
HAL Id: hal-00642972
https://hal.science/hal-00642972

Submitted on 20 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized LTL Monitoring
Andreas Bauer, Yliès Falcone

To cite this version:

Andreas Bauer, Yliès Falcone. Decentralized LTL Monitoring. 2012. �hal-00642972�

https://hal.science/hal-00642972
https://hal.archives-ouvertes.fr

Decentralised LTL monitoring

Andreas Bauer1 and Yliès Falcone2 ⋆

1 NICTA ⋆⋆ Canberra Research Lab and Australian National University
2 Laboratoire d’Informatique de Grenoble, UJF Université Grenoble I, France

Abstract. Users wanting to monitor distributed or component-based systems often perceive them as monolithic
systems which, seen from the outside, exhibit a uniform behaviour as opposed to many components displaying many
local behaviours that together constitute the system’s global behaviour. This level of abstraction is often reasonable,
hiding implementation details from users who may want to specify the system’s global behaviour in terms of an LTL
formula. However, the problem that arises then is how such a specification can actually be monitored in a distributed
system that has no central data collection point, where all the components’ local behaviours are observable. In this
case, the LTL specification needs to be decomposed into sub-formulae which, in turn, need to be distributed amongst
the components’ locally attached monitors, each of which sees only a distinct part of the global behaviour.
The main contribution of this paper is an algorithm for distributing and monitoring LTL formulae, such that satisfac-
tion or violation of specifications can be detected by local monitors alone. We present an implementation and show
that our algorithm introduces only a minimum delay in detecting satisfaction/violation of a specification. Moreover,
our practical results show that the communication overheadintroduced by the local monitors is considerably lower
than the number of messages that would need to be sent to a central data collection point.

1 Introduction

Much work has been done on monitoring systems w.r.t. formal specifications such as linear-time temporal logic (LTL
[1]) formulae. For this purpose, a system is thought of more or less as a “black box”, and some (automatically gen-
erated) monitor observes its outside visible behaviour in order to determine whether or not the runtime behaviour
satisfies an LTL formula. Applications include monitoring programs written in Java (cf. [2, 3]) or C (cf. [4]), monitor-
ing of abstract Web services (cf. [5]), or transactions on typical e-commerce sites (cf. [6]).

From a system designer’s point of view, who defines the overall behaviour that a system has to adhere to, this
“black box” view is perfectly reasonable. For example, mostmodern cars have the ability to issue a warning if a
passenger (including the driver) is not wearing a seat belt after the vehicle has reached a certain speed. One could
imagine using a monitor to help issue this warning based on the following LTL formalisation, which captures this
abstract requirement:

ϕ = G
(
speed low ∨ ((pressure sensor 1 high ⇒ seat belt 1 on)

∧ . . .
∧ (pressure sensor n high ⇒ seat belt n on))

)

The formulaϕ asserts that, at all times, when the car has reached a certainspeed, and the pressure sensor in a seat
i ∈ [1, n] detects that a person is sitting in it (pressure sensor i high), it has to be the case that the corresponding seat
belt is fastened (seat belt i on). Moreover, one can build a monitor forϕ, which receives the respective sensor values
and is able to assert whether or not these values constitute aviolation—but, only if some central component exists in
the car’s network of components, which collects these sensor values and consecutively sends them to the monitor as
input! In many real-world scenarios, such as the automotiveone, this is an unrealistic assumption mainly for economic
reasons, but also because the communication on a car’s bus network has to be kept minimal. Therefore one cannot
continuously send unnecessary sensor information on a bus that is shared by potentially critical applications where
low latency is paramount (cf. [7]). In other words, in these scenarios, one has to monitor such a requirement not based

⋆ This author has been supported by an Inria Exploration Grantto visit NICTA, Canberra.
⋆⋆ NICTA is funded by the Australian Government as representedby the Department of Broadband, Communications and the Digital Economy and the Australian

Research Council through the ICT Centre of Excellence program.

on a single behavioural trace, assumed to be collected by some global sensor, but based on the manypartial behavioural
traces of the components which make up the actual system. We refer to this asdecentralised LTL monitoringwhen the
requirement is given in terms of an LTL formula.

The main constraint that decentralised LTL monitoring needs to address is the lack of a global sensor and a central
decision making point asserting whether the system’s behaviour has violated or satisfied a specification. We already
pointed out that, from a practical point of view, a central decision making point (i.e., global sensor) would require all
the individual components to continuously send events overthe network, and thereby negatively affecting the response
time for other potentially critical applications on the network. Moreover from a theoretical point of view, a central
observer (resp. global sensor) basically resembles the classical LTL monitoring problem, where the decentralised
nature of the system under scrutiny does not play a role.

Arguably, there exist a number of real-world component-based applications, where the monitoring of an LTL
formula can be realised via global sensors and/or central decision making points, e.g., when network latency and
criticality do not play an important role. However, here we want to focus on those cases where there exists no global
trace, no central decision making point, and where the goal is to keep the communication, required for monitoring the
LTL formula, at a minimum.

In the decentralised setting, we assume that the system under scrutiny consists of a set ofn componentsC =
{C1, C2, . . . , Cn}, communicating on a synchronous bus, each of which has a local monitor attached to it. The set of
all events isΣ = Σ1 ∪ Σ2 ∪ . . . ∪ Σn, whereΣi is the set of events visible to the monitor at componentCi. The
global LTL formula, on the other hand, is specified over a set of propositions,AP , such thatΣ = 2AP . Moreover, we
demand for alli, j ≤ n with i 6= j thatΣi ∩Σj = ∅ holds, i.e., events are local w.r.t. the components where they are
monitored.

At a first glance, the synchronous bus may seem an overly stringent constraint imposed by our setting. However, it
is by no means unrealistic, since in many real-world systems, especially critical ones, communication is synchronous.
For example, the FlexRay bus protocol (cf. [8]) used for safety-critical systems in the automotive domain, allows
synchronous communication. Similar systems are used in avionics, where synchronous implementations of control
systems have, arguably, played an even greater role than in the automotive domain due to their deterministic notion of
concurrency and the strong guarantees one can give concerning their correctness.

Brief overview of the approach.Let as beforeϕ be an LTL formula formalising a requirement over the system’s
global behaviour. Then every local monitor,Mi, will at any time,t, monitor its own LTL formula,ϕt

i, w.r.t. a partial
behavioural trace,ui. Let us useui(m) to denote the(m+ 1)-th event in a traceui, andu = (u1, u2, . . . , un) for the
global trace, obtained by pair-wise parallel composition of the partialtraces, each of which at timet is of lengtht+1
(i.e.,u = u1(0) ∪ u2(0) ∪ . . . ∪ un(0) · · ·u1(t) ∪ u2(t) ∪ . . . ∪ un(t)). Note that from this point forward we will use
u only when, in a given context, it is important to consider a global trace. However, when the particular type of trace
(i.e., partial or global) is irrelevant, we will simply useu, ui, etc. We also shall refer to partial traces as local traces
due to their locality to a particular monitor in the system.

The decentralised monitoring algorithm evaluates the global traceu by considering the locally observed traces
ui, i ∈ [1, n] in separation. In particular, it exhibits the following properties.
• If a local monitor yieldsϕt

i = ⊥ (resp.ϕt
i = ⊤) on some componentCi by observingui, it implies thatuΣω ⊆

Σω \ L(ϕ) (resp.uΣω ⊆ L(ϕ)) holds whereL(ϕ) is the set of infinite sequences inΣω described byϕ. That is,
a locally observed violation (resp. satisfaction) is, in fact, a global violation (resp. satisfaction). Or, in other words,
u is a bad (resp. good) prefix forϕ.

• If the monitored traceu is such thatuΣω ⊆ Σω \ L(ϕ) (resp.uΣω ⊆ L(ϕ)), one of the local monitors on
some componentCi yieldsϕt′

i = ⊥ (resp.ϕt′

i = ⊤), t′ ≥ t, for an observationu′i, an extension ofui, the local
observation ofu onCi, because of some latency induced by decentralised monitoring, as we shall see.

However, in order to allow for the local detection of global violations (and satisfactions), monitors must be able to
communicate, since their traces are only partial w.r.t. theglobal behaviour of the system. Therefore, our second im-
portant objective is to also monitor withminimal communication overhead(in comparison with a centralised solution
where at any time,t, all n monitors send the observed events to a central decision making point).

Outline. Section 2 introduces basic notions and notation. LTL monitoring by means of formula rewriting (progression),
a central concept to our paper, is discussed in Sec. 3. In Sec.4, we lift this concept to the decentralised setting. The

2

Table 1: LTL semantics over infinite traces
wi |= p ⇔ p ∈ w(i), for anyp ∈ AP

wi |= ¬ϕ ⇔ wi 6|= ϕ

wi |= ϕ1 ∨ ϕ2 ⇔ wi |= ϕ1 ∨ wi |= ϕ2

wi |= Xϕ ⇔ wi+1 |= ϕ

wi |= ϕ1Uϕ2 ⇔ ∃k ∈ [i,∞[. wk |= ϕ2 ∧ ∀l ∈ [i, k[. wl |= ϕ1

semantics induced by decentralised LTL monitoring is outlined in Sec. 5, whereas Sec. 6 details on how the local
monitors operate in this setting and gives a concrete algorithm for this purpose. Experimental results, showing the
feasibility of our approach, are presented in Sec. 7. Section 8 concludes and gives pointers to some related approaches.
The proofs for all results claimed in this paper are in Appendix A.

2 Preliminaries

The considered architecture.Each component of the system emits events at discrete time instances. An eventσ is a
set ofactionsdenoted by some atomic propositions from the setAP , i.e.,σ ∈ 2AP . We denote2AP byΣ and call it
thealphabet(of system events).

As our system operates under theperfect synchrony hypothesis(cf. [9]), we assume that its components commu-
nicate with each other in terms of sending and receiving messages (which, for the purpose of easier presentation, can
also be encoded by actions) atdiscreteinstances of time, which are represented using identifiert ∈ N

≥0. Under this
hypothesis, it is assumed that neither computation nor communication take time. In other words, at each timet, a
component may receive up ton − 1 messages and dispatch up to 1 message, which in the latter case will always be
available at the respective recipient of the messages at time t + 1. Note that these assumptions extend to the compo-
nents’ monitors, which operate and communicate on the same synchronous bus. The hypothesis of perfect synchrony
essentially abstracts away implementation details of how long it takes for components or monitors to generate, send,
or receive messages. As indicated in the introduction, thisis a common hypothesis for certain types of systems, which
can be designed and configured (e.g., by choosing an appropriate duration between timet andt+1) to not violate this
hypothesis (cf. [9]).

We use a projection functionΠi to restrict atomic propositions or events to the local view of monitorMi, which
can only observe those of componentCi. For atomic propositions,Πi : 2

AP → 2AP and we noteAPi = Πi(AP) for
i ∈ [1, n]. For events,Πi : 2

Σ → 2Σ and we noteΣi = Πi(Σ), for i ∈ [1, n]. We also assume∀i, j ≤ n. i 6= j ⇒
APi ∩ APj = ∅ and consequently∀i, j ≤ n. i 6= j ⇒ Σi ∩ Σj = ∅. Seen over time, each componentCi produces
a trace of events, also called itsbehaviour, which for t time steps is encoded asui = ui(0) · ui(1) · · ·ui(t − 1)
with ∀t′ < t. ui(t

′) ∈ Σi. Finite traces over an alphabetΣ are elements of the setΣ∗ and are typically encoded by
u, u′, . . ., whereas infinite traces overΣ are elements of the setΣω and are typically encoded byw,w′, . . . The set
of all traces is given by the setΣ∞ = Σ∗ ∪ Σω. The setΣ∗ \ {ǫ} is notedΣ+. The finite or infinite sequencewt

is thesuffixof the tracew ∈ Σ∞, starting at timet, i.e.,wt = w(t) · w(t + 1) · · · . The system’s global behaviour,
u = (u1, u2, . . . , un) can now be described as a sequence of pair-wise union of the local events in component’s traces,
each of which at timet is of lengtht+ 1 i.e.,u = u(0) · · ·u(t).

Linear Temporal Logic (LTL).We monitor a system w.r.t. a global specification, expressedas an LTL [1] formula, that
does not state anything about its distribution or the system’s architecture. Formulae of LTL can be described using the
following grammar:ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ, wherep ∈ AP . Additionally, we allow the following
operators, each of which is defined in terms of the above ones:⊤ = p ∨ ¬p, ⊥ = ¬⊤, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),
Fϕ = ⊤Uϕ, andGϕ = ¬F(¬ϕ). The operators typeset in bold are the temporal operators. Formulae without
temporal operators are calledstate formulae. We describe the set of all LTL formulae overAP by the setLTL(AP),
or justLTL when the set of atomic propositions is clear from the contextor does not matter. The semantics of LTL [1]
is defined w.r.t. infinite traces:

3

Definition 1. Letw ∈ Σω andi ∈ N
≥0. Satisfaction of anLTL formula byw at timei is inductively defined as given

in Table 1.

Whenw0 |= ϕ holds, we also writew |= ϕ to denote the fact thatw is a model forϕ. As such, every formula
ϕ ∈ LTL(AP) describes a set of infinite traces, called itslanguage, and is denoted byL(ϕ) ⊆ Σω. In this paper, a
language describes desired or undesired system behaviours, formalised by an LTL formula.

3 Monitoring LTL formulae by progression

Central to our monitoring algorithm is the notion ofgood and bad prefixesfor an LTL formula or, to be more precise,
for the language it describes:

Definition 2. LetL ⊆ Σω be a language. The set of allgood prefixes(resp.bad prefixes) of L is given bygood(L)
(resp.bad(L)) and defined as follows:

good(L) = {u ∈ Σ∗ | u ·Σω ⊆ L}, bad(L) = {u ∈ Σ∗ | u ·Σω ⊆ Σω \ L}.

To further ease presentation, we will shortengood(L(ϕ)) (resp.bad(L(ϕ))) to good(ϕ) (resp.bad(ϕ)).
Although there exist a myriad of different approaches to monitoring LTL formulae, based on various finite-trace

semantics (cf. [10]), one valid way of looking at the monitoring problem for some formulaϕ ∈ LTL is the following:
The monitoring problem ofϕ ∈ LTL is to devise an efficient monitoring algorithm which, in a stepwise manner,
receives events from a system under scrutiny and states whether or not the trace observed so far constitutes a good or
a bad prefix ofL(ϕ). One monitoring approach along those lines is described in [11]. We do not want to reiterate how
in [11] a monitor is constructed for some LTL formula, but rather review an alternative monitoring procedure based
on formula rewriting, which is also known as formula progression, or justprogressionin the domain of planning with
temporally extended goals (cf. [12]).

Progression splits a formula into a formula expressing whatneeds to be satisfied by the current observation and a
new formula (referred to as afuture goalor obligation), which has to be satisfied by the trace in the future. As pro-
gression plays a crucial role in decentralised LTL monitoring, we recall its definition for the full set of LTL operators.

Definition 3. Letϕ, ϕ1, ϕ2 ∈ LTL, andσ ∈ Σ be an event. Then, theprogression functionP : LTL×Σ → LTL is
inductively defined as follows:

P (p ∈ AP, σ) = ⊤, if p ∈ σ,⊥ otherwise
P (ϕ1 ∨ ϕ2, σ) = P (ϕ1, σ) ∨ P (ϕ2, σ)
P (ϕ1Uϕ2, σ) = P (ϕ2, σ) ∨ P (ϕ1, σ) ∧ ϕ1Uϕ2

P (Gϕ, σ) = P (ϕ, σ) ∧G(ϕ)
P (Fϕ, σ) = P (ϕ, σ) ∨F(ϕ)

P (⊤, σ) = ⊤
P (⊥, σ) = ⊥
P (¬ϕ, σ) = ¬P (ϕ, σ)
P (Xϕ, σ) = ϕ

Note that monitoring using rewriting with similar rules as above has been described, for example, in [13, 14], although
not necessarily with the same finite-trace semantics in mindthat we are discussing in this paper. Informally, the
progression function “mimics” theLTL semantics on an eventσ, as it is stated by the following lemma.

Lemma 1. Letϕ be anLTL formula,σ an event andw an infinite trace, we haveσ · w |= ϕ⇔ w |= P (ϕ, σ).

Lemma 2. If P (ϕ, σ) = ⊤, thenσ ∈ good(ϕ), whereas ifP (ϕ, σ) = ⊥, thenσ ∈ bad(ϕ).

Moreover, from Corollary 2 and Definition 2 it follows that ifP (ϕ, σ) /∈ {⊤,⊥}, then there exist tracesw,w′ ∈ Σω,
such thatσ · w |= ϕ andσ · w′ 6|= ϕ hold. Let us now get back to [11], which introduces a finite-trace semantics for
LTL monitoring calledLTL3. It is captured by the following definition.

Definition 4. Letu ∈ Σ∗, the satisfaction relation ofLTL3, |=3: Σ
∗ × LTL → B3, withB3 = {⊤,⊥, ?}, is defined

as

u |=3 ϕ =







⊤ if u ∈ good(ϕ),
⊥ if u ∈ bad(ϕ),
? otherwise.

4

Based on this definition, it now becomes obvious how progression couldserve as a monitoring algorithm forLTL3.

Theorem 1. Let u = u(0) · · ·u(t) ∈ Σ+ be a trace, andv ∈ LTL be the verdict, obtained byt + 1 consecutive
applications of the progression function ofϕ on u, i.e., v = P (. . . (P (ϕ, u(0)), . . . , u(t)))). The following cases
arise: If v = ⊤, thenu |=3 ϕ = ⊤ holds. Ifv = ⊥, thenu |=3 ϕ = ⊥ holds. Otherwise,u |=3 ϕ = ? holds.

