)

wherep denotes the momentum conjugate toq andH the Hamiltonian. This “theorem” is wrong for several reasons.
First of all, from the mathematical point of view, there is no Lebesgue measure on infinite dimensional spaces.

Therefore one would like to consider [DQ] exp(iS/~) as a (complex) measure onQ but this does not work because
the modulus of a complex measure [2] is supposed to be normalisable which is obviously not the case here. If the
Hamiltonian is bounded from below, it is therefore much more promising to consider, instead of the unitary group
R → B(H); t 7→ exp(itH/~) the contraction semigroupR+ → B(H); t 7→ exp(−tH/~). HereB(H denotes the
algebra of bounded operators onH . Under these circumstances another Folklore theorem states that

< ψ f , e−(t f −ti )H/~ ψi >H=

∫
Qti ,t f

[Dq] ψ f [q(t f )] ψi[q(ti )] e
−SE

ti ,t f
[q,q̇]/~

∫
Qti ,t f

[Dq] Ω[q(t f )] Ω[q(ti)] e
−SE

ti ,t f
[q,q̇]/~

(1.3)

where nowSE
ti ,t f

denotes the “Euclidean” action, that is, the Legendre transform1

SE[q, q̇] := extrp {
∫ t f

ti
dt[ipq̇− H(p,q)]} (1.4)

While even under these circumstances the partition function

Z :=
∫

Q
[Dq] e−SE/~ Ω[q(t f )] Ω[q(ti )] (1.5)

diverges, under fortunate circumstances it is possible to assign toe−SE
[Dq] /Z a well defined measure theoretic

meaning on a properσ−algebraQ (with repect to whichSE is usually not even measurable). Whenever (1.3) can be
made rigorous, it is called the Feynman – Kac formula [3, 4].

However, as it is well known [5], also from the physical point of view, (1.1) or (1.3) are wrong in general. This
is because the strict derivation (see e.g. [6]) of, say (1.3) requires a skeletonisation of the time interval [ti , t f ] and

1Usually one obtains the Euclidian action by Wick rotationt → it. However, we insist on this definition because it does not rely on an
analytic structure of the fields in the time coordinate which is not justified anyway. Our definition is formally correct also in circumstances
where the Hamiltonian is not only quadratic in the momenta with constant coefficients, see below.
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corresponding resolutions of the identity in terms of (generalised) position and momentum eigenvectors. That is to
say, a priori one has to consider the complex hybrid action

SC[q, p] :=
∫ t f

ti
dt[ipq̇− H(p,q)] (1.6)

which is integrated over both momentum and configuration coordinates. IfH depends onp only quadratically with
constant coefficients, then one can perform the Gaussian integral and up to an (infinite) constant which drops out in
the fraction (1.3) one arrives at the Folklore result. However, in more general situations the result is different. For
instance, the Hamiltonian could still be quadratic inp but with q dependent coefficients which leads to a nontrivial
modification of the “measure” [Dq]. More generally, however, the Hamiltonian may not be quadratic or even analytic
in p in which case an exact configuration space path integral representation is not available, only a saddle point
approximation is available (plus the corresponding perturbative treatment of the non Gaussian corrections). Notice
that the saddle point approximation and subsequent integrating out of the momentum variables reproduces (1.4) up to
a non trivial measure factor.

So far we have only considered scalar QFT on Minkowski space and even here we saw that the only correct
derivation of the path integral proceeds via the Hamiltonian formulation, as stressed for instance in [5]. Additional
technical and conceptual complications arise when we consider gauge theories and/or other background spacetime
metrics. The simplest problem occurs for Yang – Mills type of gauge theories: Here the action is gauge invariant and
if the measure is anomaly free (is gauge invariant as well) then one should divide by the (in general infinite) volume
of the gauge group in order to give sense to both numerator and denominator in (1.3). If one considers QFT on
non stationary background spacetimes then no natural Hamiltonian and vacuum exists [7] and the conceptual status
of the path integral as a means to calculate scattering amplitudes becomes veiled. Even more veiled the situation
becomes for totally constrained systems such as General Relativity on spatially compact four manifolds admitting
globally hypebolic metrics when there is no true Hamiltonian at all. In this case certainly also the notion of a Wick
rotation breaks down which on Minkowski space allows to reconstruct the Lorentzian Wightman functions from the
Euclidian Schwinger functions via the Osterwalder – Schrader reconstruction theorem [1]. Parts of the reconstruction
theorem, namely the construction of a Hamiltonian and a Hilbert space from a measure satisfying a natural background
independent generalisation of the OS axioms, can be generalised to background independent theories [8].

It transpires that especially in the context of realistic physical theories, that is, General Relativity coupled to
(standard) matter, it is neither clear what the heuristic Ansatz (1.1) or (1.3) computes nor whether it is the correct
formula for what it is supposed to do. One possibility to deal with these problems is to try to solve the constraints
classically and then to quantize the reduced phase space equipped with the (pull back of the) Dirac bracket [6]. This
can be done in two ways. The first option is to impose suitable gauge fixing conditions in order to render the system
totally second class and then to quantize the corresponding pull back of the Dirac bracket together with the induced
reduced Hamiltonian. The second option is to determine explicitly a sufficient number of Dirac observables and to
quantise the symplectic structure induced by the Dirac bracket. While for rare examples independent means exist to
determine those gauge invariants, for most systems the only practical way to determine a sufficient number of Dirac
observables is via a choice of gauge fixing. Namely, as we will review in the next section (see also e.g. the appendix
in the second reference of [10]), there is a one to one correspondence between a choice of gauge fixing and a preferred
set of gauge invariant functions which generate the full algebra of gauge invariant functions. In that sense the two
methods, gauge fixing and this so called relational approach, are completely equivalent. The method is physically
very interesting because it not only provides a suitable algebra of gauge invariant objects but also a gauge invariant
Hamiltonian which drives the time evolution of those invariants. Here the question of equivalence between different
choices of gauge fixing arises. As we will review in the next section, the preferred algebras of invariants that one
obtains via different choices of gauge fixing are isomorphic. Of course they differ in their physical interpretation
but as Poisson algebras they are isomorphic, the physical quantum kinematics is not affected by the choice of gauge
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fixing. The difference arises in the physical Hamiltonian, that is, in the quantum dynamics. The explicit form of the
physical Hamiultonian as a function of the invariant generators of the algebra of gauge invariant functions depends
absolutely sensitively on the choice of gauge fixing and therefore even classically the evolution of the invariants will
differ drastically from each other for different choices. For some choices the Hamiltonian may be explicitly time
independent and leads to a conservative reduced system, for others it may not be. Even more crucial the choice of
gauge fixing becomes in the quantum theory. Already for finite dimensional systems, depending on the choice of
gauge fixing the physical Hamiltonian and other composite invariants built from the generators of the gauge invariant
algebra may have discrete or continuous spectrum [9]! Notice that we here talk about composite invariants that have
the interpretation of a given non invariantf measured in terms of another non invariantT (the so called clock). If
we changeT to T′ then its spectrum may switch from continuous to discrete or vice versa even though we talk
about the samef and about the same Hilbert space representation!. In infinite dimensional situations the choice of
gauge fixing has an even stronger influence for not only do we have to find a representation of the generators of the
algebra of observables but in addition that algebra should support the physical Hamiltonian. One way to read Haag’s
theorem [11] is that Hamiltonians with different interaction terms cannot be implemented on the same Hilbert space.
Thus generically different choices of gauge fixing will force us to choose different representations. For instance one
may want to construct a cyclic representation built from application of the generators to a vacuum (ground state of
the Hamiltonian). That vacuum of course depends on the Hamiltonian and even for free field theories those cyclic
representations are typically unitarily inequivalent. In case that the physical Hamiltonian is explicitly time dependent,
one is in addition confronted with the usual problem of QFT on curved spacetimes, namely that one has to decide at
which point of time one wants to select a vacuum vector.

All of this certainly strongly affects the resulting reduced phase space path integral because it is based on the
selected Hilbert space representation and the transition amplitudes between physical states do depend on the physical
Hamiltonian. For any such choice, the path integral then does have the interpretation of (1.1) or (1.3) in terms of the
reduced Hamiltonian.

An additional complication that we have not mentioned yet is the case of a system with second class constraints.
Such a system is to be canonically quantised with respect to the Dirac bracket rather than the Poisson bracket. Typi-
cally the Dirac bracket destroys the canonically conjugacy of the global coordinates of the phase space that one started
from. Since to find representations of such complicated Poisson algebras is usually prohibitively difficult one is forced
to switch to local Darboux coordinates (by means of a canonical transformation with respect to the original Poisson
bracket) which is always possible locally [6]. Such coordinates may be very difficult to find in practice. Assuming this
to have done nevertheless, one can then construct the reduced phase space using a choice of gauge fixing as already
described above and after having chosen a Hilbert space representation subordinate to that gauge fixing, the transition
amplitudes in terms of the induced physical Hamiltonian.

From here on then mostly one proceeds rather formally. One assumes that one can choose a Schr¨odinger repre-
sentation based on the reeduced Darboux configuration space. By using well known skeletonisation techniques one
then basically writes the transition amplitude between initial and final statesΨi ,Ψ f , as a path integral over the reduced
Darboux phase space, replacing the reduced Hamiltonian operator by its classical function which results in the expo-
nential of the reduced Hamiltonian Darboux action. In order to make contact with (1.1) one wants to rewrite this path
integral as a path integral over the unreduced, original configuration space and in terms of the original Lagrangian. As
is well known, this can be formally done and we will review this rather involved procedure in section 3. Basically one
first extends the reduced Darboux phase space to the unreduced Darboux phase space thereby introducingδ distribu-
tions of the constraints and the gauge fixing condition as well as measure factors which cancel the Jacobian that arises
when solving theδ distributions. One then observes that, in presence of theδ distributions the reduced Hamiltonian
action can be written as the unreduced symplectic potential, in terms of the unreduced Darboux coordinates. Inter-
estingly, the measure factors and theδ distributions combine in just the right way as to make the resulting expression
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independent of the gauge fixing condition when considered as a measure on gauge invariant functions. This is similar
to the Fadeev – Popov theorem [6] and we will review this result in section 3. This seems to be in contradiction to what
we have said above about the dependence of the transition amplitudes on the gauge fixing condition. The resolution is
that at this point the integral isnot over gauge invariant functions, it is an integral overΨi Ψ f which are functions at
initial and final points of time of the reduced Darboux coordinates which are not gauge invariant. More generally, in
applications to scattering theory, we may be interested also in n-point functions so that the path integral is over func-
tions of the reduced Darboux coordinates also at intermediate times (in fact we will use the method of a generating
functional so that there is a dependence on the reduced Daroux coordinates atall times). One may, in the presence of
theδ distributions, extend the non gauge invariant, reduced Darboux coordinates to gauge invariant functions which
use the chosen gauge fixing condition. However, these extended functions now display a complicated dependence
on all unreduced Darboux coordiantes which makes this extension practically useless. Even if one did perform the
extension, while one can now change the dependence on the gauge fixing condition in the measure, one cannot get rid
of it in the gauge invariantly extended functions2. In any case, one next performs the canonical transformation that
leads from the Darboux coordinates back to the original canonical coordinates which does not affect the symplectic
potential and the Liouvile measure but it affects the initial and final states. Then one exponentiates theδ functions and,
by the technique introduced in [12], gets rid of the secondary second class constraints which leads to further changes
in the measure. Finally, one integrates out the momenta. This is only possible if the reduced Darboux configuration
coordinates, as functions of the original canonical coordinates, do not depend on the original momenta and if they do
not leads in general to further changes in the measure while now the exponential of the covariant Lagrangian action
appears.

The point of mentioning these in principle well known facts is twofold. The first is that we wish to stress that
even if all the assumptions that we have listed can be verified, the correct Langragian configuration space measure
may differ drastically from the naive one in (1.1). These deviations depend crucially on the dynamical content of the
theory and cannot be discarded. The second point that we want to make is the dependence of the transition amplitudes
on the chosen gauge fixing. This dependence is at first astonishing because one is used from Yang – Mills theory that
the path integral does not depend on the gauge fixing and it even sounds dangerous because it seems as if this depen-
dence implies that gauge invariance is broken. However, this is not the case: The dependence on the gauge fixingis
physically correct. The reason is that in generally covariant systems the dynamics mixes with gauge invariance. In
Yang – Mills theory this is not the case, there one has a gauge invariant Hamiltonian at one’s disposal which is not
generated by a gauge fixing condition, it is simply there without further input. Gauge invariant functions in Yang –
Mills theory can also be easily constructed without ever mentioning any gauge fixing, for instance Wilson loops or
flux tubes between quarks. The gauge fixing condition comes in only when cancelling an otherwise infinite constant.
This introduces a gauge fixingδ distribution and a Fadeev – Popov determinant into the measure whose combination is
independent of the gauge fixing by construction, similar as in our discussion above. In contrast, in generally covariant
systems a gauge fixing condition can be seen asdefining a preferred algebra of observables and a preferred dynamics
thereof. Gauge invariance is not at all broken, the dynamical system consisting of reduced Darboux phase space and
reduced Hamiltonian as defined by a gauge fixing is in one to one correspondence with a dynamical system consting
of a preferred algebra of Dirac observables and a gauge invariant physical Hamiltonian defined via the same gauge
fixing (now interpreted as a choice of clocks). The two descriptions are equivalent. The gauge fixing dependence
comes in because one needs a gauge fixing in order to arrive at the very notion of a dynamics, or in other words,
at the very notion of an observer. This observer dependence of the classical and quantum theory has already been
stressed in [13] and will be discussed in more detail in [14]. Let us stress again, as we have already said, that similar

2A special situation arises if one considers gauge transformations that tend to the identity in the infinite past and future and that the only
non gauge invariant functions in the path integral are located at the infinite past and future. This is not the case for the n-point functions or the
generating functional but for the rigging kernel between two kinemtical states. Now the dependence on the gauge fixing formally disappears
from the path integral, of course modulo the representation theoretic caveats that we have mentioned.
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as in Yang – Mills theories the gauge fixing dependence of themeasuredisappears when we restrict it (as a linear
functional) to gauge invariant functions. However, the choice of those gauge invariant functions themselves and the
corresponding physical Hamiltonian, in other words the physical interpretation of the theory, induced by a choice of
gauge fixing (clock) is what makes the description gauge choice dependent. In contrast, in Yang – Mills theories such
a choice of clocks is not necessary in order to arrive at useful gauge invariant functions. In principle, the generators
of the algebra of gauge invariant functions for one choice of gauge fixing can be written as complicated functions of
the generators for any other choice. However, this involves an infinite series of commutator functions about whose
convergence nothing is known and which therefore is practically useless if not mathematically ill –defined.

In this paper we want to illustrate the complications sketched above for a general theory which will be the first
result of this paper. While certainly bits and pieces of our description appear in various places in the literature, we
hope that assembling them in the form presented here may add a certain amount of clarity to the question how reduced
phase space and path integral quantisation fit together.

The second result of this paper will be to sketch how the path integral is related to Dirac’s operator constraint quanti-
sation [15] and a particular incarnation of it, the so called Master Constraint Programme [16] for first class systems.
As already mentioned, the reduced phase space rarely admits a global Darboux coordinate system and hence a quan-
tisation of the unreduced phase space is much simpler. The price to pay is that one has to impose them as non –
anomalous operators on that Hilbert space in order to compute the physical Hilbert space. There are certain heuristic
group averaging methods [17] available in the literature which, as the name suggests, apply when the constraints
form a Lie algebra. If they do not (structure functions), then not only are the constraints difficult to define without
anomalies because of factor ordering difficulties but also group averaging is not applicable. It is for that reason that
the Master Constraint Programme (MCP) was introduced. In the MCP, all constraints are enconded into one single
Master constraint. The Master Constraint is a classically equivalent platform and is automatically free of anomalies
so that group averaging (or direct integral decomposition) methods apply.

The central ingredient of the group averaging method is a (generalised) “projector” (or rigging map) from the kine-
matical Hilbert space into the physical one, equipped with an associated physical inner product. It can be expressed in
terms of a path integral which in case of a true Lie algebra is readily recognised as (1.1) or (1.3) respectively. In case
of the Master constraint that can also be established, however, the proof is somewhat more involved. Not surprisingly,
the key to the understanding of how all of these methods fit together is how the reduced phase space description arises
from the constraints and a suitable gauge fixing condition which in turn allows for a local Abelianisation of the con-
straints. It may seem astonishing that the gauge fixing condition enters the interpretation of the physical Hilbert space
in such a prominent way. The reason for why that happens is that the physical Hilbert space can be considered as the
closure of the set of vectors that one obtains by applying the algebra of gauge invariant observables to a cyclic physical
state. However, the construction of that algebra and the interpretation of its elements is faciliated by considering the
gauge invariant extension of the kinematical algebra as induced by a gauge fixing condition. In other words, while in
the operator constraint method one only deals with manifestly gauge invariant objects, their interpretation again relies
on a gauge fixing condition or equivalently on a choice of rods and clocks. Different such choices result in the same
algebra but its generators (elementary observables) differ for each choice.

