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Abstract. We study transformations of coordinates on a Lorentzian Einstein
manifold with a parallel distribution of null lines and show that the general Walker
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1. Introduction and statement of results

Recently in [15] G.W. Gibbons and C.N. Pope considered the Einstein equation on

Lorentzian manifolds with holonomy algebras contained in sim(n). A Lorentzian

manifold (M, g) of dimension n + 2 has holonomy algebra contained in sim(n) if and

only if it admits a parallel distribution l of null lines (l is a vector subbundle of rank

one of the tangent bundle of M such that it holds g(X,X) = 0 and ∇YX is a section of

l for all sections X of l and vector fields Y on M , here ∇ is the Levi-Civita connection

defined by g). Lorentzian manifolds with this property have special Lorentzian holonomy

and are of interest both in geometry (e.g. [1, 2, 4, 6, 25, 28]) and theoretical physics

(e.g. [5, 7, 8, 9, 16]). Any such manifold admits local coordinates x+, x1, ..., xn, x−, the

so-called Walker coordinates, such that the metric g has the form

g = 2dx+dx− + h+ 2Adx− +H(dx−)2, (1)

where h = hij(x
1, ..., xn, x−)dxidxj is an x−-dependent family of Riemannian metrics,

A = Ai(x
1, . . . , xn, x−) dxi is an x−-dependent family of one-forms, and H is a local

function on M , [28]. The vector field ∂+ := ∂
∂x+ defines the parallel distribution of null

lines. We assume that the indices i, j, k, . . . run from 1 to n, and the indices a, b, c, . . .
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run in +, 1, . . . , n,− and we use the Einstein convention for sums. Furthermore, given

coordinates (x+, x1, . . . , xn, x−) or (x̃+, x̃1, . . . , x̃n, x̃−) we write ∂a := ∂
∂xa and ∂̃a := ∂

∂x̃a .

The Einstein equation is the fundamental equation of General Relativity. In the

absence of matter it has the form

Ric = Λg, (2)

where g is a Lorentzian metric on a manifold M , Ric is the Ricci tensor of the metric

g, i.e. Ricab = Rc
abc, where R is the curvature tensor of the metric g, and Λ ∈ R is the

cosmological, or Einstein constant. If a metric g of a smooth manifold (M, g) satisfies

this equation, then (M, g) is called an Einstein manifold. If moreover Λ = 0, then it is

called vacuum Einstein or Ricci-flat. In dimension 4 examples of Einstein metrics are

constructed in [17, 18, 19, 23, 24, 27].

We assume that n ≥ 2, since for n = 0 the problem is trivial and for n = 1 the

metric (1) cannot be non-flat and Einstein [15, 13].

In [15] it is shown that the Einstein equation for a Lorentzian metric of the form

(1) implies

H = Λ · (x+)2 + x+H1 +H0, (3)

where H0 and H1 do not depend on x+. Furthermore, in [15] it is proved that Equation

(2) is equivalent to Equation (3) and the following system of equations

∆H0 −
1

2
F ijFij − 2Ai∂iH1 −H1∇iAi + 2ΛAiAi − 2∇iȦi

+
1

2
ḣijḣij + hijḧij +

1

2
hijḣijH1 = 0, (4)

∇jFij + ∂iH1 − 2ΛAi + ∇jḣij − ∂i(h
jkḣjk) = 0, (5)

∆H1 − 2Λ∇iAi + Λhijḣij = 0, (6)

Ricij = Λhij, (7)

where ∆H0 = hij(∂i∂jH0 − Γk
ij∂kH0) is the Laplace-Beltrami operator of the metrics

h(x−) applied to H0, Fij = ∂iAj − ∂jAi are the components of the differential of

the one-form A(x−) = Aidx
i. A dot denotes the derivative with respect to x− and

∇iȦi = (∇∂i
(Ȧ)#)i is the divergence w.r.t. h(x−) of Ȧ.

Of course, the Walker coordinates are not defined canonically and any other

Walker coordinates x̃+, x̃1, . . . , x̃n, x̃− such that ∂̃+ = ∂+ are given by the following

transformation (see [25] and Section 3)

x̃+ = x+ + ϕ(x1, ..., xn, x−), x̃i = ψi(x1, ..., xn, x−), x̃− = x− + c.

Now, the aim of the paper is to simplify these coordinates on Einstein manifolds and, in

consequence, find easier equivalences to the Einstein equation when written in the new

coordinates. That the coordinates can be simplified in special situations was already

shown in [25]:
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Proposition 1 (Schimming [25]). Let (M, g) be a Lorentzian manifold with a parallel

null vector field. Then there exist local coordinates (U, (x+, x1, . . . , xn, x−)) such that the

metric is given as

g = 2dx+dx− + hkldx
kdxl

with hkl smooth functions on U with ∂+hkl = 0.

Note that the condition for (M, g) to admit a parallel null vector field is stronger

then the condition to admit a parallel distribution of null lines. The first result of the

present paper generalises Proposition 1 to manifolds with only a parallel distribution of

null lines:

Theorem 1. Let (M, g) be a Lorentzian manifold with a parallel distribution of null

lines. Then there exist local coordinates (U, (x+, x1, . . . , xn, x−)) such that the metric is

given as

g =
(
2dx+ +Hdx−

)
dx− + hkldx

kdxl

with H and hkl smooth functions on U with ∂+hkl = 0.