Note that in comparison with the monitoring procedure forLTL3, described in [11], our algorithm, implied by this
theorem, has the disadvantage that the formula, which is being progressed, may grow in size relative to the number
of events. However, in practice, the addition of some practical simplification rules to the progression function usually
prevents this problem from occurring.

4 Decentralised progression

Conceptually, a monitor,Mi, attached to componentCi, which observes events overΣi ⊆ Σ, is a rewriting engine
that accepts as input an eventσ ∈ Σi, and an LTL formulaϕ, and then applies LTL progression rules. Additionally at
each timet, in ourn-component architecture, a monitor can send a message and receive up ton− 1 messages in order
to communicate with the other monitors in the system, using the same synchronous bus that the system’s components
communicate on. The purpose of these messages is to send future or even past obligations to other monitors, encoded
as LTL formulae. In a nutshell, a formula is sent by some monitorMi, whenever the most urgent outstanding obligation
imposed byMi’s current formula at timet, ϕt

i, cannot be checked using events fromΣi alone. Intuitively, the urgency
of an obligation is defined by the occurrences (or lack of) certain temporal operators in it. For example, in order to
satisfyp ∧Xq, a trace needs to start withp, followed by aq. Hence, the obligation imposed by the subformulap can
be thought of as “more urgent” than the one imposed byXq. A more formal definition is given later in this section.

When progressing an LTL formula, e.g., in the domain of planning to rewrite a temporally extended LTL goal
during plan search, the rewriting engine, which implementsthe progression rules, will progress a state formulap ∈
AP, with an eventσ such thatp /∈ σ, to⊥, i.e.,P (p, ∅) = ⊥ (see Definition 3). However, doing this in the decentralised
setting, could lead to wrong results. In other words, we needto make a distinction as to whyp /∈ σ holds locally,
and then to progress accordingly. Consequently, the progression rule for atomic propositions is simply adapted by
parameterising it by a local set of atomic propositionsAPi:

P (p, σ,APi) =







⊤ if p ∈ σ,
⊥ if p /∈ σ ∧ p ∈ APi,
Xp otherwise,

(1)

where for everyw ∈ Σω andj > 0, we havewj |= Xϕ if and only if wj−1 |= ϕ. In other words,X is the dual to
theX-operator, sometimes referred to as the “previously-operator” in past-time LTL (cf. [15]). To ease presentation,

the formulaX
m
ϕ is a short for

m
︷ ︸︸ ︷

XX . . .X ϕ.
Our operator is somewhat different to the standard use ofX: it can

only precede an atomic proposition or an atomic propositionwhich is preceded by furtherX-operators. Hence, the
restricted use of theX-operator does not give us the full flexibility (or succinctness gains [16]) of past-time LTL. Using
theX-operator, let us now formally define theurgencyof an LTL formulaϕ using a pattern matching onϕ as follows:

Definition 5. Letϕ be an LTL formula, andΥ : LTL → N
≥0 be an inductively defined function assigning a level of

urgencyto an LTL formula as follows.

Υ (ϕ) = matchϕ with
ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → max(Υ (ϕ1), Υ (ϕ2))

| Xϕ′ → 1 + Υ (ϕ′)
| → 0

A formulaϕ is said to bemore urgentthan formulaψ, if and only ifΥ (ϕ) > Υ (ψ) holds. A formulaϕ where
Υ (ϕ) = 0 holds is said to be not urgent.

5

Moreover, the above modification to the progression rules has obviously the desired effect: Ifp ∈ σ, then nothing
changes, otherwise ifp /∈ σ, we returnXp in case that the monitorMi cannot observep at all, i.e., in case that
p /∈ APi holds. This effectively means, thatMi cannot decide whether or notp occurred, and will therefore turn the
state formulap into an obligation for some other monitor to evaluate ratherthan produce a truth-value. Of course, the
downside of rewriting future goals into past goals that haveto be processed further, is that violations or satisfactions
of a global goal will usually be detectedafter they have occurred. However, since there is no central observer which
records all events at the same time, the monitorsneedto communicate their respective results to other monitors,which,
on a synchronous bus, occupies one or more time steps, depending on how often a result needs to be passed on until it
reaches a monitor which is able to actually state a verdict. We shall later give an upper bound on these communication
times, and show that our decentralised monitoring framework is, in fact, optimal under the given assumptions (see
Theorem 2).

Example 1.Let us assume we have a decentralised system consisting of three components,A,B,C, such thatAPA =
{a},APB = {b}, andAPC = {c}, and that a global formulaϕ = F(a∧b∧c) needs to be monitored in a decentralised
manner. Let us further assume that, initially,ϕ0

A = ϕ0
B = ϕ0

C = ϕ. Letσ = {a, b} be the system event at time0; that
is,MA (resp.MB,MC) observesΠA(σ) = {a} (resp.ΠB(σ) = {b},ΠC(σ) = ∅) whenσ occurs. The rewriting that
takes place in all three monitors to generate the next local goal formula, using the modified set of rules, and triggered
by σ, is as follows:

ϕ1
A = P (ϕ, {a}, {a}) = P (a, {a}, {a})∧ P (b, {a}, {a})∧ P (c, {a}, {a})∨ ϕ

= Xb ∧Xc ∨ ϕ
ϕ1
B = P (ϕ, {b}, {b}) = P (a, {b}, {b})∧ P (b, {b}, {b})∧ P (c, {b}, {b})∨ ϕ

= Xa ∧Xc ∨ ϕ
ϕ1
C = P (ϕ, ∅, {c}) = P (a, ∅, {c})∧ P (b, ∅, {c}) ∧ P (c, ∅, {c}) ∨ ϕ

= Xa ∧Xb ∧ ⊥ ∨ ϕ = ϕ

But we have yet to define progression for past goals: For this purpose, each monitor has local storage to keep a
boundednumber of past events. The event that occurred at timet − k is referred asσ(−k). On a monitor observing
Σi, the progression of a past goalX

m
ϕ, at timet ≥ m, is defined as follows:

P (X
m
ϕ, σ,APi) =







⊤ if ϕ = p for somep ∈ APi ∩Πi(σ(−m)),
⊥ if ϕ = p for somep ∈ APi \Πi(σ(−m)),

X
m+1

ϕ otherwise,
(2)

where, fori ∈ [1, n], Πi is the projection function associated to each monitorMi, respectively. Note that since we
do not allowX for the specification of a global system monitoring property, our definitions will ensure that the local
monitoring goals,ϕt

i, will never be of the formXXXp, which is equivalent to a future obligation, despite the initial
X. In fact, our rules ensure that a formula preceded by theX-operator is either an atomic proposition, or an atomic
proposition which is preceded by one or manyX-operators. Hence, in rule (2), we do not need to consider anyother
cases forϕ.

5 Semantics

In the previous example, we can clearly see that monitorsMA andMB cannot determine whether or notσ, if in-
terpreted as a trace of length1, is a good prefix for the global goal formulaϕ.3 Monitor MC on the other hand did
not observe an actionc, and therefore, is the only monitor after time0, which knows thatσ is not a good prefix, and
that, as before, after time1, ϕ is the goal that needs to be satisfied by the system under scrutiny. Intuitively, the other
two monitors know that if their respective past goals were satisfied, thenσ would be a good prefix, but in order to
determine this information, they need to send and receive messages to and from each other, containing obligations,
i.e., LTL formulae.

3 Note thatϕ, being alivenesslanguage [17], does not have any bad prefixes.

6

Before we outline how this is done in our setting, let us discuss the semantics, we obtain from this decentralised
application of progression. We already said that monitors detect good and bad prefixes for a global formula. In other
words, if a monitor’s progression evaluates to⊤ (resp.⊥), then the trace seen so far is a good (resp. bad) prefix, and if
neither monitor comes to a Boolean truth-value as verdict, we keep monitoring. This latter case indicates that, so far,
the trace is neither a good nor a bad prefix for the global formula.

Definition 6. Let C = {C1, . . . , Cn} be the set of system components,ϕ ∈ LTL be a global goal, andM =
{M1, . . . ,Mn} be the set of component monitors. Further, letu = u1(0) ∪ . . . ∪ un(0) · · ·u1(t) ∪ . . . ∪ un(t) ∈ Σ∗

be the global behavioural trace of the system, obtained by composition of all local component traces, at timet ∈ N
≥0.

If for some componentCi, with i ≤ n, containing a local obligationϕt
i,Mi reportsP (ϕt

i, ui(t),APi) = ⊤ (resp.⊥),
thenu |=D ϕ = ⊤ (resp.⊥). Otherwise, we haveu |=D ϕ = ?.

By |=D we denote the satisfaction relation on finite traces in the decentralised setting to differentiate it fromLTL3

as well as standardLTL which is defined on infinite traces. Obviously,|=3 and|=D both yield values from the same
truth-domain. However, the semantics are not equivalent, since the modified progression function used in the above
definition sometimes rewrites a state formula into an obligation concerning the past rather than returning a verdict. On
the other hand, in the case of a one-component system (i.e., all propositions of a formula can be observed by a single
monitor), the definition of|=D matches Theorem 1, in particular because our progression rule (1) is then equivalent
to the standard case. MonitoringLTL3 with progression becomes a special case of decentralised monitoring, in the
following sense:

Corollary 1. If |M| = 1, then∀u ∈ Σ∗. ∀ϕ ∈ LTL. u |=3 ϕ = u |=D ϕ.

6 Communication and decision making

Let us now describe the communication mechanism that enables local monitors to determine whether a trace is a good
or a bad prefix. Recall that each monitor only sees a projection of an event to its locally observable set of actions,
encoded as a set of atomic propositions, respectively.

Generally, at timet, when receiving an eventσ, a monitor,Mi, will progress its current obligation,ϕt
i, into

P (ϕt
i, σ,APi), and send the result to another monitor,Mj 6=i, whenever the most urgent obligation,ψ ∈ sus(P (ϕt

i, σ,
APi)), is such thatProp(ψ) ⊆ (APj) holds, wheresus(ϕ) is theset of urgent subformulaeof ϕ andProp : LTL →
2AP is the function which yields the set of occurring propositions of anLTL formula. The set of urgent subformuale
of anLTL formula is inpired from the classical syntactic closure andoptimised in the context of decentralisedLTL
monitoring.

Definition 7. The functionsus : LTL → 2LTL is inductively defined as follows:

sus(ϕ) = matchϕ with ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 → sus(ϕ1) ∪ sus(ϕ2)
| ¬ϕ′ → sus(ϕ′)

| Xϕ′ → {Xϕ′}
| → ∅

The setsus(ϕ) contains the past sub-formulae ofϕ, i.e., sub-formulae starting with a future temporal operator are dis-
carded. It uses the fact that, in decentralised progression, X-operators are only introduced in front of atomic proposi-
tions. Thus, only the cases mentioned explicitly in the pattern matching need to be considered. Moreover, for formulae
of the formXϕ′, i.e., starting with anX-operator, it is not needed to applysus to ϕ′ becauseϕ′ is necessarily of the

formX
d
p with d ≥ 0 andp ∈ AP, and does not contain more urgent formulae thanXϕ′.

Note that, if there are several equally urgent obligations for distinct monitors, thenMi sends the formula to only
one of the corresponding monitors according to a priority order between monitors. Using this order ensures that the
delay induced by evaluating the global system specificationin a decentralised fashion is bounded, as we shall see in
Theorem 2. For simplicity, in the following, for a set of component monitorsM = {M1, . . . ,Mn} the sending order
is the natural order on the interval[1, n]. This choice of the local monitor to send the obligation is encoded through the
functionMon : M× 2AP→M. For a monitorMi ∈ M and a set of atomic propositionsAP′ ∈ 2AP , Mon(Mi,AP

′)

7

Table 2: Decentralised progression ofϕ = F(a ∧ b ∧ c) in a 3-component system.

t: 0 1 2 3

σ: {a, b} {a, b, c} ∅ ∅

MA:
ϕ1

A := P (ϕ, σ,APA)

= Xb ∧Xc ∨ ϕ

ϕ2
A := P (ϕ1

B ∧#, σ,APA)

= X
2
c ∨ (Xb ∧Xc ∨ ϕ)

ϕ3
A := P (ϕ2

C ∧#, σ,APA)

= X
2
b ∨ (Xb ∧Xc ∨ ϕ)

ϕ4
A := P (ϕ3

C ∧#, σ,APA)

= X
3
b ∨ (Xb ∧Xc ∨ ϕ)

MB :
ϕ1

B := P (ϕ, σ,APB)

= Xa ∧Xc ∨ ϕ

ϕ2
B := P (ϕ1

A ∧#, σ,APB)

= X
2
c ∨ (Xa ∧Xc ∨ ϕ)

ϕ3
B := P (#, σ,APB)

= #

ϕ4
B := P (ϕ3

A ∧#, σ,APB)

= ⊤

MC :
ϕ1

C := P (ϕ, σ,APC)

= ϕ

ϕ2
C := P (ϕ, σ,APC)

= Xa ∧Xb ∨ ϕ

ϕ3
C := P (ϕ2

A ∧ ϕ2
B ∧#, σ,APC)

= X
2
a ∧X

2
b ∨ ϕ

ϕ4
C := P (#, σ,APC)

= #

is the monitorMjmin
s.t.jmin is the smallest integer in[1, n] s.t. there is a monitor for an atomic proposition inAP′.

Formally:Mon(Mi,AP
′) = jmin = min{j ∈ [1, n] \ {i} | AP′ ∩ APj 6= ∅}.

OnceMi has sent its message at timet, containingP (ϕt
i, σ,APi), it setsϕt+1

i = #, where# /∈ AP is a special
symbol for which we define progression by

P (#, σ,APi) = #. (3)

In anLTL formula, the symbol# is eliminated by adding the following rule toLTL semantics:∀ϕ ∈ LTL. ϕ∧# = ϕ.
Note that no further rule is needed since, in the algorithm oflocal monitors, the symbol# will never be in the scope
of a temporal operator and only conjuncts will be added to#.

On the other hand, wheneverMi receives a formula,ϕj 6=i, sent from a monitorMj , it will add the new formula to
its existing obligation, i.e., its current obligationϕt

i will be replaced by the conjunctionϕt
i ∧ ϕj 6=i. ShouldMi receive

further obligations from other monitors butj, it will add each new obligation as an additional conjunct inthe same
manner.

Let us now summarise the above steps in the form of an explicitalgorithm that describes how the local monitors
operate and make decisions.

Algorithm L (Local Monitor). Let ϕ be a global system specification, andM = {M1, . . . ,Mn} be the set of
component monitors. The algorithm Local Monitor, executedon eachMi, returns⊤ (resp.⊥), if σ |=D ϕt

i (resp.
σ 6|=D ϕt

i) holds, whereσ ∈ Σi is the projection of an event to the observable set of actionsof the respective monitor,
andϕt

i the monitor’s current local obligation.

L1. [Next goal.] Lett ∈ N
≥0 denote the current time step andϕt

i be the monitor’s current local obligation. Ift = 0,
then setϕt

i := ϕ.
L2. [Receive event.] Read nextσ.
L3. [Receive messages.] Let{ϕj}j∈[1,m],j 6=i be the set of received obligations at timet from other monitors. Set

ϕt
i := ϕt

i ∧
∧

j∈[1,m],j 6=i ϕj .

L4. [Progress.] Let the rewriting engine determineP (ϕt
i, σ,APi) and store the result inϕt+1

i .
L5. [Evaluate and return.] Ifϕt+1

i = ⊤ return⊤, if ϕt+1
i = ⊥ return⊥.

L6. [Communicate.] Setψ ∈ sus(ϕt+1
i) to be the most urgent obligation ofϕt+1

i . Sendϕt+1
i to monitorMon(Mi,

Prop(ψ)).
L7. [Replace goal.] If in step L6 a message was sent at all, setϕt+1

i := #. Then go back to step L1. ⊓⊔

The input to the algorithm,σ, will usually resemble the latest observation in a consecutively growing trace,ui =
ui(0) · · ·ui(t), i.e.,σ = ui(t). We then have thatσ |=D ϕt

i (i.e., the algorithm returns⊤) implies thatu |=D ϕ holds
(resp. forσ 6|=D ϕt

i).

Example 2.To see how this algorithm works, let us continue the decentralised monitoring process initiated in Exam-
ple 1. Table 2 shows how the situation evolves for all three monitors, when the global LTL specification in question is
F(a∧ b∧ c) and the ordering between componenents isA > B > C. An evolution ofMC ’s local obligation, encoded
asP (ϕ1

A ∧ ϕ, σ,APA) (see cellMC at t = 1) indicates that communication between the monitors has occurred:

8

MA sent its obligation toMC , at the end of step0. Likewise for the other obligations and monitors. The interesting
situations are marked in grey: In particular att = 0,MC is the only monitor who knows for sure that, so far, no good
nor bad prefix occurred (see grey cell att = 0). At t = 1, we have the desired situationσ = {a, b, c}, but because
none of the monitors can see the other monitors’ events, it takes another two rounds of communication until bothMA

andMB detect that, indeed, the global obligation has been satisfied att = 1 (see grey cells att = 3).

Example 2 highlights the worst casedelaybetween the occurrence and the detection of a good (resp. bad) trace by
a good (resp. bad) prefix, caused by the time it takes for the monitors to communicate obligations to each other. This
delay directly depends on the number of monitors in the system, and is also the upper bound for the number of past
events each monitor needs to store locally in order to be ableto progress all occurring past obligations:

Theorem 2. Let, for anyp ∈ AP , X
m
p ∈ LTL be a local obligation obtained by Algorithm L executed on some

monitorMi ∈ M. In the worst case,m ≤ min(|M|, t+ 1) at any timet ∈ N
≥0.

