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ABSTRACT

The action of multidrug efflux pumps in multidrug resistance (MDR) acquisition
has been proposed to partially depend on the transport of physiological substrates
which may indirectly affect drug partition and transport across cell membranes.

In this work, PDR18 gene (ORF YNRO70w), encoding a putative pleiotropic drug
resistance (PDR) transporter of the ATP-binding cassette superfamily, was found to
mediate plasma membrane sterol incorporation in yeast. Pdrl8 physiological role is
demonstrated to affect plasma membrane potential and is proposed to underlie its
action as a MDR determinant, conferring resistance to the herbicide 2,4-D. The action
of Pdri18 in yeast tolerance to 2,4-D, which was found to contribute to reduce [14C]-2,4-
D intracellular accumulation, may be indirect, given the observation that 2,4-D
exposure deeply affects the sterol plasma membrane composition, this effect being
much stronger in Apdr18 background. PDR18 activation under 2,4-D stress is regulated
by the transcription factors Nrgl, controlling carbon source availability and stress
response, and, less significantly, Yap1, involved in oxidative stress and MDR, and Pdr3,
a key regulator of the yeast PDR network, consistent with a broad role in stress
defence. Altogether, our results suggest that Pdr18 plays a role in plasma membrane
sterol incorporation, this physiological trait contributing to a MDR phenotype.
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INTRODUCTION

Multidrug resistance (MDR), the ability to acquire simultaneous resistance
to unrelated chemical compounds, is a widespread phenomenon that often
results from the activity of multidrug efflux pumps of the ATP-Binding
Cassette (ABC) Superfamily and of the Major Facilitator Superfamily (MFS). These
transporters are proposed to actively extrude or compartmentalize a wide range of
chemically and structurally disparate drugs and other xenobiotics, thus
providing protection from these compounds. However, the prevalence and
apparent redundancy of so many MDR transporters, which protect the cell
against toxic compounds that are not present in its natural environment, has
led to speculation concerning a natural physiological function [1-3].

In recent years, a physiological role for many of these transporters in the model
eukaryote Saccharomyces cerevisiae has been proposed. Among MFS-MDR
transporters, for example, Tpol-4 and Qdr3 were suggested to mediate the
export of polyamines [4, 5], while Qdr2 was proposed to catalyse K" influx [6]. These
results suggest that the chemoprotection role of these MDR transporters may come,
at least in some cases, as a result of their influence on plasma membrane
potential and/or ApH control, which in turn .can alter the partitioning and
accumulation of drugs [2]. On the other hand, most
of the vyeast pleiotropic drug resistance (PDR) -transporters, of the ABC
superfamily, characterized as multidrug resistance determinants, have been
associated to the control of lipid incorporation into cell membranes [3]. Interestingly,
Pdr5 and its homologs from Candida albicans, Cdrl and Cdr2, were shown to function
as phospholipid translocators [7]. Pdrl10 and Pdr15 were also implicated in membrane
lipid organization [8, 9] and Ausl and Pdrll were found to mediate nonvesicular
movement of plasma membrane sterol to the endoplasmic reticulum in S. cerevisiae,
facilitating exogenous sterol uptake [10]. The deletion of yet another S. cerevisiae
transporter encoding gene, PDR16, which is regulated by the PDR network
transcription factor Pdrl, also leads to changes in yeast plasma membrane sterol
composition [11]. Altogether, these results have been suggested to imply that the
multidrug resistance phenotype conferred by PDR transporters may occur, to some
extent, due to the changes they impose in the composition of all membranes, which in
turn may affect drug partition or transport. This hypothesis is consistent with the fact
that ERG2, ERG4 and ERGS5 genes, encoding the final enzymes of the ergosterol
biosynthetic pathway, were found to be determinants of multidrug resistance [12].