With respect to coordinates as in Theorem 1 the Einstein equations (4–7) become

much easier:

∆H0 +
1

2
ḣijḣij + hijḧij +

1

2
hijḣijH1 = 0, (8)

∂iH1 + ∇jḣij − ∂i(h
jkḣjk) = 0, (9)

∆H1 + Λhijḣij = 0, (10)

Ricij = Λhij. (11)

Then we assume that the manifold is Einstein, and, based on Equation (3), we

prove the following:

Theorem 2. Let (M, g) be a Lorentzian manifold with a parallel distribution of null

lines and assume that M is Einstein with Einstein constant Λ. Then there exist local

coordinates (x+, x1, . . . , xn, x−) such that the metric is given as

g =
(
2dx+ + (Λ(x+)2 + x+H1)dx

−)
dx− + hkldx

kdxl

with H1 and hkl smooth functions on U with ∂+hkl = ∂+H1 = 0 and satisfying the

equations

1

2
ḣijḣij + hijḧij +

1

2
hijḣijH1 = 0, (12)

∂iH1 + ∇jḣij − ∂i(h
jkḣjk) = 0, (13)

∆H1 + Λhijḣij = 0, (14)

Ricij = Λhij. (15)

Conversely, any such metric is Einstein with Einstein constant Λ.
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Note that if (M, g) admits a parallel null vector field, then the Walker coordinates

in (1) satisfy ∂+H = 0 and we get Proposition 1 from Theorem 1 (see Remark 1 below).

If, in addition, such a metric is Einstein, then Λ = 0, i.e. this metric is Ricci-flat and

the equations (4–7) take the following more simplified form

1

2
ḣijḣij + hijḧij = 0, (16)

∇jḣij − ∂i(h
jkḣjk) = 0, (17)

Ricij = 0. (18)

Finally, as the main result of the paper we show that in the the case Λ 6= 0 we can

do better.

Theorem 3. Let (M, g) be a Lorentzian manifold of dimension n+2 admitting a parallel

distribution of null lines. If (M, g) is Einstein with the non-zero cosmological constant

Λ then there exist local coordinates (x+, x1, . . . , xn, x−) such that the metric g has the

form

g = 2dx+dx− + hkldx
kdxl + (Λ(x+)2 +H0)(dx

−)2

with ∂+hkl = ∂+H0 = 0, hkl defines an x−-dependent family of Riemannian Einstein

metrics with the cosmological constant Λ, satisfying the equations

∆H0 +
1

2
hijḧij = 0, (19)

∇jḣij = 0, (20)

hijḣij = 0, (21)

Ricij = Λhij, (22)

where ḣij = ∂−hij. Conversely, any such metric is Einstein.

Remark that in [15] it is shown that Equation (6) follows from (5) and (7), i.e.

it may be omitted from the Einstein equation. By the same reason Equations (10)

(14) and (21) may be omitted. On the other hand, these equations can be used as the

corollaries of the Einstein equation.

Thus, we reduce the Einstein equation with Λ 6= 0 on a Lorentzian manifold with

holonomy algebra contained in sim(n) to the study of families of Einstein Riemannian

metrics satisfying Equation (20). If Λ = 0 and ∂+H 6= 0, i.e. H1 6= 0, then consider

the coordinates as in Theorem 2. Equation (14) shows that H1 is a family of harmonic

functions on the family of the Riemannian manifolds with metrics h(x−). Fixing any

such H1 we get Equations (12) and (13) on the family of Ricci-flat Riemannian metrics

h(x−). Finally, if (M, g) is Einstein and it admits a parallel null vector field, then it is

Ricci flat and this is equivalent to Equations (16) and (17) on the family of Ricci-flat

Riemannian metrics h(x−). In Section 2 we consider the holonomy algebra of (M, g)

and the de Rham decomposition for the family of Riemannian metrics h(x−).

Note that to find the required transformation of the coordinates in Theorem 3 we

need to solve a system of ODE’s, while in [25] several PDE’s need to be solved.
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Examples of Einstein metrics of the form (1) with h independent of x− and each

possible holonomy algebra are constructed in [13]. It is interesting to construct examples

of Einstein manifolds satisfying some global properties, e.g. global hyperbolic, as in [1]

or [2].

In Section 4 we consider examples in dimension 4.

2. Consequences

Let us consider some consequences of the above theorems. Let (M, g) be a Lorentzian

manifold with a parallel distribution of null lines. Without loss of generality we

may assume that (M, g) is locally indecomposable, i.e. locally it is not a product of

a Lorentzian and of a Riemannian manifold. The holonomy of such manifolds are

contained in sim(n) = (R ⊕ so(n)) n Rn. In [22] it was shown that the projection

h of the holonomy algebra of (M, g) onto so(n) has to be a Riemannain holonomy

algebra. Now, recall that for each Riemannian holonomy algebra h ⊂ so(n) there exists

a decomposition

Rn = Rn0 ⊕ Rn1 ⊕ · · · ⊕ Rnr (23)

and the corresponding decomposition into the direct sum of ideals

h = {0} ⊕ h1 ⊕ · · · ⊕ hr (24)

such that each hα ⊂ so(nα) is an irreducible Riemannian holonomy algebra, in particular

it coincides with one of the following subalgebras of so(nα): so(nα), u(nα

2
), su(nα

2
),

sp(nα

4
) ⊕ sp(1), sp(nα

4
), G2 ⊂ so(7), spin7 ⊂ so(8) or it is an irreducible symmetric

Berger algebra (i.e. it is the holonomy algebra of a symmetric Riemannian manifold

and it is different from so(nα), u(nα

2
), sp(nα

4
) ⊕ sp(1)). Recall that if the holonomy

algebra of a Riemannian manifold is a symmetric Berger algebra, then the manifold is

locally symmetric.

In [11, 13] it is proven that if (M, g) is Einstein with Λ 6= 0, then the holonomy

algebra of (M, g) has the form g = (R ⊕ h) n Rn, moreover, each subalgebra hα ⊂
so(nα) from the decomposition (24) coincides with one of the algebras so(nα), u(nα

2
),

sp(nα

4
) ⊕ sp(1) or with a symmetric Berger algebra, and in the decomposition (23) it

holds n0 = 0. Next, if Λ = 0, then one of the following holds:

(A) g = (R ⊕ h) n Rn and at least one of the subalgebras hα ⊂ so(nα) from the

decomposition (24) coincides with one of the algebras so(nα), u(nα

2
), sp(nα

4
)⊕ sp(1)

or with a symmetric Berger algebra.