Proof. We provide below a sketch of the proof explaining the intuition on the theorem. The formal proof can be found
in Appendix A.3.

Recall thatX-operators are only introduced directly in front of atomic propositions according to rule (1) when
Mi rewrites a propositional formulap with p /∈ APi. FurtherX-operators can only be added according to rule (2)

whenMi is unable to evaluate an obligation of the formX
h
p. The interesting situation occurs when a monitorMi

maintains a set of urgent obligations of the form{X
h
p1, . . . ,X

j
pl} with h, j ∈ N

≥0, then, according to step L6
of Algorithm L, Mi will transmit the obligations to one monitor only thereby adding one additionalX-operator to

the remaining obligations:{X
h+1

p2, . . . ,X
j+1

pl}. Obviously, a single monitor cannot have more than|M| − 1
outstanding obligations that need to be sent to the other monitors at any timet. So, the worst case delay is initiated
during monitoring, if at some timeall outstanding obligations of each monitorMi, i ∈ [1, |M|], are of the form
{Xp1, . . . ,Xpl} with p1, . . . , pl /∈ APi (i.e., the obligations are all equally urgent), in which case it takes|M| − 1
time steps until the last one has been chosen to be sent to its respective monitorMj. Using an ordering between
components ensures here that each set of obligations will decrease in size after being transmitted once. Finally, a last

monitor,Mj will receive an obligation of the formX
|M|

pk with 1 ≤ k ≤ l andpk ∈ APj. ⊓⊔

Consequently, the monitors only need to memorise abounded historyof the trace read so far, i.e., the last|M| events.
Example 2 also illustrates the relationship to theLTL3 semantics discussed earlier in Sec. 3. This relationship is

formalised by the two following theorems stating the “soundness and completeness” of the algorithm.

Theorem 3. Letϕ ∈ LTL andu ∈ Σ∗, thenu |=D ϕ = ⊤/⊥ ⇒ u |=3 ϕ = ⊤/⊥, andu |=3 ϕ = ? ⇒ u |=D ϕ = ?.

In particular, the example shows how the other direction of the theorem does not necessarily hold. Consider the trace
u = {a, b} · {a, b, c}: clearly,u |=3 F(a ∧ b ∧ c) = ⊤, but we haveu |=D F(a ∧ b ∧ c) = ? in our example. Again,
this is a direct consequence of the delay introduced in our setting.

However, Algorithm L detects all verdicts for a specification as if the system was not distributed.

Theorem 4. Letϕ ∈ LTL andu ∈ Σ∗, thenu |=3 ϕ = ⊤/⊥ ⇒ ∃u′ ∈ Σ∗. |u′| ≤ n ∧ u · u′ |=D ϕ = ⊤/⊥, where
n is the number of components in the system.

7 Experimental results

DECENTMON is an implementation, simulating the above distributed LTLmonitoring algorithm in 1,800 LLOC,
written in the functional programming language OCaml. It can be freely downloaded and run from [18]. The system
takes as input multiple traces (that can be automatically generated), corresponding to the behaviour of a distributed
system, and an LTL formula. Then the formula is monitored against the traces in two different modes: a) by merging
the traces to a single, global trace and then using a “centralmonitor” for the formula (i.e., all local monitors send their
respective events to the central monitor who makes the decisions regarding the trace), and b) by using the decentralised
approach introduced in this paper (i.e., each trace is read by a separate monitor). We have evaluated the two different
monitoring approaches (i.e., centralised vs. decentralised) using two different set-ups described in the remainder of
this section.

9

Table 3: Benchmarks for randomly generated LTL formulae

centralised decentralised diff. ratio

|ϕ| Σc andΣd |trace| #msg. |trace| #msg. |trace| #msg.

1 {a, b, c} {a|b|c} 1.369 4.107 1.634 0.9821.19350.2391

2 {a, b, c} {a|b|c} 2.095 6.285 2.461 1.6471.1747 0.262

3 {a, b, c} {a|b|c} 3.51810.554 4.011 2.7491.14010.2604

4 {a, b, c} {a|b|c} 5.88917.667 6.4 4.61 1.08670.2609

5 {a, b, c} {a|b|c} 9.37528.125 9.935 7.8791.05970.2801

6 {a, b, c} {a|b|c} 11.80835.42412.366 9.9121.04720.2798

Table 4: Benchmarks for LTL specification patterns

centralised decentralised diff. ratio

pattern Σc andΣd |trace| #msg. |trace| #msg. |trace| #msg.

absence {a, b, c} {a|b|c} 156.17 468.51156.72 37.941.00350.0809

existence {a, b, c} {a|b|c} 189.90 569.72190.42 44.411.00270.0779

bounded existence{a, b, c} {a|b|c} 171.72 515.16172.30 68.721.00330.1334

universal {a, b, c} {a|b|c} 97.03 291.09 97.66 11.051.00650.0379

precedence {a, b, c} {a|b|c} 224.11 672.33224.7253.7031.00270.0798

response {a, b, c} {a|b|c} 636.281,908.86636.54360.331.00040.1887

precedence chain{a, b, c} {a|b|c} 200.23 600.69200.76 62.081.00260.1033

response chain {a, b, c} {a|b|c} 581.201,743.60581.54377.641.00050.2165

constrained chain{a, b, c} {a|b|c} 409.121,227.35409.62222.841.00120.1815

Evaluation of randomly generated formulae.DECENTMON randomly generated 1,000 LTL formulae of various sizes
in the architecture described in Example 1. How both monitoring approaches compared on these formulae can be
seen in Table 3. The first columns show the size of the monitored LTL formulae and the underlying alphabet(s) of the
monitor(s). Note that our system measures formula size in terms of the operator entailment4 inside it (state formulae
excluded), e.g.,G(a ∧ b) ∨ Fc is of size2. The entry|trace| denotes the average length of the traces needed to reach
a verdict. For example, the last line in Table 3 says that we monitored 1,000 randomly generated LTL formulae of
size 6. On average, traces were of length 11.808 when the central monitor came to a verdict, and of length 12.366
when one of the local monitors came to a verdict. The difference ratio, given in the second last column then shows the
average delay; that is, on average the traces were 1.0472 times longer in the decentralised setting than the traces in the
centralised setting. The number of messages, #msg., in the centralised setting, corresponds to the number of events
sent by the local monitors to the central monitor (i.e.,|trace| × |Σd|), and in the decentralised setting to the number of
obligations transmitted between local monitors. What is striking here is that the amount of communication needed in
the decentralised setting is ca. only 25% of the communication overhead induced by central monitoring, where local
monitors need to send each event to a central monitor.

Evaluation using specification patterns.In order to evaluate our approach also at the hand of realistic LTL specifi-
cations, we conducted benchmarks using LTL formulae following the well-known LTL specification patterns ([19],
whereas the actual formulae underlying the patterns are available at this site [20] and recalled in [18]). In this context,
to randomly generate formulae, we proceeded as follows. Fora given specification pattern, we randomly select one of
the formulae associated to it. Such a formulae is “parametrised” by some atomic propositions. To obtain the randomly
generated formula, using the distributed alphabet, we randomly instantiate the atomic propositions.

4 Our practical experiments show that this way of measuring the size of a formula is more representative of how difficult it is to
progress it in a decentralised manner.

10

The results of this test are reported in Table 4: for each kindof pattern (absence, existence, bounded existence,
universal, precedence, response, precedence chain, response chain, constrained chain), we generated again 1,000 for-
mulae, monitored over the same architecture as used in Example 1.

Summary.Both benchmarks certainly substantiate that the decentralised monitoring of an LTL formula induces a
much lower communication overhead compared to a centralised solution. In fact, when considering the more realistic
benchmark using the specification patterns, the communication overhead was significantly lower compared to monitor-
ing randomly generated formulae. The same is true for the delay: in case of monitoring LTL formulae corresponding to
specification patterns, the delay is almost negligible; that is, the local monitors detect violation/satisfaction of amon-
itored formula at almost the same time as a global monitor with access to all observations at any time. Note that we
have further benchmarks available on [18] (omitted for space reasons), also to highlight the effect of differently sized
alphabets and validate the maximal delay (Theorem 2). Note further that in our tests, we have used continuous sim-
plification of the goal formulae in order to avoid a formula explosion problem caused by rewriting. In DECENTMON,
advanced syntactic simplification rules5 were introduced and sufficient for the purpose of our experiments.

8 Related work and conclusions

This work is by no means the first to introduce an approach to monitoring the behaviour of distributed systems. For
example, [21] introduced MTTL, a temporal logic for describing properties of asynchronous systems, as well as a
monitoring procedure that, given a partially ordered execution of a parallel asynchronous system, establishes whether
or not there exist runs in the execution that violate a given MTTL correctness property. While at first this may seem
to coincide with the work presented in this paper, there are noteworthy differences: First, many of the problems
addressed in [21] stem from the fact that the systems to be monitored operate concurrently; that is, create a partially
ordered set of behaviours. Our application domain are distributed but synchronous systems. Second, we take LTL
“off-the-shelf”; that is, we do not add modalities to express properties concerning the distributed nature of the system
under scrutiny. On the contrary, our motivation is to enableusers to conceive a possibly distributed system as a single,
monolithic system by enabling them to specify properties over the outside visible behaviour only—independent of
implementation specific-details, such as the number of threads or components—and to automatically “distribute the
monitoring” process for such properties for them. (Arguably, this also bears the advantage that users do not need to
learn another formalism to express system properties.) Finally, we address the fact that in many distributed systems
it is not possible to collect a global trace or insert a globaldecision making point, thereby forcing the automatically
distributed monitors to communicate. But at the same time wetry and keep communication at a minimum; that is, to
not transmit the occurrence of every single observed event,because many such applications would not tolerate this
kind of overhead. This aspect, on the other hand, does not play a role in [21] where the implementation was tried
on parallel (Java) programs which are not executed on physically separated CPUs as in our case, and where one can
collect a set of global behaviours to reason about.

Other recent works like [22] target physically distributedsystems, but do not focus on the communication over-
head that may be induced by their monitoring. Similarly, this work also mainly addresses the problem of monitoring
systems which produce partially ordered traces (à la Diekert and Gastin), and introduces abstractions to deal with the
combinational explosion of these traces.

To the best of our knowledge, our work is the first to address the problem of automatically distributing LTL
monitors, and to introduce a decentralised monitoring approach that not only avoids a global point of observation or
any form of central trace collection, but also tries to keep the number of communicated messages between monitors at
a minimum. What is more, our experimental results show that this approach does not only “work on paper”, but that
it is feasible to be implemented. Indeed, even the expected savings in communication overhead could be observed for
the set of chosen LTL formulae and the automatically generated traces, when compared to a centralised solution in
which the local monitors transmit all observed events to a global monitor.

5 Compared to RuleR [14], the state-of-art rule-based runtime verification tool, for LTL specifications, our simplification function
produced better results (see [18])

11

References

1. Amir Pnueli. The temporal logic of programs. InProc. 18th IEEE Symposium on the Foundations of Computer Science
(FOCS), pages 46–57. IEEE, 1977.

2. Eric Bodden. A lightweight LTL runtime verification tool for Java. InProc. 19th Conf. Object-Oriented Programming (OOP-
SLA), pages 306–307. ACM, 2004.

3. Patrick O’Neil Meredith and Grigore Rosu. Runtime verification with the RV System. In Barringer et al. [23], pages 136–152.
4. Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu, Klaus Havelund, Scott A. Smolka, Scott D. Stoller, and Erez Zadok.

Aspect-oriented instrumentation with GCC. In Barringer etal. [23], pages 405–420.
5. Sylvain Hallé and Roger Villemaire. Runtime verification for the web-a tutorial introduction to interface contracts in web

applications. In Barringer et al. [23], pages 106–121.
6. Andreas Bauer, Rajeev Gore, and Alwen Tiu. A first-order policy language for history-based transaction monitoring. In Proc.

6th Intl. Colloq. Theoretical Aspects of Computing (ICTAC), volume 5684 ofLNCS, pages 96–111. Springer, 2009.
7. Manfred Broy. Challenges in automotive software engineering. In Proc. 28th Intl. Conf. on Software Engineering (ICSE),

pages 33–42. ACM, 2006.
8. Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and AlexandruAndrei. Timing analysis of the FlexRay communication protocol.

Real-Time Syst., 39:205–235, 2008.
9. Axel Jantsch.Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of Computation. Morgan Kaufmann,

2003.
10. Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL semantics for runtime verification.Logic and

Computation, 20(3):651–674, 2010.
11. Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time properties. InProc. 26th Conf. on Founda-

tions of Software Technology and Theoretical Computer Science (FSTTCS), volume 4337 ofLNCS. Springer, 2006.
12. Fahiem Bacchus and Froduald Kabanza. Planning for temporally extended goals.Annals of Mathematics and Artificial

Intelligence, 22:5–27, 1998.
13. Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime verification.Automated Software Engineering,

12(2):151–197, 2005.
14. Howard Barringer, David E. Rydeheard, and Klaus Havelund. Rule systems for run-time monitoring: from Eagle to RuleR. J.

Log. Comput., 20(3):675–706, 2010.
15. Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. InProc. of the Conference on Logic of Programs,

pages 196–218. Springer, 1985.
16. Nicolas Markey. Temporal logic with past is exponentially more succinct, concurrency column.Bulletin of the EATCS,

79:122–128, 2003.
17. Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.Distributed Computing, 2(3):117–126, 1987.
18. DECENTMON Website. http://decentmonitor.forge.imag.fr.
19. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications for finite-state verification.

In Intl. Conf. on Software Engineering (ICSE), pages 411–420. ACM, 1999.
20. Specification Patterns Website. http://patterns.projects.cis.ksu.edu/.
21. Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Decentralized runtime analysis of multithreaded applications. In

Proc. 20th International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2006.
22. Alexandre Genon, Thierry Massart, and Cédric Meuter. Monitoring distributed controllers. InProc. 14th International Sym-

posium on Formal Methods (FM), volume 4085 ofLNCS, pages 557–572. Springer, 2006.
23. Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky,

and Nikolai Tillmann, editors.Proc. Intl. Conf. on Runtime Verification (RV), volume 6418 ofLNCS. Springer, 2010.

A Proofs

This section contains the proofs of the results stated in this paper.

A.1 Proofs for Section 3

Proof of Lemma 1.The following inductive proof follows the argument conveyed by Proposition 3 of [12]. For
completeness sake, here we want to give the complete, formal, detailed proof.

The lemma is a direct consequence of the semantics ofLTL (Definition 1) and the definition of progression
(Definition 2). Recall that this lemma states that the progression function “mimics” theLTL semantics on some event
σ.

12

Proof. We shall prove the following statement:

∀σ ∈ Σ.∀w ∈ Σω.∀ϕ ∈ LTL. σ · w |= ϕ⇔ w |= P (ϕ, σ).

Let us consider an eventσ ∈ Σ and an infinite tracew ∈ Σω, the proof is done by a structural induction onϕ ∈ LTL.

Base Case:ϕ ∈ {⊤,⊥, p ∈ AP}.

– Caseϕ = ⊤. This case is trivial since, according to the definition of the progression function,∀σ ∈ Σ. P (⊤, σ) =
⊤. Moreover, according to theLTL semantics of⊤, ∀w ∈ Σω. w |= ⊤.

– Caseϕ = ⊥. This case is symmetrical to the previous one.
– Caseϕ = p ∈ AP. Recall that, according to the progression function for atomic propositions, we haveP (p, σ) =
⊤ if p ∈ σ and⊥ otherwise.
• Let us suppose thatσ · w |= p. According to theLTL semantics of atomic propositions, it means thatp ∈ σ,

and thusP (p, σ) = ⊤. And, due to theLTL semantics of⊤, we have∀w ∈ Σω. w |= ⊤.
• Let us suppose thatw |= P (p, σ). SinceP (p, σ) ∈ {⊤,⊥}, we have necessarilyP (p, σ) = ⊤. According to

the progression function,P (p, σ) = ⊤ amounts top ∈ σ. Using theLTL semantics of atomic propositions,
we deduce thatσ · w |= p.

Induction Case: ϕ ∈ {¬ϕ′, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,Gϕ
′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states that the

lemma holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ¬ϕ′. On one hand, using the progression function for¬, we haveP (¬ϕ′, σ) = ¬P (ϕ′, σ). On the other
hand, using theLTL semantics of operator¬, we havew |= ϕ ⇔ w 6|= ¬ϕ. Thus, we haveσ · w |= ¬ϕ′ iff
σ · w 6|= ϕ′ iff (induction hypothesis onϕ′) w 6|= P (ϕ′, σ) iff w |= ¬P (ϕ′, σ) iff w |= P (¬ϕ′, σ).

– Caseϕ = ϕ1 ∨ ϕ2. Recall that, according to the progression function for operator∨, we haveP (ϕ1 ∨ ϕ2, σ) =
P (ϕ1, σ) ∨ P (ϕ2, σ).
• Let us suppose thatσ · w |= ϕ1 ∨ ϕ2. We distinguish again two sub-cases:ϕ1 ∨ ϕ2 = ⊤ or ϕ1 ∨ ϕ2 6= ⊤.

If ϕ1 ∨ ϕ2 = ⊤, then this case reduces to the case whereϕ = ⊤, already treated. Ifϕ1 ∨ ϕ2 6= ⊤, it
means that eitherσ · w |= ϕ1 or σ · w |= ϕ2. Let us treat the case whereσ · w |= ϕ1 (the other case is
similar). Fromσ · w |= ϕ1, we can apply the induction hypothesis onϕ1 to obtainw |= P (ϕ1, σ), then,
w |= P (ϕ1, σ) ∨ P (ϕ1, σ) = P (ϕ1 ∨ ϕ2, σ).