In this study, the functional analysis of PDR18 (ORF YNRO70w), encoding a
putative yeast PDR transporter of the plasma membrane, was undertaken. Based on
the fact that PDR18 is up-regulated (1.6 fold) in yeast cells challenged by the herbicide
2,4-dichlorophenoxyacetic acid (2,4-D), as previously revealed by microarray analysis
[13], PDR18 gene was found to confer yeast resistance to the auxin-like herbicides 2,4-
D and MCPA, among other xenobiotic compounds. Our previous studies on the yeast
adaptive response mechanisms to the herbicide 2,4-D (reviewed in [14]) indicate that
the expression of the drug:H" antiporter Tpo1, of the ABC transporter Pdr5, and of the
Arabidopsis thaliana Tpol homolog At5g13750, confers 2,4-D resistance in S.
cerevisiae and leads to a lower intracellular accumulation of the herbicide [15, 16]. In
this work, the role and regulation of PDR18 expression in yeast resistance to 2,4-D is
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scrutinized. Given the previous implication of PDR transporters in phospholipid and
ergosterol, the role of Pdr18 in yeast plasma membrane lipid composition was studied.
PDR18 expression was found to affect plasma membrane potential and sterol
composition, allowing us to propose Pdrl8 as mediator of non-vesicular ergosterol
transport into the plasma membrane, this physiological role being, at least partially,
responsible for the observed multidrug resistance phenotype.
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EXPERIMENTAL

Strains, plasmids and growth conditions. The parental Saccharomyces cerevisiae strain
BY4741 (MATa, his3A41, leu240, met1540, ura340) and the derived single deletion
mutants Apdr18, Anrgl, Ayapl and Apdr3 used in this study, were obtained from the
EUROSCAREF collection. Plasmids pRS416_PDR18 (EUROSCARF), expressing the PDR18
gene from its natural promoter, pRS416_PDR18Ap and the cloning vector pRS416
(EUROSCARF) were also used. Plasmid pRS416_PDR18Ap was obtained through site-
directed mutagenesis of pRS416_PDR18 using the QuikChange® XL Site-Directed
Mutagenesis Kit (Stratagene), and exhibit a substitution of 2 nucleotides in the
putative Nrgl binding site in the PDR18 promoter region. The pair of mutagenic
oligonucleotides used for this procedure were 5'
GTTTCGTTTCATATGATTGCTTAGGTACCATTC 3' and its complementary sequence 5'
GAATGGTACCTAAGCAATCATATGAAACGAAAC 3', in which the replacement nucleotides
are underlined.

Yeast cells were cultivated at 30 2C with 250 rpm agitation in minimal growth
medium MM4, pH 3.5 (adjusted with HCI), containing (per litre): 1.7 g yeast nitrogen
base without amino acids or (NH4)2S04 (Difco), 20 g glucose (Merck), 2.65 g (NH4),S0,4
(Merck), 20 mg L-histidine (Merck), 20 mg L-methionine (Merck), 60 mg L-leucine
(Sigma) and 20 mg L-uracil (Sigma). Solid medium, pH 4.0 (adjusted with HCI), was
prepared by adding 20 gL™ agar (Iberagar). Cells harbouring pRS416 or derived
plasmids were grown in the same media conditions and without uracil (MM4-U) to
assure plasmid segregational stability.

Susceptibility assays. The susceptibility of the parental strain BY4741 and Apdrl8
deletion mutant to toxic concentrations of 2,4D was assessed by comparing their
growth curves or growth in spot assays in MM4 medium supplemented or not with
inhibitory concentrations of 2,4<D (0.45mM in liquid medium and 1 - 2.5mM in solid
medium). Cell suspensions used for the spot assays were prepared as described
previously [5]. Besides 2,4-D, other chemical stress inducers (obtained from Sigma)
were tested in the specified concentration ranges: the herbicides MCPA (2-methyl-4-
chlorophenoxyacetic acid) (1 — 1.5 mM) and barban (0.08 — 0.1 mM);, 2,4-
dichlorophenol,the 2,4-D degradation intermediate 2,4-DCP (0.5 — 1 mM); the
fungicides benomyl (17 — 35 mglL-1) and mancozeb (1 — 1.2 mgL-1); and salts of several
toxic metal cations, namely, CdSO,4 (0.025 — 0.04 mM), CuSO4 (0.5 — 1 mM), MnSQO;4 (5 —
10 mM), ZnSO4 (5 — 10 mM), Al»(SO4)3 (0.5 — 1 mM), TICl; (0.1 — 0.5 mM), CoSO, (1.5 —
2 mM) and PbSO, (1.5 —2 mM).

