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MADELUNG, GROSS–PITAEVSKII AND KORTEWEG

RÉMI CARLES, RAPHAËL DANCHIN, AND JEAN-CLAUDE SAUT

Abstract. This paper surveys various aspects of the hydrodynamic formula-
tion of the nonlinear Schrödinger equation obtained via the Madelung trans-
form in connexion to models of quantum hydrodynamics and to compressible
fluids of the Korteweg type.

1. Introduction

In his seminal work [37] (see also [33]), E. Madelung introduced the so-called
Madelung transform in order to relate the linear Schrödinger equation to a hydro-
dynamic type system. This system takes (slightly) different forms according to the
context: linear or nonlinear equation with various nonlinearities. For the semi-
classical nonlinear Schrödinger equation (shortened in NLS in what follows):

iε∂tψ
ε +

ε2

2
∆ψε = f

(
|ψε|2

)
ψε,

the Madelung transform amounts to setting

ψε(t, x) =
√
ρ(t, x)eiφ(t,x)/ε,

so as to get the following system for ρ and v = ∇φ:

(1.1)




∂tv + v · ∇v +∇f (ρ) = ε2

2
∇
(
∆
(√
ρ
)

√
ρ

)
,

∂tρ+ div (ρv) = 0.

This system is referred to as the hydrodynamic form of NLS because of its sim-
ilarity with the compressible Euler equation (which corresponds to ε=0). The
additional term on the right-hand side is the so-called quantum pressure.

Madelung transform is crucial to investigate qualitative properties of the non-
linear Schrödinger equation with nonzero boundary conditions at infinity whenever
the solution is not expected to vanish “too often”. Of particular interest is the
so-called Gross–Pitaevskii equation

iε∂tψ
ε +

ε2

2
∆ψε = (|ψε|2 − 1)ψε,

which corresponds to f(r) = r− 1 or, more generally, the case where f is a smooth
function vanishing at some r0 and such that f ′(r0) < 0. This covers in particular
the “cubic-quintic” NLS (f(r) = −α1 + α3r − α5r

2 with α1, α3, α5 > 0).
Using Madelung transform is also rather popular to study the semi-classical limit

of NLS. This requires ρ to be nonvanishing, though. We shall see below to what
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extent the presence of vacuum (that is of points where ρ vanishes) is merely a
technical problem due to the approach related to Madelung transform.

The hydrodynamic form of NLS may be seen as a particular case of the system
of quantum fluids (QHD) with a suitable choice of the pressure law, which, in
turn, enters in the class of Korteweg (or capillary) fluids. We aim here at further
investigating the link between these three a priori disjoint domains, through various
uses of the Madelung transform. In passing, we will also review some more or less
known facts pertaining to the theories of quantum fluids and Korteweg fluids. The
most original part of this work is a simple proof of a recent result of Antonelli and
Marcati [3, 4], on the global existence of weak solutions to a quantum fluids system.

1.1. Organization of the paper. The paper is organized as follows. The second
section is a review of the connexions of the Madelung transform with the semi-
classical limit of the nonlinear Schrödinger equation. In passing we briefly present
the state-of-the-art for the Cauchy problem for the Gross-Pitaevskii equation. In
Section 3, we solve the quantum hydrodynamical system (1.1) by a direct method
based on the use of an extended formulation, and explain how it may be adapted
to tackle general Korteweg fluids. In Section 4, we review the use of the Madelung
transform and of the hydrodynamical form of the Gross–Pitaevskii equation to
study the existence and properties of its traveling wave solutions and of its tran-
sonic limit, both in the steady and unsteady cases. We give in Section 5 a simple
proof of the aforementioned result of Antonelli and Marcati ([3, 4]). Lastly we list
in Appendix the basic conservation laws for the Schrödinger, the QHD and the
compressible Euler equations, and show that some of these laws naturally carry
over to general Korteweg fluids.

1.2. Notations.

• We denote by |·|p (1 6 p 6 ∞) the standard norm of the Lebesgue spaces
Lp(Rd).

• The standard Hs(Rd) Sobolev norm will be denoted ‖ · ‖s.
• We use the Fourier multiplier notation: f(D)u is defined as F(f(D)u)(ξ) =
f(ξ)û(ξ), where F and ·̂ stand for the Fourier transform.

• The operator Λ = (1 − ∆)1/2 is equivalently defined using the Fourier
multiplier notation to be Λ = (1 + |D|2)1/2.

• The partial derivatives will be denoted with a subscript, e.g. ut, ux, . . . or
∂tu, ∂xu, . . . or even ∂j (to designate ∂xj

).
• C will denote various nonnegative absolute constants, the meaning of which
will be clear from the context.

2. Madelung transform and the semi-classical limit of NLS

As already mentioned in the Introduction, we consider the equation

(2.1) iε∂tψ
ε +

ε2

2
∆ψε = f

(
|ψε|2

)
ψε ; ψε(0, x) =

√
ρ0(x)e

iφ0(x)/ε.

Here we have in mind the limit ε → 0. The space variable x belongs to Rd in
this paragraph. The periodic case x ∈ Td being of particular interest for numerical
simulations however (see e.g. [6, 23] and references therein), we will state some
analogous results in that case, which turn out to be a little simpler than in the case
x ∈ Rd. In this section, we shall focus on two types of nonlinearity:
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• Cubic, defocusing nonlinearity1:

f
(
|ψε|2

)
ψε = |ψε|2ψε.

The Hamiltonian associated to (2.1) then reads

Hε
NLS (ψ

ε) = ‖ε∇ψε‖2L2 + ‖ψε‖4L4.

It is well defined on the Sobolev space H1(Rd) in dimension d 6 4.
• Gross–Pitaevskii equation:

f
(
|ψε|2

)
ψε =

(
|ψε|2 − 1

)
ψε.

In this case, the natural Hamiltonian associated to (2.1) is

Hε
GP (ψε) = ‖ε∇ψε‖2L2 +

∥∥|ψε|2 − 1
∥∥2
L2 .

In both cases, the Hamiltonian defines an energy space, in which existence and
uniqueness for the Cauchy problem (2.1) have been established.

The case of a defocusing cubic nonlinearity is now well understood. In dimension
d 6 4 the corresponding NLS equation is globally well-posed in H1(Rd), and the
additional Hs(Rd) regularity (s > 1) is propagated (see the textbooks [18, 36, 44]
and the references therein).

The situation is more complicated for the Gross–Pitaevskii equation, where the
finite energy solutions ψε cannot be expected to be in L2(Rd), since |ψε|2 − 1 ∈
L2(Rd). As noticed in [49, 50], and extended in [24], a convenient space to study
the Gross–Pitaevskii equation is the Zhidkov space:

Xs(Rd) = {ψ ∈ L∞(Rd) ; ∇ψ ∈ Hs−1(Rd)} with s > d/2.

Remark 2.1. In the case x ∈ Td, the spaces Hs(Td) and Xs(Td) (with obvious
definitions) are the same.

In the case x ∈ Rd, as a consequence of the Hardy–Littlewood–Sobolev inequality
(see e.g. [32, Th. 4.5.9] or [28, Lemma 7]), one may show that if d > 2 and
ψ ∈ D′(Rd) is such that ∇ψ ∈ Lp(Rd) for some p ∈]1, d[, then there exists a
constant γ such that ψ − γ ∈ Lq(Rd), with 1/p = 1/q + 1/d. Morally, γ is the
limit of ψ at infinity. If d > 3 then we can take p = 2, so every function in Xs(Rd)
satisfies the above property; for d = 2, the above assumption requires a little more
decay on ∇ψ than general functions in Xs(R2).

The well-posedness issue in the natural energy space

E(Rd) = {ψ ∈ H1
loc(R

d), ∇ψ ∈ L2(Rd), |ψ|2 − 1 ∈ L2(Rd)}
associated to the Gross-Pitaevskii equation has been investigated only very recently
by C. Gallo in [25] and P. Gérard in [28, 29], in dimension d 6 4.

Let us emphasize that in the Rd case, the energy space is no longer a linear space
(contrary to the case of zero boundary condition a infinity where it is H1(Rn)),
hence solving the Gross–Pitaevskii equation in E(Rd) is more complicated. How-
ever, if d = 3, 4, one may show that E(Rd) coincides with

{ψ = c(1 + v), c ∈ S1, ψ ∈ H1(Rd), 2Reψ + |ψ|2 ∈ L2(Rd)},
which allows to endow it with a structure of a metric space. The case d = 2 is
slightly more technical.

1We could consider more general defocusing nonlinearities such as f
(

|ψε|2
)

ψε = |ψε|2σψε,

σ ∈ N. We consider the exactly cubic case for the simplicity of the exposition only.
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2.1. Some issues related to the use of the Madelung transform. In the
semi-classical context, Madelung transform consists in seeking

(2.2) ψε(t, x) =
√
ρ(t, x)eiφ(t,x)/ε

for some ρ > 0 and real-valued function φ. Plugging (2.2) into (2.1) and separating
real and imaginary values yields:

(2.3)





√
ρ

(
∂tφ+

1

2
|∇φ|2 + f(ρ)

)
=
ε2

2
∆
√
ρ ; φ|t=0 = φ0,

∂t
√
ρ+∇φ · ∇√

ρ+
1

2

√
ρ∆φ = 0 ; ρ|t=0 = ρ0.

Two comments are in order at this stage: the first equation shows that φ depends on
ε and the second equation shows that so does ρ in general. We shall underscore this
fact by using the notation (φε, ρε). Second, the equation for φε can be simplified,
provided that ρε has no zero. Introducing the velocity vε = ∇φε, (2.3) yields the
system of quantum hydrodynamics (1.1) presented in the introduction.

To study the limit ε→ 0 (the Euler limit), it is natural to consider the following
compressible Euler equation:

(2.4)

{
∂tv + v · ∇v +∇f (ρ) = 0 ; v|t=0 = ∇φ0,
∂tρ+ div (ρv) = 0 ; ρ|t=0 = ρ0.

Note that the solution to (2.4) must not be expected to remain smooth for all time,
even if the initial data are smooth. In [38] (see also [47]), it is shown that compactly
supported initial data lead to the formation of singularities in finite time. In [42], the
author constructs a solution developing singularities in finite time, in the absence
of vacuum. In [2], it is shown that for rotationally invariant two-dimensional data
that are perturbation of size ε of a rest state, blow-up occurs at time Tε ∼ τ/ε2.