• Let us suppose thatw |= P (ϕ1 ∨ ϕ2, σ) = P (ϕ1, σ) ∨ P (ϕ2, σ). We distinguish again two sub-cases:
P (ϕ1 ∨ ϕ2, σ) = ⊤ orP (ϕ1 ∨ ϕ2, σ) 6= ⊤.
∗ If P (ϕ1 ∨ ϕ2, σ) = ⊤, then we again distinguish two sub-cases:

· If P (ϕ1, σ) = ⊤ or P (ϕ2, σ) = ⊤. Let us treat the case whereP (ϕ1, σ) = ⊤ (the other case is
similar). Applying the induction hypothesis onϕ1, we haveσ · w |= ϕ1 ⇔ w |= P (ϕ1, σ). Then,
considerw ∈ Σω, we haveσ · w |= ϕ1, and consequentlyσ · w |= ϕ1 ∨ ϕ2.

· If P (ϕ1, σ) 6= ⊤ andP (ϕ2, σ) 6= ⊤, then we haveP (ϕ1, σ) = ¬P (ϕ2, σ). Applying the induction
hypothesis onϕ1 andϕ2, we obtainσ·w |= ϕ1 ⇔ σ·w 6|= ϕ2. Let us considerw ∈ Σω. If σ·w |= ϕ1,
then we haveσ · w |= ϕ1 ∨ ϕ2. Else (σ · w 6|= ϕ1), we haveσ |= ϕ2, and thenσ · w |= ϕ1 ∨ ϕ2.

∗ If P (ϕ1 ∨ ϕ2, σ) 6= ⊤, then we have eitherw |= P (ϕ1, σ) orw |= P (ϕ2, σ). Let us treat the case where
w |= P (ϕ1, σ) (the other case is similar). Fromw |= P (ϕ1, σ), we can apply the induction hypothesis on
ϕ1 to obtainσ · w |= ϕ1, and thusσ · w |= ϕ1 ∨ ϕ2.

– Caseϕ = ϕ1 ∧ ϕ2. This case is similar to the previous one.
– Caseϕ = Gϕ′. Recall that, according to the progression function for operatorG, P (Gϕ′, σ) = P (ϕ′, σ)∧Gϕ′.

• Let us suppose thatσ · w |= Gϕ′. According to theLTL semantics of operatorG, we have∀i ∈ N
≥0. (σ ·

w)i |= ϕ′. In particular, it implies that(σ · w)0 |= ϕ′, i.e.,σ · w |= ϕ′ and∀i ∈ N
≥0. (σ · w1)i |= ϕ′, i.e.,

(σ · w)1 = w |= Gϕ′. Using the induction hypothesis onϕ′, fromσ · w |= ϕ′, we obtainw |= P (ϕ′, σ). As
expected, according to theLTL semantics of operator∧, we havew |= P (Gϕ′, σ) ∧Gϕ′ = P (Gϕ′, σ).

• Let us suppose thatw |= P (Gϕ′, σ) = P (ϕ′, σ) ∧ Gϕ′. It follows thatw |= P (ϕ′, σ), and thus, using the
induction hypothesis onϕ′, σ · w |= ϕ′. Using theLTL semantics of operatorG, from σ · w |= ϕ′ and
w |= Gϕ′, we deduce∀i ∈ N

≥0. wi |= ϕ′, and then∀i ∈ N. (σ · w)i |= ϕ′, i.e.,σ · w |= Gϕ′.

13

– Caseϕ = Fϕ′. This case is similar to the previous one.
– Caseϕ = Xϕ′. On one hand, using the progression function forX, we haveP (Xϕ′, σ) = ϕ′. On the other hand,

using theLTL semantics of operatorX, we haveσ ·w |= Xϕ′ iff w |= ϕ′. Thus, we haveσ ·w |= Xϕ′ iff w |= ϕ′

iff (induction hypothesis onϕ′) w |= P (Xϕ′, σ).
– Caseϕ = ϕ1Uϕ2. Recall that, according to the progression function for operatorU,P (ϕ1Uϕ2, σ) = P (ϕ2, σ)∨
(P (ϕ1, σ) ∧ ϕ1Uϕ2).
• Let us suppose thatσ ·w |= ϕ1Uϕ2. According to theLTL semantics of operatorU, we have∃i ∈ N

≥0. (σ ·
w)i |= ϕ2 ∧ ∀0 ≤ l < i. (σ · w)l |= ϕ1. Let us distinguish two cases:i = 0 andi > 0.
∗ If i = 0, then we haveσ · w |= ϕ2. Applying the induction hypothesis onϕ2, we havew |= P (ϕ2, σ),

and consequentlyw |= P (ϕ1Uϕ2, σ).
∗ Else (i > 0), we have∀0 ≤ l < i. (σ · w)l |= ϕ1. Consequently, we have(σ · w)0 |= ϕ1, and thus
σ · w |= ϕ1. Moreover, from∀0 ≤ l < i. (σ · w)l |= ϕ1, we deduce∀0 ≤ l < i − 1. wl |= ϕ1. From
(σ · w)i |= ϕ2, we deducewi−1 |= ϕ2. Fromwi−1 |= ϕ2 and∀0 ≤ l < i. (σ · w)l |= ϕ1, we deduce
w |= ϕ1Uϕ2. Applying, the induction hypothesis onϕ1, from σ · w |= ϕ1, we obtainw |= P (ϕ1, σ).
Finally, fromw |= ϕ1Uϕ2 andw |= P (ϕ1, σ), we obtainw |= P (ϕ1Uϕ2, σ).

• Let us suppose thatw |= P (ϕ1Uϕ2, σ).
We distinguish two cases:P (ϕ1Uϕ2, σ) = ⊤ andP (ϕ1Uϕ2, σ) 6= ⊤.
∗ If P (ϕ1Uϕ2, σ) = P (ϕ2, σ) ∨ (P (ϕ1, σ) ∧ ϕ1Uϕ2) = ⊤. We distinguish again two sub-cases.

· If P (ϕ2, σ) = ⊤ orP (ϕ1, σ) ∧ ϕ1Uϕ2 = ⊤. If P (ϕ2, σ) = ⊤, then applying the induction hypoth-
esis onϕ2, we haveσ · w |= ϕ2 ⇔ w |= ⊤. Then, fromσ · w |= ϕ2, we obtain, according to the
LTL semantics of operatorU, σ · w |= ϕ1Uϕ2. If P (ϕ1, σ) ∧ ϕ1Uϕ2 = ⊤, we directly deduce that
ϕ1Uϕ2 = ⊤, and then this case reduces to the case whereϕ = ⊤, already treated.

· If P (ϕ2, σ) 6= ⊤ andP (ϕ1, σ) ∧ ϕ1Uϕ2 6= ⊤, then we haveP (ϕ2, σ) = ¬(P (ϕ1, σ) ∧ ϕ1Uϕ2) =
¬P (ϕ1, σ) ∨ ¬(ϕ1Uϕ2). Applying the induction hypothesis onϕ1 andϕ2, we haveσ · w |= ϕ1 ⇔
w |= P (ϕ1, σ), andσ · w |= ϕ2 ⇔ w |= P (ϕ2, σ), and thusσ · w |= ϕ2 ⇔ (σ · w 6|= ϕ1 ∨ w 6|=
ϕ1Uϕ2). Let us now follow theLTL semantics of operatorU and consider the two cases:σ ·w |= ϕ2

or σ · w 6|= ϕ2. If σ · w |= ϕ2, thusσ · w |= ϕ1Uϕ2 (according to theLTL semantics ofU). Else
(σ · w 6|= ϕ2), thenσ · w |= ϕ1 andw |= ϕ1Uϕ2, and thusσ · w |= ϕ1Uϕ2.

∗ If P (ϕ1Uϕ2, σ) 6= ⊤, it means that eitherw |= P (ϕ2, σ) orw |= P (ϕ1, σ) ∧ϕ1Uϕ2.
· If w |= P (ϕ2, σ), then applying the induction hypothesis onϕ2, we haveσ ·w |= ϕ2. Then, following

theLTL semantics of operatorU, we obtainσ · w |= ϕ1Uϕ2.
· If w |= P (ϕ1, σ) ∧ ϕ1Uϕ2, then we havew |= P (ϕ1, σ) andw |= ϕ1Uϕ2. Applying the induction

hypothesis onϕ1, we haveσ ·w |= ϕ1. Fromw |= ϕ1Uϕ2, we have∃i ∈ N
≥0. wi |= ϕ2 ∧∀0 ≤ l <

i. wl |= ϕ1. It implies that(σ · w)i+1 |= ϕ2 and∀0 < l < i+ 1. (σ · w)l |= ϕ1. Using,σ · w |= ϕ1,
i.e.,(σ · w)0 |= ϕ1 and theLTL semantics of operatorU, we finally obtainσ · w |= ϕ1Uϕ2.

⊓⊔

Proof of Lemma 2.We shall prove the following statement.

∀ϕ ∈ LTL.∀σ ∈ Σ. P (ϕ, σ) = ⊤ ⇒ σ ∈ good(ϕ)
∧ P (ϕ, σ) = ⊥ ⇒ σ ∈ bad(ϕ).

The proof uses the definition of theLTL semantics (Definition 1), the definition of good and bad prefixes (Definition 2),
the progression function (Definition 3), and Lemma 1.

Proof. According to Lemma 1, we have∀σ ∈ Σ.∀w ∈ Σω. σ · w |= ϕ ⇔ w |= P (ϕ, σ). Consequently, we have
∀σ ∈ Σ.∀w ∈ Σω. σ · w |= ϕ ⇔ ∀σ ∈ Σ.∀w ∈ Σω. w |= P (ϕ, σ) and∀σ ∈ Σ.∀w ∈ Σω. σ · w 6|= ϕ ⇔
∀σ ∈ Σ.∀w ∈ Σω. w 6|= P (ϕ, σ). Consequently, whenP (ϕ, σ) = ⊤, we have∀σ ∈ Σ.∀w ∈ Σω. σ · w |= ϕ, i.e.,
σ ∈ good(ϕ). Similarly, whenP (ϕ, σ) = ⊥, we have∀σ ∈ Σ.∀w ∈ Σω. σ · w 6|= ϕ, i.e.,σ ∈ bad(ϕ).

The proof can also be obtained in a more detailed manner as shown below. Let us considerσ ∈ Σ andϕ ∈ LTL.
The proof is performed by a structural induction onϕ.

Base Case:ϕ ∈ {⊤,⊥, p ∈ AP}.

14

– Caseϕ = ⊤. In this case, the proof is trivial sinceP (⊤, σ) = ⊤ and, according to theLTL semantics of⊤ and
the definition of good prefixes,good(⊤) = Σ∗.

– Caseϕ = ⊥. Similarly, in this case, the proof is trivial sinceP (⊥, σ) = ⊥ andbad(⊥) = Σ∗.
– Caseϕ = p ∈ AP .

Let us suppose thatP (ϕ, σ) = ⊤. According to the progression function, it means thatp ∈ σ. Moreover, since
ϕ = p, according to theLTL semantics of atomic propositions, for anyw ∈ Σω, we haveσ · w |= ϕ. According
to the definition of good prefixes, it means thatσ ∈ good(ϕ).
The proof forP (ϕ, σ) = ⊥ ⇒ σ ∈ bad(ϕ) is similar.

Induction Case: ϕ ∈ {¬ϕ′, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,Gϕ
′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states that the

lemma holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ¬ϕ′. In this case, the result is obtained by using the induction hypothesis onϕ′ and the equality’s
⊥ = ¬⊤ and¬(¬ϕ) = ϕ.

– Caseϕ = ϕ1∨ϕ2. Recall that, according to the progression function for operator∨, P (ϕ1∨ϕ2, σ) = P (ϕ1, σ)∨
P (ϕ2, σ).
Let us suppose thatP (ϕ, σ) = ⊤. We distinguish two cases:
• If P (ϕ1, σ) = ⊤ orP (ϕ2, σ) = ⊤. Let us treat the case whereP (ϕ1, σ) = ⊤. Using the induction hypothesis

onϕ1, we haveσ ∈ good(ϕ1). According to the definition of good prefixes, we have∀w ∈ Σω. σ · w |= ϕ1.
We easily deduce, using theLTL semantics of operator∨, that∀w ∈ Σω. σ · w |= ϕ1 ∨ ϕ2, that is,σ ∈
good(ϕ1 ∨ ϕ2).

• If P (ϕ1, σ) 6= ⊤ andP (ϕ2, σ) 6= ⊤. SinceP (ϕ, σ) = ⊤, we haveP (ϕ1, σ) = ¬P (ϕ2, σ). Using Lemma 1,
we have∀w ∈ Σω. σ · w |= ϕ1 ⇔ w |= P (ϕ1, σ) and∀w ∈ Σω. σ · w |= ϕ2 ⇔ w |= P (ϕ2, σ). We deduce
that∀w ∈ Σω. σ ·w |= ϕ1 ⇔ σ ·w 6|= ϕ2. Let us considerw ∈ Σω. If σ ·w |= ϕ1, we haveσ ·w |= ϕ1 ∨ϕ2.
Else (σ ·w 6|= ϕ1), we haveσ ·w |= ϕ2, and thenσ ·w |= ϕ2 ∨ ϕ1. That is,∀w ∈ Σω. σ ·w |= ϕ1 ∨ ϕ2, i.e.,
σ ∈ good(ϕ1 ∨ ϕ2).

Let us suppose thatP (ϕ, σ) = ⊥. In this case, we haveP (ϕ1, σ) = ⊥ andP (ϕ2, σ) = ⊥. Similarly, we can
apply the induction hypothesis onϕ1 andϕ2 to find thatσ is bad prefix of bothϕ1 andϕ2, and is thus a bad prefix
of ϕ1 ∨ ϕ2 (using theLTL semantics of operator∨).

– Caseϕ = ϕ1 ∧ ϕ2. This case is symmetrical to the previous one.
– Caseϕ = Gϕ′. Recall that, according to the progression function for operatorG, P (Gϕ′, σ) = P (ϕ′, σ)∧Gϕ′.

Let us suppose thatP (ϕ, σ) = ⊤. It means thatP (ϕ′, σ) = ⊤ andGϕ′ = ⊤. This case reduces to the case where
ϕ = ⊤.
Let us suppose thatP (ϕ, σ) = ⊥. We distinguish two cases.
• If P (ϕ′, σ) = ⊥ orGϕ′ = ⊥. We distinguish again two sub-cases.

∗ Sub-caseP (ϕ′, σ) = ⊥. Using the induction hypothesis onϕ′, we deduce thatσ ∈ bad(ϕ′), i.e.,∀w ∈
Σω. σ · w 6|= ϕ′. Following theLTL semantics of operatorG, we deduce that∀w ∈ Σω. σ · w 6|= Gϕ′,
i.e.,σ ∈ bad(Gϕ′).

∗ Sub-caseGϕ′ = ⊥. This case reduces to the case whereϕ = ⊥.
• If P (ϕ′, σ) 6= ⊥ andGϕ′ 6= ⊥. FromP (ϕ′, σ) ∧ Gϕ′ = ⊥, we deduce thatP (ϕ′, σ) = ¬Gϕ′. Using

Lemma 1 onϕ′, we have∀w ∈ Σω. σ ·w |= ϕ′ ⇔ w |= P (ϕ′, σ). Thus∀w ∈ Σω. σ ·w |= ϕ′ ⇔ w 6|= Gϕ′.
Let us considerw ∈ Σω. If σ ·w |= ϕ′, then we havew 6|= Gϕ′. According to theLTL semantics of operator
G, it means that∃i ∈ N

≥0. wi 6|= ϕ′. Thus, still following theLTL semantics of operatorG, (σ ·w)i+1 6|= ϕ′,
and, consequentlyσ · w 6|= Gϕ′. Else (σ · w 6|= ϕ′), we have directlyσ · w 6|= Gϕ′.

– Caseϕ = Fϕ′. Recall that, according to the progression function for operatorF, P (Fϕ′, σ) = P (ϕ′, σ) ∨ Fϕ′.
Let us suppose thatP (ϕ, σ) = ⊤. We distinguish two cases.
• If P (ϕ′, σ) = ⊤ orFϕ′ = ⊤.

∗ Sub-caseP (ϕ′, σ) = ⊤. Following the previous reasoning, using the induction hypothesis onϕ′, theLTL
semantics of operatorF, and the definition of good prefixes, we obtain the expected result.

∗ Sub-caseFϕ′ = ⊤. This case reduces to the case whereϕ = ⊤.
• If P (ϕ′, σ) 6= ⊤ andFϕ′ 6= ⊤. FromP (ϕ′, σ) ∨ Gϕ′ = ⊥, we deduce thatP (ϕ′, σ) = ¬Fϕ′. Using

Lemma 1 onϕ′, we have∀w ∈ Σω. σ · w |= ϕ′ ⇔ w |= P (ϕ′, σ). We thus have∀w ∈ Σω. σ · w |= ϕ′ ⇔
w 6|= Fϕ′. Let us considerw ∈ Σω. If σ · w |= ϕ′, using theLTL semantics of operatorF, we have directly

15

σ ·w |= Fϕ′. Else (σ ·w 6|= ϕ′), we havew |= Fϕ′. According to theLTL semantics of operatorF, it means
that∃i ∈ N

≥0. wi |= ϕ′, and thus(σ · w)i+1 |= ϕ′. Consequentlyσ · w |= Fϕ′. That is,σ ∈ good(Fϕ′).
Let us suppose thatP (ϕ, σ) = ⊥. It means thatP (ϕ′, σ) = ⊥ andFϕ′ = ⊥. A similar reasoning as the one used
for the caseϕ = Gϕ′ andP (ϕ, σ) = ⊤ can be applied to obtain the expected result.