PDR18 gene expression assays. The changes registered in the transcript levels from
the PDR18 gene in BY4741 and in derived mutants Apdr18, Anrgl, Ayapl and Apdr3,
upon yeast exposure to OmM, 0.3mM or 0.45mM of 2,4-D were assessed by real time
RT-PCR. RNA extraction from yeast cells were carried out as described previously [15].
The used RT-PCR protocol followed the manufacturer’s instructions and was described
elsewhere [5]. Primers for the amplification of the PDR18 and ACT1 cDNA were
designed using Primer Express Software (Applied Biosystems) and are 3’-
TTGGCAAGCCGGATCTGT-Y, 3- CCACGCGGATTGGGAAT -5’ and 3’-
CTCCACCACTGCTGAAAGAGAA -5, 3’- CCAAGGCGACGTAACATAGTTTT -5, respectively.
The RT-PCR reaction was carried out using a thermal cycler block (7500 Real-Time PCR
System - Applied Biosystems). The ACT1 mRNA level was used as the internal control.
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The relative values obtained for unstressed conditions were set as 1 and the remaining
values are relative to that value.

[*C]-2,4-D accumulation assays. The intracellular accumulation ratio of [**C]-labelled
2,4-D in the parental strain BY4741 and the derived deletion mutant Apdri8 was
assessed as described previously [16].

Plasma membrane potential (AF) estimation. To estimate the differences in BY4741
and derived mutant Apdr18 plasma membrane potential two methods were used: the
[**C]-Methylamine uptake assay [17] and the 3-3’-dihexyloxacarbocianine iodide
(DiOCg(3)) accumulation assay [18].

The uptake of [**C]-methylamine in the parental strain BY4741 and the mutant
strain Apdr18 was monitored as described previously [5, 17].

To estimate DiOCg(3) fluorescence, cells were harvested as described above,
resuspended in MES-glucose buffer (10 mM MES, 0.1 mM MgCl, and 20 gL glucose,
pH 6), supplemented with DiOCg(3) (Molecular probes) at a final concentration of
0.25nM and incubated in the dark for 30 min at 302C with orbital agitation. After
centrifugation, cells were immediately observed with a Zeiss Axioplan microscope
equipped with adequate epifluorescence filters (BP450-490 and LP520). And
fluorescence emission was collected with a CCD camera (Cool SNAPFX, Roper Scientific
Photometrics). Bright-field images for determination of AY were obtained
concurrently and recorded at 1 min intervals, each experiment being finished within 15
min. The images were analysed using MetaMorph 3.5. The fluorescence images were
background corrected using dark-current images. The intensity values were calculated
for a minimum of 80 cells per experiment. Individual cells were selected using regions
of interest obtained from bright-field images recorded before or after the experiment.
The value of fluorescence intensity emitted by each cell was obtained pixel-by-pixel in
the region of interest. Fluorescence levels given by the software were expressed as a
percentage.

Plasma membrane sterol composition assessment Total cell membranes (CMs) were
extracted and prepared from yeast cells grown in MM4 medium (pH 3.5) and
harvested in the exponential growth phase. For studying the effect of 2,4-D,
exponential cells grown in MM4 medium were transferred to fresh medium
supplemented with 0.45mM of 2,4-D, and grown for 1h at 30 °C. Cells were harvested
by centrifugation,resuspended in homogenization buffer containing 50 mM Tris pH
7.5,2.5 mM EDTA and a protease inhibitor cocktail (1 mM PMSF, 1 pug/ml leupeptin,
pepstatin A and aprotinin) andbroken by vortexing with glass beads (Glaperlon 0.40-
0.60 mm).The CM were recovered by centrifugation at 1000 g to remove unbroken
cells and finally the CM were pelleted by ultracentifugation at 25000 rpm for 1 hour.
The CM were resuspended in a buffer containing 20 mM Tris pH 7.5, 150 mM NadCl,
20% glycerol and protease inhibitors at the concentrations mentioned above. Plasma
membrane (PM) fractions were obtained from CM fractions by sucrose gradient
centrifugation as described by Monk et al. (1991) [19]. The obtained CM and PM
protein concentrations, measured by the BCA test, ranged between 8 — 19 ug/ul and 3
— 9 pg/ul respectively. Equal amounts of PMs were used for lipid extraction from each
of the yeast strains using the method described by Bligh and Dyer (1959) with slight
modifications [20]. Sterols were extracted and analyzed using the method described
previously with slight modifications [21]. The saponified lipids were re-extracted using
5 ml hexane and vortexed several times. 1 ml of water was added to separate the
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organic phase, which was then dried in N, at 60°C. The extracted sterols were
derivatized using 100 upl N,O-Bis(trimethylsilyl) trifluoroacetamide with trimethyl-
chlorosilane BSTFA/TMCS (Sigma) at 80°C for 1 hr in N,. The derivatized sterols were
then analyzed using GCMS (Schimadzu QP2010 Plus, Japan) and aDB5-MS column 60 m
X 0.2 mm, film thickness 0.20 um. The carrier gas was helium with a flow rate of
1ml/min and a pressure of 80.8 kPa. Initial column temperature of 120°C was held for
1 min. then programmed at 120°C to 250°C at 5°C/min where it was held for 30 min. 1
ul injection was made using a split ratio of 10. Injection temperature was 300°C. The
total ion mass spectra were recorded in the mass range m/z 40-650 at the scan rate of
1 s/scan. The interface and detector temperature was 300°C. Peak identification was
based on relative retention time and total ion mass spectral comparison with an
external standard. The sterol standards were obtained from Sigma-Aldrich.
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RESULTS