Remark 2.2. In the framework of this section, we have f ′ = 1 > 0. As pointed
out above, the case f(r) = rσ , σ ∈ N, could be considered as well. On the other
hand, if f ′ < 0 (corresponding to the semiclassical limit for a focusing nonlinearity),
(2.4) becomes an elliptic system which may be solved locally-in-time for analytic
data (see [27, 46]). At the same time, in the case d = 1 and f ′ = −1, it has been
shown in [40] that there are smooth initial data for which the Cauchy problem (2.4)
has no solution. In short, working with analytic data in this context is not only
convenient, it is mandatory.

Let us emphasize that the hydrodynamical formulations for the cubic NLS and
the Gross–Pitaevskii equations are exactly the same as in both cases we have
∇f(ρ) = ∇ρ. From this point of view, studying either of the equations is mainly a
matter of boundary conditions at infinity: Hs(Rd) is the appropriate space for the
cubic NLS equation whereas Xs(Rd) is adapted to the Gross–Pitaevskii equation.

In the sequel, Zs denotes either Hs(Rd) or Xs(Rd). In addition, we set

Z∞ =
⋂

s>d/2

Zs.
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Theorem 2.3. Let ρ0, φ0 ∈ C∞(Rd) with
√
ρ
0
,∇φ0 ∈ Zs for some s > d/2 + 1.

There exists a unique maximal solution (v, ρ) ∈ C([0, Tmax);Z
s) to (2.4). In addi-

tion, Tmax is independent of s > d/2 + 1 and

Tmax < +∞ =⇒
∫ Tmax

0

‖(v,√ρ)(t)‖W 1,∞ dt = +∞.

Finally, if ∇φ0 and ρ0 are smooth, nonzero and compactly supported then Tmax is
finite.

We investigate the following natural questions:

Question 1. Assume that ρ0(x) > 0 for all x ∈ Rd. Can we say that ρε(t, x) > 0
for all x ∈ Rd and t ∈ [0, Tmax)? If not, what is the maximal interval allowed for t?

We will also recall that despite the appearance, the presence of vacuum (existence
of zeroes of ψε) is merely a technical problem: the Madelung transform ceases to
make sense, but a rigorous WKB analysis is available, regardless of the presence of
vacuum. See §2.3.

Question 2. Let ρ0, φ0 ∈ C∞(Rd) with ρ0,∇φ0 ∈ Hs(Rd) for some s > d/2 + 1.
Suppose that the solution (v, ρ) to (2.4) satisfies ρ(t, x) > 0 for (t, x) ∈ [0, τ ]× Rd.
Can we construct a solution to (1.1) in C([0, τ∗];Hs) (possibly with 0 < τ∗ < τ)?

We will see that in general, the answer for this question is no. Even though from
the answer to the first question, (1.1) makes sense formally, the analytical properties
associated to (1.1) are not as favorable as for (2.4). Typically, the right-hand side
of the equation for the quantum velocity need not belong to L2(Rd).

Question 3. Let ρ0, φ0 ∈ C∞(Rd) with ρ0,∇φ0 ∈ Xs(Rd) for some s > d/2 + 1.
Suppose that the solution (v, ρ) to (2.4) satisfies ρ(t, x) > 0 for (t, x) ∈ [0, τ ]× Rd.
Can we construct a solution to (1.1) in C([0, τ∗];Xs) (possibly with 0 < τ∗ < τ)?

2.2. Proof of Theorem 2.3. We shall simply give the main ideas of the proof of
Theorem 2.3. Complete proofs can be found in [38] for the cubic defocusing NLS
equation in Sobolev spaces, and in [1] for the Gross-Pitaevskii equation in Zhidkov
spaces.

In the framework of this paper, we have

∇f(ρ) = ∇ρ.

Introduce formally the auxiliary function a =
√
ρ. This nonlinear change of variable

makes (2.4) hyperbolic symmetric:

(2.5)





∂tv + v · ∇v + 2a∇a = 0 ; v|t=0 = ∇φ0,

∂ta+ v · ∇a+ 1

2
a∇ · v = 0 ; a|t=0 =

√
ρ0.

This system is of the form

∂tu+

d∑

j=1

Aj(u)∂ju = 0, where u =




v1
...
vd
a


 ∈ Rd+1,
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and the matrices Aj are symmetrized by the constant multiplier

S =

(
Id 0
0 4

)
.

Standard analysis (see e.g. [45]) shows that (2.5) has a unique maximal solution
(v, a) in C([0, Tmax);Z

s), provided that s > d/2 + 1 and that, in addition,

Tmax < +∞ =⇒
∫ Tmax

0

‖(v, a)(t)‖W 1,∞ dt = +∞.

We can then define ρ by the linear equation

∂tρ+ div (ρv) = 0 ; ρ|t=0 = ρ0.

By uniqueness for this linear equation, ρ = a2 (a is real-valued, so ρ is non-negative),
and (v, ρ) solves (2.4).

We now briefly explain why compactly supported initial data lead to the forma-
tion of singularities in finite time. The first remark is that in this case, the solution
to (2.4) has a finite speed of propagation, which turns out to be zero: so long as
(v, ρ) is smooth, it remains supported in the same compact as its initial data. To see
this, consider the auxiliary system (2.5): the first equation is a Burgers’ equation
with source term 2a∇a; the second equation is an ordinary differential equation
along the trajectories of the particles. Define the trajectory by

(2.6)
d

dt
x(t, y) = v (t, x(t, y)) ; x(0, y) = y.

For 0 6 t < Tmax, this is a global diffeomorphism of Rd, as shown by the equation

d

dt
∇yx(t, y) = ∇v (t, x(t, y))∇yx(t, y) ; ∇yx(0, y) = Id,

and Gronwall lemma. Therefore, for a smooth function f ,

(∂tf + v · ∇f) (t, x(t, y)) = ∂t (f (t, x(t, y))) ,

and (2.5) can be viewed as a system of ordinary differential equations.

Once the non-propagation of the support of smooth solutions is established, the
end of the proof relies on a virial computation (like in [48, 30], see also [18]). This
computation shows that global in time smooth solutions to (2.5) are dispersive
(see also [41]). This is incompatible with the zero propagation speed of smooth
compactly supported solutions. Therefore, singularities have to appear in finite
time.

2.3. A review of WKB analysis associated to (2.1). We consider initial data
which are a little more general than in (2.1), namely

(2.7) ψε(0, x) = aε0(x)e
iϕ0(x)/ε,

where the initial amplitude aε0 is assumed to be smooth, complex-valued, and possi-
bly depending on ε. Typically, we assume that there exist a0, a1 ∈ Z∞ independent
of ε such that

(2.8) aε0 = a0 + εa1 +O(ε2) in Zs, ∀s > d/2.
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2.3.1. First order approximation. Introduce the solution to the quasilinear system

(2.9)





∂tϕ+
1

2
|∇ϕ|2 + f

(
|a|2
)
= 0 ; ϕ|t=0 = ϕ0,

∂ta+∇ϕ · ∇a+ 1

2
a∆ϕ = 0 ; a|t=0 = a0.

Theorem 2.3 shows that (2.9) has a unique, smooth solution with a,∇ϕ ∈ Z∞.
The main remark consists in noticing that (2.9) implies that (∇ϕ, |a|2) has to solve
(2.4) (a0 may be complex-valued): Theorem 2.3 yields v, ρ ∈ Z∞. We can then
define a as the solution to the linear transport equation

∂ta+ v · ∇a+ 1

2
a∇ · v = 0 ; a|t=0 = a0.

Now |a|2 and ρ solve the same linear transport equation, with the same initial data,
hence ρ = |a|2. Using this information in the equation for the velocity, define

ϕ(t) = ϕ0 −
∫ t

0

(
1

2
|v(τ)|2 + f

(
|a(τ)|2

))
dτ.

We easily check that ∂t (∇ϕ− v) = ∇∂tϕ− ∂tv = 0, and that (ϕ, a) solves (2.9).

Introduce the solution to the linearization of (2.9), with an extra source term:




∂tϕ
(1) +∇ϕ · ∇ϕ(1) + 2Re

(
aa(1)

)
f ′ (|a|2

)
= 0 ; ϕ

(1)
|t=0 = 0,

∂ta
(1) +∇ϕ · ∇a(1) +∇ϕ(1) · ∇a+ 1

2
a(1)∆ϕ+

1

2
a∆ϕ(1) =

i

2
∆a ; a

(1)
|t=0 = a1.

We also check that it has a unique smooth solution, with a(1),∇ϕ(1) ∈ Z∞. The
main result that we will invoke is the following:

Proposition 2.4. Let aε0, a0, a1, ϕ0 be smooth, with aε0, a0, a1,∇ϕ0 ∈ Z∞. Assume
that (2.8) holds. Then

(2.10) ψε =
(
aeiϕ

(1)

+O (ε)
)
eiϕ/ε in L∞([0, τ ];Zs), ∀τ < Tmax and ∀s > 0.

This result was established in [31] when Zs = Hs(Rd), and in [1] when Zs =
Xs(Rd). Note the shift between the order of the approximation between the initial
data (known up to O(ε2)) and the approximation (of order O(ε) only): this is due
to the fact that we consider a regime which is super-critical as far as WKB analysis
is concerned (see e.g. [16]). In particular, the phase modulation ϕ(1) is a function
of ϕ0, a0 and a1. It is non-trivial in general, and since we are interested here in
real-valued a0, we shall merely mention two cases (see [16, pp. 69–70]):

• If a1 6= 0 is real-valued, then ϕ(1) 6= 0 in general.
• If a1 = 0 (or more generally if a1 ∈ iR), then ϕ(1) = 0.

To see the first point, it suffices to notice that the equation for ϕ(1) gives (recall
that f ′ = 1):

∂tϕ
(1)
|t=0 = −2a0a1.

