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The algebraic classification of the Weyl tensor in arbitrary dimension n is recovered by means of the principal directions of its "superenergy" tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in general dimension can be achieved.

The Petrov classification (e.g. [START_REF] Stephani | Exact Solutions to Einstein's Field Equations 2[END_REF][START_REF] Rindler | Spinors and spacetime[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF]) of 4-dimensional spacetimes can be reformulated by using the principal directions of the Bel-Robinson tensor. These are the causal vectors whose contraction with the Bel-Robinson tensor vanishes. The underlying ideas go back to [START_REF] Bel | La radiation gravitationnelle[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF][START_REF] Debever | Sur le tenseur de super-énergie[END_REF][START_REF] Lichnerowicz | Ondes et radiations électromagnétiques et gravitationelles en relativité général[END_REF], are implicit in [START_REF] Rindler | Spinors and spacetime[END_REF] and were fully exploited in [START_REF] Bergqvist | Positivity properties of the Bel-Robinson tensor[END_REF] by using spinors. The result follows because the principal directions of the Bel-Robinson tensor coincide with the principal null directions of the Weyl tensor. To summarize, let [START_REF] Bel | Sur la radiation gravitationnelle[END_REF][START_REF] Bonilla | Some properties of the Bel and Bel-Robinson tensors[END_REF][START_REF] Senovilla | Super-energy tensors[END_REF]]

T αβλµ = C αρλσ C β ρ µ σ + C αρµσ C β ρ λ σ - 1 8 g αβ g λµ C ρτ σν C ρτ σν , if n = 4 (1) 
be the Bel-Robinson tensor of a 4-dimensional spacetime, where C αρλσ is the Weyl tensor and g λµ the metric tensor. T αβλµ is completely symmetric and traceless. The Petrov classification can be described as follows [START_REF] Bergqvist | Positivity properties of the Bel-Robinson tensor[END_REF]: there exists a null vector µ such that Actually, one can drop the assumption that the vectors are null by just assuming that they are causal (i.e., timelike or null).

In recent years, the algebraic classification of the Weyl tensor in higher dimensions has been constructed based on the existence of WANDs (Weyl aligned null directions) and their alignment order [START_REF] Coley | Classification of the Weyl Tensor in Higher Dimensions[END_REF][START_REF] Milson | Alignment and algebraically special tensors in Lorentzian geometry[END_REF], see [START_REF] Coley | Classification of the Weyl Tensor in Higher Dimensions and Applications[END_REF] for a review. Criteria to characterize the (multiple) WANDs, analogous to the classical Bel-Debever criteria [START_REF] Bel | La radiation gravitationnelle[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF][START_REF] Debever | Tenseur de super-énergie, tenseur de Riemann: cas singuliers[END_REF][START_REF] Debever | La super-énergie en relativité générale[END_REF], have been also recently obtained by Ortaggio [START_REF] Ortaggio | Bel-Debever criteria for the classification of the Weyl tensors in higher dimensions[END_REF]. In 4-dimensonal spacetimes, these criteria are known to be equivalent to the number of times one has to contract with the Bel-Robinson tensor, and thereby they provide an alternative view of the Petrov classification. I am going to show that the same happens in arbitrary dimension.

To that end, one only needs the correct generalization of the Bel-Robinson tensor to higher dimensions. As argued in [START_REF] Senovilla | Super-energy tensors[END_REF], this is the so-called 'superenergy' tensor T {C} of the Weyl tensor ‡, whose explicit expression in arbitrary dimension n is

T αβλµ ≡ C αρλσ C β ρ µ σ + C αρµσ C β ρ λ σ - 1 2 g αβ C ρτ λσ C ρτ µ σ - 1 2 g λµ C αρστ C β ρστ + 1 8 g αβ g λµ C ρτ σν C ρτ σν (2) 
from where one deduces the symmetry properties

T αβλµ = T (αβ)(λµ) = T λµαβ . (3) 
However, T αβλµ is completely symmetric only in dimensions n ∈ {4, 5} [START_REF] Senovilla | Super-energy tensors[END_REF]. Similarly, unlike in the case n = 4, all traces of the tensor ( 2) are (generically) different from zero for all n > 4. Expression (2) reduces to the original expression (1) if n = 4 due to a 4-dimensional identity [START_REF] Senovilla | Super-energy tensors[END_REF][START_REF] Wingbrant | Old and new results for superenergy tensors from dimensionally dependent tensor identities[END_REF].