To summarise:
The correct path integral formula and its interpretation can only be obtained by following the Hamiltonian path, oth-
erwise one misses important corrections to the measure. In the context of spin foam models [18] for Loop Quantum
Gravity [19] this has been pointed already in [20] (see also [21, 22]). The corrections to the measure are not mani-
festly covariant as first indicated in [23] but seem to be required in order to maintain at least some form of spacetime
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covariance as claimed in [24]. They should therefore be taken seriously in any realistic spin foam model for General
Relativity. Work is now in progress which tries to implement these corrections. See also [22] where the covariance of
the path integral with respect to the Bergmann – Komar group is discussed.

This article is organised as follows.

In section two we review Dirac’s analysis of gauge sytems and the relation between gauge fixing and a gauge in-
variant description.

In section three we derive the path integral from the quantisation of the reduced phase space based on the natural
generators of the algebra of invariants defined by a choice of gauge fixing conditions.

In section four we derive the same path integral starting from the unreduced (with respect to the first class con-
straints) phase space and implement the rigging map. In case that the first class algebra of constraints involves
structure functions, using the rigging map technique requires to pass to new constraints that form an algebra. This is
always (locally) possible because one can always (locally) Abelianise constraints.

In section five we use as an alternative route the MCP and show that again one arrives at the same path integral.
This is to be expected because both constraint rigging and Master constraint rigging should provide the generalised
projector on physical states, however, the technical mechanism by which this works is somewhat involved.

Finally in section six we summarise and conclude.

2 Classical Preliminaries: Gauge Fixing Versus Gauge Invariant Formulation

In an attempt to make this article self – contained we start with the classical theory. We will neeed the corresponding
notation anyway for the path integral formulation. First we summarise the main ingredients of Dirac’s algorithm.
Then we display the relation between the reduced phase space of gauge invariant observables and the pull back phase
space as induced by a gauge fixing. As we will see, the two formulations are equivalent for suitable choices of gauge
fixing.

2.1 Brief Review of Dirac’s Algorithm

We consider a theory with LagrangianL(qa(t), va(t)) and corresponding action

S =
∫

[t1,t2]
dt L(qa(t), va(t)) (2.1)

Here the indexa takes values in a general set which may comprise discrete and/or continuous labels. We are interested
in a theory with gauge symmetries so that the Lagrangian will be singular, that is, we cannot solve all the velocities
va = q̇a for the canonical momenta

pa :=
∂L
∂va (2.2)

By solving a maximal number of velocitiesvα (whose number is equal to the rank of the matrix∂2/∂va∂vb), i.e. a
maximal number of the equations (2.2), in terms of the momentapα and the remaining velocitiesvi , that is,vα =
uα(qa, pα; vi) such that (va) = (vα, vi) (i.e. the indicesα and i take values in index sets that partition the index set
associated witha) we obtain the primary constraints

Ci = pi − [
∂L
∂vi

]vα=uα (2.3)
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which does not depend on thevi by assumption of the maximality of thevα and contain thepi only linearly. The
canonical Hamiltonian (total Hamiltonian)

HT = [vapa − L(q,v)]vα=uα (2.4)

always has the structure [15, 19]
HT = H′0(q, p) + viCi(q, p) (2.5)

that is, it is an affine function of thevi .
The further analysis of the system is now governed by Dirac’s algorithm [15]:

One requires that the constraints are preserved by the Hamiltonian flow ofHT . Whenever{HT ,Ci} = 0 is not satisfied
on the constraint surface, there are two possibilities: Either 1.{HT ,Ci} does not involve the velocitiesvi or 2. it
does. In the first case we must add{HT ,Ci} to the list of constraints in the second we solve all the equations of
type 2 for some of the velocitiesvi (assuming that the system of equations is not overdetermined). Iterating like this,
one ends up, in general, with further constraintsCI , which are called secondary constraints, and the velocities are
restricted to be of the formvi = vi

0(q, p) + λmvi
m(q, p). Herevi = vi

0 solves{HT ,Cj} = {Hc,CJ} = 0 for all j, J
on the constraint surface{Cj = CJ = 0∀ j, J} and (vi

m)m is a maximal linearly independent set of solutions of the
systemvi{Ci ,Cj} = vi{Ci ,CJ} = 0 for all j, J (on the constraint surface). The coefficientsλm are free and phase space
independent.

It follows that the
Fm := vi

mCi (2.6)

are first class constraints, i.e. they weakly (i.e. on the constraint surface) Poisson commute with all constraints. By
taking linear combinations of the constraintsCi ,CI (with phase space dependent coefficients) we isolate a maximal
number of first class constraints. The constraintsFm are called primary first class constraints, the additional ones
FM are called secondary first class constraints. The remaining constraints among the set (Ci ,CI ) which are linearly
independent of the set (Fµ) := (Fm, FM) are called second class constraints and are denoted by (SΣ).

The canonical Hamiltonian can now be written

HT = H′′0 + λ
mFm (2.7)

where
H′′0 = H′0 + vi

0Ci (2.8)

is of first class by construction. It may therefore be an affine function of theFµ (with phase space dependent coeffi-
cients)

H′′0 = H0 + f µFµ (2.9)

The pieceH0 is referred to as the true Hamiltonian because it is not constrained to vanish. In totally constrained
systems such as General Relativity it vanishes identically, that is, the canonical Hamiltonian is a linear combination
of first class constraints. Notice that only the primary first class constraints appear in the canonical Hamiltonian with
arbitrary coefficientsλm and so one would associate gauge invariance only with respect to them. However, this is
in general inconsistent because the Poisson algebra of primary first class constraints generically does not close, only
the full set of first class constraints always does. In other words, since the Poisson bracket between two first class
functions is first class and ifO is weakly invariant under theFm then also 2{F[m, {Fn] ,O}} = {{Fm, Fn},O} should be
weakly zero. Furthermore, the time evolution ofO with respect toHc should be gauge invariant which gives

{Fm, {HT ,O}} = −{HT , {O, Fm}} − {O, {Fm,HT}} ≈ {{Fm,H
′′
0 },O} ≈ 0 (2.10)

Hence gauge invariant quantities should be those that weakly Poisson commute with the minimal subset of first class
constraints generated by the Poisson brackets between the{HT , Fm} (and higher order brackets withHT) and between

9



the first class primary constraints among each other. For most systems of physical interest this exhausts all first class
constraints and we will assume this to be the case here. In that situation the pieceH′′0 of the Hamiltonian in (2.9)
will therefore generically contain all secondary first class constraints as well, that is, the corresponding phase space
functions f µ will be non – vanishing. See [6, 27, 28] for a discussion when this so called Dirac conjecture can be
proved.

As far as the second class constraints are concerned, they are not associated with any gauge freedom. It is in
fact inconsistent in general to require an observable to satisfy{SΣ,O} ≈ 0 as an application of the Jacobi identity
reveals. This means that observables are not first class functions, they only have to weakly Poisson commute with
the first class constraints, not with the second class constraints. Hence, to solve the second class constraints we
simply have to restrict ourselves to the corresponding constraint surface. In other words, once we have computed the
functions on phase space which have weakly vanishing Poisson brackets with all first class constraints, we should
restrict them to the constraint surface defined by the second class constraints only. The induced symplectic structure
between such observablesf , f ′ on the total constraint surface is simply the pull back of the symplectic structure on
the unconstrained phase space by the embedding of the constraint surface defined by the second class constraints into
the full phase space. More precisely, letP denote the unconstrained phase space andP := {m ∈ P; SΣ(m) = 0 ∀Σ}
the constraint surface defined by the second class constraints. Consider the corresponding embeddingJ : P → P. If
Ω denotes the symplectic structure onP thenΩ− := J∗Ω denotes the pull – back symplectic structure onP. This is
again a symplectic structure because it is closed and non degenerate which follows from the fact that the matrix

∆ΣΣ′ := {SΣ,SΣ′} (2.11)

is non degenerate. The corresponding Poisson bracket is given by

{J∗ f , J∗ f ′}− = J∗{ f , f ′}∗ (2.12)

where
{ f , f ′}∗ := { f , f ′} − { f ,SΣ} (∆−1)ΣΣ

′
{SΣ′ , f ′} (2.13)

denotes the Dirac bracket on the full phase space. We will prove this for the convenience of the reader in the next
section.

The reduced phase space is defined by the Poisson algebra of gauge invariant observables, which are not weakly
vanishing (i.e. which are not linear combinations of first class constraints) equipped with the pull-back of the Dirac
bracket to the constraint surface defined by the second class constraints. Notice that the Dirac bracket generically
changes the symplectic structure for the observables as compared to the Poisson bracket. However, it does not change
the equations of motion defined by the canonical Hamiltonian as the Dirac bracket and the Poisson bracket between
two functions coincide whenever at least one of them is a first class function.

2.2 Reduced Phase Space and Gauge Fixing

In principle the description of the previous subsection entails the complete information about the dynamics and the
physical (gauge invariant) content of the theory. However, it does not provide an explicit description of the ob-
servables. Moreover, in totally constrained systems the equations of motion for the observables with respect to the
canonical Hamiltonian are trivial which means that some important ingredient is missing in that case: A non van-
ishing physical Hamiltonian which drives the time evolution of the observables. In this section we give an explicit
construction of the reduced phase space, provide a physical Hamiltonian and display the relation of our framework to
gauge fixing.

We saw that we eventually obtain a constrained Hamiltonian system with first class constraintsFµ and second class

10



constraintsSΣ on a phase space with canonical pairs (qa, pa), a = 1, ..,n; m≤ n with respect to the original Poisson
bracket. As shown in [27], there always exists a local canonical transformation (with respect to the Poisson bracket)
from the canonical pairs (qa, pa) to canonical pairs (QA,PA), (φµ, πµ), (xσ, yσ) such that

SΣ = 0 ⇔ zΣ = 0 (2.14)

where the indexσ takes half the range of that ofΣ and where we denoted eitherxσ or yσ by zΣ for some value ofΣ.
It is then clear that at least weakly the Dirac bracket and the Poisson bracket coincide on the (Q,P, π, φ) and thatzhas
zero Dirac bracket with anything.

Next, if there is a true, gauge invariant HamiltonianH0 in (2.9) (not constrained to vanish) enlarge the phase space
by an additional canonical pair (q0, p0) and additional first class constraintF0 = p0 + H. The reduced phase space
and dynamics of the enlarged system is equivalent to the original one, hence we consider without loss of generality
a system with no true Hamiltonian (totally constrained system). The canonical Hamiltonian of the system is then a
linear combination of the first class constraints

HT = ρ
µFµ (2.15)

Here we have setρM = f M for secondary first class constraints andρm = f m + λm for primary first class constraints
where f µ is defined in (2.9).

A gauge fixing is defined by a set of gauge fixing functionsGµ with the property that the matrix with entries
Mµν := {Cµ,Gν} has everywhere (on the unconstrained phase space) non vanishing determinant3. Notice that we
allow for gauge fixing conditions that display an explicit time dependence. The conservation in time of the gauge
fixing conditions

0 =
d
dt

Gµ =
∂

∂t
Gµ + {Hc,Gµ} ≈

∂

∂t
Gµ + ρ

νMνµ (2.16)

uniquely fixes the “Lagrange multipliers” to be the following phase space dependent functions

ρµ = −
∂Gν
∂t

(M−1)νµ =: ρµ0 (2.17)

At this point one may be puzzled by the following issue: The functionsρµ already depend on the phase space through
f µ. For theρm we can always solve (2.17) for the free functionλm. But for theρM the solution (2.17) leads to a
consistency condition on the already imposed gauge fixing conditions, in other words we should impose independent
gauge fixing conditions only for the primary first class constraints4. This is indeed true as far as fixing the free
coefficients in the canonical Hamiltonian is concerned. However, in view of the fact that all first class constraints
generate gauge transformations, one has to eventually reduce with respect to all their gauge motions. Therefore
it is mathematically and physically equivalent and mathematically much more convenient to regard allρµ as free
parameters, that is, to drop the phase space dependence of thef M. Hence to fix the gauge we need gauge fixing

3Ideally, the gaugeGµ = 0 should define a unique point in each gauge orbit.
4As an example, in General Relativity the primary constraints demand that the momenta conjugate to lapse and shift vanish, the secondary

constraints are the spatial diffeomorphism and Hamiltonian constraints respectively. All constraints are first class and the canonical Hamiltonian
is a linear combination of all of them, in particular lapse and shift play the role of thef M for the Hamiltonian and spatial diffeomorphism
constraint respectively. A consistent gauge fixing would now be to first prescribe four functions purely built from the intrinsic metric and their
conjugate momenta (independent of lapse and shift). Such conditions have vanishing Poisson brackets with respect to the primary constraints.
Therefore equation (2.17) can be computed and prescribes lapse and shift as a function of intrinsic metric and conjugate momentum alone.
The remaining four gauge fixing conditions for the velocities (Lagrange multipliers) of lapse and shift which are the coefficients of the primary
constraints are now that they are the time derivatives (Poisson brackets with the canonical Hamiltonian) of the already prescribed functions for
lapse and shift. These conditions are then consistent with the equations of motion, i.e. that the Lagrange multipliers are the time derivatives
of lapse and shift. The corresponding matrix{Fµ,Gν} in this case is block diagonal. We could also have prescribed lapse and shift in the first
place as functions of intrinsic metric and conjugate momentum and then would have to find four additional gauge fixing conditions on those
variables whose equations of motion lead to the prescribed values of lapse and shift.
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conditions for all first class constraints. We will see explicitly in the path integral formulation that one is forced to this
point of view and that nevertheless one can restore the phase space dependence of thef M when eventually reducing
the path integral as one over configuration space (rather than the phase space). This will be detailed in section 3.3
where we will also see how it can be achieved that the original Lagrangian (which knows only about the primary
constraints) is obtained in the exponent although one gauge fixes the secondary first class constraints as well.

By construction of the Dirac bracket, we can simply ignore the variablesz for what follows and set them equal
to zero where ever they occur. In terms of the remaining canonical pairs we can solveFµ = Gµ = 0 for πµ, φµ (and
define the new constraint̃F, G̃)

F̃µ := πµ + h̃µ(Q,P) = 0, G̃µ := φµ − τµ(Q,P) = 0 (2.18)

for certain functions̃h, τ which generically will be explicitly time dependent. The variablesφ, π are called the gauge
degrees of freedom andQ,P are called the true degrees of freedom (although typically neither of them is gauge
invariant).

The reduced HamiltonianHred(Q,P), if it exists, is supposed to generate the same equations of motion forQ,P as
the canonical Hamiltonian does, when the constraints and the gauge fixing conditions are satisfied and the Lagrange
multipliers assume their fixed values (2.17), that is,

{Hred, f } = {Hcan, f }F=G=ρ−ρ0=0 = [ρµ0{Fµ, f }]F=G=ρ−ρ0=0 (2.19)

for any functionf = f (Q,P). For general gauge fixing functions the reduced Hamiltonian will not exist, the system
of PDE’s to which (2.19) is equivalent to, will not be integrable.

However, a so called coordinate gauge fixing conditionGµ = φµ − τµ with τµ independent of the phase space
always leads to a reduced Hamiltonian as follows: We can always (locally) write the constraints in the form (at least
weakly)

Fµ = Mµν(πν + h′ν(φ,Q,P)) =: Mµν F′ν (2.20)

whereh̃µ(Q,P) = h′µ(φ = τ,Q,P). Notice that the locally equivalent constraintsF′µ are actually Abelian by a general
argument [6]. Then, noticing thatMµν ≈ {Fµ,Gν}, (2.19) becomes

{Hred, f } = [ρµ0Mµν{hν, f }]F=G=ρ−ρ0=0 = [ρ̇µ{hµ, f }]G=0 = {ρ̇I h
′
µ, f } (2.21)

with h̃µ = hµ(φ = τ,Q,P) and we used thatf only depends onQ,P. This displays the reduced Hamiltonian as

Hred(Q,P; t) = τ̇µ(t)hµ(φ = τ(t),Q,P)) (2.22)

It will be explicitly time dependent unless ˙τI is time independent andhµ is independent ofφ, that is, unless those
constraints can be deparametrised for which ˙τµ , 0. Hence, deparametrisation is crucial for having a conserved,
reduced Hamiltonian system.