This shows that for (2.2)–(1.1) to yield a relevant description of the solution to
(2.1), we have to assume a0 =

√
ρ0 and a1 = 0. Otherwise, a phase modulation

is necessary to describe ψε at leading order, by (2.10), which is incompatible with
the form (2.2), unless the Madelung phase φε admits a corrector of order ε. But
formal asymptotics in (1.1) give vε = v+O(ε2) = ∇ϕ+O(ε2). Hence the Madelung
transform has a chance to give a relevant result only if a1 = 0.
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To check the second point of the above assertion, we set α = Re
(
aa(1)

)
. Direct

computations show that (ϕ(1), α) solves, as soon as a0 ∈ R and a1 ∈ iR:



∂tϕ

(1) +∇ϕ · ∇ϕ(1) + 2α = 0 ; ϕ
(1)
|t=0 = 0,

∂tα+∇ϕ · ∇α = −1

2
div
(
|a|2∇ϕ(1)

)
− α∆ϕ ; α|t=0 = 0.

This is a linear, homogeneous system, with zero initial data, so its solution is
identically zero.

To conclude this paragraph, we briefly outline the proof of Proposition 2.4. The
approach in [1] is the same as in [31], with slightly different estimates. For simplicity,
and in view of the above discussion, we assume aε0 = a0 independent of ε. We write
the solution ψε as ψε = aεeiϕ

ε/ε (exact formula), where we impose

(2.11)





∂tϕ
ε +

1

2
|∇ϕε|2 + f

(
|aε|2

)
= 0 ; ϕε|t=0 = ϕ0,

∂ta
ε +∇ϕε · ∇aε + 1

2
aε∆ϕε = i

ε

2
∆aε ; aε|t=0 = a0.

Note that both ϕε and aε depend on ε, because the right-hand side of the equation
for aε depends on ε, and because of the coupling between the two equations. Note
also that with this approach, one abandons the possibility of considering a real-
valued amplitude aε.

It is not hard to construct a solution to (2.11) in Zs, for s > d/2 + 2, and then
check that asymptotic expansions are available in Zs:

aε = a+ εa(1) +O
(
ε2
)

; ϕε = ϕ+ εϕ(1) +O
(
ε2
)
.

Back to ψε, this yields Proposition 2.4. We see that the general loss in the precision
(from O(ε2) in the initial data to O(ε) in the approximation for t > 0) is due to
the division of ϕε by ε. Note finally that even though a1 = 0, one has a(1) 6= 0: the
corrector a(1) solves a linear equation, with a purely imaginary (non trivial) source
term, and so a(1) ∈ iR is not trivial, while ϕ(1) = 0 since Re

(
aa(1)

)
= 0.

2.3.2. Higher order approximation and formal link with quantum hydrodynamics.
One can actually consider an asymptotic expansion to arbitrary order,

aε = a+ εa(1) + . . .+ εNa(N) +O
(
εN+1

)
,

ϕε = ϕ+ εϕ(1) + . . .+ εNϕ(N) +O
(
εN+1

)
, ∀N ∈ N.

For j > 1, the coefficient a(j) is given by a linear system for (ϕ(j), a(j)), with source
terms involving (ϕ(k), a(k))06k6j−1. In the case a0 ∈ R and a1 = 0, we know that

ϕ(1) = 0, and a(2) is given by

∂ta
(2) +∇ϕ · ∇a(2) + 1

2
a(2)∆ϕ+∇ϕ(2) · ∇a+ 1

2
a∆ϕ(2) =

i

2
∆a(1) ; a

(2)
|t=0 = 0.

We check that in the case aε0 = a0 ∈ R (which includes the case where Madelung
transform is used, a0 > 0), all the profiles a and a(2j), j > 1, are real-valued, while
a(2j+1), j > 0, are purely imaginary. Moreover, ϕ(2j+1) = 0 for all j ∈ N. This
is formally in agreement with (1.1): indeed, (1.1) suggests that φε and ρε have
asymptotic expansions of the form

(2.12) φε ≈ φ+ε2φ(2)+ . . .+ε2jφ(2j)+ . . . ; ρε ≈ ρ+ε2ρ(2)+ . . .+ε2jρ(2j)+ . . .
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On the other hand, we have

ρε = |aε|2 ≈
∣∣∣a+ εa(1) + . . .

∣∣∣
2

≈
(
a+ . . .+ ε2ja(2j) + . . .

)2
−
(
εa(1) + . . .+ ε2j+1a(2j+1) + . . .

)2
,

since the a(2j+1)’s are purely imaginary. This is in agreement with the second
formal asymptotics in (2.12). We can check similarly that (2.12) is in agreement
with the higher order generalization of (2.10), in view of the special properties of
the ϕ(j)’s and a(j)’s pointed out above.

2.4. Absence of vacuum before shocks.

Lemma 2.5. In Theorem 2.3, assume that ρ0(x) > 0 for all x ∈ Rd (absence of
vacuum). Then ρ > 0 on [0, Tmax)× Rd.

Proof. As in Section 2.2, we use the fact that on [0, Tmax), the equation for the
density is just an ordinary differential equation. Introduce the Jacobi determinant

Jt(y) = det∇yx(t, y),

where x(t, y) is given by (2.6). We have seen that Jt(y) > 0 for (t, y) ∈ [0, Tmax)×
Rd. Change the unknown ρ to r, with

r(t, y) = ρ (t, x(t, y)) Jt(y).

Then for 0 6 t < Tmax, the continuity equation is equivalent to: ∂tr = 0. Therefore,

ρ(t, x) =
1

Jt (y(t, x))
ρ0 (y(t, x)) ,

where x 7→ y(t, x) denotes the inverse mapping of y 7→ x(t, y). �

We infer:

Proposition 2.6. Under the assumptions of Theorem 2.3, assume that ρ0(x) > 0
for all x ∈ Rd (absence of vacuum). Let 0 < T < Tmax, and K be a compact set in
Rd. There exists ε(T,K) > 0 such that for 0 < ε 6 ε(T,K), |ψε| > 0 on [0, T ]×K.

Proof. Proposition 2.4 shows that

|ψε| = |a|+O(ε) in L∞ ([0, T ]× Rd
)
.

Note that the constant involved in this O(ε) depends on T in general. Recalling
that a =

√
ρ, Lemma 2.5 shows that

min
(t,x)∈[0,T ]×K

a(t, x) = c(T,K) > 0.

Now for 0 < ε 6 ε(T,K) ≪ 1,

||ψε| − |a|| 6 1

2
c(T,K) in L∞ ([0, T ]× Rd

)
,

and the result follows. �

In the case x ∈ Td, this shows that before the formation of shocks in the Euler
equation, and provided that ε is sufficiently small, the amplitude remains positive:
the right-hand side of (1.1) makes sense. This point was remarked initially in
[27]. Note that the result of [26] in the one-dimensional case x ∈ [0, 1] shows that
suitable boundary conditions lead to the existence of finite time blow-up for (1.1).
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Therefore, the above result is qualitatively sharp (qualitatively only, for it might
happen that the solution to (1.1) remains smooth longer than the solution to (2.4)).

Finally, we show that the compactness assumption in Proposition 2.6 can be
removed in the case of the Gross–Pitaevskii equation. As regards the nonlinear
Schrödinger equation on Rd, this issue seems much more delicate and will not be
addressed in this paper. Assume that the Gross–Pitaevskii equation is associated
with the boundary condition at infinity

|ψε(t, x)| −→
|x|→∞

1.

Such a condition is used frequently in physics, possibly with a stronger one, of the
form (see e.g. [35] and references therein)

ψε(t, x)− eiv
∞·x/ε −→

|x|→∞
0,

for some fixed asymptotic “velocity” v∞ ∈ Rd.

Now, as regards the Gross-Pitaevskii equation, putting together the continuity of
ψε over [0, T ]×Rd, the compactness of the time interval [0, T ] and Proposition 2.6,
we get

Corollary 2.7. Under the assumptions of Theorem 2.3, assume that ρ0(x) > 0
for all x ∈ Rd (absence of vacuum). Assume moreover that the Gross–Pitaevskii
equation is associated with the boundary condition at infinity2

|ψε(t, x)| −→
|x|→∞

1.

Let 0 < T < Tmax. There exist ε(T ), c(T ) > 0 such that

|ψε| > c(T ) on [0, T ]× Rd, for all 0 < ε 6 ε(T ).

2.5. Functional spaces associated to the Madelung transform. It is rather
easy to see that the answer to Question 2 is no, in general. Consider for ρ0 the
function in the Schwartz class

ρ0(x) = e−|x|2k , k ≥ 1.

At time t = 0, the quantum pressure (right-hand side of (1.1)) grows like |x|2k−1

hence the velocity vε has no chance to belong to Hs for general initial data in H∞.
Thus, working in Sobolev spaces for general initial data does not make sense for
(1.1), while the results in [31] show that it is a fairly reasonable framework to study
the semi-classical limit of (2.1).

On the other hand, like for the absence of vacuum, the answer to Question 3 is
positive, at least if we consider some special boundary conditions at infinity.

3. Solving the QHD system by a direct approach

In the present section, we describe an efficient method to solve directly the
hydrodynamic form of (2.1) given by (1.1), once performed the Madelung transform.
This method enables us to study the corresponding initial value problem for (1.1)
with data (v0, ρ0) such that (v0,∇ρ0) has a high order Sobolev regularity and ρ0
is positive and bounded away from zero. In addition to local-in-time well-posedness
results, we get (see Theorems 3.1 and 3.3 below) nontrivial lower bounds on the

2Note that this implies that there exists c > 0 such that ρ0(x) > c for all x ∈ Rd.



MADELUNG, GROSS–PITAEVSKII AND KORTEWEG 11

first appearance of a zero for the solution, which are of particular interest for the
study of long-wavelength asymptotics if the data are a perturbation of a constant
state of modulus one.

We here closely follow the approach that has been initiated in [8]. To help the
reader to compare the present results with those of the previous section however,
we keep on using the semi-classical scaling given by (2.1) (whereas ε = 1 in [8]).

The use of a suitable extended formulation for (1.1) and of weighted Sobolev
estimates will be the key to our approach. Let us stress that, recently, similar ex-
tended formulations have proved to be efficient in other contexts for both numerical
(see [21]) and theoretical purposes. As a matter of fact, in the last paragraph of
this section, we shall briefly explain how our approach based on such an extended
formulation carries over to the more complicated case of Korteweg fluids.