As any other superenergy tensor, the generalized Bel-Robinson tensor (2) is a future tensor, that is to say, it satisfies the dominant property [START_REF] Senovilla | Super-energy tensors[END_REF] 

T αβλµ v α 1 v β 2 v λ 3 v µ 4 ≥ 0, (4) 
for arbitrary future-pointing vectors

v α 1 , v β 2 , v λ 3 and v µ 4 . Inequality (4) is strict if v α 1 , v β 2 , v λ 3
and v µ 4 are all timelike [START_REF] Senovilla | Super-energy tensors[END_REF][START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF]. Thus, any possible causal vector v µ with the property

T αβλµ v α v β v λ v µ = 0 (5) 
must be null. Causal vectors satisfying (5) define the principal directions of T αβλµ [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF][START_REF] García-Parrado | Causal symmetries[END_REF][START_REF] García-Parrado | General study and basic properties of causal symmetries[END_REF]. As shown in [START_REF] Pozo | Positivity and conservation of superenergy tensors[END_REF] with full generality -for the superenergy tensor T {A} of any tensor A and in arbitrary dimension-, these are precisely the principal null directions of the Weyl tensor, that is to say, those null vectors satisfying

v [β C α]ρσ[λ v µ] v ρ v σ = 0.
This is, in fact, the characterization of WANDs [START_REF] Milson | Alignment and algebraically special tensors in Lorentzian geometry[END_REF][START_REF] Pravda | WANDs of the black ring[END_REF]. ‡ Given any tensor A the super-energy construction [START_REF] Senovilla | Super-energy tensors[END_REF] is a general method to build a -essentially unique-tensor T {A} quadratic in A and future. Future tensors are those satisfying the dominant property (e.g. ( 4)); see [START_REF] Senovilla | Super-energy tensors[END_REF] section 4, section 2 in [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF], or the Appendix in [START_REF] García-Parrado | General study and basic properties of causal symmetries[END_REF] for further details. Due to historical reasons [START_REF] Bel | Definition d'une densité d'énergie et d'un état de radiation totale généralisée[END_REF][START_REF] Bel | Sur la radiation gravitationnelle[END_REF][START_REF] Bel | Introduction d'un tenseur du quatrième ordre[END_REF][START_REF] Bel | La radiation gravitationnelle[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF][START_REF] Debever | Sur le tenseur de super-énergie[END_REF][START_REF] Debever | Tenseur de super-énergie, tenseur de Riemann: cas singuliers[END_REF][START_REF] Debever | La super-énergie en relativité générale[END_REF][START_REF] Lichnerowicz | Ondes et radiations électromagnétiques et gravitationelles en relativité général[END_REF][START_REF] Senovilla | Super-energy tensors[END_REF], T {A} is called the super-energy tensor of A.

Proposition 1. At any point of a causally orientable n-dimensional Lorentzian manifold

where the Weyl tensor does not vanish, a causal vector µ satisfies:

(i) T αβλµ α β λ µ = 0 if and only if [β C α]ρσ[λ µ] ρ σ = 0, that is µ is a WAND. (ii) T αβλµ α β λ = 0 if and only if [β C α]ρ[σλ µ] ρ = 0. (iii) T αβλµ α β = 0 if and only if [β C α]ρσλ ρ = 0. (iv) T αβλµ α λ = 0 if and only if [β C αρ][σλ µ] = 0. (v) T αβλµ α = 0 if and only if [β C αρ]σλ = 0.
In all cases µ is necessarily null.