– Caseϕ = Xϕ′. Recall that, according to the progression function for operatorX, P (Xϕ′, σ) = ϕ′.
Let us suppose thatP (ϕ, σ) = ⊤. It means thatϕ′ = ⊤. According to theLTL semantics of⊤, we have
∀w ∈ Σω. w |= ϕ′. Then,∀w ∈ Σω. σ · w |= Xϕ′ = ϕ. That is,σ ∈ good(Xϕ′).
Let us suppose thatP (ϕ, σ) = ⊥. It means thatϕ′ = ⊥. According to theLTL semantics of⊥, we have
∀w ∈ Σω. w 6|= ϕ′. Then,∀w ∈ Σω. σ · w 6|= Xϕ′ = ϕ. That is,σ ∈ bad(Xϕ′).

– Caseϕ = ϕ1Uϕ2. Recall that, according to the progression function for operatorU,P (ϕ1Uϕ2, σ) = P (ϕ2, σ)∨
(P (ϕ1, σ) ∧ ϕ1Uϕ2).
Let us suppose thatP (ϕ, σ) = ⊤. We distinguish two cases.
• If P (ϕ2, σ) = ⊤ orP (ϕ1, σ) ∧ ϕ1Uϕ2 = ⊤.

∗ Sub-caseP (ϕ2, σ) = ⊤. Using the induction hypothesis onϕ2, we haveσ ∈ good(ϕ2). Let us consider
w ∈ Σω, we haveσ · w ∈ L(ϕ2), i.e., (σ · w)0 |= ϕ1Uϕ2. According to theLTL semantics ofU, we
haveσ · w |= ϕ1 ∨ ϕ2, i.e.,σ · w ∈ L(ϕ1Uϕ2). We deduce thatσ ∈ good(ϕ1Uϕ2).

∗ Sub-caseP (ϕ1, σ)∧ϕ1Uϕ2 = ⊤. Necessarily,ϕ1Uϕ2 = ⊤ and this case reduces to the first one already
treated.

• If P (ϕ2, σ) 6= ⊤ andP (ϕ1, σ) ∧ ϕ1Uϕ2 6= ⊤. FromP (ϕ1Uϕ2, σ) = ⊤, we deduce thatP (ϕ2, σ) =
¬(P (ϕ1, σ) ∧ ϕ1Uϕ2). Applying Lemma 1 toϕ2, we obtain∀w ∈ Σω. σ · w |= ϕ2 ⇔ w |= P (ϕ2, σ). We
thus have∀w ∈ Σω. σ · w |= ϕ2 ⇔ w 6|= P (ϕ1, σ) ∧ ϕ1Uϕ2. Let us considerw ∈ Σω. Let us distinguish
two cases. Ifσ ·w |= ϕ2, according to theLTL semantics ofU, we haveσ ·w |= ϕ1Uϕ2. Else (σ ·w 6|= ϕ2),
it implies thatσ · w |= P (ϕ1, σ) ∧ ϕ1Uϕ2, and, in particularσ · w |= ϕ1Uϕ2. That is, in both cases,
σ ∈ good(ϕ1Uϕ2).

Additional notation.For the remaining proofs, we defineP , the extended progression function on traces that consists
in applying successively the progression function defined so far to each event in order.

Definition 8. Given a formulaϕ ∈ LTL and a traceu = u(0) · · ·u(t − 1) ∈ Σ+, the application of extended
progression functionP toϕ andu is defined as:

P(ϕ, u(0) · · ·u(t− 1)) = P(ϕ, u) = P (. . . (P (ϕ, u(0)), . . . , u(t− 1))))

For the sake of readability, in the remainder, we overload the notation of the progression function on events to traces,
i.e.,P(ϕ, u) is denotedP (ϕ, u).

Some intermediate lemmas.Based on the previous introduced notation and the definitionof the progression function
(Definition 2), we extend the progression function to traces. The following lemma states some equality’s that directly
follow from an inductive application of the definition of theprogression function on events.

Lemma 3. Given some formulaeϕ, ϕ1, ϕ2 ∈ LTL, and a traceu ∈ Σ+, the progression function can be extended to
the traceu by successively applying the previously defined progression function to each event ofu in order. Moreover,
we have:∀ϕ, ϕ1, ϕ2 ∈ LTL.∀u ∈ Σ+.

P (⊤, u) = ⊤,
P (⊥, u) = ⊥,

P (p ∈ AP,u) = ⊤ if p ∈ u(0),⊥ otherwise,
P (¬ϕ, u) = ¬P (ϕ, u),

P (ϕ1 ∨ ϕ2, u) = P (ϕ1, u) ∨ P (ϕ2, u),
P (ϕ1 ∧ ϕ2, u) = P (ϕ1, u) ∧ P (ϕ2, u),

P (Gϕ, u) =
∧|u|−1

i=0 P (ϕ, ui) ∧Gϕ,

P (Fϕ, u) =
∨|u|−1

i=0 P (ϕ, ui) ∨Fϕ,

P (Xϕ, u) =

{
ϕ if |u| = 1
P (ϕ, u1) otherwise

P (ϕ1Uϕ2, u) =

{
P (ϕ2, u) ∨ P (ϕ1, u) ∧ ϕ1Uϕ2 if |u| = 1
∨|u|−1

i=0

(
P (ϕ2, u

i) ∧
∧i−1

j=0 P (ϕ1, u
j)
)
∨
∧|u|−1

i=0 P (ϕ1, u
i) ∧ ϕ1Uϕ2 otherwise

16

Proof. The proof is done by two inductions: an induction on the length of the traceu (which is also the number of
times the progression function is applied) and a structuralinduction onϕ ∈ LTL.
Base Case:u = σ ∈ Σ, |u| = 1.
In this case, the result holds thanks to the definition of the progression function.
Induction case:
Let us suppose that the lemma holds for any traceu ∈ Σ+ of some lengtht ∈ N and let us consider the trace
u · σ ∈ Σ+, we perform a structural induction onϕ ∈ LTL.
Structural Base case:ϕ ∈ {⊤,⊥, p ∈ AP}.

– Caseϕ = ⊤. In this case the result is trivial since we have:

P (⊤, u · σ) = P (P (⊤, u), σ) (extended progression)
= P (⊤, σ) (induction hypothesis onu)
= ⊤ (progression on events)

– Caseϕ = ⊥. This case is symmetrical to the previous one.
– Caseϕ = p ∈ AP. Let us distinguish two cases:p ∈ u(0) or p /∈ u(0).

• If p ∈ u(0), we have:

P (p, u · σ) = P (P (p, u), σ) (extended progression)
= P (⊤, σ) (induction hypothesis onu)
= ⊤ (progression on events)

• If p /∈ u(0), we have:

P (p, u · σ) = P (P (p, u), σ) (extended progression)
= P (⊥, σ) (induction hypothesis onu)
= ⊥ (progression on events)

Induction Case:ϕ ∈ {¬ϕ′, ϕ1∨ϕ2, ϕ1∧ϕ2,Gϕ
′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states that the lemma

holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ¬ϕ′. We have:

P (¬ϕ′, u · σ) = P (P (¬ϕ′, u), σ) (extended progression)
= P (¬P (ϕ′, u), σ) (induction hypothesis onu andϕ′)
= ¬P (P (ϕ′, u), σ) (progression on events)
= ¬P (ϕ′, u · σ) (extended progression)

– Caseϕ = Xϕ′. We have:

P (Xϕ′, u · σ) = P (P (Xϕ′, u), σ) (extended progression)
= P (P (ϕ′, u1), σ) (induction hypothesis onu andϕ′)
= P (ϕ′, u1σ) (extended progression)
= P (ϕ′, (u · σ)1)

– Caseϕ = ϕ1 ∨ ϕ2. We have:

P (ϕ1 ∨ ϕ2, u · σ) = P (P (ϕ1 ∨ ϕ2, u), σ) (extended progression)
= P (P (ϕ1, u) ∨ P (ϕ2, u), σ) (induction hypothesis onu andϕ1, ϕ2)
= P (P (ϕ1, u), σ) ∨ P (P (ϕ2, u), σ) (progression on events)
= P (ϕ1, u · σ) ∨ P (ϕ2, u · σ) (extended progression)

– Caseϕ = ϕ1 ∧ ϕ2. This case is similar to the previous one.
– Caseϕ = Gϕ′. We have:

17

P (Gϕ′, u · σ)
= P (P (Gϕ′, u), σ) (extended progression)

= P (
∧|u|−1

i=0 P (ϕ′, ui) ∧Gϕ′, σ) (induction hypothesis onu andϕ′)
= P (

∧|u|−1
i=0 P (ϕ′, ui), σ) ∧ P (Gϕ′, σ) (progression on events for∧)

=
∧|u|−1

i=0 P (P (ϕ′, ui), σ) ∧ P (Gϕ′, σ) (extended progression for∧)
=

∧|u|−1
i=0 P (ϕ′, ui · σ) ∧ P (Gϕ′, σ) (extended progression)

=
∧|u|−1

i=0 P (ϕ′, ui · σ) ∧ P (ϕ′, σ) ∧Gϕ′ (progression on events forG)

=
∧|u·σ|−2

i=0 P (ϕ′, (u · σ)i) ∧ P (ϕ′, (u · σ)|u·σ|−1) ∧Gϕ′ (ui · σ = (u · σ)i andσ = (u · σ)|u·σ|−1)
=

∧|u·σ|−1
i=0 P (ϕ′, (u · σ)i) ∧Gϕ′

– Caseϕ = Fϕ′. We have:

P (Fϕ′, u · σ)
= P (P (Fϕ′, u), σ) (extended progression)
= P (

∨|u|−1
i=0 P (ϕ′, ui) ∨ Fϕ′, σ) (induction hypothesis onu andϕ′)

= P (
∨|u|−1

i=0 P (ϕ′, ui), σ) ∨ P (Fϕ′, σ) (progression on events)
=

∨|u|−1
i=0 P (ϕ′, ui · σ) ∨ P (Fϕ′, σ) (extended progression for∨)

=
∨|u|−1

i=0 P (ϕ′, ui · σ) ∨ P (ϕ′, σ) ∨ Fϕ′ (progression on events forF)
=

∨|u·σ|−2
i=0 P (ϕ′, (u · σ)i) ∨ P (ϕ′, (u · σ)|u·σ|−1) ∨ Fϕ′ (ui · σ = (u · σ)i andσ = (u · σ)|u·σ|−1)

=
∨|u·σ|−1

i=0 P (ϕ′, (u · σ)i) ∨Fϕ′

– Caseϕ = ϕ1Uϕ2. We have:

P (ϕ1Uϕ2, u · σ)
(extended progression)
= P (P (ϕ1Uϕ2, u), σ)

(induction hypothesis onu, and structural induction hypothesis onϕ1 andϕ2)

= P
(
∨|u|−1

i=0

(
P (ϕ2, u

i) ∧
∧i−1

j=0 P (ϕ1, u
j)
)
∨
∧|u|−1

i=0 P (ϕ1, u
i) ∧ ϕ1Uϕ2, σ

)

(progression on events for∨)

= P
(
∨|u|−1

i=0

(
P (ϕ2, u

i) ∧
∧i−1

j=0 P (ϕ1, u
j)
)
, σ) ∨ P (

∧|u|−1
i=0 P (ϕ1, u

i) ∧ ϕ1Uϕ2, σ
)

(progression on events for∧ and∨)
=

∨|u|−1
i=0

(
P (P (ϕ2, u

i), σ) ∧
∧i−1

j=0 P (P (ϕ1, u
j), σ)

)
∨
∧|u|−1

i=0 P (P (ϕ1, u
i), σ) ∧ P (ϕ1Uϕ2, σ)

(extended progression)

=
∨|u|−1

i=0

(
P (ϕ2, u

i · σ) ∧
∧i−1

j=0 P (ϕ1, u
j · σ)

)
∨
∧|u|−1

i=0 P (ϕ1, u
i · σ) ∧ P (ϕ1Uϕ2, σ)

Moreover:

∧|u|−1
i=0 P (ϕ1, u

i · σ) ∧ P (ϕ1Uϕ2, σ)
(progression on events forU)
=

∧|u|−1
i=0 P (ϕ1, u

i · σ) ∧ (P (ϕ2, σ) ∨ P (ϕ1, σ) ∧ ϕ1Uϕ2)
(distribution of∧ over∨)
=

(∧|u|−1
i=0 P (ϕ1, u

i · σ) ∧ P (ϕ2, σ)
)
∨
(∧|u|−1

i=0 P (ϕ1, u
i · σ) ∧ P (ϕ1, σ) ∧ ϕ1Uϕ2

)

(σ = (u · σ)|u·σ|−1 and elimination ofP (ϕ1, σ))

=
(∧|u|−1

i=0 P (ϕ1, u
i · σ) ∧ P (ϕ2, σ)

)
∨
(∧|u·σ|−1

i=0 P (ϕ1, u
i · σ) ∧ ϕ1Uϕ2

)

18

Furthermore:
∨|u|−1

i=0

(
P (ϕ2, u

i · σ) ∧
∧i−1

j=0 P (ϕ1, u
j · σ)

)
∨
(∧|u|−1

i=0 P (ϕ1, u
i · σ) ∧ P (ϕ2, σ)

)

(variable renaming)
=

∨|u|−1
i=0

(
P (ϕ2, u

i · σ) ∧
∧i−1

j=0 P (ϕ1, u
j · σ)

)
∨
(
P (ϕ2, σ) ∧

∧|u|−1
j=0 P (ϕ1, u

j · σ)
)

(σ = (u · σ)|u·σ|−1)
=

∨|u·σ|−2
i=0

(
P (ϕ2, (u · σ)i) ∧

∧i−1
j=0 P (ϕ1, u

j · σ)
)
∨
(
P (ϕ2, (u · σ)|u·σ|−1) ∧

∧|u·σ|−2
j=0 P (ϕ1, u

j · σ)
)

=
∨|u·σ|−1

i=0

(
P (ϕ2, (u · σ)i) ∧

∧i−1
j=0 P (ϕ1, (u · σ)j)

)

Finally:

P (ϕ1Uϕ2, u · σ)

=
∨|u|−1

i=0

(
P (ϕ2, u

i · σ) ∧
∧i−1

j=0 P (ϕ1, u
j · σ)

)
∨
(∧|u|−1

i=0 P (ϕ1, u
i · σ) ∧ P (ϕ2, σ)

)

∨
(∧|u·σ|−1

i=0 P (ϕ1, u
i · σ) ∧ ϕ1Uϕ2

)

=
∨|u·σ|−1

i=0

(
P (ϕ2, u

i · σ) ∧
∧i−1

j=0 P (ϕ1, u
j · σ)

)
∨
(∧|u·σ|−1

i=0 P (ϕ1, u
i · σ) ∧ ϕ1Uϕ2

)

=
∨|u·σ|−1

i=0

(
P (ϕ2, (u · σ)i) ∧

∧i−1
j=0 P (ϕ1, (u · σ)j)

)

∨
(∧|u·σ|−1

i=0 P (ϕ1, (u · σ)i) ∧ ϕ1Uϕ2

)

⊓⊔

We introduce another intermediate lemma, which is a consequence of the definition of theLTL semantics (Defini-
tion 1) and the definition of the progression function (Definition 8). This lemma will be useful in the remaining proofs.
This lemma states that the progression function “mimics” the semantics ofLTL on a traceu ∈ Σ+.

Lemma 4. Letϕ be anLTL formula,u ∈ Σ+ a non-empty trace andw ∈ Σω an infinite trace, we haveu · w |=
ϕ⇔ w |= P (ϕ, u).

Proof. We shall prove the following statement:

∀u ∈ Σ+.∀w ∈ Σω.∀ϕ ∈ LTL. u · w |= ϕ⇔ w |= P (ϕ, u).

Let us consideru ∈ Σ+, the proof is done by a structural induction onϕ ∈ LTL.
Base case:ϕ ∈ {⊤,⊥, p ∈ AP}.

– Caseϕ = ⊤. This case is trivial since, using Lemma 3 on⊤ andu, we haveP (⊤, u) = ⊤. Moreover, according
to theLTL semantics of⊤, ∀w ∈ Σω. u · w |= ⊤.

– Caseϕ = ⊥. This case is symmetrical to the previous one.
– Caseϕ = p ∈ AP.

• Let us suppose thatu · w |= p. By applying Lemma 3 on⊤ andu, we haveP (u, p) = ⊤. Moreover, due to
theLTL semantics of⊤, we have∀w ∈ Σω. w |= ⊤ = P (u, p).

• Let us suppose thatw |= P (p, u). SinceP (p, u) ∈ {⊤,⊥}, we have necessarilyP (p, u) = ⊤. According
to the progression function,P (p, u) = ⊤ necessitates thatp ∈ u(0). Using theLTL semantics of atomic
propositions, we deduce that(u · w)0 |= p, i.e.,u · w |= p.

Induction Case: ϕ ∈ {¬ϕ′, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,Gϕ
′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states that the

lemma holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ϕ1 ∨ ϕ2. Recall that, by applying Lemma 3 onϕ1 ∨ ϕ2 andu, we haveP (ϕ1 ∨ ϕ2, u) = P (ϕ1, u) ∨
P (ϕ2, u).
• Let us suppose thatu · w |= ϕ1 ∨ ϕ2. Let us distinguish two cases:ϕ1 ∨ ϕ2 = ⊤ andϕ1 ∨ ϕ2 6= ⊤. If
ϕ1 ∨ ϕ2 = ⊤, then this case reduces to the case whereϕ = ⊤ already treated. Ifϕ1 ∨ ϕ2 6= ⊤, it means
that eitheru · w |= ϕ1 or u · w |= ϕ2. Let us treat the case whereu · w |= ϕ1 (the other case is similar).
Fromu · w |= ϕ1, we can apply the structural induction hypothesis onϕ1 to obtainw |= P (ϕ1, u), and then,
w |= P (ϕ1, u) ∨ P (ϕ2, u) = P (ϕ1 ∨ ϕ2, u).