(B) g = hnRn and each subalgebra hα ⊂ so(nα) from the decomposition (24) coincides

with one of the algebras su(nα

2
), sp(nα

4
), G2 ⊂ so(7), spin7 ⊂ so(8).

In [4] it is proved that there exist Walker coordinates x+, x1
0, . . . , x

n0
0 , . . . , x

1
r, ..., x

nr
r , x

−

that are adapted to the decomposition (24). This means that h = h0 + h1 + · · · + hr,

h0 =
∑n0

i=1(dx
i
0)

2 and A =
∑r

α=1

∑nα

k=1A
α
kdxk

α and for each 1 ≤ α ≤ r it holds
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hα =
∑nα

i,j=1 hαijdx
i
αdxj

α with ∂
∂xk

β

hαij = ∂
∂xk

β

Aα
i = 0 for all 1 ≤ i, j ≤ nα if β 6= α.

We will show that the transformations can be chosen in such a way that the new coor-

dinates are adapted in this sense.

Proposition 2. Let (M, g) be a Lorentzian manifold with a parallel distribution of null

lines and let h be the projection of its holonomy algebra onto so(n) decomposed as in

(24).

(i) Then the coordinates found in Theorem 1 can be chosen to be adapted to this

decomposition.

(ii) If (M, g) is Einstein with Λ 6= 0, then there exist coordinates adapted to this

decomposition with the properties as in Theorem 3 and with n0 = 0.

We will prove this proposition in the next section. It shows that the Einstein

conditions written as in the formulae after Theorem 1 and in Theorem 3 can, in addition,

be formulated in adapted coordinates.

Now we discuss to which extend the Einstein equations in the theorems have to be

satisfied for each of the hα’s separately when written in the coordinates of Proposition

2. First, let Λ 6= 0 and consider (19 – 22). It is obvious that each hα satisfies (20)

and (22). Using the first variation formula for the Ricci tensor (see e.g. [3, Theorem

1.174]), in [15] it is shown that (6) follows from (5) and (7) by taking the divergence

of (5). Hence, using the divergence with respect to the metric hα, (20) and (22) imply

that each hα satisfies also (21). This means that one has to solve (20 – 22) separately

for each hα and then find H0 from (19).

Similarly, if Λ = 0, consider (8 – 11). Obviously, each hα has to be Ricci-flat.

Applying the divergence with respect to hα to (13) we get that ∆αH1 = 0. This

together with (13) shows that H1 =
∑

αH1α, where each H1α depends only on xi
α and

it is harmonic with respect to hα. Now each hα satisfies (9) with H1 replaced by H1α.

Next we study the possible summands in the decomposition (24) under the

assumption that the manifold (M, g) is Einstein with Λ 6= 0. First we claim that if

hα ⊂ so(nα) is a symmetric Berger algebra, then each metric in the family hα(x−) is

locally symmetric and its holonomy algebra coincides with hα. Indeed, the holonomy

algebra hα(x−) of each metric in the family hα(x−) is contained in hα and it is non-trivial

due to (22). Since hα ⊂ so(nα) is a symmetric Berger algebra its space of curvature

tensors R(hα) is one-dimensional. This shows that hα(x−) = hα. If hα = u(nα

2
) (resp.,

hα = sp(nα

4
) ⊕ sp(1)), then each metric in the family hα(x−) is Kähler-Einstein (resp.,

quaternionic-Kähler). For some values of x− the metric hα(x−) can be decomposable,

but it does not contain a flat factor. If hα = so(nα), then we get a general family of

Einstein metrics. For some values of x− the metric hα(x−) can be decomposable, but it

does not contain a flat factor.

Proposition 3. Under the current assumptions, if hα ⊂ so(nα) is a symmetric Berger

algebra, then hα satisfies the equation

∇i(h
kt
α ḣαtj) − 2Γ̇k

ij = 0, 1 ≤ i, j, k ≤ nα, (25)
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where Γk
ij is the family of the Christoffel symbols for the family of the Riemannian

metrics h(x−).

Note that the Equation (25) is stronger then the Equation (20), since the last

equation is obtained from the first one by taking the trace. This proposition will be

proved below.

Finally, suppose that Λ = 0 and the holonomy algebra g of (M, g) is as in the case

(A) above. Suppose that hα is one of so(nα), u(nα

2
), sp(nα

4
)⊕ sp(1) or it is a symmetric

Berger algebra. Equation (15) shows that in the first three cases each metric in the

family hα is Ricci-flat, consequently, its holonomy algebra is contained, respectively, in

so(nα), su(nα

2
), sp(nα

4
). If hα is a symmetric Berger algebra, then by the same reasons

each metric in the family hα(x−) is flat. Otherwise hα is either trivial or it is one of

su(nα

2
), sp(nα

4
), G2 ⊂ so(7), spin7 ⊂ so(8). Each metric in the family hα is Ricci-flat

and it has holonomy algebra contained in hα.

To sum up the consequences we remark that the problem of finding Einstein

Lorentzian metrics with Λ 6= 0 is reduced first to the problem of finding families of

Einstein Riemannian metrics satisfying Equation (20) (or (25) for the symmetric case)

and then to Poisson equation (19) on the function H0. This is related to the module

spaces of Einstein metrics [3]. For example, for most of symmetric Berger algebras

hα ⊂ so(nα) it holds that hα is an isolated metric, i.e. it is independent of x− [20, 21].

Hence, since it is symmetric, it is uniquely defined by Λ. Similarly, if Λ = 0 and

∂+H 6= 0, i.e. H1 6= 0, then consider the coordinates as in Theorem 1. Equation

(10) shows that H1 is a family of harmonic functions on the family of the Riemannian

manifolds with metrics h(x−). Fixing any such H1 we get Equation (9) on the family

of Ricci-flat Riemannian metrics h(x−) and then Poisson equation (8) on the function

H0. Finally, if (M, g) is Einstein and it admits a parallel null vector field, then it is

Ricci-flat and this is equivalent to the equations (16) and (17) on the family of Ricci-flat

Riemannian metrics h(x−).