The ABC transporter Pdri8, encoded by ORF YNRO70w, confers yeast
resistance to 2,4-D and other chemical stresses. The susceptibility towards 2,4-D
imposed stress of the single deletion mutant Apdr18 was found to be higher compared
to the parental strain, based on spot assays and liquid growth (Fig. 1). In the absence
of Pdrl8, yeast cells become susceptible to 2,4-D, even when supplemented in
concentrations that hardly affect wild-type viability (Fig. 1A). For higher concentrations
of the herbicide, the expression of this transporter becomes essential for survival
under stress (Fig. 1A). PDR18 deletion was also found to lead to a longer 2,4-D-induced
lag-phase, and also a reduced value of final biomass concentration (Fig. 1B). The
expression of PDR18 from a centromeric plasmid was found to rescue the 2,4-D
susceptibility phenotype of Apdri8 cells, to levels comparable to the parental strain,
while no effect was detected in the control cells harbouring the corresponding cloning
vector (Fig. 1C). The ability of this gene expression to confer resistance to other
pesticides and chemical compounds of agroeconomical importance was further
analyzed and PDR18 was also found to be a determinant of yeast resistance to the
herbicides MCPA and barban, to the 2,4-D degradation intermediate 2,4-
dichlorophenol (2,4-DCP), to the agricultural fungicide mancozeb, and to the metal
cations Zn**, Mn?*, Cu** and Cd*" (Fig. 2). No protection was conferred by PDR18
expression towards benomyl, Co** Pb**, AP* and TI** (data not shown).

PDR18 transcription is activated in response to 2,4-D imposed stress in a Nrg1-
, Yapl- and Pdr3-dependent manner. A strong increase in the transcript levels of
Pdri18 (~8 fold) was registered after one hour of exposure of an un-adapted S.
cerevisiae cell population to 0.3 mM of 2,4-D. This strong but transient increase was
followed by a rapid decrease of transcript levels to basal values as cells adapt to
growth in the presence of the herbicide. When exposed to a higher concentration of
2,4-D, 0.45 mM, PDR18 transcriptional activation reached a maximum of up to 5-fold
after 4h of stress exposure, correlating with the longer duration of the lag-phase
imposed by this higher 2,4-D concentration tested (Fig 3). The fact that a higher
herbicide concentration apparently leads to a lower activation of PDR18 may be due to
the fact that 0.45mM of 2,4-D induces viability loss, thus reducing the number of cells
in the studied population with the ability to generate a stress response [22].