19

• Let us suppose thatw |= P (ϕ1 ∨ ϕ2, u). Let us again distinguish two cases. IfP (ϕ1, u) ∨ P (ϕ2, u) = ⊤,
then it reduces to the case whereϕ = ⊤ already treated. IfP (ϕ1, u) ∨ P (ϕ2, u) 6= ⊤, then we have either
w |= P (ϕ1, u) orw |= P (ϕ2, u). Let us treat the case wherew |= P (ϕ1, u) (the other case is similar). From
w |= P (ϕ1, u), we can apply the structural induction hypothesis onϕ1 to obtainu · w |= ϕ1, and thus, using
theLTL semantics of∨, u · w |= ϕ1 ∨ ϕ2.

– Caseϕ = ϕ1 ∧ ϕ2. This case is similar to the previous one.
– Caseϕ = Gϕ′. Recall that, by applying Lemma 3 onGϕ′ andu, we haveP (Gϕ′, u) =

∧|u|−1
i=0 P (ϕ′, ui)∧Gϕ′.

• Let us suppose thatu ·w |= Gϕ′. From theLTL semantics of operatorG, we have∀i ∈ N
≥0. (u ·w)i |= ϕ′.

In particular, it implies that∀0 ≤ i ≤ |u| − 1. ui · w |= ϕ′ and∀i ≥ 0. ((u · w)|u|−1)i |= ϕ′. Using,
∀0 ≤ i ≤ |u| − 1. ui · w |= ϕ′ and applying the structural induction hypothesis onϕ′ and theui’s, we obtain
∀0 ≤ i ≤ |u|− 1. w |= P (ϕ′, ui), and thusw |=

∧|u|−1
i=0 P (ϕ′, ui). Using∀i ≥ 0. wi = ((u ·w)|u|−1)i |= ϕ′,

we obtainw |= Gϕ′. As expected, according to theLTL semantics of∧, we havew |=
∧|u|−1

i=0 P (ϕ′, ui) ∧
Gϕ′ = P (Gϕ′, u).

• Let us suppose thatw |= P (Gϕ′, u). We have∀0 ≤ i ≤ |u| − 1. w |= P (ϕ′, ui) andw |= Gϕ′. Using the
structural induction hypothesis onϕ′ and theui’s, it follows that∀0 ≤ i ≤ |u| − 1. ui · w = (u · w)i |= ϕ′.
Using the semantics of operatorG, fromw |= Gϕ′ and∀0 ≤ i ≤ |u| − 1. ui ·w = (u ·w)i |= ϕ′, we deduce
u · w |= Gϕ′.

– Caseϕ = Fϕ′. This case is similar to the previous one.
– Caseϕ = Xϕ′. Recall that, by applying Lemma 3 onu andXϕ′, we haveP (Xϕ′, u) = P (ϕ′, u1 · σ). Using the
LTL semantics ofX, we haveu · w |= Xϕ′ iff u1 · w |= ϕ′. Thus we haveu · w |= Xϕ′ iff u1 · σ · w |= ϕ′ iff
(induction hypothesis onϕ′) w |= P (ϕ′, u1 · σ) = P (Xϕ′, u).

– Caseϕ = ¬ϕ′. Recall that, by applying Lemma 3 onu and¬ϕ′, we haveP (¬ϕ′, u) = ¬P (ϕ′, u). Using the
LTL semantics of operator¬, we have∀ϕ ∈ LTL.∀w ∈ Σω. w |= ϕ⇔ w 6|= ¬ϕ. Thus, we haveu ·w |= ¬ϕ′ iff
u · w 6|= ϕ′ iff (induction hypothesis onϕ′) w 6|= P (ϕ′, u) iff w |= ¬P (ϕ′, u) iff w |= P (¬ϕ′, u).

– Caseϕ = ϕ1Uϕ2. Recall that, by applying Lemma 3 onu andϕ1Uϕ
′
2, we have

P (ϕ1Uϕ
′
2, u) =

|u|−1
∨

i=0

(
P (ϕ2, u

i) ∧
i−1∧

j=0

P (ϕ1, u
j)
)
∨

|u|−1
∧

i=0

P (ϕ1, u
i) ∧ ϕ1Uϕ2.

• Let us suppose thatu · w |= ϕ1Uϕ2. According to theLTL semantics of operatorU, ∃k ∈ N
≥0. (u · w)k |=

ϕ2 ∧ ∀0 ≤ l < k. (u · w)l |= ϕ1. Let us distinguish two cases:k > |u| andk ≤ |u|.
∗ If k > |u|, then we have in particular∀0 ≤ l ≤ |u| − 1. ul · w |= ϕ1. Applying the structural induction

hypothesis onϕ1 and theul’s, we find∀0 ≤ l ≤ |u|. w |= P (ϕ1, u
l), i.e.,w |=

∧|u|−1
l=0 P (ϕ1, u

l).
From (σ · w)k |= ϕ2 andk > |u| − 1, we deduce that∃k′ ≥ 0. wk′

|= ϕ2 andk′ = k − |u| + 1.

Furthermore, we have∀0 ≤ i ≤ k′. ((u ·w)|u|−1)k
′

= w |= P (ϕ1, u), i.e.,w |=
∧k′

i=0 P (ϕ1, u
i). Finally,

w |= P (ϕ1Uϕ2, u).
∗ If k ≤ |u| − 1, then from(u · w)k |= ϕ2, we haveuk · w |= ϕ2. Using the induction hypothesis on
ϕ2 anduk, we havew |= P (ϕ2, u

k). Moreover, using∀l ≤ |k|. (u · w)l = ul · w |= ϕ1 and the
induction hypothesis onϕ1 and theul’s, we obtain∀l ≤ |k|. (u ·w)l = w |= P (ϕ1, u

l). Finally, we have
w |=

∧k
l=0 |= P (ϕ1, u

l) ∧ P (ϕ2, u
k), and thusw |= P (ϕ1Uϕ2, u).

• Let us suppose thatw |= P (ϕ1Uϕ2, u). We distinguish two sub-cases:
P (ϕ1Uϕ2, u) = ⊤ andP (ϕ1Uϕ2, u) 6= ⊤.
∗ Sub-caseP (ϕ1Uϕ2, u) = ⊤. We distinguish again three sub-cases:

· Sub-case
∨|u|−1

i=0

(
P (ϕ2, u

i) ∧
∧i−1

j=0 P (ϕ1, u
j)
)

= ⊤. Necessarily, we have∃0 ≤ i ≤ |u| −

1. P (ϕ2, u
i)∧

∧i−1
j=0 P (ϕ1, u

j) = ⊤. Otherwise, that would mean that∃i1, i2 ∈ [0, |u|−1]. P (ϕ2, u
i1)∧

∧i1−1
j=0 P (ϕ1, u

j) = ¬P (ϕ2, u
i2) ∧

∧i2−1
j=0 P (ϕ1, u

j) and we would obtain a contradiction. From

P (ϕ2, u
i) ∧

∧i−1
j=0 P (ϕ1, u

j) = ⊤, we haveP (ϕ2, u
i) = ⊤ and

∧i−1
j=0 P (ϕ1, u

j) = ⊤. Using the
induction hypothesis onϕ1 andϕ2, we obtainui · w |= ϕ2 and∀0 ≤ j < i. uj ·w |= ϕ1. According
to theLTL semantics of operatorU, it meansu · w |= ϕ1Uϕ2.

20

· Sub-case
∧|u|−1

i=0 P (ϕ1, u
i) ∧ ϕ1Uϕ2 = ⊤. In this case, we have necessarilyϕ1Uϕ2 = ⊤, and this

case reduces to the case whereϕ = ⊤.
· Sub-case

∨|u|−1
i=0

(
P (ϕ2, u

i)∧
∧i−1

j=0 P (ϕ1, u
j)
)
6= ⊤ and

∧|u|−1
i=0 P (ϕ1, u

i)∧ϕ1Uϕ2 6= ⊤. We have
then

|u|−1
∨

i=0

(
P (ϕ2, u

i) ∧
i−1∧

j=0

P (ϕ1, u
j)
)
= ¬

(|u|−1
∧

i=0

P (ϕ1, u
i) ∧ ϕ1Uϕ2

)

.

Let us suppose that∀i ∈ N
≥0. (u · σ) 6|= ϕ2. Following the induction hypothesis onϕ2, it means in

particular that∀0 ≤ i ≤ |u| − 1. w 6|= P (ϕ2, u
i). Then, sincew |= P (ϕ2Uϕ2), it would imply that

w |=
∧|u|−1

i=0 P (ϕ1, u
i)∧ϕ1Uϕ2. But, fromw |= ϕ1Uϕ2, we would obtain a contradiction according

to theLTL semantics. Hence, let us consideri the minimalk ∈ N
≥0 s.t.(u ·w)k |= ϕ2. If i > |u|−1,

then similarly we havew |=
∧|u|−1

i=0 P (ϕ1, u
i)∧ϕ1Uϕ2. It follows that∀0 ≤ l ≤ |u|−1. ul ·w |= ϕ1

and∀|u| − 1 ≤ l < i. (u · w)l |= ϕ1, and thusu · w |= ϕ1Uϕ2. Else (i ≤ |u| − 1), we can follow a
similar reasoning to obtain the expected result.

∗ Sub-caseP (ϕ1Uϕ2, u) = ⊤. Similarly, in this case, we can show that∃k ∈ N
≥0. (u · w)k |= ϕ2. Then

we considerkmin the minimalk s.t.(u ·w)k |= ϕ2. Then, we can show that∀k′ < kmin. (u ·w)k
′

|= ϕ1.
And thenu · w |= ϕ1Uϕ2.

⊓⊔

Proof for Theorem 1.We shall prove the following statement:

∀u ∈ Σ+.∀ϕ ∈ LTL. v = P (ϕ, u)
⇒ (v = ⊤ ⇒ u |=3 ϕ = ⊤) ∧ (v = ⊥ ⇒ u |=3 ϕ = ⊥).

The proof uses the definition of theLTL semantics (Definition 1), the definition of good and bad prefixes (Definition 8),
the progression function (Definition 3), and Lemma 1.

Proof. According to Lemma 4, we have∀u ∈ Σ+.∀w ∈ Σω. u · w |= ϕ ⇔ w |= P (ϕ, u). Consequently, we have
∀u ∈ Σ+.∀w ∈ Σω. u · w |= ϕ ⇔ ∀u ∈ Σ+.∀w ∈ Σω. w |= P (ϕ, u) and∀u ∈ Σ+.∀w ∈ Σω. u · w 6|= ϕ ⇔
∀u ∈ Σ+.∀w ∈ Σω. w 6|= P (ϕ, u). Consequently, whenP (ϕ, u) = ⊤, we have∀u ∈ Σ+.∀w ∈ Σω. u · w |= ϕ, i.e.,
u ∈ good(ϕ). Also, whenP (ϕ, u) = ⊥, we have∀u ∈ Σ+.∀w ∈ Σω. u · w 6|= ϕ, i.e.,u ∈ bad(ϕ). ⊓⊔

A.2 Proofs for Section 5

Proof of Corrolary 1. We shall prove the following statement:

|M| = 1 ⇒ ∀u ∈ Σ∗.∀ϕ ∈ LTL. u |=3 ϕ = u |=D ϕ

Proof. The proof is trivial, since in case of one component in the system, the extended progression rule (1) is reduced
to its initial definition in the centralised case, i.e.,∀p ∈ AP.∀σ ∈ Σ. P (p, σ,AP1) = P (p, σ). Moreover, no past goal
is generated, i.e., the extended progression rule (2) is never applied. ⊓⊔

A.3 Proofs for Section 6

Let us first formalize a bit more Algorithm L by introducing some additional notation.

– send(i, t, j) ∈ {true, false} is a predicate indicating whether or not the monitori sends a formula to monitorj at
time t with i 6= j.

– send(i, t) ∈ {true, false} is a predicate indicating whether or not the monitori sends a formula to some monitor
at timet.

– kept(i, t) ∈ LTL is the local obligation kept by monitori at timet for the next round (timet+ 1).
– received(i, t, j) ∈ LTL is the obligation received by monitori at timet by monitorj with i 6= j.
– received(i, t) ∈ LTL is the obligation received by monitori at timet from all monitors.

21

– inlo(i, t, ϕ) ∈ LTL is the local obligation of monitori at timet when monitoring the global specification formula
ϕ, before applying the progression functioni.e, after applying step L3 of Algorithm L.

– lo(i, t, ϕ) ∈ LTL is the local obligation of monitori at timet when monitoring the global specification formulaϕ
after applying the progression function, i.e, after applying step L4 of Algorithm L.

– mou(ϕ) ∈ sus(ϕ) is the most urgent formula belonging to the set of urgent subformulae ofϕ.
– ulo(i, t, ϕ) = sus

(
lo(i, t, ϕ)

)
is the set of urgent local obligation of monitori at time t when monitoring the

global specification formulaϕ.

Based on the previous notation and Algorithm L, we have the following relations:

– send(i, t, j) is true if monitorMj is the first monitor containing the most urgent obligation contained in the local
obligation ofMi, according to the order in[1,m]. Formally:

send(i, t, j) =

{
true if Mj = Mon

(
Mi,Prop(ulo(i, t, ϕ))

)
∧ ulo(i, t, ϕ) 6= ∅

false otherwise

– send(i, t) is true if monitorMi sends his local obligation to some monitor. Formally:send(i, t) = ∃j ∈ [1, n] \
{i}. send(i, t, j).

– kept(i, t) ∈ LTL is either # ifMi sends its local obligation to some monitor at timet− 1 or its local obligation at
time t− 1 otherwise. Formally:

kept(i, t) =

{
if ∃j ∈ [1, n] \ {i}. send(i, t− 1, j)
lo(i, t− 1, ϕ) else

– received(i, t, j) is the local obligation ofMj received byMi at timet if t ≥ 1 andMj sends actually something
toMi. Formally:

received(i, t, j) =

{
lo(j, t− 1, ϕ) if ∃j ∈ [1, n] \ {i}. send(j, t− 1, i) ∧ t ≥ 1
else

– received(i, t) is the conjunction of all obligations received by monitori from all other monitors at timet. Formally:

received(i, t) =

|M|
∧

j=1,j 6=i

received(i, t, j)

– inlo(i, t, ϕ) is
• at timet ≥ 1 what was kept byMi at timet− 1 and the received obligation at timet;
• at timet = 0 the initial obligation, i.e., the global specificationϕ.

Formally:

inlo(i, t, ϕ) =

{
ϕ if t = 0
kept(i, t− 1) ∧ received(i, t) else

– lo(i, t, ϕ) is
• at timet ≥ 1 the result of progressing what was kept byMi at timet− 1 and the received obligation at time
t with the current local eventui(t);

• at timet = 0 the result of progressing the initial obligation, i.e., theglobal specification with the current local
eventui(0).

Formally:

lo(i, t, ϕ) =

{
P (ϕ, ui(0),APi) if t = 0
P (kept(i, t− 1) ∧ received(i, t), ui(t),APi) else

Now, we can clearly state the theorem:

∀t ∈ N
≥0.∀ϕ ∈ LTL.∀i ∈ [1, n].∀X

d
p ∈ ulo(i, t, ϕ). d ≤ min(n, t+ 1)

22

Preliminaries to the proof.Let us first start with some remarks. At step L3 in Algorithm L,the local obligation of a
monitorMi is defined to beϕt

i ∧
∧

j∈[1,m],j 6=i ϕj whereϕj is an obligation received from monitorMj andϕt
i is the

local obligation kept from timet− 1 (if t = 0, ϕt
i = ϕ). Let us note that the local obligation kept by the monitor from

time t − 1 to timet, with t ≥ 1, are not urgent. The result should thus be established on theurgentlocal obligations
transmitted and rewritten by local monitors. More formally, this is stated by the following lemma.

Lemma 5. According to Algorithm L, we have:

ulo(i, t, ϕ) =

|M|
⋃

j=1,j 6=i

sus
(
P (received(i, t), ui(t),APi)

)

Proof. First let us notice that the formulae kept by any monitorMi at any timet are not urgent. Indeed, we have:
∀i ∈ [1, n].∀t ∈ N

≥0.

sus(kept(i, t)) =

{
sus(#) if ∃j ∈ [1, n] \ {i}. send(i, t, j)
sus(lo(i, t− 1, ϕ)) if sus(lo(i, t− 1, ϕ)) = ∅

That is∀i ∈ [1, n].∀t ≥ 0. sus(kept(i, t)) = ∅. Thus,∀i ∈ [1, n].∀t ∈ N
≥0.∀ϕ ∈ LTL.

ulo(i, t, ϕ)
= sus

(
P (received(i, t), ui(t),APi)

)

= sus
(
P (

∧|M|
j=1,j 6=i received(i, t, j), ui(t),APi)

)
(definition ofreceived(i, t, j))

= sus
(
(
∧|M|

j=1,j 6=i P (received(i, t), ui(t),APi)) (progression on events)

=
⋃|M|

j=1,j 6=i sus
(
P (received(i, t), ui(t),APi)

)
(definition ofsus)

Another last lemma will be needed before entering specifically into the proof. This lemma states that if a past obligation

X
d
p is part of a progressed formula, then the past obligationX

d−1
p is part of its un-progressed form. More formally,

this is stated by the following lemma.