3.1. Solving the QHD system by means of an extended formulation. The
“improved” WKB method that has been described in the previous section amounts
to writing the sought solution ψε as:

ψε = aεeiϕ
ε/ε

for some complex valued function aε and real valued function ϕε. In this section,
we rather start from the Madelung transform

ψε =
√
ρεeiφ

ε

where
√
ρε = |ψε|,

then write

ψε = eiΦ
ε/ε with Φε = φε − i

ε

2
log ρε,

and consider the redundant system that is satisfied by both ρε and zε = ∇Φε =
vε + iwε with vε = ∇φε and wε = − ε

2ρε∇ρε.

In order to obtain the system for zε, we first differentiate the density equation
in (1.1). This yields

∂tw
ε +∇(vε · wε) = ε

2
∇ div vε.

Next, we notice that

ε2

2

∆
√
ρε√
ρε

= −ε
2
divwε +

1

2
|wε|2.

In consequence, the equation for vε rewrites

∂tv
ε + vε · ∇vε − 1

2
∇|wε|2 + ε

2
∇ divwε +∇f(ρε) = 0.

Of course, zε is a potential vector-field, hence ∇ div zε = ∆zε so that we eventually
get the following “extended” system for (ρε, zε):

(3.1)

{
∂tz

ε +
1

2
∇(zε · zε) +∇f(ρε) = i

ε

2
∆zε,

∂tρ
ε + div(ρεvε) = 0,

where we agree that a · b :=
d∑

j=1

ajbj for a and b in Cd.
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Let us now explain how Sobolev estimates may be derived for (ρε, zε) in the case
where ρε = 1 + bε for some bε going to 0 at infinity, and f(ρε) = ρε (to simplify).
The following computations are borrowed from [8]. For notational simplicity, we
omit the superscripts ε.

In order to get the basic energy estimate, we compute3:

d

dt

∫

Rd

(
(1 + b)|z|2 + b2

)
= 2

(∫

Rd

(1 + b)〈z, ∂tz〉
︸ ︷︷ ︸

I1

+

∫

Rd

b ∂tb

︸ ︷︷ ︸
I2

)
+

∫

Rd

∂tb |z|2
︸ ︷︷ ︸

I3

where the notation 〈a, b〉 =
d∑

j=1

Re aj Re bj + Im aj Im bj has been used in I1.

Further computations yield I1 = I1,1+ I1,2+ I1,3+ I1,4+ I1,5 and I2 = I2,1+ I2,2
with

I1,1 = −
∫
〈z,∇b〉, I2,1 = −

∫
b div v,

I1,2 = −
∫
b〈z,∇b〉, I2,2 = −

∫
b div(bv).

I1,3 =

∫
〈z, i ε

2
∆z〉,

I1,4 =

∫
b〈z, i ε

2
∆z〉,

I1,5 = −1

2

∫
ρ〈z,∇(z · z)〉,

Using obvious integrations by parts we readily get

I1,1 + I2,1 = 0, I1,2 + I2,2 = 0 and I1,3 = 0.

Therefore, integrating by parts in I1,4 also, we get

d

dt

∫ (
(1 + b)|z|2 + b2

)
= −

∫
ε〈z, i∇z · ∇b〉 − 2

∫
ρ〈z,∇z · z〉+

∫
∂tb |z|2.

For “general” functions b and z, the appearance of the terms ∇b and ∇z would
preclude any attempt to “close” the estimates. In our case however, as the algebraic
relation −ε∇b = 2ρw holds true, one may avoid this loss of one derivative for one
may write

−ε〈z, i∇z · ∇b〉 − 2ρ〈z,∇z · z〉 = −2ρ〈z,∇z · v〉.
Now, integrating by parts an ultimate time, we conclude that

d

dt

∫ (
ρ|z|2 + b2

)
= −

∫
ρv · ∇|z|2 +

∫
∂tb |z|2 = 0.

Hence,

∫ (
ρ|z|2 + b2

)
is a conserved quantity.

The same algebraic cancellations may be used for getting higher order Sobolev
(or Besov) estimates. Indeed consider an “abstract” pseudo-differential operator

3The method may seem uselessly complicated. However, the algebraic cancellations that are
going to be used remain the same when estimating higher order Sobolev norms.
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A(D) (for instance a differential, a fractional derivatives or a spectral localization
operator). Then one may write

d

dt

∫ (
(1 + b)|A(D)z|2 + (A(D)b)2

)

= 2

(∫
(1 + b)〈A(D)z, ∂tA(D)z〉

︸ ︷︷ ︸
I1

+

∫
A(D)b ∂tA(D)b

︸ ︷︷ ︸
I2

)
+

∫
∂tb |A(D)z|2

︸ ︷︷ ︸
I3

.

We notice that I1 = I1,1 + I1,2 + I1,3 + I1,4 + I1,5 and I2 = I2,1 + I2,2 with

I1,1 = −
∫
〈A(D)z,∇A(D)b〉, I2,1 = −

∫
A(D)b divA(D)v,

I1,2 = −
∫
b〈A(D)z,∇A(D)b〉, I2,2 = −

∫
A(D)bA(D) div(bv).

I1,3 =

∫
〈A(D)z, i

ε

2
∆A(D)z〉,

I1,4 =

∫
b〈A(D)z, i

ε

2
∆A(D)z〉,

I1,5 = −1

2

∫
ρ〈A(D)z, A(D)∇(z · z)〉,

As above, obvious integrations by parts ensure that I1,1 + I2,1 = 0 and I1,3 = 0.
Next, using again integrations by parts, we notice that

I1,2 + I2,2 =

∫
A(D)b div[b, A(D)]v.

Finally, integrating by parts in I1,4 and using the fact that −ε∇b = 2ρw yields

I1,4 =

∫
〈A(D)z, i(∇A(D)z) · (ρw)〉,

and we have

I1,5 = −
∫
〈A(D)z, A(D)∇z · (ρv+ iρw)〉+

∫
ρ〈A(D)z,∇A(D)z · z−A(D)(∇z · z)〉.

Therefore, using the fact that ∂tρ+ div(ρv) = 0, we conclude that

2(I1,4 + I1,5) + I3 = 2

∫
ρ〈A(D)z,∇A(D)z · z −A(D)(∇z · z)〉.

Putting all the above equalities together, we thus get

1

2

d

dt

∫ (
ρ|A(D)z|2 + (A(D)b)2

)
=

∫
A(D)b div[b, A(D)]v

+

∫
ρ〈A(D)z,∇A(D)z · z −A(D)(∇z · z)〉.

If, say, A(D) is a fractional derivatives operator, then one may show by means of
classical commutator estimates that the right-hand side may be bounded by

C‖ρ‖L∞‖(Db,Dz)‖L∞‖(A(D)b, A(D)z)‖2L2 .

Therefore,

d

dt

∫ (
ρ|A(D)z|2 + (A(D)b)2

)
6 C‖ρ‖L∞‖(Db,Dz)‖L∞‖(A(D)b, A(D)z)‖2L2 .
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Denoting by E2
A(t) the left-hand side and resorting to Gronwall lemma, we thus get

(3.2) EA(t) 6 EA(0) exp

(
C

∫ t

0

‖ρ‖L∞‖ρ−1‖L∞‖(Db,Dz)‖L∞ dτ

)
.

It is now clear that whenever Db and Dz are bounded in L1([0, T ];L∞) and ρ is
bounded from below and from above then we get a control of A(D)b and A(D)z in
L∞([0, T ];L2).

Taking A(D) = Λs and performing a time integration, (3.2) implies that

(3.3) ‖(b, z)(t)‖Hs ≤ C

(
‖(b0, z0)‖Hs +

∫ T

0

‖(Db,Dz)‖L∞‖(b, z)(t)‖Hs dt

)

for some constant C = C(s, d, ‖ρ±1‖L∞).

So assuming that s > 1 + d/2 and using Sobolev embedding and Gronwall’s
inequality, one may conclude by elementary methods to the following statement.

Theorem 3.1. Let s > 1 + d/2. Assume that ρ0 = 1+ b0 for some b0 ∈ Hs+1(Rd)
such that 1 + b0 > 0, and that v0 ∈ Hs(Rd). Then there exists a time

T > T0 :=
C

‖b0‖Hs + ε‖∇b0‖Hs + ‖v0‖Hs+1

with C = C(s, d, ‖ρ±1
0 ‖L∞)

such that (1.1) has a unique solution (vε, ρε) on [0, T ]×Rd with ρε = 1+bε bounded
away from 0 and (vε, bε) ∈ C([0, T ];Hs ×Hs+1) ∩ C1([0, T ];Hs−2 ×Hs−1).

Remark 3.2. Combining basic energy estimates for the wave equation with the
above result, one may control the discrepancy between (b, v) and the solution to
the acoustic wave equation

(3.4)

{
∂tv̇ +∇ḃ = 0 ; v̇|t=0 = v0,

∂tḃ+ div v̇ = 0 ; ḃ|t=0 = b0.

We have, up to time T0,

‖(vε − v̇, bε − ḃ)(t)‖Hs−2 ≤ C
(
t‖(b0, u0)‖2Hs+1×Hs + ε2t‖(b0, u0)‖Hs+1×Hs

)
.

Note also that (3.3) provides a blow-up criterion involving the W 2,∞ norm of
b and the Lipschitz norm of v. In particular, this implies that for given data in
Hs (s > 1 + d/2), the lifespan in Hs is the same as the lifespan in Hs′ , for any
1 + d/2 < s′ < s.

3.2. Dispersive properties and improved lower bounds for the lifespan.
The system for (b, v) reads

(3.5)





∂tv + v · ∇v +∇b = ε2

4
∇
(1
ρ
∆b− 1

2ρ2
|∇b|2

)
,

∂tb+ div v = − div(bv).

Therefore the linearized system about (0, 0) is not (3.4) but rather

(3.6)





∂tv̇ +∇ḃ = ε2

4
∇∆ḃ,

∂tḃ+ div v̇ = 0.