3. Proofs

Coordinate transformations

In order to simplify the Walker coordinates, first we have to describe the most general

coordinate transformation leaving the form (1) invariant. This was already done in [25]

in the case of a parallel null vector field.

Proposition 4. The most general coordinate transformation with ∂̃+ = ∂+ that

preserves the form (1) is given by

x̃+ = x+ + ϕ(x1, ..., xn, x−), x̃i = ψi(x1, ..., xn, x−), x̃− = x− + c. (26)
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If the metric and its inverse is written as

g =




0 0 1

0 h A

1 At H


 and g−1 =




F Bt 1

B h−1 0

1 0 0


 , (27)

with B = −h−1A and F +H + AtB = 0, then in the new coordinates it holds

h̃ij = ∂kψ
ihkl∂lψ

j (28)

B̃i = ∂−ψ
i +Bk∂kψ

i + hkl∂kϕ∂lψ
i (29)

F̃ = F + ∂−ϕ+Bk∂kϕ+ hkl∂kϕ∂lϕ. (30)

Proof. Since ∂̃+ = ∂+, the transformation formula for the canonical basis implies

∂+x̃
− = 0, ∂+x̃

k = 0, and ∂+x̃
+ = 1.

Furthermore we get

0 = g(∂+, ∂i) = ∂+x̃
+∂ix̃

−g(∂̃+, ∂̃−) + ∂+x̃
+∂ix̃

kg(∂̃+, ∂̃k).

As we require g(∂̃+, ∂̃k) = 0 this implies ∂ix̃
− = 0. Finally we have to check

1 = g(∂+, ∂−) = ∂+x̃
+∂−x̃

−,

which implies ∂−x̃
− = 1. This shows that the most general transformation is of the

form (26).

In order to write down the inverse metric coefficients in the new coordinates first

we see that in the coordinates (1) the metric and its inverse are given as in (27). The

transformation formula for the inverse metric coefficients gab is given by

∂cx̃
agcd∂dx̃

b = g̃ab,

where a and b run over +, 1, . . . , n,−. This implies that

B̃i = g̃+i = ∂−x̃
i +Bk∂kx̃

i + hkl∂kx̃
+∂lx̃

i,

which is Equation (29). Furthermore we get

F̃ = g̃++ = F + ∂+x̃
+∂−x̃

+ +Bk∂+x̃
+∂kx̃

+ + hkl∂kx̃
+∂lx̃

+,

which is Equation (30). In the same way the equations for h̃ij.

Proof of Theorem 1

Setting B̃i to zero for each i = 1, . . . , n in the transformation formula above we obtain

a linear PDE for the function ψ

∂−ψ = −
(
Bk + hkl∂lϕ

)
∂kψ, (31)



On the local structure of Lorentzian Einstein manifolds 9

and we have to find n linear independent solutions ψ1, . . . , ψn. This problem can be

solved for the following reasons: Fix the function ϕ = ϕ(x1, . . . , xn, x−), e.g. ϕ ≡ 0, and

consider the characteristic vector field of (31)

X := ∂− +
(
Bk + hkl∂lϕ

)
∂k.

Obviously, Equation (31) is equivalent to the equation

X(ψ) = dψ(X) = 0. (32)

We have [∂+, X] = 0. Hence, we find coordinates (y+, y1, . . . , yn, y−) such that

∂
∂y+ = ∂+ and ∂

∂y− = X.

Now, any function ψ = ψ(y1, . . . , yn) satisfies Equation (32). Note that ∂+y
− = ∂+y

i = 0

and therefore also ∂+ψ = 0. Taking n linear independent solutions gives us the required

solutions ψi of Equation (31) to build the new coordinate system. �
Remark 1. In order to obtain Schimming’s result of Proposition 1 one has to set H̃ to

zero obtaining the additional equation

∂−ϕ = −F − Bk∂kϕ− hkl∂kϕ∂lϕ (33)

together with the linear Equation (31). Although Equation (33) cannot be written in

the form X(ϕ) = 0, it can be solved using characteristics (see below).

Remark 2. Note that Schimming’s result cannot be true only with the assumption of a

parallel distribution of null lines: Since in this case H and thus F may depend on x+

but ϕ does not, Equation (33) cannot be solved. In other words, the x+-dependence

of H in general cannot be changed by these coordinate transformations. But in case of

Einstein metrics with arbitrary Einstein constant Λ, Theorem 2 shows that one can get

rid of the part of H that does not depend on x+.

Proof of Theorem 2

We fix coordinates (x+, x1, . . . , xn, x−) as in Theorem 1 with Ai = 0. Since (M, g) is

Einstein it holds that

H = Λ(x+)2 + x+H1 +H0,

where ∂+H1 = ∂+H0 = 0. Now we try to find an appropriate coordinate transformation

consisting of functions ϕ and ψi as in Proposition 4. First we consider the equation

∂−ϕ = H0 −H1ϕ + Λϕ2 − hkl∂kϕ∂lϕ. (34)

This equation can be solved by the method of characteristics (for details see for example

[26, Chapter 10, Section 1]). Since the x− derivative of ϕ is isolated, a characteristic

is given by (x1, . . . , xn) 7→ (x1, . . . xn, 0) and the parameter of the characteristic curves
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can be chosen to be x−. Let ϕ be a smooth solution of this equation. With respect to

this ϕ we consider the equation

∂−ψ = −hkl∂kϕ∂lψ. (35)

As in Theorem 1, we find n linear independent solutions ψ1, . . . , ψn to this equation.