The YEASTRACT database (www.yeastract.com) [23, 24], was used to guide the
analysis of the transcriptional control underlying PDR18 activation. Five transcription
factors were identified as documented PDR18 regulators previously proven to bind to
its promoter region, and, thus, were selected as candidates for, directly or indirectly,
controlling 2,4-D-induced PDR18 up-regulation (Fig. 4A). Of these, only Nrgl, Pdr3 and
Yapl were examined in this study, because mutants deleted for the other two genes
are either “unviable (A4rapl) or exhibits marked growth defects (A4swi4) (SGD,
Saccharomyces Genome Database — www.yeastgenome.com). The three tested
mutant strains, devoid of PDR3, YAP1 or NRG1, exhibit nearly identical PDR18 mRNA
basal levels, as registered in unstressed parental strain cells. However, the PDR18 up-
regulation detected in the wild type cells after 4h of incubation with 2,4-D is abrogated
in Anrgl mutant or reduced in dyapl and Apdr3 mutants (Fig. 4B), suggesting that
both Pdr3 and Yap1 transcription factors are necessary to assure full PDR18 activation.
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Since Nrgl has been described as a transcriptional repressor, its action as an
activator of PDR18 was hypothesized to be indirect. Nonetheless, this transcription
factor was previously demonstrated, through genome-wide screenings [25, 26], to
bind to the PDR18 promoter region. Furthermore, according to the YEASTRACT
database, a potential Nrgl binding site can be found in the PDR18 promoter at position
-567. To evaluate whether or not the action of Nrgl on PDR18 transcriptional up-
regulation might be direct, site-directed mutagenesis was used to abrogate the
putative Nrgl binding site found in the pRS416_PDR18 expression plasmid. Both
pRS416_PDR18 and pRS416_PDR18Ap plasmids were transformed into Apdr18 cells, so
that the genomic expression of PDR18 from its natural promoter wouid not be
accounted for. RT-PCR was used to measure the PDR18 transcript levels in these cells,
upon exposure to 0.45mM of 2,4-D. The abrogation of the Nrgl binding site was seen
to have only a moderate effect on herbicide-induced PDR18 up-regulation (Fig. 4C)
when compared to the full effect observed upon Nrgl deletion. Altogether, these
results suggest that the action of Nrgl on PDR18 expression appears to be indirect in
this case.

Role of PDR18 expression in 2,4-D intracellular accumulation. Given the
presumed role of Pdrl8 as a plasma membrane multidrug resistance transporter that
confers resistance to yeast cells against 2,4-D imposed stress, the effect of PDR18
expression in the intracellular accumulation of [“C]-2,4-D was assessed. The
accumulation of [*C]-2,4-D in non-adapted yeast cells suddenly exposed to the
presence of 0.3 mM 2,4-D (at pH 3.5), which induces a mild growth inhibition in both
the parental strain and Apdr18 cells (data not shown), is 2.5 fold higher in cells devoid
of PDR18 than in parental cells (Fig. 5). This result strongly suggests that Pdrl8 activity
increases yeast resistance towards 2,4-D by reducing the accumulation of the 2,4-D
anion within yeast cells, presumably by catalyzing the direct extrusion of the herbicide.

PDR18 deletion causes changes in yeast plasma membrane sterol
composition. In the absence of 2,4-D supplementation, upon disruption of PDR18, a
nearly 2-fold accumulation of squalene and lanosterol, the precursors of ergosterol
biosynthetic pathway, and a 1,5 fold reduction of ergostatetraenol and ergosterol
content, the end products of the ergosterol biosynthetic pathways, in the plasma
membrane were detected (Fig. 6). Upon episomal complementation of PDR18, there
was a partial complementation of the Apdri18 plasma membrane sterol composition
phenotype (Fig. 6).

The levels of ergosterol in the plasma membrane of S. cerevisiae BY4741
exposed to 2,4-D were found to decrease 1.5 fold compared with unstressed
conditions, while the levels of squalene increased 5.5 fold. This effect is exacerbated in
the absence of PDR18 gene. Indeed, in Apdri8 cells 2,4-D exposure leads to a 4.3 fold
increase in squalene and a 5.2 fold decrease in ergosterol plasma membrane
concentrations (Fig. 6). Remarkably, under 2,4-D challenge the relative abundance of
squalene becomes higher than the relative abundance of ergosterol in both wild type
and Apdr18 backgrounds and the concentration of the other sterols detected in the
plasma membrane of unstressed yeast cells become undetectable (Fig. 6).

Lower plasma membrane potential is observed in Apdr18 cells. The role of
PDR18 expression in the maintenance of yeast membrane potential was also analyzed.
Yeast plasma membrane potential was first estimated based on the uptake of
methylammonium, a non-metabolizable ammonium analogue, whose influx is strongly
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dependent on the maintenance of the transmembrane potencial [27]. The deletion of
PDR18 was found to decrease in around 60% the level of methylammonium uptake in
yeast cells (Fig. 7A). Consistent with these results, the fluorescence intensity levels of
cells loaded with the DiOCg(3) probe, whose accumulation inside yeast cells is
dependent on the plasma membrane potential [18], is three fold higher in wild-type
cells than in Apdri18 cells (Fig. 7B). Both methods indicate a strong depletion of the
plasma membrane potential in the absence of PDR18.