A straightforward spectral analysis (based on the Fourier transform) shows that
the above linear system behaves as the wave equation with speed 1 for frequencies
small with respect to 1/ε, and as the Schrödinger equation with coefficient ε/2 in
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the high frequency regime. In fact, in dimension d > 2, it is possible to prove
Strichartz inequalities (related to the wave and Schrödinger equations for low and
high frequencies, respectively) for (3.6). In the case of small data (b0, v0), these
inequalities allow to improve the lower bound for the lifespan (see also [22] where a
similar idea has been used in the context of the incompressible limit for compressible
flows). For the sake of simplicity, let us just state the result in dimension d > 4
(the reader is referred to [8] for the case d = 2, 3 and for more details concerning
the approximation of the solution by (3.6)):

Theorem 3.3. Under the assumptions of Theorem 3.1 with s > 2 + d/2, then the
lifespan T may be bounded from below by

T1 :=
C

(‖b0‖Hs + ε‖∇b0‖Hs + ‖v0‖Hs+1)2
,

and the discrepancy between (b, v) and the solution (ḃ, v̇) to (3.6) with the same data
may be bounded in terms of t and of the data, up to time T1.

3.3. Extended formulation for Korteweg fluids. Compared to the “improved”
WKB method, the main drawback of the direct approach based on an extended
formulation for solving (1.1) is that vanishing solutions cannot be handled.

On the other hand, the direct method is robust enough so as to be used to
solve locally more complicated models such as the following system governing the
evolution of inviscid capillary fluids:

(3.7)

{
∂tv + v · ∇v +∇f(ρ) = ∇

(
κ(ρ)∆ρ+

1

2
κ′(ρ)|∇ρ|2

)
,

∂tρ+ div(ρv) = 0.

Physically, the function κ correspond to the capillary coefficient. Obviously, Sys-
tem (1.1) is included in (3.7) (take κ(ρ) = ε2/(4ρ)). In the general case, introducing

a(ρ) =
√
ρκ(ρ), w = −

√
κ(ρ)

ρ
∇ρ and z = v + iw,

we get the following extended formulation for (3.7):

(3.8)

{
∂tz + v · ∇z + i∇z · w +∇f(ρ) = i∇(a(ρ) div z),

∂tρ+ div(ρv) = 0.

Note that in the potential case (namely curl z = 0) then v ·∇z+ i∇z ·w = 1
2∇(z ·z).

Note also that in the general case, the second order term∇(a(ρ) div z) is degenerate.
The case of System (1.1) is particularly simple inasmuch as a is the constant

function ε/2 and ∇ div z = ∆z.
For general capillarity coefficients, one may prove a local well-posedness result,

similar to that of Theorem 3.1. This has been done in [7]. The proof relies on the
use of weighted Sobolev estimates, with a weight depending both on ρ and on the
order of differentiation.

As for the QHD system, we expect the potential part of the solution to Sys-
tem (3.7) to have dispersive properties in dimension d > 2. The general situation
is much more complicated however, because those properties are related to those
of the quasilinear Schrödinger equation. To our knowledge, this aspect has been
investigated only very recently in a work by C. Audiard [5] that concerns potential
flows.
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4. Asymptotics for the Gross–Pitaevskii equation

This section is concerned with the existence and asymptotics of traveling wave
solutions for the Gross-Pitaevskii equation

(4.1) iψt +∆ψ + (1 − |ψ|2)ψ = 0,

which may be obtained from (2.1) (with f(r) = r − 1), up to the factor 1
2 , after

performing the change of unknown:

ψε(t, x) = ψ(ε−1t, ε−1x).

Equation (4.1) is associated to the Ginzburg-Landau energy (or Hamiltonian):

(4.2) H(ψ) =
1

2

∫

Rd

|∇ψ|2 + 1

4

∫

Rd

(1 − |ψ|2)2.

As a consequence, in contrast with the cubic NLS equation, the natural energy
space for (4.1) is not H1(Rd) but rather

E(Rd) =
{
ψ ∈ H1

loc(R
d), s.t. H(ψ) < +∞

}
·

As pointed out before, for H(ψ) to be finite, |ψ| must, in some sense, tend to
1 at infinity. This “nontrivial” boundary condition provides (4.1) with a richer
dynamics than in the case of null condition at infinity which, for a defocusing NLS
type equation, is essentially governed by dispersion and scattering. For instance,
in nonlinear optics, the “dark solitons” are localized nonlinear waves (or “holes”)
which exist on a stable continuous wave background. The boundary condition
|ψ(t, x)| → 1 at infinity is due to this nonzero background. In the context of
superfluids, 1 is the density of the fluid at infinity.

Similarly to the energy, the momentum

P(ψ) =
1

2

∫

Rd

〈i∇ψ , ψ〉,

is formally conserved. This quantity is well defined for ψ ∈ H1(Rd) but not for
solutions with a finite Ginzburg-Landau energy. A major difficulty in the theory of
the Gross-Pitaevskii equation is to find an appropriate definition of the momentum
which leads to a conserved quantity. A natural definition would be

P(ψ) =
1

2

∫

Rd

〈i∇ψ , ψ − 1〉,

but this would require for instance that ψ − 1 ∈ L2(Rd).
In any case we will denote by p the (scalar) first component of P which will play

an important role in this section.

Recall that the use of the Madelung transform4

ψ = ̺eiφ,

leads to the following hydrodynamic form of the equation for ̺ and v = 2∇φ :

(4.3)




∂tv + v · ∇v + 2∇̺2 = 2∇

(
∆̺

̺

)
,

∂t̺
2 + div (̺2v) = 0.

4In this section, we use the normalization of [9, 10], instead of ψ =
√
ρeiφ.
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As pointed out before, if we discard the right-hand side of the first equation and
look at ̺2 as the density of a fluid with velocity v, then the above system coincides
with the Euler equations for a compressible fluid with pressure law P (ρ) = ρ2. In
particular, the speed of sound waves near the constant solution v = 1 is given by

cs =
√
2.

As we will see below, this sound speed (the value and relevance of which is not so
obvious if looking at the original Gross-Pitaevskii equation (4.1)), plays an impor-
tant role in various aspects of the dynamics of (4.1). The value of cs may be also
found by neglecting the quantum pressure term and linearizing for a perturbation
ψ = (1 + ˜̺) exp(iφ̃). This leads to the wave equation:

∂2t ˜̺− 2∆˜̺ = 0.

Note that if the quantum pressure is included (as in (3.6)) then the linearization
reads:

∂2t ˜̺− 2∆˜̺−∆2 ˜̺ = 0,

which, roughly, is the factorization of two linear Schrödinger operators.

The Madelung transform and the hydrodynamic form of (4.1) turn out to be of
great interest to study the Gross-Pitaevskii equation with finite Ginzburg–Landau
energy since the solution is expected to have very few “vortices” (or cancellations).
Even in the “Euler limit” that has been presented in Section 2, one can use it
outside the vortices ([14, 15]) to study the traveling waves of sufficiently small
velocities. Let us also stress that the hydrodynamic form of the (one dimensional)
Gross–Pitaevskii equation is needed in order to define a generalized momentum in
the context of the orbital stability of the black solitons (such solitary waves have
zeroes. . . ); see [11].

In the present section, we shall concentrate on the transonic limit of solutions
to the Gross-Pitaevskii equation. We shall first present a result pertaining to the
asymptotics of traveling waves with speed c tending to the sound speed cs, in the
case d = 2, in connexion with the (KP I) equation (see below). Next, for the one-
dimensional case, we give an accurate description of the transonic long wave limit
of (4.1) in terms of solutions to the KdV equation.

4.1. The transonic limit of finite energy traveling waves. Finite energy trav-
eling wave solutions of (4.1) are solutions of the form ψ(x, t) = θ(x1−ct, x⊥) where
H(θ) < +∞ and x⊥ denotes the transverse variables x2, · · · , xd. The profile θ
satisfies the following equation:

(4.4) ic∂1θ +∆θ + θ(1− |θ|2) = 0.

A suitable functional setting for the study of such traveling waves is the space:

W (Rd) = {1}+ V (Rd),

with

V (Rd) = {ψ : Rd 7→ C, (∇ψ,Reψ)∈L2(Rd)2, Imψ∈L4(Rd), ∇Reψ ∈ L4/3(Rd)}·
Indeed, given that W (Rd) is a subset of the energy space E(Rd), for any data in
W (Rd), Equation (4.1) admits a unique solution. In addition, one may show that
this solution stays inW (Rd) (see [28, 29]). Furthermore, the quantity 〈i∂1ψ, ψ−1〉 is
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integrable whenever ψ ∈W (Rd), so that the scalar momentum p(ψ) is well-defined.
This is a consequence of the identity

(4.5) 〈i∂1ψ, ψ − 1〉 = ∂1(Reψ) Imψ − ∂1(Imψ)(Reψ − 1),

and various Hölder’s inequalities.
So finally, H and p are continuous on W (Rd) and all finite energy subsonic

solutions to (4.4) have to belong to W (Rd). Moreover, if ψ ∈W (Rd) may be lifted
as ψ = ̺ exp(iφ) then

(4.6) p(ψ) =
1

2

∫

Rd

〈i∂1ψ , ψ − 1〉 = 1

2

∫

Rd

(1− ̺2)∂1φ.

Notice that for maps which may be lifted, with ̺ > 1
2 , the last integral makes sense,

even if we assume that ψ only belongs to the energy space E(Rd).

To simplify the presentation, we shall focus on the simpler case d = 2. We shall
denote x = x1 and y = x⊥ = x2.

It is proven in [9] that, for any p > 0, the following minimization problem

(4.7) Hmin(p) = inf{H(ψ), ψ ∈W (R2), p(ψ) = p},
has a solution up which is a nontrivial traveling wave. We call it a ground state.

In the rest of this subsection, we focus on the asymptotics p going to 0 for up,
in connexion with the Kadomtsev–Petviashvili I (KP I) equation

ut + uux + uxxx − ∂−1
x uyy = 0,

where the antiderivative is defined in Fourier variables by ∂̂−1
x f(ξ) = 1

iξ f̂(ξ).

The following proposition states that the corresponding speed c(up) tends to cs
and gives the first term in the asymptotic expansion for both Hmin(p) and c(up).

Proposition 4.1. There exist positive constants p1, K0 and K1 such that we have
the asymptotic behaviors

(4.8)
48

√
2

S2
KP

p
3 −K0p

4 6
√
2p−Hmin(p) 6 K1p

3, ∀0 6 p 6 p1,

where SKP stands for the action of the KP I ground state N of velocity 1, that is

(4.9) SKP =
1

2

∫

R2

(∂xN)2 +
1

2

∫

R2

(∂−1
x (∂yN))2 − 1

6

∫

R2

N3 +
1

2

∫

R2

N2.