On the other hand, let us consider the gauge invariant point of view. Following the general framework [29, 30,
31, 32, 10, 33] it is possible to construct a gauge invariant extension of any gauge variant functionf (Q,P) off the
gauge sectionφ = τ by the following formula

Of (τ) = [exp(βµXµ) · f ]β=τ−φ (2.23)

where we have denoted the Abelian Hamiltonian vector fieldsXµ by Xµ := {πµ + hµ, .}. It is easy to check that
{Of (τ), Fµ} ≈ 0. Consider a one parameter family of flowst 7→ τµ(t) then withOf (t) := Of (τ(t)) we find

d
dt

Of (t) = τ̇
µ(t)

∞∑
n=0

βµ1..βµn

n!
XµXµ1..Xµn · f (2.24)

12



On the other hand, considerHµ(t) := Ohµ(τ(t)), then [32]

{Hµ(t),Of (t)} = = O{hµ, f }∗(τ(t)) = O{hµ, f }(τ(t)) = OXµ· f (τ(t))

= τ̇µ(t)
∞∑

n=0

βµ1..βµn

n!
XµXµ1..Xµn · f (2.25)

Here the bracket{., .}∗ denotes the Dirac bracket associated with the second class system (Fµ,Gµ). In the second step
we used that neitherhµ nor f depend onπν, in the third we used thatf does not depend onφν and in the last we used
the commutativity of theXν. Thus the physical Hamiltonian that drives the time evolution of the observables is simply
given by

H(t) := τ̇µ(t)h′µ(τ(t),OQ(t),OP(t)) (2.26)

where we used that (2.23) is a Poisson automorphism [32], that is,

{Of (τ),Og(τ)} = O{ f ,g}(τ) (2.27)

Here{ f ,g}∗ = { f ,g} for functions ofQ,P only was exploited. This is exactly the same as (2.21) under the identification
f ↔ Of (0). Hence we have shown that for suitable gauge fixings the reduced and the gauge invariant frameworks are
equivalent. Notice that it was crucial in the derivation that (φµ, πµ) and (QA,PA) are two sets of canonical pairs. If that
would not be the case, then it would be unclear whether the time evolution of the observables has a canonical generator.

The power of a manifestly gauge invariant framework lies therefore not in the gauge invariance itself. Rather, it
relies on whether the gauge fixing can be achieved globally, whether it can be phrased in terms of separate canonical
pairs, whether the observer clocksφµ are such that reduced Hamiltonian system is conserved and whether they do
display the time evolution of observables as viewed by a realistic observer. See [10, 14] for a discussion of this point.

Our description sketched above shows that a useful, manifestly gauge invariant formulation implicitly also relies
on a system of gauge fixing conditions. Namely, the gauge fixing conditions equip us first with a physical interpre-
tation of the Dirac observables and second with a physical time evolution:Of (τ) has the meaning of that relational
observable, i.e. gauge invariant quantity, which in the gaugeφ = τ takes the value5 f . Its time evolution in terms ofτ
is driven by a gauge invariant Hamiltonian which arises by solving the constraintsF = 0 in terms of the momentaπ
conjugate toφ. The gauge fixing condition thus prominently finds its way into the very interpretation of the physical
(reduced) phase space. If we would choose different clocksφ′ then different observablesO′f (τ) would result. Due to
(2.27), the algebra of theOf (τ) among each other and of theO′f ′(τ) among each other respectively are isomorphic
provided thatf and f ′ only depend on the respective true degrees of freedom. In particular, both the (OQA(0),OPA(0))
and (O′

Q′A
(0),O′P′A

(0)) respectively provide a (local) system of coordinates on the reduced phase space and therefore

one can translate between the two6. However, their physical interpretation and physical time evolution is entirely
different. This crucial fact will also be reflected in the interpretation of the path integral.

Remark:
5One maybe tempted to run the following contradictory arguement:Of (τ) obviously coincides withf in the gaugeφ = τ. Since it is also

gauge invariant and since any other gauge can be reached fromφ = τ one may think that it takes the valuef in any other gauge, sayφ = τ′ which
is obviously not the case by inspection. The catch is that in order to reach the gaugeφ = τ′ from φ = τ one must apply a gauge transformation
to Of (τ) which mapsφ to φ + τ′ − τ = φ + δτ and f to its corresponding imagef + δ f under this gauge transformation. By gauge invariance
we obtainOf (τ) = Of+δ f (τ + δτ). Hence in the gaugeφ = τ′ the observable takes the valuef + δ f and not f . This is not in contradiction
with gauge invariance becausef + δ f and f are evaluated at different points on the same gauge orbit just in the right way as to give the same
numerical value.

6Notice that when choosing different clock variablesφ′, π′ we also have to choose different true degrees of freedomQ′,P′. The algebra of
the O′Q(0), O′P(0) is not isomorphic to the one ofOQ(0), OP(0), rather we have{O′P(0),O′Q(0)} = O′{P,Q}′∗ (0) where{., .}′∗ denotes the Dirac
bracket associated withF, φ′. Thus, whileOP(0),OQ(0) andO′P′ (0),O′Q′ (0) are conjugate pairs,O′P(0),O′Q(0) are not.
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Before closing this section we should mention that most of what we have sketched above is local in nature. Many
issues in quantum theory are, however, of a more global nature and in order to capture those aspects one has to gen-
eralise the framework, using for instance techniques developed in [36]. Such an extension is, however, non trivial
and unfortunately beyond the scope of the present paper whose main purpose is to remind of the difficulties that one
generically faces when going from the canonical framework to the path integral formalism.

3 Reduced Phase Space Path Integral

This section is subdivided into three parts. In the first we make some general remarks about scattering theory in
ordinary QFT which is closely related to the path integral and how this applies to our case. In the second we for-
mally derive the reduced phase space integral as the generating functional ofn−point functions. This path integral
is an integral over the reduced phase space. In the third section we unfold this path integral and integrate over the
unconstrained phase space whereby proper gauge fixing conditions and constraints have to be imposed.

Most of the material reviewed in this section is standard and the familiar reader can safely skip it. However, we
tried to assemble this material in a way so that it is hopefully useful to researchers from different scientific communities
and such that the paper is self contained.

3.1 Remarks about Scattering Theory

The central object of interest in QFT is the scattering matrix. Rigorous scattering theory is in fact a difficult subject
even in ordinary QFT on Minkowski space. First of all, there is a notion of a free and interacting fieldϕ andφ
respectively which evolve according to the free and interacting HamiltonianH0 andH respectively. Here free means
that H0 does not contain any self – interaction. The physical assumption is that in the far futuret f → ∞ and far
pastti → −∞ any outgoing and ingoing particles respectively do not interact. This is, of course, not really true.
However, using the methods of local quantum physics, assuming that the theory has a mass gap7 one can prove that
the vacuum correlators of the asymptotic fields reduce to those of the free field, where vacuum really means the
interacting vacuum.

This means that the asymptotic fields generate from the interacting vacuum a Fock spaceH± which in general
could be a proper subspace ofH . These states can be thought of as the rigorous substitutes for the states generated by
the non existing asymptotic free field from the free vacuum. This is the famous framework of Haag and Ruelle, see
[11] and references therein. The rigorous S – matrix is then defined by the scalar product between these asymptotic
Fock states which one interprets as vector states in the Heisenberg picture under the free dynamics. The rigorous
relation between the S – matrix elements and the time orderedn−point functions is then provided by the famous LSZ
formula [11] which rests on the assumption of asymptotic completeness8, that is,H = H±.

In most textbooks on QFT, the Haag – Ruelle theory is barely mentioned. Rather, one somehow postulates that the
free and interacting fields can be implemented on the same Hilbert space. Then one can consider Fock statesψ± ≡ ψH

±
created from the free vacuum by free field creation operators which one considers as vectors in the Heisenberg picture
in the infinite past and future respectively because they are time independent. To obtain the corresponding Schr¨odinger
picture states in that limit one just has to evolve via the free Hamiltonian to obtainψS

±(t) = eiH0t/~ψH
± ast → ±∞. To

map a Schr¨odinger state from the far past to the far future one should however use the interacting HamiltonianH and
get the evolved Schr¨odinger picture vector stateeiH(t f −ti )/~ψS

−(ti). Thus the scattered Heisenberg picture state would

7The four momentum squared operator should have a pure point spectrum which is separated from the continuum.
8More in detail, in order to derive the LSZ formulae one needs the LSZ asymptotic conditions which state that the matrix elements of the

interacting field between vector states inH+ andH− respectively converge to those of the free field. If asymptotic completeness holds, this is
just weak convergence onH which is implied by the strong convergence of the Haag – Ruelle theory.
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be given by
ψH

scattered= lim
t±→±∞

S(t+, t−)ψ
H
− (3.1)

where
S(t f , ti) := V(t f )

† V(ti) V(t) = exp(−itH/~) exp(itH0/~) (3.2)

The formally unitary operatorsV(t) in principle map the evolving free Heisenberg field operators to the evolving
Heisenberg field operators. Using the differential equation forU(t) and solving the resulting Dyson series one can
formally derive the Gell – Mann and Low magic formula [11] for the scattering operator

S = T{exp(i
∫

R
dt [H(t) − H0])}, H(t) = e−iH0t/~ H eiH0t/~ (3.3)

where the time ordering symbolT asks to order the latest operator to the left. Unfortunately, all of this is mathe-
matically ill – defined: A tiny subset9 of the Haag – Kastler (or Wightman) axioms is sufficient to establish that the
operatorV(t) is the identity operator (up to a phase). This is Haag’s famous theorem [11]. In other words, either
there is no interaction or the magic formula is wrong. Indeed, (3.3) is ill – defined in perturbation theory and needs
renormalisation. In order to avoid the implication of Haag’s theorem one can, as a regularisation, break translation
invariance of the Hamiltonian in an intermediate step by multiplying its density by a function of compact support and
then extend the support to infinity. This is also the technique underlying causal renormalisation theory [34].

It transpires that in ordinary QFT the scattering matrix is directly related to the time ordered n – point functions.
As we are interested in applications to quantum gravity, we are in a somewhat different situation because we do not
have the axiomatic framework of ordinary QFT at our disposal which relies on the metric considered as a background
field. However, one can consider a Born – Oppenheimer type of approach with a representation ofA in which the
three – metric operatorq acts by multiplication (see [35] for first steps towards a technical implementation). Then, at
fixed metric argument of the vector state under consideration one can consider the resulting matter part of the Hamil-
tonian and apply the techniques of QFT on curved (in this case ultra – static) backgrounds [7] and the corresponding
perturbation theory [37] in order to define scattering theory for matter. In particular, LSZ type of formulae then again
apply. To define scattering theory for gravity in a background independent way one should consider background in-
dependent semiclassical states which are concentrated on a given three geometry and extrinsic curvature and identify
their excitations with scattering states, see [35].

3.2 Path Integral for n – point functions

We are thus interested in the time orderedn− point functions. More in detail, suppose we have a representation of
the ∗ algebraA generated by the elementary fieldsQA,PA (or the corresponding C∗-algebra of Weyl elements) on a
Hilbert spaceH which supports the HamiltonianH of the (conservative) system. We will assume thatH is bounded
from below and has at least one normalisable vacuumΩ, i.e. a unit vector state of minimal energyE = inf(σ(H)))
which is a cyclic vector forA. Without loss of generality we redefineH such thatE = 0. Consider the Heisenberg
picture operatorsQA(t) = e−iHt/~ QA eiHt/~. As motivated in the previous subsection, we are interested in the time
orderedn−point functions

τA1..An(t1, .., tn) :=< Ω,T{QA1(t1)..QAn(tn)}Ω > (3.4)

Forn > 1 and pairwise distinct times we have

τA1..An(t1, .., tn) =
∑
π∈Sn

n−1∏
k=1

[θ(tπ(k) − tπ(k+1))] WAπ(1)..Aπ(n)(tπ(1), .., tπ(n)) (3.5)

9It is sufficient to retain the 1. uniqueness of the vacuum and 2. spatial translation invariance of the Hamiltonian (part of the Poincar´e
algebra) and 3. spatial translation invariance of the vacuum.
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where we have defined the unordered Wightman functions

WA1..An(t1, .., tn) :=< Ω,QA1(t1)..QAn(tn)Ω > (3.6)

We should allow for more general operator insertions butQA(t) contains information abouṫQA(0) = [H,QA]/(i~)
which knows aboutPA, hence any scalar product between vector states in the dense subspaceAΩ can be approximated
by linear combinations of the functions (3.6). Conversely, given suitable positivity requirements on the Wightman
functions and their transformation properties under time translations we can reconstructH , Ω, H via the GNS
construction. The latter arises via Stone’s theorem from the fact that we can define a strongly continuous unitary
group of time translations.

UsingHΩ = 0 we may write

WA1..An(t1, .., tn) :=< Ω,ei(t+−t1)H/~QA1eiH(t1−t2)/~QA2..QAneiH(tn−t−)/~Ω > (3.7)

for any t±. By inserting resolutions of unity it follows that for suitable choices forψi , ψ f and timesti , t f we are
interested in the matrix elements

< ψ f ,U(t f − ti)ψi >H , U(t) = exp(itH/~) (3.8)

of the evolution operator between initial and final vectors prepared at initial and final timesti , t f respectively.
The path integral substitute for (3.8) is heuristically obtained by skeletonisation of the time interval [ti , t f ] fol-

lowed by insertions of unity in terms of generalised position and momentum eigenvectors respectively10. Specifically,
assuming thatH is a representation in which the operatorsQA act by multiplication, for time stepsε = (t f − ti)/N and
integration variablesQn := Q(ti + nε), Pn := Q(ti + nε) we obtain formally

< ψ f ,U(t f − ti), ψi >=

∫
{

N∏
n=0

[dQn]} {
N∏

n=1

[dPn]} ψ f (Qn) ψi(Q0) [
N∏

n=1

< Qn,e
iεH/~Pn > < Pn,Qn−1 >] (3.9)

where formally11

[dQ] :=
∏

A

dQA, [dP] :=
∏

A

dPA (3.10)

The assumption is now that asN→ ∞ we may approximate

< Qn,e
iεH/~Pn >≈< Qn,Pn > eiεH(Qn,Pn)/~ (3.11)

which can be heuristically justified by expanding the exponential in powers ofε, ordering momentum and configura-
tion operators to right and left respectively and neglecting all higher~ corrections. For certain Hamiltonian operators
of Schrödinger type one can actually prove (3.11) (Trotter Product formula [4]) but in general this is a difficult subject.
Making this assumption and using the position representation of the momentum eigenfunction

< Q,P >=
∏

A

exp(−iQAPA/~)√
2π

(3.12)

10This assumes that the operatorsQ,P obey the canonical commutation relations. For more general algebras generalised eigenvectors may
not exist because e.g. momenta do not commute with each other. In this case one must use different resolutions of the identity. We will here
assume thatA obeys the CCR, CAR and more general algebras can be treated analogously.

11There is no Lebesgue measure in infinite dimensions. However, if the Hilbert spaceH is rigorously defined as anL2 space with a
probability measure on a distributional extension of the classical configuration space, then (3.10) can be given a meaning. We will not consider
these issues for our heuristic purposes and confine ourselves to drawing attention to the missing steps involved.
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we obtain formally

< ψ f ,U(t f − ti), ψi >=

∫
{

N∏
n=0

[dQn]} {
N∏

n=1

[d(Pn/
√

2π)]} ψ f (Qn) ψi(Q0) ×

exp(−i
ε

~

N∑
n=1

{[
∑

A

QA
n − QA

n−1

ε
PAn] − H(Qn,Pn)}) (3.13)

One now takesN→ ∞ and formally obtains

< ψ f ,U(t f − ti), ψi >=

∫
[DQ] [DP/

√
2π]ψ f (Q(t f )) ψi(Q(ti)) exp(− i

~

∫ t f

ti
dt {[
∑

A

Q̇APA] − H(Q,P)}) (3.14)

where
[DQ] =

∏
t∈[ti ,t f ]

∏
A

dQA(t) (3.15)

and similar for [DP]. If the Hamiltonian is at most quadratic inP then one can formally perform the momentum
integral. As an example, consider a Hamiltonian of the form

H(Q,P) =
1
2

GAB(Q)PAPB + V(Q) (3.16)

Examples of such Hamiltonians are for example the Hamiltonian constraint in General Relativity (neglecting the issue
of gauge invariance for the moment) where the non trivial “supermetric”GAB(Q) is the Wheeler – DeWitt metric and
the potentialV(Q) is related to the Ricci scalar of the three metricQ. (In)famously, neiherG norV are positive definite
so that the Hamiltonian is not bounded from below in General Relativity.

In any case, for Hamiltonians of type (3.16) we can formally perform the Gaussian integral and obtain

< ψ f ,U(t f − ti), ψi >= N
∫

[DQ] [
√
|det(G)|] ψ f (Q(t f )) ψi(Q(ti)) exp(−i

∫ t f

ti
dt {[

1
2

(G−1)ABQ̇AQ̇B − V(Q)})

(3.17)
whereN is an (infinite) numerical constant (a power of 2π and~) and

[
√

det(G)] =
∏

t∈[ti ,t f ]

√
|det(G)| (3.18)

is the functional determinant of the supermetric12.
Notably, if G is a non trivial function ofQ then it isnot truethat

< ψ f ,U(t f − ti), ψi >= N
∫

[DQ] ψ f (Q(t f )) ψi(Q(ti)) exp(− i
~

S[Q, Q̇; [ti , t f ]]) (3.19)

with the classical action

S[Q, Q̇; [ti , t f ]] :=
∫ t f

ti
dt L(Q, Q̇), L(Q, Q̇) =

1
2

(G−1)ABQ̇AQ̇B − V(Q) (3.20)

Even worse is the case that the momentum dependence of the Hamiltonian is higher than quadratic so that the momen-
tum integral can no longer be performed exactly. In that case one can at best perform a saddle point approximation
or one has to rely on perturbation theory. We see that the correct path integral in general is over the phase space and

12In fact there is a sign factor involved which accounts for the signature ofG. Equation (3.17) is only correct if the signature ofG does not
depend onQ.
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involves the Hamiltonian action and not only over the configuration space involving only the Lagrangian action, so
we will stick with (3.14) in what follows.