10
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DISCUSSION

This study provides the first functional report on the uncharacterized yeast PDR
transporter, Pdr18, encoded by ORF YNRO70w. Although this gene was not previously
characterized, a microarray analysis from our group showed that PDR18 is up-
regulated in yeast cells exposed to inhibitory concentrations of the herbicide 2,4-D
[13]. Guided by this preliminary result, the current study provides evidence showing
that PDR18 is a determinant of yeast resistance to 2,4-D, to MCPA, another auxin like
herbicide, and to several other unrelated chemical stresses, including, barban, an
herbicide of the carbanilate family, mancozeb, an agricultural fungicide and the soil
contaminant metals cadmium, copper, manganese and zinc. This study provides
evidence showing that PDR18 gene expression decreases the intracellular
accumulation of radiolabelled 2,4-D. The intracellular accumulation pattern observed
for Apdr18 deletion mutant, compared with the wild-type strain, is similar to the one
observed previously for Atpol deletion mutant [16]. Interestingly, the PDR18 homolog
in the plant model Arabidopsis thaliana, AtPDR9, was seen to confer 2,4-D resistance
in plant, also contributing to decreased 2,4-D accumulation in plant roots [28].

During 2,4-D induced lag-phase period, preceding exponential growth
resumption under herbicide stress, PDR18 transcript levels were shown to increase
transiently. This fact, together with the reduction of the duration of the lag phase
induced by 2,4-D due to PDR18 expression, indicates that the role of Pdril8 is
preponderant during the period of adaptation to the herbicide, while the effect over
the inhibition of specific growth exert by the herbicide is not significant. Consistent
with a broad role in stress defence, the transcriptional up-regulation of PDR18 was
found to be partially reduced in mutants with either PDR3 or YAP1 genes deleted and
completely abolished in a mutant devoid of NRG1. The partial effect of Pdr3 in PDR18
activation resembles the effect described before exerted by Pdr3 over the
transcriptional up-regulation of TPO1 under 2,4-D stress [15] and places PDR18 within
the yeast PDR network. At the same time, the role of Yapl, the major regulator of S.
cerevisiae oxidative stress response, in 2,4-D induced PDR18 up-regulation may
correlate with the observation that this herbicide exerts a pro-oxidant action in yeast
[22]. Moreover, Yapl also plays a role in the control of multidrug resistance, regulating
the expression of at least ten other MDR proteins: the ABC drug efflux pumps Snqg2,
Ycfl and Pdr5 and the drug-H" antiporters Firl, Tpol, Tpo2, Tpo4, Azrl, Yhk8 and Qdr3
(www.yeastract.com) [5, 23, 24]. On the other hand, in the absence of NRG1 the 2,4-D-
induced transcriptional up-regulation is completely abrogated. Consistent with the
notion that Nrgl acts as a transcriptional repressor, the action of Nrgl in this case is
proposed to be indirect, based on the fact that the abrogation of the Nrgl binding site
in the PDR18 promoter led only to a slight change in its herbicide-dependent
transcriptional up-regulation. The action of Nrgl is likely to occur through the
regulation of other genes, possibly other transcription factors. Interestingly, the
transcript levels of the NRG1 gene suffer a 5-fold increase in yeast cells exposed for 15
min to 0.3mM of 2,4-D, as described in a previous microarray analysis [13]. The same
global analysis suggests that yeast cells challenged with toxic concentrations of 2,4-D
experience a state of glucose and energy limitation, despite the saturating
concentrations of this preferential carbon source in the surrounding medium, which
could account for an Ngrl-mediated response [13].
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Most significantly, in this work the deletion of PDR18 in S. cerevisiae cells was
found to lead to an accumulation of the precursors of ergosterol biosynthetic pathway,
squalene and lanosterol, and to a decrease in the content of ergostatetraenol and
ergosterol, the end products of the ergosterol biosynthetic pathway, in yeast plasma
membrane. In the same conditions, no changes in the phospholipid composition of the
yeast plasma membrane were registered upon PDR18 deletion (results not shown).
Although the exact role of Pdrl8 in sterol homeostasis requires clarification, Pdr18 is
proposed to play a direct role in the incorporation of ergosterol in the plasma
membrane as part of the non-vesicular ER to plasma membrane ergosterol transport
mechanism [10]. Both in mammalian and vyeast cells, newly  synthesized
cholesterol/ergosterol has been shown to be transported from the endoplasmic
reticulum to the plasma membrane via two mechanisms: one dependent on vesicular
transport and the other dependent on ATP, but independent of vesicular transport
[29]. However, no specific transporter has been implicated so far in the mediation of
this non-vesicular ergosterol movement. Our results suggest that Pdrl8 may
contribute to this important physiological function. Given this proposed physiological
role, the observed apparent inhibitory effect of PDR18 deletion on sterol biosynthesis
could result from probing local sterol concentrations, thus influencing the activity of
ergosterol synthesizing enzymes, as suggested for Pdr16 [11].