Proof. As stated above, the first point (i) is a consequence of a fully general result for superenergy tensors T {A} [START_REF] Pozo | Positivity and conservation of superenergy tensors[END_REF]: once one has sorted out the number of antisymmetric blocks of the seed tensor A, the principal directions of T {A} are precisely the null directions such that their contraction (or inner product) followed by the exterior product on all skew-symmetric blocks of A vanishes. However, I am going to include an elementary proof here for the case of the Weyl tensor as this will be illustrative and because it will be useful in the rest of the cases. Take any null µ . Contracting with (2) one gets

T αβλµ α β λ µ = 2C ρσ C ρσ
where I have defined

C αβ ( ) ≡ C αρβσ ρ σ . (6) 
Taking into account the obvious properties C αβ = C βα and C αβ β = 0 it follows that C αβ C αβ = 0 is equivalent to (for instance by decomposing on a basis)

C αβ = α v β + β v α (7) 
for some v β (such that ρ v ρ = 0). But this means that [λ C α][β µ] = 0, proving (i).

To prove (ii), suppose that T αβλµ α β λ = 0, so that in particular (7) must hold, due to (i). Then a direct computation using ( 6) and [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF] 

repeatedly gives 0 = T αβλµ α β λ = -µ -2v ρ v ρ + 1 2 C ρτ σ C ρτ σ (8) 
where I have set

C βλµ ( ) ≡ C αβλµ α with the obvious properties C βλµ = C β[λµ] , C [βλµ] = 0, β C βλµ = 0, λ C βλµ = C βµ = β v µ + µ v β . Choose another null vector k µ such that µ k µ = 1, define F λµ ≡ k ρ C ρλµ = F [λµ]
and put a hat on any tensor orthogonal to the timelike plane spanned by µ and k µ . Then a typical decomposition proves

C βλµ = β F λµ + λ A βµ -µ A βλ + Ĉβλµ (9) with ρ A ρσ = k ρ A ρσ = k ρ A σρ = 0, σ A ρσ = -v σ + (k ρ v ρ ) σ and ρ F ρσ = v σ + (k ρ v ρ ) σ . A direct calculation shows that (8) becomes µ -v ρ v ρ - 1 2
Ĉρτσ Ĉρτσ = 0 which implies Ĉρτσ = 0 and v µ = A µ . Then, [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF] simplifies to C µν = A µ ν and (9) to

C βλµ = β F λµ + λ Âβµ -µ Âβλ ( 10 
)
from where

[α C β][λµ ν] = 0, proving (ii). Observe that C [βλµ] = 0 implies now Fµν = 2 Â[µν]
where

F µν = µ p ν -ν p µ + Fµν ( 11 
)
for some p µ . Assume now T αβλµ α β = 0 so that in particular ( 10) and ( 11) hold. Using (10) a direct computation gives 0 = T αβλµ α β = λ µ Âρσ Âρσ so that Âρσ = 0 hence C βλµ = β F λµ (with Fλµ = 0). Thus [α C β]λµ = 0 proving (iii).

If on the other hand T αβλµ α λ = 0, and using repeatedly [START_REF] Coley | Classification of the Weyl Tensor in Higher Dimensions and Applications[END_REF] and ( 11) which remain valid in this situation, the calculation provides

0 = T αβλµ α λ = β µ Fρσ F ρσ -Âρσ Âσρ + 1 8 C ρτ σν C ρτ σν (12) 
so one needs to compute the last term. At this stage, the Weyl tensor takes the form Finally, assume that T αβλµ α = 0 so that everything that has been derived in (iii) and (iv) also holds, that is, µν = 0, Fµν = 0, ρ p ρ = 0 (so that p ρ = pρ ) and Ĉαβλµ = 0. One easily gets 0 = T αβλµ α =β λ µ pρ pρ + Ûρτν Û ρτ ν providing p µ = 0 and Ûβλµ = 0 so that the Weyl tensor adopts the very simple form

C αβλµ = ( α k β -β k α )( λ p µ -µ p λ ) + ( α p β -β p α )( λ k µ -µ k λ ) +( α k β -β k α ) Fλµ + Fαβ ( λ k µ -µ k λ ) + 4k [λ µ][β α] + 4k [α Âβ][µ λ]
C αβλµ = 4 [α Vβ][µ λ]
and thus [ν C αβ]λµ = 0 which ends the proof.