We still must provide a path integral formulation for then−point functions. However, this is easy by noting that

WA1..An(t1, .., tn) =
n∏

k=1

∫
[dQk] < Ω,U(t+ − t1)|Q1 > QA1

1 ×

[
n−1∏
k=1

< Qk,U(tk − tk+1)|Qk+1 > QAk+1
k+1 ] < Qn|U(tn − t−)|Ω > (3.21)

whereQ̂A|Q >= QA|Q > was used. Combining (3.21) with (3.14) results in (fort+ > t1 > ..tn > t−)

WA1..An(t1, .., tn) =
∫

[DQ] [DP/
√

2π]Ω(Q(t+)) Ω(Q(t−)) ×

exp(−
i
~

∫ t+

t−
dt {[
∑

A

Q̇APA] − H(Q,P)})
n∏

k=1

QAk(tk) (3.22)

where
[DQ] =

∏
t∈[t−,t+]

∏
A

dQA(t) (3.23)

and similar for [DP].
It is worth mentioning that in a rigorous setting [1, 8] one does not really consider matrix elements of the unitary

operatorU(t) = exp(itH/~). Namely, consider the analytic continuationtk 7→ itk for tk > 0, that is, the Schwinger
functions

SA1..An(t1, .., tn) :=WA1..An(it1, .., itn) (3.24)

These are correlators of theetH/~QAe−tH/~ and now the same formal manipulations as before lead us to consider the
contraction semi – groupt 7→ V(t) = exp(−tH/~), t ≥ 0. One now obtains instead of (3.22) the formula

SA1..An(t1, .., tn) =
∫

[DQ] [DP/
√

2π]Ω(Q(t+)) Ω(Q(t−)) ×

exp(−
1
~

∫ t+

t−
dt {[i

∑
A

Q̇APA] + H(Q,P)})
n∏

k=1

QAk(tk) (3.25)

For Hamiltonians of the form (3.16) with positive definiteG,V (subtract the energy gap if necessary) the formal
Gaussian integration now gives

SA1..An(t1, .., tn) = N
∫

[DQ] [
√

det(G)] Ω(Q(t+)) Ω(Q(t−)) exp(−
1
~

SE[Q, Q̇; [t−, t+]])
n∏

k=1

QAk(tk) (3.26)

with the “Euclidean” action

S[Q, Q̇; [ti , t f ]] :=
∫ t f

ti
dt LE(Q, Q̇), LE(Q, Q̇) =

1
2

(G−1)ABQ̇AQ̇B + V(Q) (3.27)

The path integral (3.26) has better chances to be rigorously defined because the “measure” has a damping factor rather
than an oscillating one and so in the rigorous setting onedefines(3.22) by backwards analytic continuation of (3.26)
(when possible)13. Equation (3.26) (when it can be proved) is called the Feynman – Kac formula [1, 3, 4]. In what
follows we therefore consider the Euclidian point of view.

13It is worth mentioning that in the axiomatic framework of local quantum physics [11] on Minkowski space the Schwinger functions are
automatically symmetric although the Wightman functions are not which is a consequence of the locality axiom (bosonic operator valued
distributions supported at spacelike separated points commute) and analyticity. In GR one does not expect to construct a Wightman QFT due
to background independence which is why we insist ontk > tk+1.
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In order to avoid any infinite constants we divide the contraction matrix by 1=< Ω,Ω >=< Ω,V(t+ − t−)Ω > and
obtain formally

SA1..An(t1, .., tn) =

∫
[DQ] [DP]Ω(Q(t+)) Ω(Q(t−)) exp(−1

~

∫ t+
t−

dt {[i
∑

A Q̇APA] + H(Q,P)})
∏n

k=1 QAk(tk)∫
[DQ] [DP]Ω(Q(t+)) Ω(Q(t−)) exp(−1

~

∫ t+
t−

dt {[i
∑

A Q̇APA] + H(Q,P)})
(3.28)

Even if one cannot integrate out the momenta in general, formula (3.28) reveals that what we are interested in is the
measure formally given by

dµ(Q) :=
1
Z

[DQ] exp(−SE[Q]/~) Ω(Q(t+)) Ω(Q(t−)) (3.29)

where

exp(−SE[Q]/~) :=
∫

[DP] exp(−
1
~

∫ t+

t−
dt {[i

∑
A

Q̇APA] + H(Q,P)}) (3.30)

is the exponential of the effective Euclidian action and

Z :=
∫

[DQ] exp(−SE[Q]/~) Ω(Q(t+))Ω(Q(t−)) (3.31)

is the partition function. None of the three quantities [DQ], SE, Z exists but in fortunate cases their combination can
be rigorously defined as a measure on a suitable distributional extension of the space of configuration variablesQ.
The measureµ is known if we know all its moments or equivalently its generating functional

χ[ j] :=
∫

dµ(Q) ei
∑

A

∫ t+
t−

dt jA(t)QA(t) (3.32)

from which the moments follow by (functional) derivation at zero currentj.
The apparent drawback of the these formulae is that they involve the exact ground stateΩ of the interacting

HamiltonianH which is difficult if not impossible to compute analytically. However, and here is where the Euclidian
formulation again is helpful, notice that so far the choices fort± were arbitrary except thattk ∈ [t−, t+], in particular,
in the original correlator the dependence ont± is throughe−t+HΩ = Ω and et−HΩ = Ω. Now suppose in addition that
exp(−tH) for t > 0 has a positive integral kernel, i.e. maps a.e. positive functions to strictly positive functions which
is usually the case. Then it follows from [38] thatE = 0 is a simple eigenvalue and the unique (up to a phase) ground
stateΩ is a strictly positive function. It can be obtained from any a.e. positiveΩ0 ∈ H via the strong limit

Ω := lim
t→∞

e−tHΩ0

||e−tHΩ0||
(3.33)

It follows that by taking the limitt± → ±∞ we can replaceΩ byΩ0 in (3.29) – (3.32) because the factors of||e−tHΩ0||
cancel in numerator and denominator. We will assume this to have done for what follows. Remarkably, the choice of
the reference vectorΩ0 is rather arbitrary.

Having justified the replacement ofΩ by Ω0 in the Euclidean regime, we analytically continue the time parame-
ter backwards to define the time ordered n-point functions and thus the exponential becomes a pure phase.

3.3 Unfolding the Reduced Phase Space Path Integral

We would like to rewrite the path integral over the reduced phase space coordinatised by the chosen true degrees
of freedom in terms of the unconstrained phase space. This is of course standard, see e.g. [6], but we review this
procedure here for the sake of completeness. It is, however, a rather involved procedure.
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3.3.1 Preliminary Results

The virtue of the gauge fixing conditionsG is that the systemC := {S, F,G} is now a total second class system so
that one can treat all constraints on equal footing. We will do this first in the adapted system of Darboux coordinates
(QA,PA), (φµ, πµ) (xσ, yσ) which is related to the original system (qa, pa) by a (local) canonical transformation and
then show that the resulting expression is actually invariant under canonical transformations.

Theorem 3.1.
Let C= {CA} be a second class system of constraints on a phase space with canonical coordinates zI and symplectic
structureω on the unconstrained phase spaceΓ. Denote the constraint surface byΓ := {m ∈ Γ; CA(m) = 0 ∀ A}
which is a submanifold ofΓ. Consider an embedding J: Γ̂ → Γ with J(Γ̂) = Γ whereΓ̂ is a model manifold of with
coordinates xi for Γ.
i.
ω̂ := J∗ω is a symplectic structure on̂Γ.
ii.
LetΩ∗ be the degenerate symplectic structure onΓ defined by the Dirac bracket corresponding to C. Let f,g ∈ C1(Γ).
Then J∗({ f ,g}∗) = {J∗ f , J∗g}∧ where{., .}∧ is the Poisson bracket associated withω̂.
iii.
The relation between the Liouville measuresµL andµ̂L onΓ andΓ̂ respectively is

µ̂L[J∗ f ] = µL[
√

det({C,C}) δ(C) f ] (3.34)

for any measurable function f .

We note that the right hand side of (3.34) does not make any reference to the chosen embeddingJ.

Proof.
i.
Obviouslydω̂ = J∗dΩ = 0 establishes closure. Non – degeneracy follows from the fact thatJ has maximal rank.
ii.
Let

MAB := {CA,CB} (3.35)

then14

[ω∗] IJ = ωIJ + (M−1)ABωIKωJLCA,KdCB,L (3.36)

whereωIJωJK = δ
I
K . Using that{ f ,g} = ωIJ f,Jg,I and

{J∗ f , J∗g}∧ = ω̂i j (J∗ f ),i (J∗g), j = ω̂
i j JI
,i f,I JJ

, j g,J (3.37)

with ω̂i j ω̂ jk = δ
j
k, we see that the claim is equivalent to

ω̂i j JI
,i J

J
, j = [ω∗] IJ (3.38)

on M. To verify (3.38) we notice thatσA := (CA,I ), σi := (ωIJ JJ
,i ) is a linearly independent set of one forms onM

and it suffices to check (3.38) in this basis. FromJ∗CA ≡ 0 for allA we immediately have

JI
,iCA,I = 0 (3.39)

14Our conventions are as follows:iχ f ω + d f := 0 defines the Hamiltonian vector fieldχ f associated tof while { f ,g} := −χ f [g] = −iχ f dg=
iχ f iχgω defines the Poisson bracket. The corresponding matrix is denoted byωIJ := {zI , zJ}.
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on M and by construction of the Dirac bracket it is not difficult to see that contraction of (3.38) withσA results in
zero on both sides. Contraction withσiσ j results in the identity

ω̂kl JI
,k JJ
,l σiI σ jJ = ω̂

kl ω̂ki ω̂l j = ω̂ ji

= [ω∗] I J σiI σ jJ = ω
I J σiI σ jJ = ω

I J ωIK ωJL JK
,i JL
, j ωLK JK

,i JL
, j (3.40)

where we used (3.39) and
ω̂i j = (J∗ω)i j = ωIJ JI

,i JJ
, j (3.41)

iii.
Recall that for finite (2n-) dimensional systems the Liouville measure is simplyµL := ∧nω = Pf(ω)[dz] where
Pf(ω) =

√
det(ω)) denotes the Pfaffian of the matrixωIJ. We adopt here the same formula for infinite dimensions,

ignoring as ususal that the Lebesgue measure [dz] does not exist. Using (3.35) we solve theδ distribution in (3.34)
in terms of the embeddingJ which we write in the formz = (x,y) = J(x) = (x,Y(x)). Herex,y are separate sets of
canonical pairs so thatωIJ becomes block diagonal and the block matricesωAB, ωi j are constant. We obtain

µL[
√

det({C,C}) δ(C) f ] =
∫

[dz]
√

det(ω) det(M)(z)δ(C(z)) f (z)=
∫

[dx] (

√
det(ω) det(M)

[det(c)]2
f )(J(x)) (3.42)

wherecAB := CA,B. Here we usedCA(x,y) = CA(x,Y(x)) + cAB[y− Y(x)]B + .. = cAB[y− Y(x)]B + ... We have

MAB = ω
IJCA,ICB,J = ω

CDCA,CCB,D + ω
i jCA,iCB, j (3.43)

Equation (3.39) takes the form
CA,i +CA,BYB,i = 0 (3.44)

so that (3.43) can be written
MAB = cACcBD[ωCD + ωi j YC,i YD, j ] (3.45)

Let us introduce the abbreviations
YAi := YA,i , Yi

A := ωABω
i j YB, j (3.46)

then
MAB = cACcBDω

ED[δCE − YCi Yi
E] (3.47)

Consider now the matrices
KAB := YAi Yi

B, kj
i := YAi Yj

A (3.48)

The key identity is now
det(1− K) = det(1− k) (3.49)

To prove this we use the identity (supposing thatk has rankm)

det(1− k) = 1+
m∑

l=1

(−1)l δ[i1
j1
..δil ]

jl
kj1

i1
..kjl

il
(3.50)

The same formula holds for det(1−K) just thatK may have a different rankn and that summation indices areA rather
thani. Now each term in the sum of (3.50) is a polynomial in the the traces tr(kr ), r > 0 with a coefficient that does
not depend onm. However, tr(kr) = tr(Kr) for anyr. So the only possible difference in the two quantities is the range
of l. However, notice that

δ[i1
j1
..δil ]

jl
kj1

i1
..kjl

il
= Y[i1

A1
..Yil ]
Al

YA1
i1
..YA1

i1
= Yi1

[A1
..Yil
Al ]

YA1
i1
..YAl

il
(3.51)
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is completely skew in either set of indices, hence the sum anyway extends to min(m,n) only.
We conclude with det(ω) = det((ωi j )) det((ωAB)) that

det(ω) det(M)

det(c2)
= det((ωik)) det((δk

j − kk
j )) = det((ωi j − ωABYA,i YB, j ) = det(ω̂i j ) (3.52)

�

Corollary 3.1.
The measureµG on Γ defined by (3.34) in terms of a gauge fixing condition G, as a linear functional is in fact
independent of the gauge fixing condition when restricted to gauge invariant functions f .

Proof. By definition of a gauge fixing conditionG for a first class constraint set{F}, it defines a section of the first
class constraint surface (i.e. it defines a hypersurface that intersects each gauge orbit in precisely one point) and it
can be reached from any point on the same gauge orbit. Hence any two gauge fixingsG,G′ are related by a gauge
transformationϕ which can be written as a composition of canonical transformations of the form exp(βµ{Fµ, .}) for
real valued (phase space independent) parameters. By the first class property, there exist matricesL,M,N such that
ϕ · Fµ = LνµFν andϕ ·SΣ = MΣ

′

Σ
SΣ′ + Nµ

Σ
Fµ whereL,M are non – singular15. In matrix notationϕ · F = L · F, ϕ ·S =

M · S + N · F. This can be inverted

F = (L−1) · (ϕ · F), S = (M−1) · [(ϕ · S) − N · (L−1) · (ϕ · F)] (3.53)

By assumption,f is (weakly) gauge invariant,f (m)≈ f (ϕ ·m) and the Liouville measure is invariant under canonical
transformations (since the symplectic structure is),dµL(ϕ ·m)= dµL(m).

We exhibit the dependence of the measure (3.34) onG by µG. Notice that in terms of{C} = {F,G,S} we have

det({C,C})C=0 = det


{Fµ, Fν} {Fµ,Gν} {Fµ,SΣ′ }
{Gµ, Fν} {Gµ,Gν} {Gµ,SΣ′}
{SΣ, Fν} {SΣ,Gν} {SΣ,SΣ′ }


C=0

= det


0 {Fµ,Gν} 0

{Gµ, Fν} {Gµ,Gν} {Gµ,SΣ′}
0 {SΣ,Gν} {SΣ,SΣ′ }


C=0

= {[det({F,G})]2 det({S,S})}C=0 (3.54)

15At least forβµ close to zero.
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Using the automorphism property of canonical transformations [ϕ · f ](m)= f (ϕ ·m) etc. and (3.53) we have

µϕ·G( f ) =
∫

M
dµL(m) δ(S(m)) δ([ϕ ·G](m)) δ(F(m)) | det({F, ϕ ·G}(m))|

√
det({S,S}(m)) f (m)

=

∫

M
dµL(m) δ((M−1[ϕ · S − NL−1ϕ · F])(m)) δ(G(ϕ ·m)) δ((L−1[ϕ · F])(m)) | det({L−1ϕ · F, ϕ ·G}(m))| ×

√
det({M−1[ϕ · S − NL−1ϕ · F],M−1[ϕ · S − NL−1ϕ · F]}(m)) f (ϕ ·m)

=

∫

M
dµL(m) | det(M)(m)| |(det(L)(m))|δ([ϕ · S](m)) δ(G(ϕ ·m)) δ([ϕ · F](m)) | det((L−1{ϕ · F, ϕ ·G})(m))| ×

√
det(M−1{ϕ · S, ϕ · S}(M−1)T − NL−1{ϕ · F, ϕ · S}(M−1)T

−M−1{ϕ · S, ϕ · F]}(NL−1)T + NL−1{ϕ · F, ϕ · F]}(NL−1)T)(m)) f (ϕ ·m)

=

∫

M
dµL(m) | det(M)(m)| |(det(L)(m))|δ([ϕ · S](m)) δ(G(ϕ ·m)) δ([ϕ · F](m)) | det((L−1{ϕ · F, ϕ ·G})(m))| ×

√
det(M−1{ϕ · S, ϕ · S}(M−1)T)(m)) f (ϕ ·m)

=

∫

M
dµL(m) δ([ϕ · S](m)) δ(G(ϕ ·m)) δ([ϕ · F](m)) | det(({ϕ · F, ϕ ·G})(m))| ×

√
det({ϕ · S, ϕ · S}(m)) f (ϕ ·m)