Hence, in the new coordinates given as in (26) we still have B̃k = 0. Now, since (M, g)

is Einstein, it is

H̃ = Λ(x̃+)2 + x̃+H̃1 + H̃0 = Λ(x+)2 + (2Λϕ+ H̃1)x
+ + H̃1ϕ+ Λϕ2 + H̃0.

On the other hand, from the transformation formula and B̃k = 0 we have

H̃ = −F̃ = − F − ∂−ϕ− hkl∂kϕ∂lϕ

=
(
Λ(x+)2 + x+H1 +H0

)
− ∂−ϕ− hkl∂kϕ∂lϕ.

Comparing these two equations and differentiating w.r.t. ∂+ shows that (2Λϕ+ H̃1) =

H1 and furthermore

Λϕ2 + H̃0 + H̃1ϕ = H0 − ∂−ϕ− hkl∂kϕ∂lϕ.

Hence, putting this together we get

H̃0 = H0 − ∂−ϕ− hkl∂kϕ∂lϕ + Λϕ2 −H1ϕ.

But since ϕ satisfies Equation (34), we obtain H̃0 = 0 in the new coordinates. �

Curvature tensors

For the proof of Theorem 3 we need some algebraic preliminaries. The tangent space to

M at any point m ∈M can be identified with the Minkowski space R1,n+1. Denote by g

the metric on it. Let Rp be the null line corresponding to the parallel distribution. Let

R(sim(n)) be the space of algebraic curvature tensors of type sim(n), i.e. the space of

linear maps from Λ2R1,n+1 to sim(n) satisfying the first Bianchi identity. The curvature

tensor R = Rm at the point m belongs to the space R(sim(n)). The space R(sim(n))

is found in [10, 12]. We will review this result now. Fix a null vector q ∈ R1,n+1 such

that g(p, q) = 1. Let E ⊂ R1,n+1 be the orthogonal complement to Rp⊕ Rq, then E is

an Euclidean space. We get the decomposition

R1,n+1 = Rp⊕ E ⊕ Rq. (36)

We will often write Rn instead of E. Fixing a basis X1, ..., Xn in Rn, we get that

sim(n) =








a (GX)t 0

0 A −X
0 0 −a




∣∣∣∣∣∣∣
a ∈ R, A ∈ so(n), X ∈ Rn




, (37)
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where G is the Gram matrix of the metric g|Rn with respect to the basis X1, ..., Xn. The

above matrix can be identified with the triple (a, A,X). We obtain the decomposition

sim(n) = (R ⊕ so(n)) n Rn.

For a subalgebra h ⊂ so(n) consider the space

P(h) = {P ∈ (Rn)∗⊗h|g(P (x)y, z)+g(P (y)z, x)+g(P (z)x, y) = 0 for all x, y, z ∈ Rn}.

Define the map R̃ic : P(h) → Rn, R̃ic(P ) = P j
ikg

ikXj. It does not depend on the

choice of the basis X1, ..., Xn. The tensor R ∈ R(sim(n)) is uniquely given by elements

λ ∈ R, v ∈ E,R0 ∈ R(so(n)), P ∈ P(so(n)), T ∈ �2E in the following way.

R(p, q) =(λ, 0, v), R(x, y) = (0, R0(x, y), P (y)x− P (x)y),

R(x, q) =(g(v, x), P (x), T (x)), R(p, x) = 0

for all x, y ∈ Rn. We write R = R(λ, v, R0, P, T ). The Ricci tensor Ric(R) of R is given

by Ric(R)(X, Y ) = tr(Z 7→ R(X,Z)Y ) and it satisfies

Ric(p, q) = − λ, Ric(x, y) = Ric(R0)(x, y), (38)

Ric(x, q) =g(x, R̃ic(P ) − v), Ric(q, q) = trT. (39)

Let us take some other null vector q′ with g(p, q′) = 1. There exists a unique vector

w ∈ E such that q′ = −1
2
g(w,w)p + w + q. The corresponding E ′ has the form E ′ =

{−g(x, w)p + x|x ∈ E}. We will consider the map x ∈ E 7→ x′ = −g(x, w)p + x ∈ E ′.

Using this, we obtain that R = R(λ̃, ṽ, R̃0, P̃ , T̃ ). For example, it holds

λ̃ = λ, ṽ = (v − λw)′, P̃ (x′) = (P (x) − R0(x, w))′, R̃0(x
′, y′)z′ = (R0(x, y)z)

′.

This shows that using the change of q we may get rid of v or some times of P . (For

example, if h is a symmetric Berger algebra, i.e. dimR(h) = 1, and R0 6= 0, then there

exists w ∈ E such that P (x) − R0(x, w) = 0 for all x [12], i.e. P̃ = 0.)

Proof of Theorem 3

Consider the general Walker metric (1). Suppose that it is Einstein with Λ 6= 0. Then

H = Λ(x+)2 + x+H1 +H0, where H0 and H1 are independent of x+ [15]. Consider the

vector fields

p = ∂+, Xi = ∂i − Ai∂+, q = ∂− − 1

2
H∂+.

Let E ⊂ TM be the distribution generated by the vector fields Xi. At each point m we

get

TmM = Rpm ⊕ Em ⊕ Rqm.

Then the curvature tensor R is given by the elements λ, v, R0, P, T as above but

depending on the point. Since the manifold is Einstein, we get λ = −Λ.
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Proposition 5. For any W ∈ Γ(E) such that ∇∂+W = 0 there exist new

Walker coordinates x̃a such that the corresponding vector field q′ has the form q′ =

−1
2
g(W,W )p+W + q.

Proof. Let us write W = W iXi. Since ∇∂+W = 0, we get that ∂+W
i = 0. We will find

the inverse transformation

x+ = x̃+, xi = xi(x̃1, ..., x̃n, x̃−), x− = x̃−.

It holds

∂̃+ = ∂+, ∂̃i =
∂xj

∂x̃i
∂j, ∂̃− =

∂xi

∂x̃−
∂i + ∂−.