Combining this proposition with the results in [START_REF] Ortaggio | Bel-Debever criteria for the classification of the Weyl tensors in higher dimensions[END_REF] one immediately obtains the algebraic classification of the Weyl tensor using the notation of [START_REF] Coley | Classification of the Weyl Tensor in Higher Dimensions[END_REF][START_REF] Coley | Classification of the Weyl Tensor in Higher Dimensions and Applications[END_REF]. If C αβλµ | x = 0, then its algebraic type can be characterized according to whether there exists a null vector µ at x such that: N ⇐⇒ T αβλµ α = 0. In this case, µ is the unique null vector (up to proportionality factors) with this property, and it defines the unique WAND.

III ⇐⇒ T αβλµ α β = T αλβµ α β = 0 but T αβλµ α = 0.
II or D ⇐⇒ T αβλµ α β λ = 0 but at least one of T αβλµ α β and T αβλµ α λ is non-zero for all such µ . I ⇐⇒ T αβλµ α β λ µ = 0 but T αβλµ α β λ = 0 for all such µ . G ⇐⇒ T αβλµ α β λ µ = 0 for all null µ .

In addition, one can distinguish between types D and II using the following D ⇐⇒ there exist two linearly independent null vectors µ and k µ satisfying T αβλµ α β λ = T αβλµ k α k β k λ = 0 and at least one of T αβλµ α β , T αβλµ α λ or at least one of

T αβλµ k α k β , T αβλµ k α k λ is different from zero.
For these cases D and II, one can further characterize some of their subcases as follows. If T αβλµ α β = 0, then the types are II abd or D abd , in the latter case T αβλµ k α k β = 0 actually holds too. While if T αβλµ α λ = 0, then the types are II abc or D abc , in the latter case T αβλµ k α k λ = 0 actually holds too. The cases with T αβλµ α β = 0 and T αβλµ k α k λ = 0 are impossible.

Finally, for types I, II (II abd and II abc ) and III there exist secondary subtypes I i , II i (II iabd and II iabc ) and III i which are simply characterized by the existence of another simple WAND k µ , that is, a null vector k µ which is linearly independent of the given µ and such that T αβλµ k α k β k λ k µ = 0.

One can now explore the algebraic types compatible with a state of intrinsic gravitational radiation at any point x. Following Bel [START_REF] Bel | La radiation gravitationnelle[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF] this will happen whenever T αβλµ u α u β u λ is a non-zero null vector for all timelike vector u µ . This definition seems satisfactory in arbitrary dimension because in static cases, when there exists a timelike hypersurface-orthogonal Killing vector ξ µ , there will never be intrinsic gravitational radiation. To see this, use the result in [START_REF] Lazkoz | Conserved superenergy currents[END_REF] stating that for such ξ µ , T αβλµ ξ α ξ β ξ λ = F ξ µ (in Ricci-flat cases for simplicity). This rules out types G, I i and D according to [START_REF] Pravda | Type D Einstein spacetimes in higher dimensions[END_REF].

Apart from its intrinsic interest, the previous characterization of the algebraic types of the Weyl tensor can be useful in order to compute the WANDs and to actually classify explicit spacetimes. To take full advantage of this alternative one must use some of the general properties of future tensors, see [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF][START_REF] García-Parrado | General study and basic properties of causal symmetries[END_REF] for the needed details.