The lipid composition of a cellular membrane has profound effects on its
biophysical properties that may affect a membrane's fusibility, including intrinsic
curvature, thickness, stiffness, and permeability’ [30-32]. Unlike intracellular
membranes, the yeast plasma membrane is highly enriched in ergosterol. In various
plant models, ergosterol induces changes in membrane potential [33, 34] and
modifications of H* fluxes across the membranes [33, 35, 36], among other effects. A
low level of ergosterol leads to disruption of the membrane lateral order [37], which
results in membrane fluidization, compromising the physiological membrane potential.
Consistent with the depletion of ergosterol in the plasma membrane of Apdri8 cells,
PDR18 expression was also found to be essential in the maintenance of yeast plasma
membrane potential. Two probes were use to assess the differences between wild-
type and Apdrl8 plasma membrane potential to rule out the hypothesis that the
observed variation might result from the direct action of Pdr18 in the excretion of one
of the selected probes.

The action of Pdrl8 in 2,4-D resistance can be explained in light of its
contribution to sterol homeostasis. It is interesting to see that exposure to the
herbicide 2,4-D leads to several changes in membrane sterol composition similar to
those caused by PDR18 deletion, including a decrease in ergosterol and an increase in
squalene relative concentrations. These changes occurring under 2,4-D stress indicate
a possible action of the herbicide as an inhibitor of ergosterol biosynthesis or transport
into the plasma membrane and are consistent with the requirement for PDR18
expression and the observed PDR18 up-regulation registered in this study.
Furthermore, in the absence of PDR18 the effect of 2,4-D in the plasma membrane
sterol content is even more pronounced than in wild-type cells. Such a reduced
ergosterol content in Apdri8 cells is likely to increase the permeability of the plasma
membrane towards 2,4-D and to affect the active export of 2,4-D to the outer medium,
through dedicated transporters, eventually including Tpol, Pdr5 [15] and Pdr18 itself,
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consistent with the observed increase accumulation of 2,4-D in yeast cells devoid of
PDR18.

Altogether, based on the results presented in this paper a physiological role for
Pdr18 in the control of sterol homeostasis, specifically, in maintaining ergosterol
physiological levels in the plasma membrane is proposed. Pdrl8 role as a multidrug
resistance determinant is suggested to derive, at least partially, from its physiological
role, which is expected to affect drug partition and transport across cell membranes.
These results are expected to increase current knowledge on the action of this family
of transporters with impact in the design of strategies to deal with MDR. Given the
particular role of Pdr18 in pesticide resistance, these results may also guide the design
of new pesticide resistant crops of agroeconomic interest.
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FIGURE LEGENDS

Figure 1 — Comparison of the susceptibility to 2,4-D of S. cerevisiae BY4741 and the derived
deletion mutant Apdr18, through cultivation in liquid medium (B) or spot assays (A and C). A:
Spot assays were carried as described in the M&M section. The cell suspensions used to
prepare the spots in lanes b) and c) were 1:5 and 1:25 serial dilutions, respectively, of the
suspensions with an ODggonm=0.05+0.005 spotted in lane a). Pictures were taken after 2° days
of incubation. B: Growth curves of wild-type (wt) (l,C]) and Apdri8 (A ,/\) cells in MM4 liquid
medium, pH 3.5, (Bl &) or in this medium supplemented with 0.45mM of 2,4-D (C,£). Cells of
the inocula were grown in the absence of the herbicide and the growth curves are
representative of at least three independent experiments. C: Spot assays were carried as
described in the M&M section. The cell suspensions used to prepare the spots in lanes b) and
c¢) were 1.5 and 1:25 serial dilutions, respectively, of the suspensions with an
ODg0onm=0.05%0.005 spotted in lane a). Pictures were taken after 4 days of incubation.