=

∫

M
dµL(ϕ ·m) δ(S(ϕ ·m)) δ(G(ϕ ·m)) δ(F(ϕ ·m)) | det(({F,G})(ϕ ·m))| ×

√
(det({S,S})(ϕ ·m)) f (ϕ ·m)

= µG( f ) (3.55)

where in the third step we used that Poisson brackets withL,M,N do not contribute since theδ−distributions have
support atϕ · F = ϕ · S = 0, in the fourth we used the first class property and again the support of theδ distributions,
in the fifth we cancelled the determinants of the matricesL,M, in the sixth we exploited the Poisson automorphism
property ofϕ as well as the invariance of the Liouville measure and in the last we performed a trivial relabeling.�

The statements of theorem 3.1 and corollary 3.1 show that the measureµG (3.34) is the correct extension to
the full phase space of the pull – back measure defined by a gauge fixing condition and that correlators among gauge
invariant functions are actually independent of the gauge fixing condition. For instance, in terms of the gauge invariant
observablesO(G)

f , where we have exhibited the dependence onG, we haveµG′ [O
(G)
f ] = µG[O(G)

f ] for anyG′ = ϕ ·G.
This can also be understood geometrically: Given two gauge fixing conditionsG,G′ we obtainω̂G = J∗Gω, ω̂G′ =

J∗G′ω from the corresponding embeddingsJG : M̂ → MG, JG′ : M̂ → MG′ . Now clearly16

Mϕ·G = {m∈ M; S(m)= F(m)= ϕ∗G(m) = 0}
= {m∈ M; M−1(m)[S(ϕ(m)) − N(m)L−1(m)F(ϕ(m))]L−1F(ϕ(m)) = G(ϕ(m)) = 0}
= {m∈ M; S(ϕ(m)) = F(ϕ(m)) = G(ϕ(m)) = 0}
= {ϕ−1(ϕ(m)) ∈ M; S(ϕ(m)) = F(ϕ(m)) = G(ϕ(m)) = 0}
= ϕ−1(MG) (3.56)

so that
Jϕ·G = ϕ

−1 ◦ JG (3.57)

and therefore from the fact thatϕ is canonicalϕ∗ω = ω

ω̂ϕ∗G = J∗ϕ∗Gω = J∗Gω = ω̂G (3.58)

16In abuse of notation we writeϕ ·m= ϕ(m) i.e. we identify the action of the exponential map with the corresponding diffeomorphism.
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Remark:
The fact thatϕ is canonically generated by first class constraints featured crucially into this argument. This has the
following relevance:
Suppose we are given a system which as gauge symmetry has spatial diffeomorphism invariance inD spatial direc-
tions. Suppose that the field content consists, possibly among other things, of GR minimally coupled toD scalar
fieldsφ1, .., φn. From the curvature of the metric and higher derivatives we can also formD algebraically independent
scalarsR1, ..,Rn. Suppose that at least locally they define a coordinate system so thatx 7→ φ(x) := (φ1(x), .., φn(x))
and x 7→ R(x) defines a (local) diffeomorphism. Pick any fixed diffeomorphismϕ0. Then bothG = φ − ϕ0 and
G′ = R− ϕ0 are bona fide gauge fixing conditions. However, there does not exist any canonically generated diffeo-
morphismϕξ = exp({

∫
dDx ξa(x)Ca(x), .}) with phase space indendentξ such thatϕξ ·G = G′. The reason is that

the spatial diffeomorphism constraint does not mix field species. It is true that we can find a phase space dependent
functionξ̂[φ,R] defined byϕξ ◦φ = Rsuch that [ϕξ ·G]ξ=ξ̂ = G′, however, due to the phase space dependence ofξ̂ it is
not true that [ϕξ◦]ξ=ξ̂ = ϕξ̂◦. The latter is also a canonical transformation with generator

∫
dDx ξ̂aCa but it does not

generate the searched for field dependent diffeomorphism, provided it exists at all. Notice that corollary 3.1 remains
true for field dependent̂ξ, just the matricesL, M,N look different, this is not the point, the point is that it is not clear
that a canonical transformation exists which mapsφ to R. It may therefore be true that gauge fixings separate into
equivalence classes depending on whether such phase space dependent gauge transformations exist or not. If that was
the case, then it would not be true that the measure (3.34) as a linear functional on gauge invariant functions would be
independent of the gauge fixing condition, it would depend at least on the equivalence class.

3.3.2 From reduced Darboux coordinates to unreduced Darboux coordinates

In order to combine the results of sections 3.2 and 3.3.1 we notice that the parameter manifoldM̂ (which is the same
for any gauge fixing) can be identified with the manifold equipped with Darboux coordinates{QA,PA}. These are
adapted to our choice ofG such thatF = G = 0 or equivalentlyF′ = G = 0 can be solved for{φµ, πµ} in terms of
{Qa,PA} which also defines the embeddingJG. In particular, if f̂ only depends on{QA,PA} then we can form our
preferred observablesO(G)

f̂
and due to the identitŷf = J∗GO(G)

f̂
we find from (3.34)

µ̂L[ f̂ ] = µG[O(G)
f̂

] = µϕ·G[O(G)
f̂

] (3.59)

where corollary 3.1 was used. Of course, for practical calculations the precise expression forO(G)
f̂

in terms of

QA,PA, φ
µ, πµ is rather cumbersome to use. However, due to theδ distributionδ(G) involved inµG obviously

µ̂L[ f̂ ] = µ̂G[O(G)
f ] = µG[ f̂ ] (3.60)

so that we can drop the gauge invariant extension under the path integral at the price of having to keep the G depen-
dence inµGG becausêf is not gauge invariant so that corollary 3.1 does not apply. Even if we keepO(G)

f̂
rather thanf̂ ,

still the G dependence does not disappear because while we can drop it fromµG, it remains inO(G)
f̂

which is a specific
type of Dirac observable which uses the structureG. This is in accordance with what we said in the introduction.

We are now ready to extend the reduced Darboux coordinate phase space path integral of section 3.2 to all Darboux
coordinates: The Liouville measure used there is precisely given by ˆµL because in Darboux coordinates det( ˆω) = 1.
Furthermore, for our choice of gauge fixingGµ = −φµ + τµ(t) andF′µ = πµ + h′µ(φ,Q,P) we have|det({F′,G})| = 1
and sinceS′σ = zΣ = (xσ, yσ) in Darboux coordiantes are canonical pairs we have det({S′,S′}) = 1. It is therefore
trivial to write the generating functional ofn−point functions as a path integral over the entire phase space by simply
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using formula (3.34) at each point of time

χ[ j] :=
Z[ j]
Z[0]

Z[ j] :=
∫

[DQ DP Dφ Dπ Dx Dy] δ[G] δ[S′] δ[F′] |det[{F′,G}|
√

det[{S′,S′}] Ω0(Q(+∞)) Ω0(Q(−∞)) ×

exp(−i
1
~

∫

R
dt {[
∑

A

Q̇APA] − Hred(Q,P; t)}) ei
∫
R

dt jA(t)QA(t) (3.61)

where for instance
δ[F′] =

∏
t

δ(F′(t)), det[{S′,S′}] :=
∏

t

det({S′(t),S′(t)}) (3.62)

and

SA1..An(t1, .., tn) = i−n[
δnχ[ j]

δ jA1(t1).. jAn(tn)
] j=0 (3.63)

Here we have explicitly kept det({S′,S′}) = 1 because we will see that (3.61) is covariant under changing to equivalent
constraints. To remind the reader, we recall that the possibly explicitly time dependent reduced Hamiltonian is given
by

Hred(Q,P; t) = τ̇µ(t)h′µ(φ = τ(t),Q,P)) (3.64)

whereFµ atS = 0 or equivalentlyS′ = 0 was brought into the equivalent formF′µ = πµ+h′µ(φ,Q,P) which motivated
the use of a gauge fixing of the formGµ = τµ(t) − φµ.

Formula (3.61) achieves the goal to extend the reduced phase space path integral to the full phase space, albeit
in the specific, local Darboux coordinates that were picked by motivations from quantum theory17 and the constraint
structure of the theory and in terms of the convenient equivalent constraintsS′, F′.

3.3.3 Restoring the Original Canonical Coordinates and Constraints

The next step will be to restore the original Darboux coordinates (qa, pa) as well as the original constraintsS, F rather
thanS′,D′. To that end we notice the identity

∫
dt [PAQ̇A − Hred(τ; Q,P)]

=

∫
dt [PAQ̇A − τ̇µhµ(τ; Q,P)]

=

∫
dt [PAQ̇A + πµφ̇

µ + πµ[τ̇
µ − φ̇µ] − τ̇µ[πµ + hµ(τ; Q,P)]]

=

∫
dt [PAQ̇A + πµφ̇

µ + πµG
µ − τ̇µF̃µ] (3.65)

Since the path integral is supported atGµ = τµ − φµ = 0, F′µ = πµ + h′µ = 0, S′
Σ

:= zΣ = (xσ, yσ) = 0 we can rewrite
(3.65)under the integralin the form ∫

dt [PAQ̇A + πµφ̇
µ + yσẏσ] (3.66)

Now for certain, phase dependent, non singular matricesM,N we haveF′ = M · F, S′ = N · S. But then

δ(F′)|det({F′,G})| = δ(F)|det({F,G})|, δ(S′)
√

det({S′,S′}) = δ(S)
√

det({S,S}) (3.67)

17Due to the second class constraints, the use of such coordinates is mandatory because otherwise the representation theory of the reduced
symplectic structure becomes too difficult.
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is covariant under change to equivalent constraints. This allows us to immediately restore the original constraints in
(3.61) although everything is still written in terms of the unreduced and adapted darboux coordinates (Q,P), (φ, π), (x,y).
However, that system of coordinates originates from the original system of canonical pairs (qa, pa) by a canoni-
cal transformation [6]. Accordingly, by applying the inverse canonical transformationα, we can restore the sys-
tem of coordinates (q, p) which leaves the Liouville measure in (3.61) invariant, which leaves (3.66) invariant up
to a total differential which we assume to vanish att±, which reexpressesF,G,S in terms Darboux coordinates in
terms of the original coordinates and finally is covariant with respect to the Poisson brackets involved because e.g.
α({F,G}) = {α(F), α(G)}. Therefore, (3.61 can be rewritten as

χ[ j] :=
Z[ j]
Z[0]

Z[ j] :=
∫

[Dq Dp] δ[G] δ[S] δ[F] |det[{F,G}|
√

det[{S,S}] Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(−
i
~

∫

R
dt [
∑

a

q̇apa]) ei
∫
R

dt jA(t)QA[q,p](t) (3.68)

Notice that the effect of the reduced Darboux coordinates did not completely disappear: The initial and final state
depend onQ as well as the exponential involving the currentj. But Q = Q[q, p] may be a complicated function of the
original canonical coordinatesq, p.

Remark:
Notice that at this stage we can formally get rid of the gauge fixing condition in (3.68) by the “Fadeev – Popov trick”
if we pay a price: As we have already remarked before, due to the presence ofδ[G] we may replace everywhere
the non gauge invariantQ by O(G)

Q . Then the exponent, as a symplectic potential and the measure [Dq] [Dp], which
is formally the Liouville measure associated withω, is gauge invariant since gauge transformations are canonical
transformations. Also{S,S}, F are weakly gauge invariant due to the first class property and since canonical trans-
formations preserve Poisson brackets. Hence, after the gauge invariant extension ofQ, the only non – gauge invariant
ingredient of the integrand ofZ[ j] in (3.61) isδ[G]. In fact, αβ(G) = G − β where we have introduced the gauge
transformationsαβ := exp(βµ{F′µ, .} which, since the constraintsF′ are Abelian, have the Abelian groupG structure
αβ ◦ αβ′ = αβ+β′ . Since the remaining ingredients are all gauge invariant, we may replaceG by αβ(G) for any β.
Now extend both numeratorZ[ j] and denominatorZ[0] by the infinite “gauge volume” constant

∫
[Dβ] with “Haar

measure” [Dβ]. We can then trivially integrate out theδ[αβ(G)] = δ[G− β] and find

χ[ j] :=
Z̃[ j]

Z̃[0]

Z[ j] :=
∫

[Dq] [Dp] δ[S] δ[F]
√

det[{S,S}] Ω0(O(G)
Q [q, p](+∞)) Ω0(O(G)

Q [q, p](−∞)) ×

exp(−
i
~

∫

R
dt
∑

a

q̇a pa) e
i
∫
R

dt jA(t)O(G)

QA [q,p](t)
(3.69)

The price that we have to pay is that we have to replaceQA by O(G)
QA =: OQA etc. which is an even more complicated

function ofq, p. This makes this method of getting rid of the gauge fixing condition useless in practice. The only
exception is when we consider zero currentj = 0 and restrict to gauge transformations that are the identity in the
infinite past and future. Then the gauge invariant extension in the argument ofΩ0 and more general boundary states
is not necessary and the argument just displayed goes through. The restriction to such asymptotically trivial gauge
transformations however means that we set the constraints to zero by hand on the kinematical Hilbert space.
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3.3.4 Restoring the Lagrangian

The idea is now to exponentiate the constraints and to rewrite the total resulting exponent in terms of the classical
action. Thus we introduce Lagrange multipliersλµ for all first class constraints andµΣ for all second class constraints
and write

χ[ j] :=
Z[ j]
Z[0]

Z[ j] :=
∫

[Dq] [Dp] [Dλ] [Dµ] δ[G] |det[{F,G}|
√

det[{S,S}] Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(− i
~

∫

R
dt [
∑

a

q̇apa −
∑
µ

λµFµ −
∑
Σ

µΣSΣ)]) ei
∫
R

dt jA(t)QA[q,p](t) (3.70)

The final task is to remove the secondary constraints so that the action appears in covariant form after Legendre
transformation, i.e. with primary constraints only. The technique for doing this is well known [12]. We will not treat
the general case with secondary constraints of arbitrary high but finite order N (i.e. one has secondary, tertiary, .. N-
ary constraints). For a systematic classification of such systems and a convenient choice of basis of those constraints
see e.g. [39] and references therein. Here we pick a typical situation of particular interest for General Relativity. The
general case will be even more complicated with even more modifications to the measure than we encounter below:
We assume that the canonical Hamiltonian has the following structure

H = H′0 + vf · F(1) + vs · S(1), H(0)′ = −qf · F̃(2) (3.71)

As the notation suggests,F(1) is a vector with entries consisting of primary first class constraints whileS(1) is a vector
with entries consisting of primary second class constraints. The vectorF̃(2) is related to a set of secondary second class
constraints that we will derive shortly. UsuallyF(1),S(1) simply express the fact that the momentapf , ps conjugate to
qf ,qs respected vanish because the Lagrangian does not depend on the velocitiesvf , vs. It is also usually the case that
F̃(2) does not depend onqf , pf , ps but onqs. Thus we assume that (we do not denote indices)

{F(1), F(1)} = {F(1),S(1)} = {S(1),S(1)} = {F(1), F̃(2)} = 0 (3.72)

while the terms not proportional toF(1),S(1) of

S(2) := {F̃(2),S(1)} (3.73)

defines a vector of secondary second class constraints. We abuse notation by identifying that vector with (3.73) in
order not to have to introduce indices. Notice that

{H, F(1)} = {H′0, F
(1)} = F̃(2) (3.74)

thus justifying the name secondary first class constraint.
It is also often the case that theF̃(2) close on themselves, that is

{F̃(2), F̃(2)} ∝ F̃(2) (3.75)

which we also will assume. Correspondingly,

{H, F̃(2)} = {H′0, F̃
(2)} + {vs · S(1), F̃(2)} ∝ F̃(2),S(2) (3.76)

does not produce tertiary constraints. These assumptions imply by the Jacobi identity that

{F(1),S(2)} = −{F̃(2), {S(1), F(1)}} − {S(1), {F(1), F̃(2)}} = 0 (3.77)
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Finally
{H,S(2)} = qf · {F̃(2),S(2)} + vs · {S(1),S(2)} (3.78)

and we assume that the matrix{S(1),S(2)} is invertible. Hence the Dirac algorithms does not produce any tertiary
constraints and the velocityvs must be fixed in order to equate (3.78) to zero. Accordingly the Hamiltonian becomes

H = qf · [F̃(2) − {F̃(2),S(2)}[{S(1),S(2)}]−1 · S(1)] + vf · F(1) =: qf · F(2) + vf · F(1) (3.79)

a linear combination of first class constraints. Thus in terms of the previous notation, the first class constraintsFµ
compriseF(1), F(2), the second class constraintsSΣ compriseS(1),S(2) and finally the primary constraintsCi comprise
F(1),S(1).