Moreover, the map up has no zeroes and there exist some positive constants p2,
K2 and K3 such that

(4.10) K2p
2 6

√
2− c(up) 6 K3p

2, ∀0 6 p < p2.

Actually, it was established in [9] that if ψ is a finite energy traveling wave of
sufficiently small energy, then

1

2
< |ψ| < 1.

This implies that small energy traveling waves have no zeroes and thus can be
lifted according to the Madelung transformation. This is in particular the case of
minimizers up corresponding to small enough values of p.
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The transonic limit to KP I for traveling waves is obtained through the following
change of scales:

x̃ = ǫ(ψ)x, ỹ =
ǫ(ψ)2√

2
y.

We then set

η = 1− |ψ|2, Nψ(x, y) =
6

ǫ(ψ)2
η

(
x

ǫ(ψ)
,

√
2y

ǫ(ψ)2

)
.

It turns out that Nψ converges to a traveling wave solution of the (differentiated)
KP I equation 5 as ǫ(ψ) → 0, that is it approximately solves the equation

(4.11) − wxx − wyy + wxxxx + (wwx)x = 0.

More precisely, denoting Np = 1 − |up|2 where up = |up|eiφp is a minimizer of the
energy with fixed momentum p, and

Θp(x, y) =
6
√
2

ǫp
φp

(
x

ǫp
,

√
2y

ǫ2p

)
,

we have (see [10]):

Theorem 4.2. There exist a subsequence (pn)n∈N tending to 0, as n → +∞, and
a ground state w of the KP I equation such that both Npn

and Θpn
tend to w in

W k,q(R2) (for any k ∈ N and q ∈ (1,+∞]) as n goes to +∞.

Remark 4.3. Those results on the transonic limit of solitary waves have been
recently extended in [19] to the three-dimensional case with also general nonlinear-
ities (see also [39] for other existence results). The additional serious difficulty is
that the Gross–Pitaevskii ground states solutions are no longer global minimizers
of the energy with fixed momentum and thus not expected to be stable.

4.2. The unsteady transonic long wave limit of the Gross–Pitaevskii equa-
tion. The Madelung transform is also crucial to derive and justify the transonic
(weak amplitude, long wave) limit of the Gross–Pitaevskii equation.

With the scaling which is used in this section and for data which are perturba-
tions of order ε2 of a constant state with modulus 1, Theorem 3.1 and the remark
that follows ensure that the linear wave equation gives a good approximation of the
solution for t = o(ε−3). In the present paragraph, we describe what happens at next
order. We shall see in particular that, up to times of order ε−3, the Korteweg–de
Vries (KdV) equation

ut + uux + uxxx = 0,

gives an accurate approximation of the one-dimensional Gross-Pitaevskii equation

(4.12) i∂tψ + ∂xxψ + (1− |ψ|2)ψ = 0

with data which are small long-wave perturbations of the constant one, namely
ψ = ̺eiφ with

(4.13) ̺0 =

(
1− ε2

6
N0
ε (εx)

)1/2

, φ0 =
ε

6
√
2
Θ0
ε(εx),

5Actually, to a ground state solution of the KP I equation, that is a minimizer of the Hamil-
tonian with fixed L2 norm.
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for 0 < ε ≪ 1, and N0
ε and W 0

ε = ∂xΘ
0
ε are uniformly bounded in some Sobolev

space Hk(R) for sufficiently large k.
We refer to [12, 13] for a detailed analysis and will only summarize the limit to

(long) waves propagating in two directions and following a coupled system of KdV
equations.

Recall that the one-dimensional Gross–Pitaevskii equation (4.12) is globally well
posed in the Zhidkov type spaces Y k,

Y k(R) =
{
ψ ∈ L1

loc(R;C), 1− |ψ|2 ∈ L2(R), ∂xψ ∈ Hk−1(R)
}
,

for any integer k > 1.
Moreover the Ginzburg-Landau energy H(ψ(t)) is conserved by the flow and,

provided H(ψ0) <
2
√
2

3 , the corresponding solution ψ(t) does not vanish so that one
may write ψ = ̺ exp(iφ), for some continuous function φ.

We consider data as in (4.13) with small enough ε and assume in addition that

‖N0
ε ‖M(R) + ‖∂xΘ0

ε‖M(R) < +∞.

Here, ‖ · ‖M(R) denotes the norm defined on L1
loc(R) by

‖f‖M(R) = sup
(a,b)∈R2

∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣.

We next introduce the slow coordinates

x− = ε(x+
√
2t), x+ = ε(x−

√
2t), and τ =

ε3

2
√
2
t.

The definition of the coordinates x− and x+ corresponds to reference frames trav-
eling to the left and to the right, respectively, with speed

√
2 in the original coor-

dinates (t, x). We define accordingly the rescaled functions N±
ε and Θ±

ε as follows:

(4.14)





N±
ε (τ, x±) =

6

ε2
η(t, x) =

6

ε2
η

(
2
√
2τ

ε3
,
x±

ε
± 4τ

ε3

)
with η = 1− ̺2,

Θ±
ε (τ, x

±) =
6
√
2

ε
φ(t, x) =

6
√
2

ε
φ

(
2
√
2τ

ε3
,
x±

ε
± 4τ

ε3

)
.

Setting

(4.15)





U−
ε (τ, x−) =

1

2

(
N−
ε (τ, x−) + ∂x−Θ−(τ, x−)

)
,

U+
ε (τ, x+) =

1

2

(
N+
ε (τ, x+)− ∂x+Θ+(τ, x+)

)
,

the main result is (see [13] for details):

Theorem 4.4. Let k > 0 and ε > 0 be given. Assume that the initial data ψ0

belongs to Y k+6(R) and satisfies the assumption

‖N0
ε ‖M(R)+‖∂xΘ0

ε‖M(R)+‖N0
ε ‖Hk+5(R)+ε‖∂k+6

x N0
ε ‖L2(R)+‖∂xΘ0

ε‖Hk+5(R) 6 K0.

Let U− and U+ denote the solutions to the Korteweg–de Vries equations

∂τU− + ∂3x−U− + U−∂x−U− = 0,

and

∂τU+ − ∂3x+U+ − U+∂x+U+ = 0,
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with the same initial value as U−
ε and U+

ε , respectively. Then, there exist positive
constants ε1 and K1, depending only on k and K0, such that

‖U−
ε (τ, ·)− U−(·, τ)‖Hk(R) + ‖U+

ε (τ, ·)− U+(·, τ)‖Hk(R) 6 K1ε
2 exp (K1|τ |) ,

for any τ ∈ R provided ε 6 ε1.

We now turn to the two (or higher) dimensional case, which is studied in [20]
for a general nonlinear Schrödinger equation of the form similar to (4.1)

i∂tψ +∆ψ = f(|ψ|2)ψ,
where f is smooth and satisfies f(1) = 0, f ′(1) > 0.

One also uses a “weakly transverse transonic” scaling, namely

T = cε3t, X1 = ε(x1 − ct), Xj = ε2xj , j = 2, · · · , d.
After performing the ansatz

ψε(t,X) =
(
1 + ε2Aε(t,X)

)
exp(iεφε(t,X)),

the hydrodynamic reformulation of the Gross–Pitaevskii equation is used to recast
the problem as a singular limit for an hyperbolic system in the spirit of [31]. Then
smooth Hs solutions are proven to exist on an interval independent of the small
parameter ε. Passing to the limit by a compactness argument yields the convergence
of the solutions to that of the KP-I equation. Note however that this method
does not provide a convergence rate with respect to ε, contrary to the KdV case
considered above.

In comparison, for such data, Theorem 3.3 would ensure that the linear system
(3.6) gives a good description of the solution only for times that are o(ε−3) (see the
introduction of [8] for more details).

5. Global existence of weak solutions to a quantum fluids system

We aim at providing an elementary proof of the result by P. Antonelli and
P. Marcati in [3, 4] concerning global finite energy weak solutions to the QHD
system. Here is the statement:

Theorem 5.1. Let the initial data (ρ0,Λ0) ∈ W 1,1 × L2 be “well-prepared” in the
sense that there exists some wave function ψ0 ∈ H1 such that

ρ0 = |ψ0|2 and J0 :=
√
ρ0Λ0 = Im(ψ̄0∇ψ0).

Assume that f(r) = rσ for some integer σ such that W 1,1(Rd) →֒ Lσ+1(Rd).
There exist some vector-field Λ ∈ L∞(R;L2) and some nonnegative function

ρ ∈ L∞(R;L1 ∩Lσ+1) with ∇√
ρ ∈ L∞(R;L2) such that the following system holds

true in the distributional sense6:

(5.1)





∂tρ+ div J = 0,

∂tJ + div (Λ⊗ Λ) +∇(P (ρ)) =
1

4
∆∇ρ− div (∇√

ρ⊗∇√
ρ),

∂jJ
k − ∂kJ

j = 2Λk∂j
√
ρ− 2Λj∂k

√
ρ for all (j, k) ∈ {1, · · · , d}2,

(ρ, J)|t=0 = (ρ0, J0),

6In the smooth non-vanishing case, the right-hand side of the second equation coincides with
that of the velocity equation multiplied by ρ in (1.1) with ε = 1, and the third equation just
means that there exists some function φ such that J = ρ∇φ.
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with J :=
√
ρΛ and P (ρ) := ρf(ρ)− F (ρ) with F (ρ) =

∫ ρ
0
f(ρ′) dρ′.

In addition, the energy
∫

Rd

(1
2
|Λ|2 + 1

2
|∇√

ρ|2 + F (ρ)
)

is conserved for all time.

Proof. Let us first prove the statement in the smooth case, namely we assume that
the data ψ0 is in Hs for some large enough s. It is well known that

(5.2) i∂tψ +
1

2
∆ψ = f

(
|ψ|2

)
ψ ; ψ|t=0 = ψ0

has a unique solution ψ in C(R;Hs) whenever s > 1 (see e.g. [18, 36, 44]) and that

(5.3) ∀t ∈ R,

∫

Rd

(
1

2
|∇ψ(t)|2 + F

(
|ψ(t)|2

))
=

∫

Rd

(
1

2
|∇ψ0|2 + F

(
|ψ0|2

))
.