Figure 2 - Susceptibility to the herbicides 2,4-D, MCPA and barban, to the 2,4-DCP, to the
agricultural fungicide mancozeb, and to the metal ions Zn*", Mn?*, Cu*" and Cd*" induced stress
of deletion mutant Apdri8 compared to the wt, through spot assays. Cells used for the spot
assays were prepared as described in the M&M section. The cell suspensions used to prepare
the spots in lanes b) and c) were 1:5 and 1:25 serial dilutions, respectively, of the suspensions
with an ODggonm=0.05+£0.005 spotted in lane a). Pictures were taken after 2 or 3 days of
incubation.

Figure 3 — PDR18 transcript levels in yeast cells exposed to 2,4-D imposed stress. A:
Comparison of the susceptibility to 2,4-D induced stress of S. cerevisiae parental strain BY4741
exposed to 0 (@), 0.3 (l) or 0.45mM (&) of 2,4-D through cultivation in MM4 liquid medium,
pH 3.5. Cells used to prepare the inocula were previously grown in the absence of 2,4-D untill
mid-exponential phase. Growth curves are representative of at least three independent
growth experiments. B: Comparison of the relative transcript values of PDR18 mRNA/ACT1
mRNA, in cells of parental BY4741 during the period of adaptation to 2,4-D by RT-PCR. The
PDR18 mRNA value for the control conditions (Oh, unsuplemented medium) was set as 1 and
the remaining values were relative values. Values are the mean of at least three independent
experiments and error bars indicate the standard deviation.

Figure 4 — A: Representation of the putative regulatory network controlling PDR18
transcription, according to the information in the YEASTRACT database (www.yeastract.com).
B: Relative values of PDR18 mRNA in wild type strain (wt) and 4nrg1, Apdr3 and Ayap1 mutant
cells before and four hours following an yeast cell population exposure to 0.45 mM of 2,4-D.
The mRNA relative value for the wild type strain immediately before exposure to the herbicide
(control) was set as 1. Values are means of at least three independent experiments and error
bars indicate the standard deviation. C: Relative values of PDR18 mRNA in Apdri8 cells
transformed with pRS416_PDR18, pRS416_PDR18Ap or the corresponding empty vector
before and four hours following an yeast cell population exposure to 0.45 mM of 2,4-D. The
MRNA relative value for the Apdri8strain, harboring the pRS416_PDR18 plasmid,
immediately before exposure to the herbicide was set as 1. Values are means of at least three
independent experiments and error bars indicate the standard deviation.

Figure 5 - Comparison of [**C]-2,4-D accumulation in non-adapted cells of S. cerevisiae BY4741
(M) and the derived deletion mutant Apdri8 (A), during cultivation for 30min in MM4 liquid
medium (pH 3.5) supplemented with 0.3 mM of cold 2,4-D (Sigma) and 0.5 uM of [**C]-2,4-D.
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The accumulation (2,4-D* intra/2,4-D* extra) values are the means of at least three
independent experiments, error bars indicating standard deviation.

Figure 6 — Comparison of the relative abundance of sterol content in yeast plasma membrane
of the S. cerevisiae BY4741 and the derived deletion mutant Apdri8 harboring the PDR18
expression plasmid or the corresponding empty vector, both grown under control conditions
or after 1h of exposure to 0.45 mM of 2,4-D, measured by GCMS. Values are means of at least
three independent experiments and error bars indicate the standard deviation.

Figure 7 — PDR18 gene expression is important to maintain plasma membrane potential in
yeast cells. A: Time course accumulation of [**C]-Methylammonium was foliowed during
incubation of S. cerevisiae BY4741 (M) and the derived deletion mutant Apdr18 (A), at 30°C, in
growth MM4 liquid medium, pH 3.5, supplemented with the radiolabelled ammonium
analogue. Relative levels of [**C]-Methylammonium, assessed as described in M&M, are
average * standard deviation of at least three independent experiments. B: Comparison of the
average membrane potential using the fluorescent probe DiCOg(3). Values of membrane
potential are set as the percentage of the value obtained for wild-type cells and result of at
least three independent experiments.
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