This is a simple but non trivial situation often encountered in concrete models and this concrete form now enables
us to explicitly carry out the steps outlined in [12]: In (3.65) by an obvious change of notation we write

χ[ j] :=
Z[ j]
Z[0]

Z[ j] :=
∫

[Dq] [Dp] [Dλ1] [Dλ2] [Dµ1] [Dµ2] δ[G] |det[{F,G}|
√

det[{S,S}] Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(−
1
~

∫

R
dt {[i(

∑
a

q̇apa − λ1 · F(1) − λ2 · F(2) − µ1 · S(1) − µ2 · S(2))]}) ei
∫
R

dt jA(t)QA[q,p](t)

:=
∫

[Dq] [Dp] [Dλ1] [Dλ2] [Dµ1] [Dµ2] δ[G] |det[{F,G}|
√

det[{S,S}] Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(−
1
~

∫

R
dt {[i(

∑
a

q̇apa − λ1 · F(1) − λ2 · F̃(2) − µ1 · S(1) − µ2 · S(2))]}) ei
∫
R

dt jA(t)QA[q,p](t) (3.80)

where in the second step we have shifted the integration variableµ1 in order to absorb the contributionµ0 · S(1) =

F̃(2) − f̃ (2).
We now perform a canonical transformation with generatorµ2 · S(1)/λ′2 at each timet ∈ [t−, t+] which we assume

to become the identity att±. Hereλ′2 is the unique component ofλ2 such thatλ2 · {F̃(2),S(1)} = λ′2S(2) modulo terms
proportional toF(1),S(1). This transformation preserves the Liouville measure, the symplectic potential

∫
dtpaq̇a

andΩ0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ei
∫
R

dt jA(t)QA(t) since in this example under considerationQA is among the
coordinates independent ofqs. If we assume thatG = G(1),G(2) do not involveqs then alsoG is invariant. Indeed,
one can chooseG(1),G(2) to be gauge fixing conditions onq(1)

f := qf andq(2)
f respectively which are both independent

of qs = q(1)
s so thatq(1)

s ,q(2)
s ,q(1)

f ,q
(2)
f ,Q

A comprises a complete system of configuration coordinates. Furthermore,

clearlyF(1),S(1) are invariant. But, denoting the canonical transformation byα, we have

α(λ2 · F̃(2)) = λ2 · F̃(2) − µ2 · S(2) −
1

2λ′2
µ2 · {S1,S(2)} · µ2 +O(µ3

2, F
(1),S(1))

α(µ2 · S(2)) = µ2 · S(2) +
1
λ′2
µ2 · {S1,S(2)} · µ2 +O(µ3

2) (3.81)

Since integrating again overλ1, µ1 enforcesF(1) = S(1) = 0 we can drop terms proportional toF(1),S(1).
Next,α({F,G}) = {α(F), α(G)} = {α(F),G} under the assumptions made. This will in general depend non trivially

on µ2 throughα(F̃(2)). Likewiseα({S,S}) = {α(S), α(S)} will in general depend non trivially onµ2 throughα(S(2)).
Consider|det({F,G})|,

√
det({S,S}) as expanded in powers ofµ2. Also, since

α(λ2 · F̃(2) + µ2 · S(2)) = λ2 · F̃(2) +
1

2λ′2
µ2 · {S(1),S(2)} · µ2 +O(µ3

2) (3.82)
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let us power expandα(δ(F))δ(S)) around that quadratic term and perform the Gaussian integral. Since det({S,S}) =
det({S(1),S(2)})2 this yields

Z[ j] =
∫

[Dq] [Dp] [Dλ1] [Dλ2|λ′2|
1/2] [Dµ1] δ[G] |det[{F,G}| 4

√
det[{S,S}] V Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(−1
~

∫

R
dt {[i(

∑
a

q̇apa − λ1 · F(1) − λ2 · F̃(2) − µ1 · S(1))]}) ei
∫
R

dt jA(t)QA[q,p](t) (3.83)

where the local factorV accounts for the additional contributions just mentioned. The integral overpf = F(1), ps =

S(1) producesδ(λ1 − vf )δ(µ1 − vs) and cancels the integral overλ1, µ1. Denoting{q′α} = {q(2)
f ,q

(2)
s ,QA}, {p′α} =

{q(2)
f ,q

(2)
s ,QA} we are left with

Z[ j] =
∫

[Dq] [Dp′] [Dλ2|λ′2|
1/2] δ[G] |det[{F,G}| 4

√
det[{S,S}] V Ω0(Q[q, p](+∞)) Ω0(Q[q, p](−∞)) ×

exp(−
1
~

∫

R
dt {[i(

∑
a

q̇′ap′a − λ2 · F̃(2)}) ei
∫
R

dt jA(t)QA[q,p](t) (3.84)

Now, by definition (see also section 2.1), solvingp′α = ∂L(q′β,qf ,qs; v′β)/∂v′α for v′α yieldsv′ = u′α(q′β,qf ,qs; p′β)
and

H′0 = qf F̃
(2)(qs,q′β; p′β) = [v′αp′α − L(q′β,qf ,qs; v′β)]v′=u′ (3.85)

As is well known, the inverse of this Legendre transformation is

L = [v′αp′α − H′0(q′b,qf ,qs; p′β)]p′=∂L/∂v′ (3.86)

Therefore a saddle point expansion about the extremump′ = ∂L/∂v′ of the exponent in (3.84) yields

Z[ j] =
∫

[Dq] [Dλ2|λ′2|
1/2] δ[G] |det[{F,G}| 4

√
det[{S,S}] V′ Ω0(Q[q](+∞)) Ω0(Q[q](−∞)) ×

exp(
i
~

∫

R
dt L(qf = λ2,qs,q

′b; v′b)) ei
∫
R

dt jA(t)QA[q](t) (3.87)

whereV′/V accounts for the additional modifications that come from the saddle point approximation and the corre-
sponding corrections.Notice that a possible dependence on p in QA prohibits the saddle point approximation beyond
its zeroth order term!Assuming thatQA is independent ofp as it is the case in this example under consideration and
assuming thatG(1) really is a coordinate condition onqf and noticing thatF,S,G(2),V′ do not depend onqf we have
after relabelingλ2→ qf

Z[ j] =
∫

[Dq] [|q′f |
1/2] δ[G(2)] |det[{F,G}| 4

√
det[{S,S}] V′ Ω0(Q[q](+∞)) Ω0(Q[q](−∞)) ×

exp(
i
~

∫

R
dt L(qf ,qs,q

′b; v′b)) ei
∫
R

dt jA(t)QA[q](t) (3.88)

which is our final result.

To summarise:
The path integral can be brought into a form only involving a configuration integral and the exponent of the covariant
action, but there is a non trivial measure factor depending onS, F,G,V′ which accounts for the correct implementa-
tion of the dynamics. Missing that factor means qunatising an entirely different system. The measure is not covariant
with respect to the Lagrangian symmetries, however, by construction it is covariant with respect to the Hamiltonian
symmetries generated by the first class constraints [22]. As is well known from classical Noether theory, these two
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symmetries coincide only on shell, that is, when the equations of motion hold, i.e. in the semiclassical sector of the
path integral (critical points of the action). But that is hardly surprising. The quantum effects, that is, the fluctuations
and higher correlations will receive corrections coming from the measure factor and one completely misses them if
one postulates the naive covariant measure [dq] exp(iS). Notice also that the path integral remembers the gauge fixing
condition explicitly through the dependence of the wave functions, as well as the exponential of the current, onQA

only, rather than all ofqa, which are adapted toG.
Finally we should mention that performing the momentum space integral will be technically impossible to do

exactly and the saddle point approximation may only be a poor substitute for it yielding large errors the possibilty for
which we indicated byV′ which, however, will also be hard to do exactly or even perturbatively. Even if it can be
done perturbatively, the corresponding series may not converge. Especially in such situations, a naive quantisation
based on the configuration space path integral with the exponent of the classical action as weight may have little to do
with the correct quantisation of the system.

4 Operator Constraint Quantisation Path Integral

In this section we are going to derive the path integral formulation using Dirac’s operator constraint formalism in the
language of rigging maps using the always locally available lineraised constraints. For more global, rigorous results,
see e.g. [40].

As already mentioned, in the presence of second class constraints, operator constraint quantisation is in general
impossible if one does not pass to local Darboux coordinates with respect to the Dirac bracket because other-
wise one does not find representations of the canonical commutation relations. Hence we assume that we have
passed from the global conjugate pairs (qa, pa) to local conjugate pairs (zΣ) = (xσ, yσ), (φµ, πµ), (QA,PA) in terms
of which the second and first class constraints respectively can be reformulated asSΣ = 0 ⇔ zΣ = 0 and
Fµ = 0 ⇔ F′µ = πµ + h′µ(φ; Q,P) = 0. The F′µ are Abelian{F′µ, F′ν} = 0 and first class{F′µ, zΣ} = 0 while
{yσ, xσ

′ } = δσ′σ and thus the Dirac bracket on functions ofφ, π,Q,P reduces to the Poisson bracket.
On the assumption that the constraintsF′µ can be quantised without anomalies on the kinematical Hilbert space

Hkin = L2(dQdΦ), that is, [F′µ, F
′
ν] = 0 we define a rigging map heuristically as (one has to be careful with domains

and ranges andη should be defined as anti – linear map, however we do not need to enter the discussion of these
niceties here, see [17] for further information)

η : Hkin →Hphys; ψ 7→ [η(ψ)](φ,Q) =
∫

[dβ/(2π)] [eiβµF′µψ](φ,Q) (4.1)

In the case at hand we can easily bring (4.1) into a form from which it is obvious that it solves the constraintsF′µ = 0.
First of all we notice that (4.1) can be formally written as

η(ψ) =
∏
µ

δ(F′µ)ψ (4.2)

where the order of theδ distributions is irrelevant due to the Abelianess of the constraints. This is not the case for
theFµ which is why the heuristic projector defined in [41] does not solve the constraints. This is already a hint that
(4.1) indeed solves the constraints. To actually prove it we notice thateiβµπµψ(φ) = ψ(φ − β) and so (we suppress the
Q argument in what follows)

[η(ψ)](φ) =
∫

[dβ/(2π)] V(β) ψ(φ − β) =
∫

[dβ/(2π)] V(φ − β) ψ(β) (4.3)

where
V(β) = eβ

µ[πµ+h′µ(φ)] e−iβµπµ (4.4)
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Using
eiβµπµ h′ν(φ)e−iβµπµ = h′ν(φ − β) (4.5)

we derive
1
i
∂V(β)
∂βµ

= V(β)h′µ(φ − β) (4.6)

Denotingβ(t) := β1 + t(β2 − β1) it follows

V(β2) − V(β1) =
∫ 1

0
dt1

d
dt1

V(β(t1)) = i
∫ 1

0
dt1 V(β(t1)) β̇µ(0)h′µ(φ − β(t1)) (4.7)

where we noticed thaṫβ(t) = β̇(0) = β2 − β1 =const. Equation (4.7) can be iterated into a Dyson series: We need

βt1(t2) = β1 + t2(β(t1) − β1) = β1 + t1t2(β2 − β1) = β(t1t2) (4.8)

so that

V(β(t1)) − V(β1) =
∫ 1

0
dt2

d
dt2

V(βt1(t2)) = i
∫ 1

0
dt2 V(β(t1t2)) t1β̇

µ(0)h′µ(φ − β(t1t2))

= i
∫ t1

0
dt2 V(β(t2)) β̇µ(0)h′µ(φ − β(t2)) (4.9)

Accordingly we obtain for anyβ2, β1

V(β1)−1 V(β2) = Tl exp(i
∫ 1

0
dt [β2 − β1]µ h′µ(φ − β1 − t(β2 − β1))) (4.10)

where the path ordering symbolTl orders the earliest time to the left. Choosingβ1 = φ, β2 = φ − β we find

V(φ − β) = V(φ) Tl exp(−i
∫ 1

0
dt βµ h′µ(tβ)) =: V(φ)U(β) (4.11)

where, using again (4.10) withβ2 = φ, β1 = 0 and noticing from the definition (4.4) thatV(0) = 1

V(φ) = Tl exp(i
∫ 1

0
dt φµ h′µ(φ(1− t))) = Tr exp(i

∫ 1

0
dt φµ h′µ(φt)) (4.12)

where we have performed the change of variablest 7→ 1− t which switchesTl to Tr which orders the earliest time to
the right. For later use we notice the identity

U(β) = V(β)−1 = V(β)† (4.13)

which establishes unitarity ofV(β) (as an operator onL2(dQ)) and can easist be demonstrated by writingV(β) in the
form

V(β) = lim
N→∞

e
i
Nβ
µh′µ(β) e

i
N β
µh′µ(

N−1
N β) e

i
Nβ
µh′µ(

N−2
N β) ... e

i
Nβ
µh′µ(

1
N β) (4.14)

The point of these manipulations is that we can now write

[η(ψ)](φ,Q) = V(φ)[η′(ψ)](Q), [η′(ψ)](Q) =
∫

[dβ/(2π)] V(β)−1 ψ(β,Q) (4.15)

Obviouslyη′(ψ) no longer depends onφ so that the rigging map essentially produces functions whoseφ dependence
is restricted to be of the formV(φ)Ψ(Q) for suitableΨ ∈ L2(dQ). In order to show that such functions really solve

31



F′µ = 0 it is very crucial that [F′µ, F
′
ν] = 0, otherwise this doe not hold. Essentially, the proof boils down to showing

(we again suppress theQ dependence)

[
∂

∂φµ
− ih′µ(φ)]V(φ) = 0 (4.16)

This almost looks like a parallel transport equation onφ space with respect to a one form−ih′µ(φ) with values in a
Lie algebra of (anti – self adjoint) operators onL2(dQ) defined on a common dense and invariant domain andV(φ)
looks like its holonomy along the patht 7→ tφ. The difference with the parallel equation is of course that the latter is
an ODE while (4.16) is a system of PDE’s so that the issue of integrability arises and so the following theorem is not
trivial (notice that wedo notneed to assume∂[µh′ν] = 0). Its validity rests on the fact that

[F′µ, F
′
ν] = −{2∂[µ(−ih′ν] + [(−ih′µ), (−ih′ν)]} = 0 (4.17)

i.e. that the curvature of the connection−ih′µ vanishes.

Theorem 4.1.
Equation (4.16) holds pointwise inφ space on a dense set of analytic vectors18 for the operator h′(φ) = φµh′µ(φ).

Proof. Let V0(φ) := 1 for N ∈ N0 and forN > 0

VN(φ) = 1+
N∑

n=1

in
∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn φ

νn h′νn(tnφ) (4.18)

Clearly limN→∞VN(φ) = V(φ) converges on analytic vectors forh′(φ) := φµh′µ(φ). We define forN > 0 the remainder

RN(φ) = −iN−1
N∑

n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn tnφ

ν1{[h′µ,h′ν1]}(tnφ) ...
∫ tN−1

0
dtN φνN h′νN(tNφ) (4.19)

and prove by induction forN > 0 that

∂µVN(φ) = ih′µ(φ) VN−1(φ) + RN(φ) (4.20)

By definition, on analytic vectors ofh′(φ) the norm of the remainder converges (pointwise inφ space) to zero (it is of
order 1/[(N − 1)!]) so that once that (4.20) is established, the proof is complete.

For N = 1 we obtain

∂µV1(φ) = i
∫ 1

0
dt [h′µ(tφ) + tφν(∂µh

′
ν)(tφ)]

= i
∫ 1

0
dt [

d
dt

[t h′µ(tφ)] + 2tφν(∂[µh
′
ν] )(tφ)]

= ih′µ(φ) −
∫ 1

0
dt {tφν ([h′µ,h

′
ν])(tφ)]}

= ih′µ(φ)V0(π) + R1(φ) (4.21)

where in the third step we used
[F′µ, F

′
ν] = 0 ⇔ 2i∂[µh

′
ν] + [h′µ,h

′
ν] = 0 (4.22)

18A vectorψ is called analytic for an operatorA if ||Anψ|| < ∞ for all n and
∑

n=0 tn ||Anψ||/(n!) < ∞ for somet > 0.
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Assuming that (4.20) holds up toN we compute

∂µ(VN+1 − VN) = iN+1∂µ

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

= iN+1
N+1∑
n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn[h′µ(tnφ) + tnφ

νn(∂µh
′
νn

)(tnφ)] ...
∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

= iN+1
N+1∑
n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn[

d
dtn

(tnh′µ(tnφ)) + 2tnφ
νn(∂[µh

′
νn] )(tnφ)] ... ...

∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

= iN+1
N+1∑
n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−2

0
dtn−1 φ

ννn−1 h′νn−1
(tn−1φ)

∫ tn−1

0
dtn[

d
dtn

(tnh′µ(tnφ))] ×

×
∫ tn

0
dtn+1φ

νn+1h′νn+1
(tn+1φ) ...

∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

−iN
N+1∑
n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn tnφ

νn([h′µ, h
′
νn

])(tnφ)] ...
∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

= RN+1 + ih′µ(φ)[VN(φ) − VN−1(φ)]

+iN+1
N+1∑
n=2

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−2

0
dtn−1 φ

ννn−1 h′νn−1
(tn−1φ) tn−1 h′µ(tn−1φ)) ×

×
∫ tn−1

0
dtn+1φ

νn+1h′νn+1
(tn+1φ) ...

∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

−iN+1
N∑

n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−2

0
dtn−1 φ

ννn−1 h′νn−1
(tn−1φ)

∫ tn−1

0
dtn tnh′µ(tnφ) φ

νnh′νn(tnφ) ×

×
∫ tn

0
dtn+2 φ

ννn+2 h′νn+2
(tn+2φ) ...

∫ tN

0
dtN+1 φ

νN+1h′νN+1
(tN+1φ)

= RN+1 + ih′µ(φ)[VN(φ) − VN−1(φ)]

−iN−1
N∑

n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn φ

νnh′νn(tnφ) tn h′µ(tnφ)) ...
∫ tN−1

0
dtN φ

νNh′νN(tNφ)

+iN−1
N∑

n=1

∫ 1

0
dt1 φ

ν1h′ν1(t1φ) ...
∫ tn−1

0
dtn tnh′µ(tnφ) φ

νnh′νn(tnφ) ...
∫ tN−1

0
dtN φ

νNh′νN(tNφ)

= RN+1 + ih′µ(φ)[VN(φ) − VN−1(φ)] − RN (4.23)

In the fourth step we have separated two contributions and the second is easily recognized as the definition ofRN+1.
The non trivial step was the fifth one where we performed an integration by parts in the first contribution which
produces two sums. We have sett0 = 1 in the first sum and in the second in the last term the integral overtN+2 etc. is
just unity. In the sixth step we have relabeled in the first sum in the n-th termtn+1 → tn, .., tN+1 → tN and then reset
the summation range ton = 1, ..,N. In the second sum in the n-th term we have relabeledtn+2 → tn+1, .., tN+1 → tN
which combines the two sums to−RN.

Thus, by assumption (4.20)

∂µVN+1 = [∂µVN − ih′µVN−1 − RN] + ih′µVN + RN+1 = ih′µVN + RN+1 (4.24)

�

Having shown that the rigging map is well defined and produces solutions to the constraintsF′µ we can compute
the physical inner product between statesη(ψ) defined by (we drop the factors 1/(2π) as the physical inner product is
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defined only up to a scale)

< η(ψ), η(ψ′) >phys := < ψ, η(ψ′) >kin

=

∫
[dφ]

∫
[dQ] ψ(φ,Q) [η(ψ′)](φ,Q)

=

∫
[dφ]

∫
[dQ] ψ(φ,Q) V(φ)[η′(ψ′)](Q)

=

∫
[dφ] < ψ(φ, .),V(φ)η′(ψ′) >L2(dQ)

= <

∫
[dφ] V(φ)−1 ψ(φ, .), η′(ψ′) >L2(dQ)

= < η′(ψ), η′(ψ′) >L2(dQ) (4.25)

whereη′(ψ) was defined in (4.15). This calculation demonstrates that the physical Hilbert space can be identified with
the Hilbert spaceHred := L2(dQ) which we obtained also in the reduced phase space approach. The identification is
established by

W : Hred→HphysΨ(Q) 7→ V(φ)Ψ(Q) (4.26)

Hphys can also be recognised as the (closure of the) set of equivalence classes of vectors inHkin whereψ ∼ ψ′ iff
η′(ψ) = η′(ψ′) are the sameL2(dQ) functions. Notice thatη′ is not a projector, [η′]2 is ill defined.

It is worthy pointing out the importance of the knowledge of the map (4.26): Often one only knows a path
integral expression for< η(ψ), η(ψ′) >phys in terms of the boundary statesψ, ψ′ which, however, lack any physical
interpretation, they are not gauge invariant. The vectorsη(ψ) are gauge invariant, however, the path integral expression
which we will also derive below is not in terms ofη(ψ) but in terms ofψ, η(ψ) is often not known explicitly. In the
case considered here,η(ψ) is known explicitly: Neglecting about the details of the domains of the maps we have
η(Hkin) = W(Hred) and sinceW just operates by a unitary operator with a specificφ dependence, all the non trivial
physical information is contained inHred.

To make the link with the path integral formulation now does not require much further work. For anyΨ,Ψ′ ∈ Hred

pick ψ, ψ′ ∈ Hkin with η′(ψ) = Ψ, η′(ψ′) = Ψ′. Any suchΨ is generated from the cyclic vacuum vectorΩ (a ground
state vector under the time evolution, i.e. a stationary vector underHred(t) for some fixed value oft; in the case of
a conservative system, the choice of thist is irrelevant) by operating with (limits of) polynomialsf of the operators
QA. On the other hand, from the point of view ofHphys the operatorsQA are ill defined because they are not gauge
invariant, or in other wordsQAη(ψ) is not annihilated by theF′µ. The following operators, however, preserveHphys

Q̃A = [exp(iβµF′µ)Q
A exp(−iβµF′µ)]β=φ (4.27)

which is the quantisation of the corresponding classical formula (2.23) upon replacing{F′µ,QA}(n)) by [F′µ,Q
A](n)/in.

To show that [F′µ, Q̃
A] = 0 we notice that since [πµ,QA] = 0 we have with the definition ofV(β) (4.4)

Q̃A = [exp(iβµF′µ) e−iβµπµ QAeiβµπµ exp(−iβµF′µ)]β=φ

= V(φ)QAV(φ)−1 (4.28)

Notice thatQ̃A is self-adjoint onHphys if QA is onHred. Since any physical state is of the formV(φ)Ψ(Q) it is obvious
thatQ̃A preservesHphysby theorem 4.1. We conclude

< Ψ,Ψ′ >red=< Ω, f (Q)† f ′(Q)Ω >red=< WΨ,WΨ′ >phys=< WΩ, f (Q̃)† f ′(Q̃)WΩ >phys (4.29)

We see that the physical scalar product can be directly related to the reduced Hilbert space inner product. Now we
just need to relate the latter to the n-point functions already derived in the previous section. But this is easy: Evidently
(4.29) is a finite linear combination of monomials of the form

< Ω,QA1 ... QAnΩ >red (4.30)
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which is the coincidence limit of an n-point function

lim
t1,..,tn→t

< Ω,QA1(t1) ... QAn(tn)Ω >red (4.31)

for arbitrary t. In interacting Wightman QFT’s it is expected that such equal time correlators are too singular [11].
On the other hand, if the theory can be canonically quantised at all then such limits must exist as otherwise the notion
of equal time commutation relations is meaningless and therefore presumably violates at least one of the Wightman
axioms, e.g. the uniqueness of the vacuum. In any case, we derived a path integral formula for the right hand side of
(4.31) in terms of a path integral for the generating functional.

There is also a more direct derivation for a path integral formula for< η(ψ), η(ψ′) >phys for which, however, the
relation to the reduced phase space path integral is less clear. On the other hand that alternative derivation makes the
connection to the Master constraint path integral clearer. We will thus display it here for completeness. We start from
the definition of the rigging map (4.1), choose some arbitrary but fixed reference vectorΩ0 and normalise the physical
inner product by asking that the norm ofη(ψ) be unity. Thus we have to divide (4.1) by a constant up to which the
inner product is anyway undetermined and obtain

< η(ψ), η(ψ′) >phys=

∫
[dβ] < ψ,eiβµF′µψ′ >kin∫

[dβ] < Ω0,eiβµF′µΩ0 >kin
(4.32)

Notice that (4.32) is not a path integral overβ, it is just an integral at fixed time of the Lagrange multipliersβµ. In
order to introduce a path integral of Lagrange multipliers we introduce an arbitrary time parameterT which we will
eventually send to∞ and multiply both numerator and denominator of (4.32) by the infinite constant

C =
∫

[Dλ]
∏
µ

δ(
∫ T

−T
dtλµ(t)) (4.33)

which is a path integral over pathst 7→ λ(t), t ∈ [−T,T]. By shifting the integration variableλ(t) = λ′(t) − 1
2Tβ for

any constant pathβ/(2T) we see thatC can also be written

C =
∫

[Dλ]
∏
µ

δ(
∫ T

−T
dtλµ(t) − βµ) (4.34)

whereβ is arbitrary. Inserting this into (4.32) and interchanging the [Dλ], [dβ] integrals we obtain

< η(ψ), η(ψ′) >phys =

∫
[dβ] < ψ,eiβµF′µψ′ >kin [

∫
[Dλ]

∏
µ δ(
∫ T

−T
dtλµ(t) − βµ)]

∫
[dβ] < Ω0,eiβµF′µΩ0 >kin [

∫
[Dλ]

∏
µ δ(
∫ T

−T
dtλµ(t) − βµ)]

=

∫
[Dλ] < ψ,ei[

∫ T
−T

dtλµ(t)]F′µψ′ >kin [
∫

[dβ]
∏
µ δ(
∫ T

−T
dtλµ(t) − βµ)]

∫
[Dλ] < Ω0,e

i[
∫ T
−T dtλµ(t)]F′µΩ0 >kin [

∫
[dβ]

∏
µ δ(
∫ T

−T
dtλµ(t) − βµ)]

=

∫
[Dλ] < ψ,ei[

∫ T
−T dtλµ(t)]F′µψ′ >kin

∫
[Dλ] < Ω0,e

i[
∫ T
−T dtλµ(t)]F′µΩ0 >kin

(4.35)

By writing

[
∫ T

−T
dtλµ(t)]F′µ = lim

N→∞

1
2N

N−1∑
n=−N

λµ(nT/N)F′µ (4.36)

we finally obtain using the usual skeletonisation techniques

< η(ψ), η(ψ′) >=

∫
[DQ DP Dφ Dπ Dλ] ψ(QT , φT) ψ′(Q−T , φ−T) ei

∫ T
−T

dt[PA Q̇A+πµ φ̇
µ−λµF′µ(Q,P,φ,π)]

∫
[DQ DP Dφ Dπ Dλ] Ω0(QT , φT) Ω0(Q−T , φ−T) ei

∫ T
−T dt[PA Q̇A+πµ φ̇µ−λµF′µ(Q,P,φ,π)]

(4.37)
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Notice that all canonical coordinates and Lagrange multipliers are integrated over paths in time in the interval [−T,T]
and that the operatorF′µ has been replaced by the classical function in (4.36). In this expression the parameterT is
arbitrary and we can takeT → ∞.

In order to invoke the gauge fixing conditionsGµ = τµ(t)−φµ we will make use of the Fadeev – Popov procedure:
Letαγ(t) = exp(γµ(t){F′µ(t), .}) whereF′µ(t) = F′µ(u(t)) is the constraint on the copy of the phase space at timet and
u(t) = (Q(t),P(t), φ(t), π(t)). Thenαγ(t)(Gµ(t)) = Gµ(t) + γµ(t) so that in this case trivially

∫
[Dγ]

∏
t,µ

δ(αγ(t)(G
µ(t)) = 1 (4.38)

We multiply both numerator and denominator of (4.37) by this unity. Assuming limT→∞ γ(±T) = 0 the kinetic term
in the exponential of (4.37) is invariant (being a symplectic potential),F′µ is invariant due to the Abelianess and the
Liouville measure at timet is invariant under the canonical transformationsαγ(t). Thus after a change of variables
from u → αγ(u) and since [αγ(G)](u) = G(αγ(u)) nothing depends onγ anymore and the integral overDγ can be
dropped. We obtain

< η(ψ), η(ψ′) >=

∫
[DQ DP Dφ Dπ] ψ(QT , φT) ψ′(Q−T , φ−T) δ[F′] δ[G] ei

∫ T
−T dt[PA Q̇A+πµ φ̇

µ]

∫
[DQ DP Dφ Dπ] Ω0(QT , φT) Ω0(Q−T , φ−T) δ[F′] δ[G] ei

∫ T
−T dt[PA Q̇A+πµ φ̇µ]

(4.39)

where we have also integrated overλ.
Finally, in order to invoke the second class constraints in the formzΣ = (xσ, yσ) = 0 we simply insert aδ

distributionδ[z] and integrate overz. This yields

< η(ψ), η(ψ′) >=

∫
[DQ DP Dφ Dπ Dx Dy] ψ(QT , φT) ψ′(Q−T , φ−T) δ[F′] δ[G] δ[z] ei

∫ T
−T

dt[PA Q̇A+πµ φ̇
µ+yσ ẋσ]

∫
[DQ DP Dφ Dπ Dx Dy] Ω0(QT , φT) Ω0(Q−T , φ−T) δ[F′] δ[G] δ[z] ei

∫ T
−T

dt[PA Q̇A+πµ φ̇µ+yσ ẋσ]

(4.40)
Next we observe that det({F′,G}),det({z, z}) are constant in the system of coordinates chosen so we can multiply
numerator and denominator of (4.40) by these constants. As established in section 3, the expression

δ[F′] δ[G] δ[z] |det({F′,G})|
√

det({z, z} (4.41)

is invariant under any mapping (F′,G, z) 7→ (F,G′,S) as long as both triples reduce to the same gauge cut of the same
constraint surface. We may therefore restore the original first and second class constraintsF,S while keepingG = G′

provided we keep the determinant factors in (4.41). Finally we can restore the original system of coordinatesqa, pa

which arise from (q′a, p′a) := (QA,PA), (φµ, πµ), (xσ, yσ) by a canonical transformationα because the symplectic
potential in the exponent of (4.40) as well as the Liouville measure remain invariant and the Poisson brackets are
simply expressed in the new coordinates, e.g.

{S,S}(q′, p′) = {S,S}(α(q, p)) = {S ◦ α,S ◦ α}(q, p) (4.42)

(by S we denote the originalS expressed in whatever canonical coordinates). Accordingly

< η(ψ), η(ψ′) >=

∫
[Dq Dp] ψ(QT , φT) ψ′(Q−T , φ−T) δ[F] δ[G] δ[S] |det({F,G})|

√
det({S,S}) ei

∫ T
−T dt paq̇a

∫
[Dq Dp] Ω0(QT , φT) Ω0(Q−T , φ−T) δ[F] δ[G] δ[S] |det({F,G})|

√
det({S,S}) ei

∫ T
−T dt paq̇a

(4.43)
Notice that due to the gauge fixing conditionG(t) = τ(t) − φ(t) the integral overφ is anyway concentrated at the
fixed pathτ(t) so that it is allowed to assume thatψ, ψ′,Ω are actually independent ofφ. In this sense the final result
(4.43) precisely agrees with (3.70) with the understanding thatψ, ψ′ in (4.43) can be generated from the generating
functional (3.70) by suitable functional differentiation with respect to the currentj at j = 0 at coincident points of
time±T in the limit T → ∞.
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5 Master Constraint Path Integral

The Master Constraint Programme (MCP) was originally designed precisely in order to be able to cope with gauge
systems whose classical first class constraint algebra involves structure functions [16] and for which therefore group
averaging techniques do not work. It is true that locally the first class constraintsF can be replaced by equivalent
ones whose algebra is Abelian and we have made heavy use of that fact in the two previous sections. However, for
the case of interest, namely General Relativity, in vacuum the Abelian constraints are rather non local on the spatial
manifold, algebraically difficult to deal with and not explicitly known even classically [42]. Even with standard matter
this is true. It is for this reason that in [10, 33] non standard matter (Brown – Kuchaˇr Dust [43]) was used in order to
achieve the Abelianisation in a local form and such that the resulting expressions remain practically manageable. The
MCP does not rely on Abelianisation and thus is both more global (on phase space) in character and does not require
any special type of matter. In principle it does not even require that the constraints are quantised without anomalies
and even second class constraints can be treated by the MCP [16]. Since the Master Constraint is a weighted sum of
squares of the first class constraints, we expect that its kernel is empty when the constraints are not quantised without
anomalies. In that case one could consider the Hilbert “subspace” corresponding to the lowest “eigenvalue” as the
suitable substitute for the anomaly free situation. See [16] for further discussion. In that sense the MCP may be
considered as a much more flexible approach to constrained systems with structure functions.

While for a wide range of models the MCP has been tested versus the more traditional operator constraint method
[16], its equivalence with the latter is so far lacking. On the one hand, the equivalence seems to be obvious since
both the Master constraint and the individual constraints are supposed to define the same (common) kernel. On the
other hand, the equivalence is rather not obvious because the formulae for defining the physical inner product or
equivalently the rigging map are totally different. For the individual constraints in Abelianised form the rigging map
is defined in (4.1) while for the MCP it is heuristically defined by19

ηM : Hkin →HM
phys; ψ 7→

∫

R

dt
2π

eitMψ (5.1)

where the Master constraint is defined by
M =

∑
µ,ν

F†µ Kµν Fν (5.2)

The symmetric (possibly operator valued) matrixK should be so chosen such thatM is positive and such that it arises
from a classically positive definite matrix valued function on phase space. There is great flexibility in the choice of
K and while all (sufficiently differentiable) positive definite classical matrices are equivalent, in quantum theory this
flexibility must be exploited in order to arrive at well defined master Constraint Operators [16]. Normally we require
thatFµ is quantised as a self adjoint operator but in the case of structure functions this must be relaxed [16] which is
why we included the adjoint in (5.2).