Let us set ρ := |ψ|2 and

(5.4) φ(x) :=

{
|ψ(x)|−1ψ(x) if ψ(x) 6= 0,

0 if ψ(x) = 0.

We claim that

(5.5) ∇√
ρ = Re(φ̄∇ψ) a. e.

Indeed, for ε > 0, let us set φε := ψ/
√
|ψ|2 + ε2. Then (φε) converges pointwise to

φ and an easy computation shows that

(5.6) φ̄εψ−→
ε→0

√
ρ uniformly.

Next, we compute

(5.7) ∇(φ̄εψ) = Re(φ̄ε∇ψ) + Re(ψ∇φ̄ε).
The first term in the right-hand side converges pointwise to Re(φ̄∇ψ) hence in L1

loc

owing to Lebesgue’s theorem as it is bounded by |∇ψ|.
As for the last term, we have

Re(ψ∇φ̄ε) =
ε2

(ε2 + |ψ|2)3/2 Re(ψ̄∇ψ).

It is clear that the right-hand side converges pointwise to 0 and is bounded by |∇ψ|.
Hence it also converges to 0 in L1

loc.
So finally, putting these two results together with (5.6) and (5.7), one may con-

clude to (5.5).

Let Λ := Im(φ̄∇ψ) and J :=
√
ρΛ.We claim that (ρ,Λ, J) satisfies (5.1). Indeed,

from (5.2), we see that

∂t(|ψ|2) = 2Re(ψ̄∂tψ) = − Im(ψ̄∆ψ) = − Imdiv (ψ̄∇ψ),
hence

(5.8) ∂tρ+ div J = 0.

Next, we compute

∂jJ
k − ∂kJ

j = Im
(
∂j(ψ̄∂kψ)− ∂k(ψ̄∂jψ)

)
= 2 Im

(
∂jψ̄∂kψ

)
.
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Recall (see e.g. Theorem 6.19 in [34]) that

(5.9) ∇ψ = 0 a. e. on ψ−1({0})
whenever ψ is locally in W 1,1.

Therefore, given that |φ| = 1 on ψ−1(C \ {0}), one may write a. e.

Im
(
∂j ψ̄∂kψ

)
= Im

(
φ∂jψ̄ φ̄∂kψ

)
= Re(φ∂j ψ̄) Im(φ̄∂kψ) + Re(φ̄∂kψ) Im(φ∂jψ̄).

So we eventually get

(5.10) ∂jJ
k − ∂kJ

j = 2∂j
√
ρ Λk − 2∂k

√
ρ Λj .

Next, we compute

∂tJ = Im
(
∂tψ̄∇ψ + ψ̄∇∂tψ

)
.

Hence, using the equation satisfied by ψ, we get

∂tJ =
1

2
Re
(
ψ̄∇∆ψ −∆ψ̄∇ψ

)
︸ ︷︷ ︸

A

+Re
(
f(|ψ|2)ψ̄∇ψ − ψ̄∇(f(|ψ|2)ψ)

)
︸ ︷︷ ︸

B

.

If ψ is C1 and the function f has a derivative at every point of R+, then straight-
forward computations show that

(5.11) B = −ρf ′(ρ)∇ρ = −∇(P (ρ)).

Next, we see that (still in the smooth case)

∇∆|ψ|2 = 4Re
(
∇2ψ : ∇ψ̄

)
+ 2Re

(
∇ψ∆ψ̄

)
+ 2Re

(
ψ̄∇∆ψ

)
.

Hence

A =
1

2
∇∆|ψ|2 − 2Re

(
∆ψ̄∇ψ

)
− 2Re

(
∇2ψ : ∇ψ̄

)
.

So we get

(5.12)
1

2
A =

1

4
∇∆|ψ|2 − div Re(∇ψ̄ ⊗∇ψ).

Now, using again (5.9), one may write at almost every point of Rd,

Re(∇ψ̄ ⊗∇ψ) = Re(φ∇ψ̄ ⊗ φ̄∇ψ),
= Re(φ̄∇ψ)⊗ Re(φ̄∇ψ) + Im(φ̄∇ψ)⊗ Im(φ̄∇ψ).

Therefore, we have

(5.13) Re(∇ψ̄ ⊗∇ψ) = ∇√
ρ⊗∇√

ρ+ Λ⊗ Λ.

Putting this together with (5.11) and (5.12), one may conclude that

(5.14) ∂tJ + div (Λ⊗ Λ) +∇(P (ρ)) =
1

4
∆∇ρ− div (∇√

ρ⊗∇√
ρ).

Of course, as owing to (5.9)

(5.15) |∇ψ|2 = (Re(φ̄∇ψ))2 + (Im(φ̄∇ψ))2 = |∇√
ρ|2 + |Λ|2 a. e.,

the energy equality for ψ recasts in

(5.16)

∫

Rd

(1
2
|Λ(t)|2+1

2
|∇
√
ρ(t)|2+F (ρ(t))

)
=

∫

Rd

(1
2
|Λ0|2+

1

2
|∇√

ρ0|2+F (ρ0)
)
.

This completes the proof in the smooth case.
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Let us now treat the rough case where ψ0 belongs only to H1. Then we fix some
sequence (ψ0,n)n∈N of functions in Hs (with s large) converging to ψ0 in H1. Let
us denote by ψn the solution of (5.2) in C(R;Hs) corresponding to the data ψ0,n,
and by ψ ∈ C(R;H1) the solution to (5.2) with data ψ0.

From the first part of the proof, we know that there exists some sequence (φn)n∈N

of functions with modulus at most 1 such that if we set Λn := Im(φ̄n∇ψn), ρn :=
|ψn|2 and Jn :=

√
ρnΛn then

∇√
ρn = Re(φ̄n∇ψn) in L2,

and (ρn,Λn, Jn) satisfies (5.1) with data (ρ0,n, J0,n), together with the energy equal-
ity

∫

Rd

(1
2
|Λn(t)|2 +

1

2
|∇
√
ρn(t)|2 + F (ρn(t))

)
(5.17)

=

∫

Rd

(1
2
|Λ0,n|2 +

1

2
|∇√

ρ0,n|2 + F (ρ0,n)
)
.

We now have to prove the convergence of (ρn,Λn, Jn) to some solution (ρ,Λ, J) of
(5.1) satisfying the energy equality.

On the one hand, standard stability estimates (based on Strichartz inequalities)
guarantee that

(5.18) ψn −→ ψ in L∞
loc(R;H

1).

On the other hand, because (φn)n∈N is bounded by 1, it converges (up to extraction)
in L∞ weak * to some function φ such that ‖φ‖L∞ 6 1. As ∇ψn converges strongly
to ∇ψ in L2, this implies that

(5.19) φ̄n∇ψn ⇀ φ̄∇ψ in L2.

In turn, as obviously
√
ρn → √

ρ in L2 and as ∇√
ρn = Re(φ̄n∇ψn), we deduce

that

∇√
ρ = Re(φ̄∇ψ) and ∇√

ρn ⇀ ∇√
ρ in L2.

Given that Λn = Im(φ̄n∇ψn), (5.19) also ensures that

Λn ⇀ Λ := Im(φ̄∇ψ) in L2.

In order to establish that strong convergence in L2 holds true, it suffices to show
that (up to an omitted extraction)

(5.20) ‖∇√
ρn‖L2 → ‖∇√

ρ‖L2 and ‖Λn‖L2 → ‖Λ‖L2.

On the one hand, the weak convergence ensures that

‖∇√
ρ‖L2 6 lim inf ‖∇√

ρn‖L2 and ‖Λ‖L2 6 lim inf ‖Λn‖L2;

on the other hand, given that (∇ψn)n∈N converges strongly to ∇ψ in L2 and that
(5.15) holds true for ψ and ψn, we may write

‖∇√
ρ‖2L2 + ‖Λ‖2L2 = ‖∇ψ‖2L2 ,

= lim
n→+∞

‖∇ψn‖2L2 ,

= lim
n→+∞

(
‖∇√

ρn‖2L2 + ‖Λn‖2L2

)
,

>
(
lim inf ‖∇√

ρn‖L2

)2
+
(
lim inf ‖Λn‖L2

)2
.
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Therefore (5.20) is satisfied. As a conclusion, we thus have established that

√
ρn → √

ρ in H1 and Λn → Λ in L2.

Of course, this implies that Jn → J :=
√
ρΛ in L1 so it is easy to pass to the limit

in (5.1) and in the energy equality (5.16). The details are left to the reader. �

Appendix A. Conservation laws

In this Appendix we review conservations laws for the nonlinear Schrödinger,
QHD and compressible Euler equations. Even though most of the results are clas-
sical (as concerns the Schrödinger equation, they may be found in the textbooks
[43, 44] for instance; links between Schrödinger and Euler conservation laws may be
found in [16]), we believe the relationships between the aforementioned equations
to be of interest. In addition, those conservation laws are still meaningful for the
less classical framework of general Korteweg fluids.

A.1. The case of Schrödinger, QHD and compressible Euler equations.
For the time being, we consider the following system

(A.1)




∂tv + v · ∇v +∇f (ρ) = ε2

2
∇
(
∆
(√
ρ
)

√
ρ

)
; v|t=0 = v0,

∂tρ+ div (ρv) = 0 ; ρ|t=0 = ρ0,

which is the QHD system if ε > 0, and the compressible Euler equation if ε = 0,
and the nonlinear Schrödinger equation:

(A.2) iε∂tψ +
ε2

2
∆ψ = f(|ψ|2)ψ ; ψ|t=0 = ψ0.

Recall that for ε > 0, one may pass formally from (A.2) to (A.1) by setting

ψ =
√
ρ eiφ/ε and v = ∇φ.

In what follows, the function f is assumed to be continuous on R+ and, say, C1

on (0,+∞[, standard cases being f(r) = rσ and f(r) = r − 1. We denote by F the
anti-derivative of f which vanishes at 0, and set P (ρ) = ρf(ρ) − F (ρ). As pointed
out before, from a physical viewpoint, P is the pressure.

The first part of the appendix aims at listing (and deriving formally) the classical
conservation laws for (A.2) and (A.1).

Phase invariance. For every α ∈ R, one has

ψ solution of (A.2) ⇐⇒ eiαψ solution of (A.2).