Using that T αβλµ is a future tensor, first of all one can compute T ρβλµ T ρ βλµ . If the result is zero, then necessarily T αβλµ = α t βλµ for a null µ [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF] and thus α T αβλµ = 0, so that the Petrov type is N. Observe that one does not need to know anything about WANDs to check this result. In order to know the unique WAND, simply contract with an arbitrary timelike vector u µ thrice: µ = T αβλµ u α u β u γ . Suppose then that T ρβλµ T ρ βλµ does not vanish. For any timelike u µ define T λµ (u) ≡ T αβλµ u α u β , which is a symmetric rank-2 future tensor. In order to know its null eigenvectors only the principal eigenvalue, call it λ, is needed [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF][START_REF] García-Parrado | General study and basic properties of causal symmetries[END_REF]. Then, by classical methods one can calculate λ -by power iteration and/or solving an algebraic equation. If this corresponds to a double null eigenvector or if λ is degenerate then [START_REF] Bergqvist | Null cone preserving maps, causal tensors and algebraic Rainich theory[END_REF][START_REF] García-Parrado | General study and basic properties of causal symmetries[END_REF] T λµ λ = λ µ for some null µ , so that T λµ λ µ = 0, and one derives T αβλµ λ µ = 0. In fact, all null vectors with this property are those in the eigenspace associated to λ.

If there are at least two of them linearly independent, then the Petrov type is D abd . If there is only one, the Petrov type is II abd . The same procedure can be performed with Tβµ (u) ≡ T αβλµ u α u λ (for the same or any other timelike u µ ), which together with the previous, takes care also of types III, II abc and D abc . Observe that, for the iteration procedure to actually finding λ and its eigenspace, one can use as many T λµ (u), with different u µ , as desired. Actually, one can even use tensors of type T αβλµ u α v β for any two timelike u µ and v µ .

If neither T λµ (u) nor Tβµ (u) have null eigendirections -which happens when λ corresponds to a non-degenerate eigenvalue with timelike eigenvector -then one knows that T αβλµ λ µ = 0 and T αβλµ β µ = 0 for all possible null µ . Choose then an arbitrary null µ and construct T λµ { } ≡ T αβλµ α β , which is non-vanishing and future. Computing its principal eigenvalue -which depends on µ -, if it happens to be non-degenerate with timelike eigendirection, then there are no WANDs. If it is either degenerate or corresponds to a double null eigenvector but does not (respectively does) vanish, then one must check if the corresponding null eigenvector coincides with µ for some choice of the latter, in which case T αβλµ α β λ µ = 0 (resp. T αβλµ α β µ = 0). This takes care of types D, II, I and G. The calculations in these situations may be long.

It is also possible to provide characterizations of the different types by using tensors and scalars obtained by taking powers of T αβλµ and then contracting some or all of the indices. In 4-dimensional spacetimes these results are known but not easy to derive, see [START_REF] Bonilla | Very simple proof of the causal propagation of gravity in vacuum[END_REF][START_REF] Bergqvist | Positivity properties of the Bel-Robinson tensor[END_REF][START_REF] Ferrando | On the algebraic types of the Bel-Robinson tensor[END_REF]. In higher dimensions they may be even more involved. Nevertheless, they would be very important providing invariant ways of determining the Weyl algebraic types. In a similar vein, the invariants and concomitants written in terms of a general electric-magnetic decomposition could be used, see [START_REF] Bel | Definition d'une densité d'énergie et d'un état de radiation totale généralisée[END_REF][START_REF] Bel | Sur la radiation gravitationnelle[END_REF][START_REF] Bel | Les états de radiation et le problème de l'énergie en relativité générale[END_REF][START_REF] Bonilla | Very simple proof of the causal propagation of gravity in vacuum[END_REF][START_REF] Bonilla | Some properties of the Bel and Bel-Robinson tensors[END_REF][START_REF] Senovilla | General Electric-Magnetic decomposition of fields, positivity and Rainich-like conditions[END_REF].