Lemma 6. Let us considerM = {M1, . . . ,Mn} where each monitorMi has a set of local atomic propositions
APi = Πi(AP) and observes the set of eventsΣi, we have:

∀i ∈ [1, n].∀σ ∈ Σi.∀ϕ ∈ LTL.∀X
d
∈ sus

(
P (ϕ, σ,APi)

)
. d > 1 ⇒ X

d−1
p ∈ sus(ϕ)

Proof. Let us considerσ ∈ Σ,Σi ⊆ Σ. The proof is done by a structural induction onϕ ∈ LTL.
Base Case:ϕ ∈ {⊤,⊥, p′ ∈ AP}

– Caseϕ = ⊤. In this case, the proof is trivial sinceP (⊤, σ,APi) = ⊤ andsus(⊤) = ∅.
– Caseϕ = ⊥. This case is similar to the previous one.
– Caseϕ = p′ ∈ AP. If p′ ∈ APi, thenP (p′, σ,APi) ∈ {⊤,⊥} andsus(P (p′, σ, APi)) = ∅. Else (p′ /∈ APi),
P (p′, σ,APi) = Xp′ andsus

(
P (p′, σ,APi)

)
= ∅.

Induction Case:ϕ ∈ {¬ϕ′, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,X
d′

p′,Gϕ′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states that
the result holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ¬ϕ′. On one hand, we have

sus
(
P (¬ϕ′, σ,APi)

)
= sus

(
¬P (ϕ′, σ,APi)

)

= sus
(
P (ϕ′, σ,APi)

)
.

On the other hand, we havesus(¬ϕ′) = sus(ϕ′). Thus, by applying directly the induction hypothesis onϕ′, we
obtain the expected result.

23

– Caseϕ = ϕ1 ∨ ϕ2. On one hand, we have

sus
(
P (ϕ1 ∨ ϕ2, σ,APi)

)
= sus

(
P (ϕ1, σ,APi) ∨ P (ϕ2, σ,APi)

)

= sus
(
P (ϕ1, σ,APi)

)
∪ sus

(
P (ϕ2, σ,Σi)

)
.

Thus,X
d
∈ sus

(
P (ϕ1 ∧ ϕ2, σ,APi)

)
implies thatX

d
p ∈ sus

(
P (ϕ1, σ,APi)

)
or X

d
p ∈ sus

(
P (ϕ2, σ,APi)

)
.

On the other hand,sus(ϕ1∧ϕ2) = sus(ϕ1)∪sus(ϕ2). Hence, the result can be obtained by applying the induction

hypothesis on eitherϕ1 orϕ2 depending on whetherX
d
p ∈ sus

(
P (ϕ1, σ,APi)

)
orX

d
p ∈ sus

(
P (ϕ2, σ,APi)

)
.

– Caseϕ = X
d′

p′ for somed′ ∈ N andp′ ∈ AP. One one hand, ifp′ ∈ APi, then it implies thatP (X
d′

p′, σ,APi) ∈

{⊤,⊥}. Else (p′ /∈ APi), we haveP (X
d′

p′, σ, APi) = X
d′+1

p′. On the other hand, we havesus(X
d′

p′) =

{X
d′

p′}.
– Caseϕ = Gϕ′. By definition of the progression rule forG and the definition ofsus, we have

sus
(
P (Gϕ′, σ,APi)

)

= sus
(
P (ϕ′, σ,APi) ∧Gϕ′

)

= sus
(
P (ϕ′, σ,APi)

)
.

Sinceϕ′ is behind a future temporal operator, the only case wheresus
(
P (ϕ′, σ, APi)

)
6= ∅ is whenϕ′ is a

state-formula. In that case, we haveX
d
p ∈ sus

(
P (ϕ′, σ, APi)

)
implies thatd = 1.

– Casesϕ ∈ {Fϕ′,Xϕ′, ϕ1Uϕ2}. These cases are similar to the previous one.
⊓⊔

Back to the proof of Theorem 2.We have to prove that for anyX
d
p ∈ LTL a local obligation of some monitor

Mi ∈ M. In the worst case,d ≤ min(|M|, t + 1) at any timet ∈ N
≥0. We will suppose that there are at least two

components in the system (otherwise, the proof is trivial),i.e., |M| ≥ 2. The proof is done by distinguishing three
cases according to the value oft ∈ N

≥0.

First case: t = 0. In this case, we shall prove thatm ≤ 1. The proof is done by a structural induction onϕ ∈ LTL.
Recall that for this case, wheret = 0, we have∀i ∈ [1, |M|]. lo(i, 0, ϕ) = P (ϕ, ui(0),APi).

Base case:ϕ ∈ {⊤,⊥, p ∈ AP}.

– Caseϕ = ⊤. In this case we have∀i ∈ [1, |M|]. lo(i, 0,⊤) = P (⊤, ui(0),APi) = ⊤. Moreover,sus(⊤) = ∅.
– Caseϕ = ⊥. This case is symmetrical to the previous one.
– Caseϕ = p ∈ AP. We distinguish two cases:p ∈ APi andp /∈ APi. If p ∈ APi, thenlo(i, 0, p) ∈ {⊤,⊥} and

sus
(
lo(i, 0, p)

)
= ∅. Else (p /∈ APi), we havelo(i, 0, p) = Xp, andsus

(
lo(i, 0, p)

)
= {Xp} = {X

1
p}.

Structural Induction Case:ϕ ∈ {¬ϕ′, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,Gϕ
′,Fϕ′,Xϕ′, ϕ1Uϕ2}. Our induction hypothesis states

that the result holds for some formulaeϕ′, ϕ1, ϕ2 ∈ LTL.

– Caseϕ = ϕ1 ∨ ϕ2. We have:

lo(i, 0, ϕ1 ∨ ϕ2)
= P (ϕ1 ∨ ϕ2, ui(0),APi) (lo definition fort = 0)
= P (ϕ1, ui(0),APi) ∨ P (ϕ2, ui(0),APi) (progression on events)
= lo(i, 0, ϕ1) ∨ lo(i, 0, ϕ2) (lo definition fort = 0)

sus
(
lo(i, 0, ϕ1 ∨ ϕ2)

)

= sus
(
lo(i, 0, ϕ1) ∨ lo(i, 0, ϕ2)

)

= sus
(
lo(i, 0, ϕ1)

)
∪ sus

(
lo(i, 0, ϕ2)

)
(sus definition)

We can apply the induction hypothesis onϕ1 andϕ2 to obtain successively:

∀t ≥ N
≥0.∀ϕ ∈ LTL.∀X

m
p ∈ sus

(
lo(i, t, ϕ1)

)
. m ≤ 1

∀t ≥ N
≥0.∀ϕ ∈ LTL.∀X

m
p ∈ sus

(
lo(i, t, ϕ2)

)
. m ≤ 1

∀t ≥ N
≥0.∀ϕ ∈ LTL.∀X

m
p ∈ sus

(
lo(i, t, ϕ1)

)
∪ sus

(
lo(i, t, ϕ2)

)
. m ≤ 1

24

– Caseϕ = ¬ϕ′. We have:

lo(i, 0,¬ϕ′) = P (¬ϕ′, ui(0),APi) (lo definition)
= ¬P (ϕ′, ui(0),APi) (progression on events)

sus
(
lo(i, 0,¬ϕ′)

)
= sus

(
¬P (ϕ′, ui(0),APi)

)

= sus
(
P (ϕ′, ui(0),APi)

)
(sus definition)

= sus
(
lo(i, 0, ϕ′)

)

– Caseϕ = Xϕ′. We have:

lo(i, 0,Xϕ′) = P (Xϕ′, ui(0),APi) (lo definition)
= ϕ′ (progression on events)

sus
(
lo(i, 0,Xϕ′)

)
= sus(ϕ′)

Sinceϕ′ is behind a future temporal operator, we havesus(ϕ′) = ∅.
– Caseϕ = Gϕ′. We have:

lo(i, 0,Gϕ′) = P (Gϕ′, ui(0),APi) (lo definition)
= P (ϕ′, ui(0),APi) ∧Gϕ′ (progression on events)
= lo(i, 0, ϕ′) ∧Gϕ′ (lo definition forϕ′)

sus
(
lo(i, 0,Gϕ′)

)
= sus

(
lo(i, 0, ϕ′) ∧Gϕ′

)

= sus
(
lo(i, 0, ϕ′)

)
∪ sus(Gϕ′) (sus definition)

= sus
(
lo(i, 0, ϕ′)

)
(sus(Gϕ′) = ∅)

– Caseϕ = Fϕ′. This case is similar to the previous one.
– Caseϕ = ϕ1Uϕ2. We have:

lo(i, 0, ϕ1Uϕ2)
(lo definition)
= P (ϕ1Uϕ2, ui(0),APi)

(progression on events)
= P (ϕ2, ui(0),APi) ∨

(
P (ϕ1, ui(0),APi) ∧ ϕ1Uϕ2

)

(lo definition forϕ1 andϕ2)
= lo(i, 0, ϕ2) ∨ lo(i, 0, ϕ1) ∧ ϕ1Uϕ2

sus
(
lo(i, 0, ϕ1Uϕ2)

)

= sus
(
lo(i, 0, ϕ1) ∨ lo(i, 0, ϕ2) ∧ ϕ1Uϕ2

)

(sus definition)
= sus

(
lo(i, 0, ϕ2)

)
∪ sus

(
lo(i, 0, ϕ1)

)
∪ sus(ϕ1Uϕ2)

(sus(ϕ1Uϕ2 = ∅)
= sus

(
lo(i, 0, ϕ2)

)
∪ sus

(
lo(i, 0, ϕ1)

)

For t ≥ 1, the proof is done byreductio ad absurdum. Let us consider somet ∈ N and suppose that the theorem does
not hold at timet. It means that:

∃ϕ ∈ LTL.∃i ∈ [1, |M|].∃X
d
p ∈ ulo(i, t, ϕ). d > min(|M|, t+ 1).

According to Lemma 5, sinceulo(i, t, ϕ) =
⋃|M|

j=1,j 6=i sus
(
P (received(i, t), ui(t))

)
, it means that∃j1 ∈ [1, |M|] \

{i}.X
d
p ∈ sus

(
P (received(i, t, j1), ui(t),APi)

)
. Using Lemma 6, we haveX

d−1
p ∈ sus(received(i, t, j1)). It

implies thatsend(j1, t− 1, i) = true andMi = Mon
(
Mj1 ,Prop(ulo(j1, t− 1, ϕ))

)
. We deduce thati = min

{
j ∈

[1, |M|] \ {j1} | ∃p ∈ Prop(ulo(j, t− 1, ϕ)). p ∈ APi

}
. Moreover, fromX

d
p ∈ ulo(i, t, ϕ), we findp /∈ APi′ , with

i < i′.

25

We can apply the same reasoning onX
d−1

p to find thati < j1 < i′ andp /∈ Πj1(AP). Following the same
reasoning and using Lemma 6, we can find a set of indexes{j1, . . . , jd} s.t.

{j1, . . . , jd} ⊇ [1, |M|]
∧ ∀j ∈ {j1, . . . , jd}. p /∈ APj ∧ j ∈ [1, |M|]

Moreover, due to the ordering between components, we know that∀k1, k2 ∈ [1, d]. k1 < k2 ⇒ jk1
< jk2

.

Case 0 < t < |M|. In this case we haved > t+ 1, and thus, we haveX
d′

p ∈ sus
(
lo(jt, 0, ϕ)

)
with d′ > 1 which is

a contradiction with the result shown fort = 0.

Case t ≥ |M|. In this case,∀k1, k2 ∈ [1, d]. k1 < k2 ⇒ jk1
< jk2

implies that∀jk1
, jk2

∈ {j1, . . . , jd}. k1 6= k2 ⇒

jk1
6= jk2

. Hence, we havep /∈
⋃jd

j=j1
APj ⊇ AP. This is impossible. ⊓⊔

Proof of Theorem 3.We shall prove that the decentralised monitoring algorithmis sound, i.e., whenever the decen-
tralised monitoring algorithm yields a verdict for a given trace, then the corresponding centralized algorithm yieldsthe
same verdicts.

Some intermediate lemmas.Before proving the main result of this paper, we introduce some intermediate lemmas.
The following lemma extends Lemma 1 to the decentralised case, i.e., it states that the progression function mimics
LTL semantics in the decentralised case.

Lemma 7. Letϕ be anLTL formula,σ ∈ Σ an event,σi a local event observed by monitorMi, andw an infinite
trace, we haveσ · w |= ϕ⇔ (σ · w)1 |= P (ϕ, σi, Σi).

Proof. We shall prove that:

∀i ∈ [1, n]. ∀ϕ ∈ LTL.∀σ ∈ Σ.∀σi ∈ Σi.∀w ∈ Σω.
σ · w |= ϕ⇔ (σ · w)1 |= P (ϕ, σi,APi).

The proof is done by induction on the formulaϕ ∈ LTL. Notice that whenϕ is not an atomic proposition, the lemma
reduces to Lemma 1. Thus, we just need to treat the caseϕ = p ∈ AP.

If ϕ = p ∈ AP. We haveσ · w |= p ⇔ p ∈ σ. Let us consideri ∈ [1, n], according to the definition of the
progression function (1):

P (p, σi,APi) =







⊤ if p ∈ σi,
⊥ if p /∈ σi ∧ p ∈ APi,

Xp otherwise,

Let us distinguish three cases.

– Supposep ∈ σi. On one hand, we havep ∈ σ and thenσ ·w |= p. On the other hand, we haveP (p, σi,APi) = ⊤
and thusw |= P (p, σi,APi).

– Supposep /∈ σi andp ∈ APi. One one hand, we havep ∈ σ, and, becausep ∈ APi we havep /∈ σ; and thus
σ · w 6|= p. On the other hand, we haveP (p, σi,APi) = ⊥.

– Supposep /∈ σi andp /∈ APi, we have(σ · w)1 |= Xp⇔
(
(σ · w)−1

)1
|= Xp⇔ σ · w |= p.

⊓⊔

The following lemma states that “the satisfaction of an LTL formula” is propagated by the decentralised monitoring
algorithm.

Lemma 8.
∀t ∈ N

≥0.∀i ∈ [1, n].∀ϕ ∈ LTL.∀w ∈ Σω.
inlo(i, t, ϕ) 6= # ⇒ w |= ϕ⇔ wt |= inlo(i, t, ϕ)

Proof. The proof is done by induction ont ∈ N
≥0.

26

– For t = 0, the proof is trivial since∀i ∈ [1, n].∀ϕ ∈ LTL. inlo(i, 0, ϕ) = ϕ andw0 = w.
– Let us consider somet ∈ N

≥0 and suppose that the lemma holds. Let us consideri ∈ [1, n], we have:

inlo(i, t+ 1, ϕ) = kept(i, t) ∧ received(1, t+ 1).

Let us now distinguish four cases according to the communication performed by local monitors at the end of time
t, i.e., according tosend(i, t) andsend(j, t, i), for j ∈ [1, n] \ {i}.
• If send(i, t) = false and∃j ∈ [1, n] \ {i}. send(j, t, i) = true. Then, we have:

inlo(i, t+ 1, ϕ) = P
(
inlo(i, t, ϕ) ∧

∧

j∈J

inlo(j, t, ϕ), ui(t+ 1), Σi

)
.

where∀j ∈ J. send(j, t, i) = true. Applying the definition of the progression function, we have:

inlo(i, t+ 1, ϕ)
= P

(
inlo(i, t, ϕ), ui(t+ 1), Σi

)
∧
∧

j∈J P
(
inlo(j, t, ϕ), ui(t+ 1), Σi

)
.

Now, we have:
wt+1 |= inlo(i, t+ 1, ϕ)
⇔
(

wt+1 |= P
(
inlo(i, t, ϕ), ui(t+ 1), Σi

))

∧
(

∀j ∈ J. wt+1 |= P
(
inlo(j, t, ϕ), ui(t+ 1), Σi

))

With:
wt+1 |= P

(
inlo(i, t, ϕ), ui(t+ 1), Σi

)

⇔ (wt)1 |= P
(
inlo(i, t, ϕ), ui(t+ 1), Σi

)
(wt+1 = (wt)1)

⇔ (w(t) · wt+1)1 |= P
(
inlo(i, t, ϕ), ui(t+ 1), Σi

)
((wt)1 = (w(t) · wt+1)1)

⇔ wt |= inlo(i, t, ϕ) (Induction Hypothesis)

And similarly:

∀j ∈ J. wt+1 |= P
(
inlo(j, t, ϕ), ui(t+ 1), Σi

)
⇔ wt |= inlo(j, t, ϕ)

It follows that:

wt+1 |= inlo(i, t+ 1, ϕ) ⇔ wt |= inlo(i, t, ϕ) ∧
∧

j∈J

wt |= inlo(i, t, ϕ).

And finally:
wt+1 |= inlo(i, t+ 1, ϕ) ⇔ wt |= inlo(i, t, ϕ).

• If send(i, t) = true and∃j ∈ [1, n] \ {i}. send(j, t, i) = true. Then, we have:

inlo(i, t+ 1, ϕ) = P
(
∧

∧

j∈J inlo(j, t, ϕ), ui(t+ 1), Σi)

= P
(∧

j∈J inlo(j, t, ϕ), ui(t+ 1), Σi)

where∀j ∈ J. send(j, t, i) = true. The previous reasoning can be followed in the same manner toobtain the
expected result.

• If send(i, t) = false and∀j ∈ [1, n] \ {i}. send(j, t, i) = false. Then, we have:

inlo(i, t+ 1, ϕ) = P
(
inlo(i, t, ϕ), ui(t+ 1), Σi).