The phase invariance is not seen at the level of (A.1) (this amount to changing φ
into φ+ εα).

By Noether’s theorem or by an easy computation, this leads to the conservation
of mass :

(A.3) M :=

∫
|ψ|2 dx =

∫
ρ dx.
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Time translation invariance. For every τ ∈ R, one has

ψ(t, x) solution of (A.2) ⇐⇒ ψ(t+ τ, x) solution of (A.2).

By the same time translation, this is expressed at the level of (A.1) and leads to
the conservation of the energy (or Hamiltonian):

(A.4) H :=

∫ (ε2
2
|∇ψ|2 + F (|ψ|2)

)
dx =

∫ (1
2
ρ|v|2 + ε2

2
|∇√

ρ|2 + F (ρ)
)
dx.

Space translation invariance. For every x0 ∈ Rd, one has

ψ(t, x) solution to (A.2) ⇐⇒ ψ(t, x + x0) solution to (A.2).

By the same space translation, this is expressed at the level of (A.1) and leads to
the conservation of momentum:

(A.5) P := Im

∫
εψ̄∇ψ dx =

∫
ρv dx.

Invariance by spatial rotation. Let R be a spatial rotation. Then

ψ(t, x) solution of (A.2) ⇐⇒ ψ(t, Rx) solution of (A.2).

By the same spatial rotation on a solution of (A.1) this leads to the conservation
of angular momentum, which we write in the case of R3 for the sake of simplicity:

(A.6) A := Im

∫
x ∧ εψ̄∇ψ dx =

∫
x ∧ ρv dx.

Galilean invariance. For every ξ0 ∈ Rd, one has

ψ(t, x) solution of (A.2) ⇐⇒ e−iξ0·xe−i
tε
2 |ξ0|2ψ(t, x+ εξ0t) solution of (A.2).

For (A.1), this implies

(v, ρ)(t, x) solution ⇐⇒
(
v(t, x+ εξ0t)− εξ0, ρ(t, x+ εξ0t)

)
solution,

and leads to

(A.7)
dX
dt

= P with X :=

∫
x|ψ|2 dx =

∫
xρ dx.

Scale invariance. When f(r) = rσ, one has for all λ > 0,

ψ(t, x) solution of (A.2) ⇐⇒ λ1/σψ(λ2t, λx) solution of (A.2),

which implies for (A.1)

(v, ρ)(t, x) solution ⇐⇒
(
λv, λ2/σρ

)
(λ2t, λx) solution.

The associated conservation law is (recall that d stands for the space dimension):

dF
dt

=

∫ (
ε2|∇Ψ|2 + dP (|ψ|2)

)
dx = 2H+

∫
(dP − 2F )(|ψ|2) dx

or,
dF
dt

=

∫ (
ρ|v|2 + dP (ρ)

)
dx = 2H+

∫
(dP − 2F )(ρ) dx

with

(A.8) F := Im

∫
εψ̄x · ∇ψ =

∫
ρx · v dx and P (r) := rf(r) − F (r).

Equality (A.8) remains formally true if the nonlinearity is not a pure power.
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Momentum of inertia or virial. A direct computation shows that the momentum
of inertia (or virial)

(A.9) I :=
1

2

∫
|x|2|ψ|2 dx =

1

2

∫
|x|2ρ dx

satisfies
dI
dt

= F .

Pseudo-conformal invariance. Let ϕ the pseudo-conformal transform of ψ defined
by

ϕ(t, x) =
e

i|x|2

2εt

(
i tε
)d/2 ψ̄

(
ε2

t
,
x

t

)
·

One notices that

(
iε∂tϕ+

ε2

2
∆ϕ
)
(t, x) =

ε2

t2
e

i|x|2

2εt

(i tε )
n
2

(
iε∂tψ +

ε2

2
∆ψ
)(ε2

t
,
x

t

)
.

Thus

iε∂tϕ+
ε2

2
∆ϕ =

ε2

t2
f

((
t

ε

)d
|ϕ|2

)
ϕ.

For the L2-critical power nonlinearity f(r) = r2/d, one checks that

ψ(t, x) solution of (A.2) ⇐⇒ ϕ(t, x) solution of (A.2).

For (A.1), this yields

(v, ρ)(t, x) solution ⇐⇒
(
x

t
− v

t

(ε2
t
,
x

t

)
,

(
ε

t

)d
ρ
(ε2
t
,
x

t

))
solution.

Using the conservation of energy for ϕ, one deduces after a lengthy computation
that

(A.10)
dZ
dt

+ t

∫
(dP − 2F )(|ψ|2) dx = 0

with

Z(t) :=

∫ (1
2
|(x + iεt∇)ψ|2 + t2F (|ψ|2)

)
dx,

=

∫ (1
2
ρ|x− tv|2 + 1

2
ε2t2|∇√

ρ|2 + t2F (|ψ|2)
)
dx.

This equality can be proven more simply by using the fact that the operators

iε∂t+
ε2

2 ∆ and x+ iεt∇ commute. The conservation law for Z is not independent
from the preceding ones: by expanding the square of the modulus, one observes
that

Z(t) = t2H− tF + I.
Consequently,

dZ
dt

= 2tH−F − t
dF
dt

+
dI
dt

= 2tH− t
dF
dt
,

and one recovers (A.10).
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The Carles-Nakamura conservation law. Formally, the quantity

U(t) := Re

∫
ψ̄ (x+ iεt∇)ψ dx

is constant. This can be checked by an indirect way (see [17]) or by a direct
computation. The interpretation in terms of (A.1) is

(A.11)
d

dt
U = 0 with U(t) =

∫
ρ(x− tv) dx.

This conservation law also results from the conservation of momentum and from
the conservation law for X since in both cases, (A.2) or (A.1), one has

U = X − tP .

A.2. Conservation laws for general capillary fluids. We here study to what
extent the conservation laws listed in the previous subsection are relevant for general
inviscid capillary fluids. We recall that such fluids are governed by System (3.7).
Throughout, we assume the capillarity κ to be a differentiable function on R+.

For smooth solutions with a non vanishing density, System (3.7) recasts in the
following conservative form7:

(A.12)

{
∂t(ρv) + div (ρv ⊗ v) +∇P (ρ) = divK,

∂tρ+ div(ρv) = 0,

with K(ρ,∇ρ) :=
(

1
2 (κ(ρ) + ρκ′(ρ))|∇ρ2|+ ρκ(ρ)∆ρ

)
Id − κ(ρ)∇ρ⊗∇ρ.

Theorem A.1. If (ρ, v) is a sufficiently smooth solution of (3.7) which decays at
infinity, with ρ non vanishing, then the equalities (A.3), (A.5), (A.6), (A.7) and
(A.9) are still valid, and the energy

H :=

∫ (1
2
ρ|v|2 + κ(ρ)

2
|∇ρ|2 + F (ρ)

)
dx

is conserved.

Furthermore, the quantity F defined in (A.8) satisfies

d

dt
F = 2H+

∫ (
dP − 2F +

d

2
(ρκ)′|∇ρ|2

)
dx.

Proof. It is very likely that most of those conservation laws could be derived from
Noether theorem. They can also been obtained by pedestrian computations.

For (A.3), (A.7) and (A.9), there is no difference with the QHD since the only
equation on ρ is concerned.

For (A.5) the proof is obvious from the conservative form (A.12).
In order to prove the conservation of energy, the simplest method is to take the

L2 scalar product with ρv of the first equation of (3.7). The treatment of the terms
on the left-hand side of the equation for v is the same as in the compressible Euler

7With the convention (divK)j :=
∑

i ∂iKij
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equation, and one obtains after several integrations by parts and the use of the
equation for ρ,

d

dt

∫ (1
2
ρ|v|2 + F (ρ)

)
dx =

∫
ρv · ∇

(
κ∆ρ+

1

2
κ′|∇ρ|2

)
dx,

=

∫
∂tρ
(
κ∆ρ+

1

2
κ′|∇ρ|2

)
dx,

= −
∫
κ∇ρ · ∂t∇ρ dx − 1

2

∫
κ′∂tρ|∇ρ|2 dx,

= − d

dt

∫
κ

2
|∇ρ|2 dx.

To prove (A.6), one writes (using the Einstein summation convention),

Ai =

∫
εijkx

jρvk

with εijk = 0 if two of the indices are equal, and equal to the signature of (i j k)
otherwise.

Using the conservative form of the equation for ρv and integrating by parts, one
thus deduces

d

dt
Ai =

∫
εijkx

j∂ℓKℓk dx−
∫
εijkx

j∂kP −
∫
εijkx

j∂ℓ(ρv
kvℓ) dx,

= −
∫
εijkKjk dx+ 0−

∫
εijkρv

jvk dx.

The tensors K and ρv⊗ v being symmetric, the right-hand member of the previous
equality vanishes.

The simplest way to prove the conservation law on F , is to use the second
equation in (A.12). Integrating by parts the capillary term and treating the other
terms as in the compressible Euler equation one obtains

dF
dt

=

∫
x · divK dx−

∫
x ·
(
∇P + div (ρv ⊗ v)

)
dx,

=

∫
xj∂iKij dx+

∫
(dP + ρ|v|2) dx.

Using the expression of the tensor K and integrating by parts, one gets
∫
xj∂iKij dx = −

∫
trK dx,

= −d
∫ (1

2
(κ+ ρκ′)|∇ρ|2 + ρκ∆ρ

)
dx+

∫
κ|∇ρ|2,

=
d

2

∫
(ρκ)′|∇ρ|2 dx +

∫
κ|∇ρ|2 dx,

from which the claimed equality results. �

Remark A.2. The case of QHD corresponds to (ρκ)′ = 0. For capillary fluids, the
presence of extra terms in the conservation law for F seems relatively harmless if
ρ 7→ ρκ(ρ) is an increasing function. One should be able to prove without difficulty
that with a pressure law such that dP − 2F > 0, one has

I(t) ∼
t→+∞

Ht2.
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In the case where ρ 7→ ρκ is decreasing, we expect the conservation law for F to be
the key to proving finite time blow-up results similar to those of [42].
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[8] F. Béthuel, R. Danchin, and D. Smets, On the linear wave regime of the Gross-Pitaevskii
equation, J. Anal. Math. 110 (2010), 297–338.
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