For the new Walker metric we have

H ′ = g(∂̃−, ∂̃−) = H + 2
∂xi

∂x̃−
Ai + g

(
∂xi

∂x̃−
∂i,

∂xj

∂x̃−
∂j

)
.

Hence,

q′ = ∂̃− − 1

2
H ′∂+ = q + U − 1

2
g(U, U)p,

where

U =
∂xi

∂x̃−
Xi.

The equality U = W is equivalent to the system of equations

∂xi(x̃1, ..., x̃n, x̃−)

∂x̃−
= W i(x1(x̃1, ..., x̃n, x̃−), ..., xn(x̃1, ..., x̃n, x̃−), x̃−). (40)

Consider the system of ordinary differential equations

dyi(x̃−)

dx̃−
= W i(y1(x̃−), ..., yn(x̃−), x̃−). (41)

Impose the initial conditions yi(x̃−0 ) = x̃i. Then for each set of numbers x̃k there exists

a unique solution yi(x−). Since the solution depends smoothly on the initial conditions,

we may write the solution in the form xi(x̃1, ..., x̃n, x̃−). The obtained functions satisfy

Equation (40). Since det
(

∂xi

∂x̃j (x̃
−
0 )

)
6= 0, we get that det

(
∂xi

∂x̃j

)
6= 0 for x̃− near x̃−0 . We

obtain the required transformation.

We see that we may choose a Walker coordinate system such that v = 0 (if v 6= 0,

take W = − 1
Λ
v, then ṽ = 0). It can be shown that

v = −
(

1

2
∂iH1 − ΛAi

)
hijXj.

Since ∂+

((
1
2
∂iH1 − ΛAi

)
hij

)
= 0, it holds ∇∂+W = 0. Hence we may find a coordinate

system, where Ai = 1
2Λ
∂iH1. Let us fix this system. In [15] it is noted that under the

transformation

x̃+ = x+ − f(x1, ..., xn, x−), x̃i = xi, x̃− = x−
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the metric (1) changes in the following way

Ai 7→ Ai + ∂if, H1 7→ H1 + 2Λf, H0 7→ H0 +H1f + Λf 2 + 2ḟ . (42)

Thus if we take f = − 1
2Λ
H1, then with respect to the new coordinates we have

Ai = H1 = 0. Now Theorem 3 follows from (4–7). �

Proof of Proposition 2

The decomposition of the so(n)-projection of the holonomy as in (24), h = {0} ⊕ h1 ⊕
· · ·⊕ hr defines parallel distributions E0, . . . , Er, all containing the parallel distribution

of null lines. These distributions, in turn, define coordinates

x+, x1
0, . . . , x

n0
0 , . . . , x

1
r, ..., x

nr
r , x

−

such that Eα is spanned by ∂+,
∂

∂x1
α
, . . . , ∂

∂xnα
α

and such that they are adapted in the

sense of Section 2. Note that the most general coordinate transformation preserving

these properties is given by

x̃+ = x+ + ϕ(x1
0, . . . , x

nr
r , x

−),

x̃i
0 =

∑n0

j=1 a
i
jx

j
0 + bi, for i = 1, . . . , n0,

x̃i
α = ψi

α(x1
α, . . . , x

nα
α , x−), for i = 1, . . . , nα and α = 1, . . . , r,

x̃− = x− + c,

(43)

here (ai
j)

n0
i,j=1 is an orthogonal matrix and bi ∈ R. Choosing ϕ ≡ 0, it is clear that

Equation (31) can be solved separately for each α = 1, . . . , r. This shows that the

coordinates found in Theorem 1 can be chosen to be adapted.

Now we turn to the second statement of Proposition 2. Let us assume that Λ 6= 0.

Starting with adapted coordinates, Equation (5) shows that

∂2

∂xj
β∂xi

α

H1 = 0, if β 6= α. (44)

Consider the proof of Theorem 3 applied to a metric in adapted coordinates in order to

prove the second statement. Equation (7) shows that n0 = 0. Recall that we consider

the system of equations (40) for W i = 1
Λ

(
1
2
∂jH1 − ΛAj

)
hij. Since we have the property

(44), we get that if the index i corresponds to the space Rnα, then ∂
∂xk

β

W i = 0 if β 6= α.

It is obvious that we get r independent systems of equations, each of these systems is

a system with respect to the unknown functions x1
α(x̃1

α, ..., x̃
nα
α ), ..., xnα

α (x̃1
α, ..., x̃

nα
α ). It

is clear that the solution for such a system obtained above satisfies the requirements of

the proposition. �

Proof of Proposition 3

As above, let R = R(λ, v, R0, P, T ). Consider the coordinate system as in Theorem 3.

Then, v = 0 and R̃ic(P ) = 0. The decomposition (24) implies P = P1 + · · ·+Pr, where

Pβ ∈ P(hβ). Consequently, each R̃ic(Pβ) is zero. Since hα ⊂ so(nα) is a symmetric

Berger algebra, the equality R̃ic(Pα) = 0 implies Pα = 0 [12], and this is exactly

Equation (25). �
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4. Examples

Suppose that metric (1) is Einstein with the cosmological constant Λ 6= 0. Then (3)

holds. According to Theorem 3, there exist new Walker coordinates (x̃+, x̃1, ..., x̃n, x̃−)

such that Ã = 0 and H̃1 = 0. The proof of Theorem 3 implies that such coordinates can

be found in the following way. Consider the system of ordinary differential equations

dyi(x̃−)

dx̃−
= W i(y1(x̃−), ..., yn(x̃−), x̃−), (45)

where W i = ( 1
2Λ
∂jH1 − Aj)h

ij and impose the initial conditions yi(x̃−0 ) = x̃i. This will

give the inverse transformation

x+ = x̃+, xi = xi(x̃1, ..., x̃n, x̃−), x− = x̃−

and allow to find the metric with respect to the new coordinates. Note that H̃1 = H1.