The previous reasoning can be followed in the exact same manner to obtain the expected result.
• If send(i, t) = true and∀j ∈ [1, n] \ {i}. send(j, t, i) = true. Then, we have:

inlo(i, t+ 1, ϕ) = P (#, ui(t+ 1), Σi) = #

In this case, the result holds vacuously.
⊓⊔

27

Back to the proof of Theorem 3.The soundness of Algorithm L is now a straightforward consequence of the two
previous lemmas (Lemmas 7 and 8). Indeed, let us consideru ∈ Σ∗ s.t. |u| = t. We haveu |=D ϕ = ⊤ implies that
∃i ∈ [1, n]. lo(i, t, ϕ) = ⊤ and theninlo(i, t + 1, ϕ) = ⊤. It implies that∀w ∈ Σω. w |= inlo(i, t + 1, ϕ). Since
|u| = t, it follows that∀w ∈ Σω. (u ·w)t |= inlo(i, t+1, ϕ). Applying Lemma 8, we have∀w ∈ Σω. u ·w |= ϕ, i.e.,
u |=3 ϕ = ⊤.

The proof foru |=D ϕ = ⊤ ⇒ u |=3 ϕ = ⊤ is similar. ⊓⊔

Proof of Theorem 4.Let us first define some notations. Considerϕ ∈ LTL, u ∈ Σ+, i ∈ [1, |M|]:

– rp(ϕ, u) is the formulaϕ where past sub-formulas are removed and replaced by their evaluations using the trace
u. Formally:

rp(ϕ, u, i) = match ϕ with

| X
d
p →

{
⊤ if p ∈ u(|u| − d)
⊥ otherwise

| ϕ1 ∧ ϕ2 → rp(ϕ1, u) ∧ rp(ϕ2, u)
| ϕ1 ∨ ϕ2 → rp(ϕ1, u) ∨ rp(ϕ2, u)
| ¬ϕ′ → ¬ rp(ϕ′, u)
| → ϕ

– rp(ϕ, u, i) is the formulaϕ where past sub-formulas are removed (if possible) and replaced by their evaluations
using only the sub-traceui of u.

rp(ϕ, u, i) = match ϕ with

| X
d
p →







⊤ if p ∈ u(|u| − d)
⊥ if p /∈ u(|u| − d) andp ∈ APi

X
d
p otherwise

| ϕ1 ∧ ϕ2 → rp(ϕ1, u, i) ∧ rp(ϕ2, u, i)
| ϕ1 ∨ ϕ2 → rp(ϕ1, u, i) ∨ rp(ϕ2, u, i)
| ¬ϕ′ → ¬ rp(ϕ′, u, i)
| → ϕ

The following lemma exhibits some straightforward properties of the functionrp.

Lemma 9. Let ϕ be anLTL formula,u ∈ Σ+ be a trace of lengtht + 1, i ∈ [1, |M|] a monitor of one of the
component,ui(t) ∈ Σi the last event ofu on componenti, we have:

1. rp
(
P (ϕ, σi,APi), u

)
= rp

(
P (rp(ϕ, u(0) · · ·u(t− 1)), σi,APi), u

)
;

2. rp
(
P (ϕ, σi,APi), u

)
= P (ϕ, u(t),AP);

3. P (ϕ, ui(t),APi) = P
(
rp(ϕ, u(0) · · ·u(t− 1), i), ui(t),APi

)
;

4.
⋃

ϕ′∈sus(ϕ) Prop(ϕ
′) ⊆ APi ⇒ rp(ϕ, u, i) = rp(ϕ, u).

5. For {i1, . . . , in} = [1, |M|]: rp(rp(. . . rp(ϕ, u, i1), . . .), u, in) = rp(ϕ, u).

Proof. The proofs of these properties can be done by induction onϕ ∈ LTL and follow directly from the definitions
of rp and the progression function. ⊓⊔

Lemma 10. Any current local obligation where past sub-formulas have been evaluated using the trace read so far is
equal to the initial obligation progressed with this same trace read so far. Formally:

∀u ∈ Σ+.∀i ∈ [1, |M|].∀t ∈ N
∗.

|u| = t+ 1 ∧ lo(i, t, ϕ) 6= # ⇒ rp(lo(i, t, ϕ), u) = P (ϕ, u).

Proof. We shall prove this lemma by induction ont ∈ N
∗. Let us consider some componentMi wherei ∈ [1, |M|].

28

– Fort = 0. In this case,|u| = 1 and we haverp(lo(i, 0, ϕ), u) = rp
(
P (ϕ, σi,APi)

)
whereσi = Π(u(0)). We can

obtain the expected result by doing an induction onϕ ∈ LTL where the only case interesting case isϕ = p ∈ AP.
According to the definition of the progression function, we have:

P (p, σi,APi) =







⊤ if p ∈ σi,
⊥ if p /∈ σi ∧ p ∈ APi,
Xp otherwise,

Moreover,p ∈ σi impliesp ∈ u(0) andp /∈ σi with p ∈ APi implies∀j ∈ [1, |M|]. p /∈ Πj(u(0)), i.e.,p /∈ u(0).

On one hand, according to the definition ofrp, we have:

rp(Xp, u(0)) =

{
⊤ if p ∈ u(0),
⊥ if p /∈ u(0).

Thus, we have:

rp
(
P (p, σi,APi)

)
=

{
⊤ if p ∈ u(0),
⊥ if p /∈ u(0).

On the other hand, according to the definition of the progression function, we have:

P (ϕ, u(0)) =

{
⊤ if p ∈ u(0),
⊥ if p /∈ u(0).

– Let us consider somet ∈ N
∗ and suppose that the property holds. We have:

lo(i, t+ 1, ϕ) = P
(
kept(i, t) ∧ received(i, t), ui(t+ 1),APi

)
.

Similarly to the proof of Lemma 8, let us distinguish four cases according to the communication that occurred at
the end of timet.

• If send(i, t) = false and∀j ∈ [1, |M|] \ {i}. send(j, t, i) = false. Then, we have:

lo(i, t+ 1, ϕ) = P (lo(i, tϕ), ui(t+ 1),APi)

Let us now computerp(lo(i, t+ 1, ϕ), u(0) · · ·u(t+ 1)):

rp(lo(i, t+ 1, ϕ), u(0) · · ·u(t+ 1)) = rp(P (lo(i, t, ϕ), ui(t+ 1),APi), u(0) · · ·u(t+ 1))
(Lemma 9, item 1)
= rp(P (rp(lo(i, t, ϕ), u(0) · · ·u(t)), ui(t+ 1),APi), u(0) · · ·u(t+ 1))
(induction hypothesis)
= rp(P (P (ϕ, u(0) · · ·u(t)), ui(t+ 1),APi), u(0) · · ·u(t+ 1))
(Lemma 9, item 2)
= P (P (ϕ, u(0) · · ·u(t)), u(t+ 1),AP)
(P (ϕ, u(0) · · ·u(t)) is a future formula)
= P (ϕ, u(0) · · ·u(t+ 1))

• If send(i, t) = true and∃j ∈ [1, |M|] \ {i}. send(j, t, i) = true. Then, we have:

lo(i(i, t+ 1, ϕ) = P (
∧

j∈J

lo(j, tϕ), ui(t+ 1),APi)

29

s.t.∀j ∈ J. send(j, t, i) = true. Then:

rp(lo(i, t+ 1, ϕ), u(0) · · ·u(t+ 1))
= rp(P (

∧

j∈J lo(j, tϕ), ui(t+ 1),APi), u(0) · · ·u(t+ 1))

(definition of the progression function)
= rp(

∧

j∈J P (lo(j, tϕ), ui(t+ 1),APi), u(0) · · ·u(t+ 1))

(definition ofrp)
=

∧

j∈J rp(P (lo(j, tϕ), ui(t+ 1),APi), u(0) · · ·u(t+ 1))

(Lemma 9, item 1)
=

∧

j∈J rp(P (rp(lo(j, tϕ), u(0) · · ·u(t)), ui(t+ 1),APi), u(0) · · ·u(t+ 1))

(induction hypothesis)
=

∧

j∈J rp(P (P (ϕ, u(0) · · ·u(t)), ui(t+ 1),APi), u(0) · · ·u(t+ 1))

(Lemma 9, item 2)
=

∧

j∈J rp(P (ϕ, u(0) · · ·u(t) · u(t+ 1)))

(P (ϕ, u(0) · · ·u(t+ 1)) is a future formula)
=

∧

j∈J P (ϕ, u(0) · · ·u(t+ 1)) = P (ϕ, u(0) · · ·u(t+ 1))

• If send(i, t) = false and∃j ∈ [1, |M|] \ {i}. send(j, t, i) = true. Then, we have:

lo(i, t+ 1, ϕ) = P
(
lo(i, t, ϕ) ∧

∧

i∈J lo(j, t, ϕ), ui(t+ 1),APi

)

= P
(
lo(i, t, ϕ), ui(t+ 1),APi

)
∧ P

(∧

i∈J lo(j, t, ϕ), ui(t+ 1),APi

)

where∀j ∈ J. send(j, t, i) = true. The proof this case is just a combination of the proofs of thetwo previous
cases.

• If send(i, t) = true and∀j ∈ [1, |M|] \ {i}. send(j, t, i) = false. Then, we have:lo(i, t + 1, ϕ) = #. The
result holds vacuously.

⊓⊔

Back to the proof of Theorem 4.The remainder of the proof consists intuitively in showing that in a given architecture,
we can take successively two components and merge them to obtain an equivalent architecture in the sense that they
produce the same verdicts. The difference is that if in the merged architecture a verdict is emitted, then, in the non-
merged architecture the same verdict will be produced with an additional delay.

Lemma 11. In a two-component architecture, if in the centralised casea verdict is produced for some traceu, then,
in the decentralised case, one of the monitor will produce the same verdict. Formally:

∀ϕ ∈ LTL.∀u ∈ Σ+. P (ϕ, u) = ⊤/⊥ ⇒ ∀σ ∈ Σ∗.∃i ∈ [1, 2]. lo(i, |u · σ|, ϕ) = ⊤/⊥.

Proof. Let us consider a formulaϕ ∈ LTL and a traceu ∈ Σ+ s.t. |u| = t. We shall only consider the case
whereP (ϕ, u) = ⊤. The other case is symmetrical. Let us suppose thatlo(1, t, ϕ) 6= ⊤ and lo(2, t, ϕ) 6= ⊤
(otherwise the results holds immediately). Because of the correctness of the algorithm (Theorem 3), we know that
lo(1, t, ϕ) 6= ⊥ and lo(2, t, ϕ) 6= ⊥. Moreover, according to Lemma 10, we have necessarily thatlo(1, t, ϕ) and
lo(2, t, ϕ) are urgent formulas:Υ (lo(1, t, ϕ)) > 0 andΥ (lo(2, t, ϕ)) > 0. Since, there are only two components in
the considered architecture, we have

⋃

ϕ′∈sus(lo(1,t,ϕ)) Prop(ϕ
′) ⊆ AP2 and

⋃

ϕ′∈sus(lo(2,t,ϕ)) Prop(ϕ
′) ⊆ AP1. Ac-

cording to Algorithm L, we have thensend(1, t − 1, 2) = true andsend(2, t − 1, ϕ) = true. Theninlo(1, t, ϕ) =
lo(2, t− 1, ϕ)∧# = lo(2, t− 1, ϕ). Hence:lo(1, t, ϕ) = P (lo(2, t− 1, ϕ), u1(t),AP1). According to Lemma 9 item
4, we havelo(1, t, ϕ) = P (rp(lo(2, t− 1, ϕ), u(0) · · ·u(t), 1), u1(t),AP1). Since

⋃

ϕ′∈sus(lo(2,t,ϕ))

Prop(ϕ′) ⊆ AP1,

we haverp
(
lo(2, t− 1, ϕ), u(0) · · ·u(t), 1

)
= rp

(
lo(2, t− 1, ϕ), u(0) · · ·u(t)

)
. It follows that:

lo(1, t, ϕ) = P (rp(lo(2, t− 1, ϕ), u(0) · · ·u(t)), u1(t),AP1)
= P (P (ϕ, u(0) · · ·u(t)), u1(t),AP1) (Lemma 10)
= P (⊤, u1(t),AP1) = ⊤

30

Symmetrically, we can find thatlo(2, t, ϕ) = ⊤. ⊓⊔

Given two componentsC1 andC2 with two monitors attachedM1 andM2 observing respectively two partial traces
u1 andu2 of some global traceu. The alphabets ofC1 andC2 areΣ1 andΣ2 respectively. Consider the architecture
C = {C1, C2} with the set of monitorsM = {M1,M2}. Let us define the new componentmerge(C1, C2) that
produces events inΣ1 ∪Σ2. To the componentmerge(C1, C2) is attached a monitorM observing events in the same
alphabet. Now let us consider the architectureC′ = {merge(C1, C2)} which is a one-component architecture with the
set of monitorsM′ = {merge(M1,M2)}.

We can parameterise the satisfaction relation ofLTL formula according to the considered architecture. The relation
|=D becomes|=M

D whereM is the considered architecture. The definition of|=M
D is the same as the definition of|=D

(Definition 6).

Lemma 12. For a monitoring architectureM = {M1,M2} and the monitoring architectureM′ = {merge(M1,M2)}
where monitors ofM have been merged, we have:

∀u ∈ Σ+.∀ϕ ∈ LTL. u |=M
D ϕ = ⊤/⊥ ⇒ ∀σ ∈ Σ+. u · σ |=M′

D ϕ = ⊤/⊥.

Proof. This is a direct consequence of Lemma 11 and Corollary 1. Indeed,M′ is a one-component architecture, thus
u |=M′

D ϕ = ⊤/⊥ impliesu |=3 ϕ = ⊤/⊥, i.e.,P (ϕ, u) = ⊤/⊥. Now, sinceM is a two-component architecture,
using Lemma 11, for allσ ∈ Σ, there existsi ∈ [1, |M|] s.t.lo(i, |u ·σ|, ϕ) = ⊤/⊥. That isu ·σ |=M

D ϕ = ⊥/⊤. ⊓⊔

The following lemma relates verdict production in an-component architecture and in the same architecture wherethe
two components with the lowest priority have been merged.

Lemma 13. LetM be an-component architecture, withn ≥ 2 such that the priority between components isM1 <
M2 < . . . < Mn, i.e.,M1 andM2 are the two components with the lowest priority6. Let us consider the architecture
M′ = {merge(M1,M2),M3, . . . ,Mn}, then we have:

∀u ∈ Σ+.∀ϕ ∈ LTL. u |=M′

D ϕ = ⊤/⊥ ⇒ ∀σ ∈ Σ. u · σ |=M
D = ⊤/⊥.

Proof. We give a proof for the case where the verdict is⊤ (the other case is symmetrical). Let us consideru ∈
Σ+, ϕ ∈ LTL s.t.u |=M′

D ϕ = ⊤. Let u′ be the smallest prefix ofu s.t.P (ϕ, u′) = ⊤. From the theorem about the
maximal delay (Theorem 2, we have that|u| − |u′| ≤ (n − 1). Now each of the local obligations in the architecture
M′ will transit through at mostn monitors following the ordering between components. That is, in the worst case
(i.e., if a verdict is not produced before time|u|), any obligation will be progressed according to all components. More
precisely, each time a local obligation is progressed on some componentCi, past obligations w.r.t. componentCi are
removed (Lemma 9 - item 3). Using the compositionality ofrp and the progression function on conjunction, in the
worst case the local obligation at time|u′|+ n will be a conjunction of formulas of the form

P (
· · ·
· · ·P (

P (rp(· · · rp(rp(ϕ, u′, i), u′, i1) · · · , u
′, in), ui(|u

′|),APi)
, ui1(|u

′|+ 1,APi1),
· · · ,

uin(|u
′|+ n),APin)

whereϕ is a local obligation at time|u′| and{i1, . . . , in} ⊇ [1, |M′|] (because of the ordering between components).
Now according to Lemma 9 - item 5:

rp(· · · rp(rp(ϕ, u′, i), u′, i1) · · · , in) = rp(ϕ, u′) = ⊤.

Following the definition of the progression function for⊤, we have that necessarily, the resulting local obligation at
time |u′|+ n is⊤. ⊓⊔

6 Here, without loss of generality, we assume that monitors have been sorted according to their index. If this hypothesis does not
hold initially, the indexes of components can be re-arranged so that this hypothesis holds.

31

Lemma 14. LetM be an-component architecture, withn ≥ 2 such that the priority between components isM1 <
M2 < . . . < Mn. Let us consider the architectureM′ = {merge(Mn,merge(. . . ,merge(M2,M1)}, then we have:

∀u ∈ Σ+.∀ϕ ∈ LTL. u |=M′

D ϕ = ⊤/⊥ ⇒ ∀u′ ∈ Σ+. |u′| ≥ n⇒ u · u′ |=M
D = ⊤/⊥.

Proof. By an easy induction on the number of components merged usingLemma 13. ⊓⊔

Back to the proof of Theorem 4.Based on the previous results, we can easily show Theorem 4.

Proof. Let us consider ann-component architectureM = {M1, . . . ,Mn}, a traceu ∈ Σ+ and a formulaϕ ∈ LTL.
Let us suppose thatu |=3 ϕ = ⊤/⊥. As the alphabets of monitors are respectivelyΣ1, . . .Σn and each monitorMi

is observing a sub-traceui of u where the hypothesis about alphabets partitionning mentioned in Section 2 holds, we
can consider the architectureM′ = {merge(Mn,merge(. . . ,merge(M2,M1)} where there is a unique monitorM
observing the same traceu. Now, sinceM′ is a one-component architecture, fromu |=3 ϕ = ⊤/⊥, by Corollary 1
we getu |=D ϕ = ⊤/⊥. Using Lemma 13, we obtain that∀u′ ∈ Σ+. u · u′ |=M

D = ⊤/⊥. ⊓⊔

32