The task of the present section is to connect with the results of the previous two sections. Those sections made
use of the Abelian constraintsF′µ and we will therefore use those in order to build our Master Constraint. We assume
as in sections 3 and 4 thatF′µ is self – adjoint since theF′µ are supposed to be quantised without anomalies. As in the
previous section we choose a reference vectorΩ0 and define the Master Constraint physical inner product by

< ηM(ψ), ηM(ψ′) >M
phys:=

∫
R

dt < ψ,eitMψ′ >kin∫
R

dt < Ω0,eitMΩ0 >kin
(5.3)

To see that (4.1) and (5.3) formally coincide, recall [4] that for any self – adjoint operatorA on a (separable20) Hilbert

19Again there are subtle domain issues which we neglect here and moreover one should switch to a direct integral representation ofHkin

subordinate toM; see [16] for details.
20In LQG the Hilbert space is not separable but the operator M preserves the separable subspaces into which the Hilbert space decomposes
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space there exists a unitary transformation (generalised Fourier transform)

U : H → H⊕ :=
∫

spec(A)
dµ(λ) H⊕λ ; ψ 7→ (ψ̃(λ))λ∈spec(A) (5.4)

fromH to a direct integral of Hilbert spacesH⊕λ (possibly with different dimensions for eachλ but in a measurable
way, hence more general than a Hilbert bundle) with respect to a probability measureµ on the spectrum spec(A) of A.
Hereψ̃(λ) ∈ H⊕λ . The correspondence between the inner products is

< ψ, ψ′ >H=< ψ̃, ψ̃
′ >H⊕ :=

∫

spec(A)
dµ(λ) < ψ̃(λ), ψ̃′(λ) >H⊕λ (5.5)

The point of this spectral decomposition is that [UAU−1ψ̃](λ) = λψ̃(λ), i.e. A acts by multiplication byλ onH⊕λ If (the
spectral projections of) two self – adjoint operatorsA,B commute thenUBU−1 preservesH⊕λ and we may apply the
just quoted theorem which then tells us that there exists a joint probability measuredµ(λA, λB) on the joint spectrum
spec({A,B}) = spec(A) × spec(B) of A,B and a representation ofH as a direct integral of Hilbert spacesH⊕λA,λB

on
which A,B respectively act by multiplication byλA, λB respectively.

Iterating like that we obtain the statement that for a (countable) family of mutually commuting self – adjoint
operatorsF′µ there exists a unitary operatorU fromHkin toH⊕ which is the direct integral with respect to a measure
µ on the joint spectrum of theF′µ of Hilbert spacesH⊕{λµ}µ on whichUF′µU

−1 acts by multiplication byλµ. This is the
key to link (5.3) and (4.1). Namely we formally obtain for (4.1)

< η(ψ), η(ψ′) >phys =

∫
[dβ] < ψ,eiβµF′µ ψ′ >kin∫

[dβ] < Ω0,eiβµF′µ Ω0 >kin

=

∫
spec({F′}) dµ({λ}) < ψ̃({λ}), ψ̃′({λ}) >H⊕{λ} [

∫
[dβ] eiβµλµ ]

∫
spec({F′}) dµ({λ}) < Ω̃0({λ}), Ω̃0({λ}) >H⊕{λ} [

∫
[dβ] eiβµλµ ]

=

∫
spec({F′}) dµ({λ}) < ψ̃({λ}), ψ̃′({λ}) >H⊕{λ} δ({λ})∫

spec({F′}) dµ({λ}) < Ω̃0({λ}), Ω̃0({λ}) >H⊕{λ} δ({λ})

=
ρ({0}) < ψ̃({0}), ψ̃′({0}) >H⊕{0}
ρ({0}) < Ω̃0({0}), Ω̃0({0}) >H⊕{0}

=
< ψ̃({0}), ψ̃′({0}) >H⊕{0}
< Ω̃0({0}), Ω̃0({0}) >H⊕{0}

(5.6)

where formallydµ({λ}) =: ρ({λ})[dλ]. Notice thatρ({λ}) can have distributional contributions if the spectrum has a
pure point part, see [16, 25]. Of course there are measure theoretic issues such as: if 0 lies in the continuous spectrum
of someF′µ then{0} hasµ measure zero andH⊕{0} is not well defined without further assumptions spelled out in [16].
For the purposes of this paper we take a formal attitude and simply let the formal cancelation of theρ({0}) in numerator
and denominator of (5.6) take place as indicated. For a more careful definition see [25].
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On the other hand we have

< ηM(ψ), ηM(ψ′) >M
phys =

∫
dt < ψ,eitM ψ′ >kin∫

dt < Ω0,eitM Ω0 >kin

=

∫
spec({F′}) dµ({λ}) < ψ̃({λ}), ψ̃′({λ}) >H⊕{λ} [

∫
dt eit

∑
µ,ν Kµνλµλν ]

∫
spec({F′}) dµ({λ}) < Ω̃0({λ}), Ω̃0({λ}) >H⊕{λ} [

∫
dt eit

∑
µ,ν Kµνλµλν ]

=

∫
spec({F′}) dµ({λ}) < ψ̃({λ}), ψ̃′({λ}) >H⊕{λ} δ(

∑
µ,ν Kµνλµλν)∫

spec({F′}) dµ({λ}) < Ω̃0({λ}), Ω̃0({λ}) >H⊕{λ} δ(
∑
µ,ν Kµνλµλν)

=
ρ({0}) J({0}) Vol(S) < ψ̃({0}), ψ̃′({0}) >H⊕{0}
ρ({0}) J({0}) Vol(S) < Ω̃0({0}), Ω̃0({0}) >H⊕{0}

=
< ψ̃({0}), ψ̃′({0}) >H⊕{0}
< Ω̃0({0}), Ω̃0({0}) >H⊕{0}

(5.7)

whereJ({λ}) is the Jacobian that arises by switching from{λ} to polar coordinates adapted to the radius squared
r2 :=

∑
µ,ν Kµνλµλν. Of course we have assumed thatKµν is just a complex valued positive definite matrix. Vol(S)

is the volume of the corresponding sphere. For countably manyF′µ the volume of the infinite dimensional sphere
vanishes as well as the Jacobian at zero. To justify (5.7) less formally one has to take a limit as the numberN of F′µ
approaches infinity so that Vol(SN−1) is finite and one also has to regulariseδ(M) by δ(M − ε2) and takeε → 0 as to
makeJ(ε) finite. See [25] for the details and also (5.10) below for a sketch.

Hence (5.6) and (5.7) agree with each other modulo formal manipulations and thus give rise to the same path in-
tegral formulation. Our method of “proof” above used spectral theory. We will now provide a more direct (but also
formal) “proof” using only path integral techniques. The idea is the same as at the end of section 4 and was already
sketched in [16]. First of all we use the same technique as used between (4.32) and (4.37) in order to write (5.3) as

< ηM(ψ), ηM(ψ′) >M
phys=

∫
[Dλ] < ψ,ei[

∫ T
−T dtλ(t)]Mψ′ >kin

∫
[Dλ] < Ω0,e

i[
∫ T
−T dtλ(t)]MΩ0 >kin

=

∫
[DQ DP Dφ Dπ Dλ] ψ(QT , φT) ψ′(Q−T , φ−T ) ei

∫ T
−T dt[(PAQ̇A+πµφ̇

µ)(t)−λ(t)M(Q(t),P(t),φ(t),π(t)]

∫
[DQ DP Dφ Dπ Dλ] Ω0(QT , φT) Ω0(Q−T , φ−T) ei

∫ T
−T dt[(PAQ̇A+πµφ̇µ)(t)−λ(t)M(Q(t),P(t),φ(t),π(t)]

=

∫
[DQ DP Dφ Dπ] ψ(QT , φT) ψ′(Q−T , φ−T) [

∏
t∈[−T,T] δ((M(t))] ei

∫ T
−T dt[(PAQ̇A+πµφ̇

µ)(t)]

∫
[DQ DP Dφ Dπ] Ω0(QT , φT) Ω0(Q−T , φ−T) [

∏
t∈[−T,T] δ((M(t))] ei

∫ T
−T dt[(PAQ̇A+πµφ̇µ)(t)]

(5.8)

whereT is again an arbitrary parameter which we take to∞ eventually. If in (4.37) we perform the integral overλ then
the only difference between (4.37) and (5.8) is that instead ofδ[F′] the distributionδ[M] appears in both numerator and
denominator. But clearly the two distributions have the same supportπ = −h′(φ,Q,P). Let us therefore explicitly do
the integral in both (4.37) and (5.8) and compare the results. It suffices to do this at fixedt because bothδ distributions
factories over [−T,T]. We considerδ(M) as the limitN→ ∞, ε → 0 of

δN,ε(M) := δ(
∑
µ,ν≤N

Kµν F′µ F′ν − ε2) (5.9)

Let f = f [π] be any functional ofπµ, µ = 1, ..,N. The N × N submatrixKµνN = Kµν; µ, ν ≤ N is also positive
definite on the corresponding vector subspace. Hence its square root and inverse is well defined. Thus, by shifting
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the integration variable and switching to radialr and polar coordinatesϕ respectively we obtain with the unit vector
xµ/r = nµ(ϕ)

∫

RN
dNπ δN,ε(M) f (π)

=

∫

RN
dNx δ(xT KN x− ε2) f (−h′ + x)

=
1

√
det(KN)

∫

RN
dNx δ(xT x− ε2) f (−h′ + K−1/2

N x)

=
1

√
det(KN)

∫

R+

rN−1 dr δ(r2 − ε2)
∫

SN−1
dVol(ϕ) f (−h′ + K−1/2

N rn(ϕ))

=
εN−2

2
√

det(KN)

∫

SN−1
dVol(ϕ) f (−h′ + K−1/2

N εn(ϕ)) (5.10)

In the limit ε → 0 this approaches
εN−2

2
√

det(KN)
Vol(SN−1) f (−h′) (5.11)

and in that sense we may write

δN,ε(M) =
εN−2

2
√

det(KN)
Vol(SN−1) δN(F′), δN(F′) =

∏
µ≤N

δ(F′µ) (5.12)

SinceKN is a phase space independent constant, when inserting (5.12) into (5.8), the prefactor cancels in both numer-
ator and denominator and we arrive at (4.37) in the limitε → 0 andN→ ∞.

6 Conclusions and Outlook

The three tasks accomplished in the present paper are:

1. We have demonstrated that within the limits of the formal nature of the manipulations that are usually employed
when dealing with path integrals, three canonical quantisation methods, namely the reduced phase space –, the
operator constraint and the Master Constraint quantisation all lead to the same path integral formulation for
the physical inner product. In order that rigging map techniques can be employed to the operator constraint
approach, in the case of structure functions one has to pass to Abelianised constraints.

2. The resulting path integral can be written in terms of the classical Lagrangian from which the classical theory
descends. However, the correct measure to be used is not the naive Lebesgue measure on path space, rather this
measure must be corrected by factors that depend on the first and second class constraints as well as the gauge
fixing condition.

3. The gauge fixing condition is in one to one correspondence with the choice and interpretation of a convenient
choice of an algebra of physical observables and a physical Hamiltonian. It is possible to do without gauge
fixing conditions provided one finds alternative methods to construct an algebra of Dirac observables. However,
the resulting algebra is almost surely algebraically more complicated, more difficult to quantise, lacks an a priori
physical interpretation and is not equipped with a preferred physical time evolution. In particular, if one wants
to talk about the scattering matrix between physical states, the dependence on the gauge fixing is unavoidable
because it determines the physical time evolution of the chosen “basis” of gauge invariant operators.
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As we have already stated in the introduction, certainly not all the results and techniques derived and used in the
present paper are new, bits and pieces of it are already in the literature. However, we believe we have assembled the
material in a new and fruitful way in order to better understand the relations between the four quantisation methods
discussed in this paper. Also we think that the mathematical and physical influence of the gauge fixing condition has
been described in this paper from a new angle.

As we have seen explicitly, both methods of proof in section 5 actually relied on the fact that the matrixK is
a constant function on phase space. However, this is not the case for the concrete Master Constraint for General
Relativity studied in [16]. Namely, there one considered an expression of the form

M =
∫

σ
d3x

C2

√
det(q)

(6.1)

whereC is the Hamiltonian constraint andq is the intrinsic three metric of the hypersurfaceσ. The “matrix” K(x,y) =
δ(x,y)/

√
det(q)(x) is chosen here in order to make (6.1) invariant under spatial diffeomorphisms and is clearly a

non – trivial function on phase space. In view of the analysis of the previous section, rather than the Hamiltonian
constraint in its original formC, in the presence of the dust matter one would choose it in the locally equivalent
form C′(x) = π(x) + h′(q(x),P(x)) whereq,P are the gravitational degrees of freedom andπ is one of the dust
momenta. Notice that for this type of matterh′ does not depend on the dust configuration fieldsφ and therefore dust
deparametrises the system and leads to a conserved physical Hamiltonian. However, alsoC′ is a scalar density and
thus to make the corresponding Master constraint spatially diffeomorphism invariant, one would again need a phase
space dependent matrix of the type considered above. Thus it appears as if the analysis of the present section does not
apply to GR.

However, this is not the case: Namely, the dust offers the possibility to completely abelianise the full constraint al-
gebra including spatial diffeomorphisms. Thus in contrast to the usual situation in which the spatial diffeomorphisms
form a subalgebra of the constraint algebra but not an ideal, it is possible to completely solve the spatial diffeo-
morphism constraint before solving the Hamiltonian constraint. In particular it is possible to perform a canonical
transformation to coordinates such thatC′ only depends on spatially diffeomorphism invariant fields [10]. It is there-
fore no longer necessary to choose a density weight minus one matrixK. We can simply take an orthonormal basisbµ
of L2(σ,d3x) and consider theF′µ :=< bµ,C′ >. Then one chooses any phase space independent matrixKµν subject to
certain fall off conditions in index space (typicallyK should be trace class [16]). The fact thatC′ has density weight
one ensures thatC′ can be quantised on the unique [44] LQG Hilbert space [45] as was shown explicitly in [33]. That
quantisation, however, is most probably too naive in order guarantee anomaly freeness and must be improved. Yet,
since the anomaly is an~ correction to the classical result, the relation between the MCP (which also works in the
anomalous case) and the path integral formulation derived in the previous section, remains correct in the semiclassical
limit. An alternative to working withC′ already reduced with respect to the spatial diffeomorphism constraint is to
keep the unreducedC′ and the unreduced Abelianised spatial diffeomorphism constraintsC′j [10]. The caveat in LQG
to quantising the classical generator of spatial diffeomorphisms which arises due to strong discontinuity of the one
paranmeter unitary subgroups of spatial diffeomorphisms on the LQG Hilbert space is circumvented becauseC′j is not
a density one covector but a density one scalar and thus can be quantised on the LQG Hilbert space [47], albeit it is
difficult, similar toC′, to achieve anomaly freeness.

This paper has been the starting point for further analysis. In [21] we have computed the correct measure for the
Holst action and have checked explicitly that it is consistent with the analysis of [20] for the Plebanski action. In
[25] the relation between the Master Constraint Programme and the operator constraint programme for Abelian and
anomaly free constraints and with phase space independent matrixK was analysed with higher mathematical preci-
sion at the level of the canonical theory and it is shown that under certain technical assumptions the two methods
lead to the same result, thus partly removing the formal character of the analysis of section 5. Finally, in [26] it was

41



formally checked by using available semiclassical techniques [46] that the Master Constraint Programme for General
Relativity leads also to the expected path integral formula up to a local measure factor when one considers phase
space dependent matricesK and non – Abelian constraints. However, the results here are less strong (more formal)
than in the Abelianised case.

Many further questions arise from the present paper:
Since the Master Constraint can in principle also accommodate (sums of squares of) second class constraints if one
subtracts a suitable normal ordering constant [16], one could ask whether the separate treatment of first and second
class constraints could be unified and if yes how the corresponding path integral would look like. Secondly, in appli-
cations to path integral formulations of LQG one should really take the unavoidable measure factor derived in [21]
and following the general theory summarised here seriously and define a corresponding spin foam model. Work is in
progress in order to achieve that. Next, due to the measure factor the theory lacks manifest spacetime diffeomorphism
invariance. On the other hand it should be manifestly invariant under the gauge transformations generated by the first
class constraints which in General Relativity corresponds to the Bergmann – Komar “group” [48] (more precisely
it is the enveloping algebra generated by the secondary first class constraints of GR). The two groups are known to
coincide when the classical equations of motion hold and this is the reason why the Lagrangian and Hamiltonian
descriptions are equivalent classically. However, offshell there is no particular relation between these two “groups”
and it is consistent with the classical theory that the spacetime diffeomophism group is not a symmetry of the quantum
theory. In [22] it is further analysed in which sense the Bergmann – Komar group is a symmetry of the Hamiltonian
path integral. It seems that the attempt to construct a spacetime covariant path integral of GR has no chance to be de-
rived from a canonical platform which is the only systematic starting point that we have and it would be interesting to
understand better the implications of this conclusion. In some sense it is clear that spacetime diffeomorphism invari-
ance is far from sufficient in order to guarantee that one has a correct quantisation of a given classical theory. Many
Lagrangians are spacetime diffeomorphism covariant (e.g. higher derivative theories) but all of them have different
Hamiltonian constraints (even different numbers of degrees of freedom). The effect of this will show, in particular, in
the local measure factor that we have exhibited.
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