If H1 = 0, then with respect to the obtained coordinates Ãi = H̃1 = 0 holds. If H1 6= 0,

then it is necessary to consider the additional transformation

x̃+ 7→ x̃+ +
1

2Λ
H1, x̃i 7→ x̃i, x̃− 7→ x̃−.

After this Ãi = H̃1 = 0.

The required coordinates can be found also in the following way. First consider the

transformation

x+ 7→ x+ +
1

2Λ
H1, xi 7→ xi, x− 7→ x−.

After this H1 = 0 and Ai changes to Ai − 1
2Λ
∂iH1. After this consider the system of

ordinary differential equations (45) with W i = −Ajh
ij and impose the initial conditions

yi(x̃−0 ) = x̃i. With respect to the obtained coordinates Ãi = H̃1 = 0 holds.

For n = 2 and Λ 6= 0 all solutions to Equation (2) for metric (1) are obtained

in [23]. It is proved that any such metric is given in the following way (we use slight

modifications). There exist coordinates x+, u, v, x− such that

g =
2

P 2
dzdz̄ +

(
2dx+ + 2Wdz + 2W̄dz̄ +

(
Λ · (x+)2 +H0

)
dx−

)
dx−,

where

z = u+ iv, 2P 2 = |Λ|2P 2
0 = |Λ|

(
1 +

Λ

|Λ|
zz̄

)2

, W = i∂zL,

L = 2Re

(
f∂z(lnP0) −

1

2
∂zf

)
,

f = f(z, x−) is an arbitrary function holomorphic in z and smooth in x−, the function

H0 = H0(z, z̄, x
−) can be expressed in a similar way in terms of f and another arbitrary

function holomorphic in z and smooth in x−.

Using this result, we consider several examples.
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Example 1. Let Λ < 0 and f = c(x−), we obtain the following metric

g = 2dx+dx− +
4

−Λ · (1 − u2 − v2)2

(
(du)2 + (dv)2

)

+
c(x−)

(1 − u2 − v2)2

(
− 4uvdu+ 2(u2 − v2 + 1)dv

)
dx− + (Λ · (x+)2 +H0)(dx

−)2,

which becomes Einstein after a proper choice of the function H0. Equations (45) take

the form
∂u

∂x̃−
= −Λ

2
uvc(x−),

∂v

∂x̃−
=

Λ

4
(u2 − v2 + 1)c(x−).

Using Maple 12, we find that the general solution of this system has the form

u =
64c1Λ

2

(
c21

(
4e−

1
2
Λb(x̃−) + Λc2

)2

+ 64Λ4

)
e

1
2
Λb̃(x−)

,

v =
−16c21e

−Λb(x̃−) + c21c
2
2Λ

2 + 64Λ4

c21

(
4e−

1
2
Λb(x̃−) + Λc2

)2

+ 64Λ4

,

where c1 and c2 are arbitrary functions of ũ and ṽ, b(x̃−) is the function such that
db(x̃−)
dx̃− = c(x̃−) and b(0) = 0. Substituting the initial conditions u(0) = ũ, v(0) = ṽ, we

obtain

c1 =
ũ2 + ṽ2 − 2ṽ2 + 1

ũ
Λ2, c2 = −4

ũ2 + ṽ2 − 1

Λ · (ũ2 + ṽ2 − 2ṽ2 + 1)
.

With respect to the obtained coordinates, we get

g = 2dx+dx− +
4

−Λ · (1 − u2 − v2)2

(
(du)2 + (dv)2

)
+ (Λ · (x+)2 + H̃0)(dx

−)2. (46)

The metric g is Einstein if and only if (∂2
u + ∂2

v )H̃0 = 0. Taking sufficiently general

solutions of this equation (e.g. H̃0 = uv), we obtain that this metric is indecomposable

and its holonomy algebra is isomorphic to (R ⊕ so(2)) n R2.

Note that taking f = z2, one obtains the same example.

Example 2. Let Λ < 0 and f = zc(x−), we obtain the following metric

g = 2dx+dx− +
4

−Λ · (1 − u2 − v2)2

(
(du)2 + (dv)2

)

+
2c(x−)

(1 − u2 − v2)2

(
vdu− udv

)
dx− + (Λ · (x+)2 +H0)(dx

−)2.

Equations (45) take the form

∂u

∂x̃−
=

Λ

4
vc(x−),

∂v

∂x̃−
= −Λ

4
uc(x−).

The general solution of this system has the form

u = c1 cos

(
Λ

4
b(x̃−)

)
+ c2 sin

(
Λ

4
b(x̃−)

)
, v = −c1 sin

(
Λ

4
b(x̃−)

)
+ c2 cos

(
Λ

4
b(x̃−)

)
,
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where c1 and c2 are arbitrary functions of ũ and ṽ, and b(x̃−) is the function such that
db(x̃−)
dx̃− = c(x̃−) and b(0) = 0. Substituting the initial conditions u(0) = ũ, v(0) = ṽ, we

obtain c1 = ũ, c2 = ṽ. With respect to the obtained coordinates, we again get

g = 2dx+dx− +
4

−Λ · (1 − u2 − v2)2

(
(du)2 + (dv)2

)
+ (Λ · (x+)2 + H̃0)(dx

−)2. (47)

Example 3. Let Λ > 0 and f = zc(x−), we obtain the following metric

g = 2dx+dx− +
4

Λ · (1 + u2 + v2)2

(
(du)2 + (dv)2

)

+
2c(x−)

(1 + u2 + v2)2

(
vdu− udv

)
dx− + (Λ · (x+)2 +H0)(dx

−)2.

Equations (45) take the form

∂u

∂x̃−
= −Λ

4
vc(x−),

∂v

∂x̃−
=

Λ

4
uc(x−).