Notice that the method outlined here applies, mutatis mutandis, to the Riemann tensor, and actually to any double (2,2)-form without the symmetry between pairs of indices. Actually, I would like to remark that an algebraic classification of any tensor A can be achieved by the same method, on using its superenergy tensor T {A}. In general this is a tensor with 2r indices, distributed in r symmetric pairs according to the number r of anty-symmetric blocks of indices of the seed tensor A [START_REF] Senovilla | Super-energy tensors[END_REF][START_REF] Edgar | A weighted de Rham operator acting on arbitrary tensor fields and their local potentials[END_REF]. The number of different algebraic types depends on r. As a sufficient illustrative example, consider the case of a rank-2 tensor A µν (no symmetries assumed), whose superenergy tensor is given by [START_REF] Senovilla | Super-energy tensors[END_REF] T αβλµ {A} = A αλ A βµ + A βλ A αµ -g αβ A ρλ A ρ µ -g λµ A αρ A β ρ + 1 2 g αβ g λµ A ρσ A ρσ with the property T αβλµ = T (αβ)(λµ) (if A µν happens to be symmetric then T αβλµ = T λµαβ holds too. In the skew-symmetric case the proper superenergy tensor has only a pair of indices, and the tensor above is a generalization containing it [START_REF] Senovilla | The universal 'energy' operator[END_REF]). An elementary calculation provides the following equivalences (in all cases µ is null):

• T αβλµ α β λ µ = 0 ⇐⇒ A µν µ ν = 0

• T αβλµ α β λ = 0 ⇐⇒ µ A µ[ν τ ] = 0 • T αβλµ β λ µ = 0 ⇐⇒ [µ A τ ]ν ν = 0 • T αβλµ α β = 0 ⇐⇒ µ A µν = 0 • T αβλµ λ µ = 0 ⇐⇒ A µν ν = 0 • T αβλµ α λ = 0 ⇐⇒ [ρ A µ][ν τ ] = 0 • T αβλµ α = 0 ⇐⇒ [τ A µ]ν = 0 • T αβλµ λ = 0 ⇐⇒ A µ[ν τ ] = 0
As a final remark, I would like to mention that these classifications can be refined, obtaining more information involving several null directions simultaneously, by considering a generalization called the 'mathematical energy tensor' [START_REF] Senovilla | The universal 'energy' operator[END_REF], but this is out of the scope of this short communication.

(i) T αβλµ µ = 0

 0 ⇐⇒ Petrov type N (ii) T αβλµ λ µ = 0 but T αβλµ µ = 0 ⇐⇒ Petrov type III (iii) T αβλµ β λ µ = 0 but T αβλµ λ µ = 0 ⇐⇒ Petrov type II or D (iv) T αβλµ α β λ µ = 0 but T αβλµ β λ µ = 0 ⇐⇒ Petrov type I Furthermore, one can distinguish types II and D by means of (v) there exist two linearly independent null vectors µ and k µ such that T αβλµ β λ µ = 0 and T αβλµ k β k λ k µ = 0 ⇐⇒ Petrov type D . Confidential: not for distribution. Submitted to IOP Publishing for peer review 23 August 2010

+2 [ α

 α Ûβ]λµ + 2 [λ Ûµ]αβ + 4 [α Vβ][µ λ] + Ĉαβλµ for some Ûβλµ = Ûβ[λµ] , Vβµ = Vµβ and Ĉαβλµ with the same symmetry properties as the Weyl tensor. It follows that C αβλµ C αβλµ = 4( ρ p ρ ) 2 -8 Fρσ F ρσ + 8 Âρσ Âσρ + 4 Ĉαβλµ Ĉαβλµ so that (12) leads to ( ρ p ρ ) 2 + Ĉαβλµ Ĉαβλµ = 0 implying ρ p ρ = 0 and Ĉαβλµ = 0. This means [β C αρ][σλ µ] = 0 (and furthermore C µν = 0, as A =ρ p ρ = 0), proving (iv).
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