The general solution of this system has the form

u = c1 cos

(
Λ

4
b(x̃−)

)
+ c2 sin

(
Λ

4
b(x̃−)

)
, v = c1 sin

(
Λ

4
b(x̃−)

)
− c2 cos

(
Λ

4
b(x̃−)

)
,

where c1 and c2 are arbitrary functions of ũ and ṽ, and b(x̃−) is the function such that
db(x̃−)
dx̃− = c(x̃−) and b(0) = 0. Substituting the initial conditions u(0) = ũ, v(0) = ṽ, we

obtain c1 = ũ, c2 = −ṽ. With respect to the obtained coordinates, we get

g = 2dx+dx− +
4

Λ · (1 + u2 + v2)2

(
(du)2 + (dv)2

)
+ (Λ · (x+)2 + H̃0)(dx

−)2. (48)

The metric g is Einstein if and only if (∂2
u + ∂2

v )H̃0 = 0. Taking sufficiently general

solution of this equation (e.g. H̃0 = uv), we obtain that this metric is indecomposable

and its holonomy algebra is isomorphic to (R ⊕ so(2)) n R2.

For most of the other functions f Equations (40) and their solutions become much

more difficult. Further examples are considered in [14]. In particular, in [14] there

are obtained examples such that the Riemannian part h depends non-trivially on the

parameter x−.

Consider the general Walker metric (1). Theorem 1 shows that there exist

coordinates (x̃+, x̃1, ..., x̃n, x̃−) such that Ã = 0. These coordinates can be found as

in the proof of Theorem 1 or in the following alternative way.

Consider the transformation given by the inverse one x+ = x̃+, xi =

xi(x̃1, ..., x̃n, x̃−), x− = x̃−. It holds

∂̃+ = ∂+, ∂̃i =
∂xj

∂x̃i
∂j, ∂̃− =

∂xi

∂x̃−
∂i + ∂−.
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For the new Walker metric we get

Ãi =
∂xj

∂x̃i

(
Aj + hjk

∂xk

∂x̃−

)
.

Hence, if the equalities
∂xi

∂x̃−
= −Ajh

ji (49)

hold, then Ãi = 0. Impose the conditions xi(x̃1, ..., x̃n, x̃−0 ) = x̃i. Then for each set

of numbers x̃k there exists a unique solution xi(x−) of the above system of equations.

Since the solution depends smoothly on the initial conditions, we may write the solution

in the form xi(x̃1, ..., x̃n, x̃−). The obtained functions satisfy Equation (49). Since

det
(

∂xi

∂x̃j (x̃
−
0 )

)
6= 0, we get that det

(
∂xi

∂x̃j

)
6= 0 for x̃− near x̃−0 . We obtain the required

transformation.

Ricci-flat Walker metrics in dimension 4 are found in [18, 19]. They are of the form

g = 2dx+dx− + (du)2 + (dv)2 + 2A1dxdx
− + (−(∂uA1)x

+ +H0)(dx
−)2, (50)

where A1 and H0 satisfy ∂+A1 = ∂+H0 = 0,

∂2
uA1 + ∂2

vA1 = 0, (51)

∂2
uH0 + ∂2

vH0 = 2∂−∂uA1 − 2A1∂
2
uA1 − (∂uA1)

2 + (∂vA1)
2. (52)

Note that in order to get rid of the function A1 it is enough to consider the

transformation with the inverse one

x+ = x̃+, u = f(ũ, ṽ, x̃−), v = ṽ, x− = x̃−

such that the function f satisfies the equation

∂−f(ũ, ṽ, x̃−) = −A1(f(ũ, ṽ, x̃−), ṽ, x̃−). (53)

Imposing the condition f(ũ, ṽ, 0) = ũ, we may consider the coordinates ũ and ṽ as the

parameters, then the obtained equation is an ordinary differential equation.

Example 4. It is clear that A1 = uv and H0 = 1
12

(u4−v4) are solutions of (51) and (52).

We get the following Ricci-flat metric:

g = 2dx+dx− + (du)2 + (dv)2 + 2uvdudx− +

(
−vx+ +

1

12
(u4 − v4)

)
(dx−)2. (54)

Equation (53) takes the form

∂−f(ũ, ṽ, x̃−) = −f(ũ, ṽ, x̃−)ṽ

and it defines the transformation

x̃+ = x+, ũ = uevx−
, ṽ = v, x̃− = x−.
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With respect to the obtained coordinates, we get

g = 2dx+dx− + e−2vx−
(du)2 − 2ux−e−2vx−

dudv +
(
1 + u2(x−)2e−2vx−

)
(dv)2

+

(
−vx+ − u2v2e−2vx− − 1

12
v4 +

1

12
u4e−4x−v

)
(dx−)2. (55)

The holonomy algebra of this metric equals to (R ⊕ so(2)) n R2.

Example 5. The functions A1 = eu cos v and H0 = −1
4
(1 + 2v sin 2v)e2u are solutions of

(51) and (52). We get the following Ricci-flat metric:

g = 2dx+dx−+(du)2+(dv)2+2eu cos vdudx−+

(
−x+eu cos v − 1

4
(1 + 2v sin 2v)e2u

)
(dx−)2.

(56)

Equation (53) takes the form

∂−f(ũ, ṽ, x̃−) = −ef(ũ,ṽ,x̃−) cos ṽ

and it defines the transformation

x̃+ = x+, ũ = − ln
(
e−u − x− cos v

)
, ṽ = v, x̃− = x−.

With respect to the obtained coordinates, we get

g = 2dx+dx− +
1

(x−eu cos v + 1)2

(
(du)2 + 2x−eu sin vdudv +

(
1 + x−eu

)
(dv)2

)

− 1

4 (x−eu cos v + 1)2

(
4x+

(
x− cos2 v + e−u cos v

)
+ 1 + 4 cos2 v + 2v sin 2v

)
(dx−)2.

(57)

The holonomy algebra of this metric equals to (R ⊕ so(2)) n R2.
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