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We introduce a new 5-parameter family of distributions, the Asymmetric Exponential Power (AEP), able to cope with asymmetries and leptokurtosis and, at the same time, allowing for a continuous variation from non-normality to normality. We prove that the Maximum Likelihood (ML) estimates of the AEP parameters are consistent on the whole parameter space, and when sufficiently large values of the shape parameters are considered, they are also asymptotically efficient and normal. We derive the Fisher information matrix for the AEP and we show that it can be continuously extended also to the region of small shape parameters. Through numerical simulations, we find that this extension can be used to obtain a reliable value for the errors associated to ML estimates also for samples of relatively small size (100 observations). Moreover we show that around this sample size, the bias associated with ML estimates, although present, becomes negligible. Finally, we present a few empirical investigations, using diverse data from economics and finance, to compare the performance of AEP with respect to other, commonly used, families of distributions.

Introduction

A large and increasing number of empirical analyses in a variety of fields suggests that the assumption of normality of real data is quite often not tenable. Indeed, empirical densities characterized by heavy tails as well as by significant degree of asymmetry are often observed in many economic domains. In finance, since the seminal work of Mandelbrot, scholars and practitioners have become aware that the volatile dynamics which traditionally characterize financial markets cannot be properly described by using the Gaussian distribution; quite the contrary, almost every financial return series has been found to be characterized by the presence of fat tails (cfr. the reviews in [START_REF] Mantegna | An Introduction to Econophysics: Correlations and Complexity in Finance[END_REF][START_REF] Mccauley | Dynamics of Markets: Econophysics and Finance[END_REF], and the references therein). A number of recent studies have brought strong empirical support to the claim that fat tails are also a robust property of aggregate output growth rates distributions, both in cross sections of different countries [START_REF] Canning | Scaling the volatility of gdp growth rates[END_REF][START_REF] Castaldi | The patterns of output growth of firms and countries: Scale invariances and scale specificities[END_REF] and in within country time series [START_REF] Fagiolo | Are output growth-rate distributions fat-tailed? some evidence from oecd countries[END_REF]. At the microeconomic level, strong leptokurtosis has been identified in business companies growth rates in many developed countries, irrespectively of the proxy used to measure firm size and of the level of disaggregation considered [START_REF] Stanley | Scaling behaviour in the growth of companies[END_REF][START_REF] Bottazzi | Subbotools user's manual[END_REF]Secchi, 2003, 2006a,b;[START_REF] Bottazzi | Invariances and diversities in the patterns of industrial evolution: Some evidence from italian manufacturing industries[END_REF].

In all these domains it is important to adopt flexible statistical models able to cope directly with skewness and leptokurtosis and, at the same time, to allow continuous variation from non-normality to normality [START_REF] Huber | Robust Statistics[END_REF][START_REF] Azzalini | Further results on a class of distributions which includes the normal ones[END_REF][START_REF] Hampel | Robust Statistics: The Approach Based on the Influence Functions[END_REF]. Both these aspects are captured by the Asymmetric Exponential Power(AEP) family of distributions discussed in the present paper. As a further specific motivation for introducing it, we present three empirical exercises which show how it actually performs in describing those empirical distributions characterized jointly by significant degrees of skewness and fat tails. We compare the goodness of fit achieved by the AEP with those obtained with other commonly used distributions, namely the Skewed Exponential Power (SEP), the α-Stable family and the Generalized Hyperbolic (GHYP). Other examples of the successful and general applicability of the Asymmetric Exponential Power are in [START_REF] Santoro | Wax and wane: the us and uk business cycle from the cross section[END_REF], [START_REF] Alfarano | Does classical competition explain the statistical features of firm growth?[END_REF], [START_REF] Fagiolo | Are output growth-rate distributions fat-tailed? some evidence from oecd countries[END_REF] and [START_REF] Sapio | The two faces of electricity auctions. a joint analysis of price and volume growth distributions in day-ahead power exchanges[END_REF].

The paper is organized as follows. In the next Section the AEP family of distribution is introduced. In Section 3 we present some theoretical results on the Maximum Likelihood estimation of the AEP family and derive the elements of the Fisher's Information matrix, discussing its domain of definition. In Section 3.1 we prove the consistency of the estimator in the whole parameter space and we discuss the asymptotic efficiency and normality for the case in which both parameters b l and b r are greater than two, while in Section 3.2 we show that, for some estimates, the domain of definition of the Information matrix can be extended to the whole parameter space. Next, in Section 4, with the help of extensive numerical simulations, we analyze the bias of the ML estimator and their asymptotic behavior in the domain of the parameters space not covered by the analytical results. Finally, in Section 5 we compare the performance of the AEP with other, commonly adopted, families of distributions in three specific empirical exercises including electricity, foreign exchange and stock market data. [START_REF] Subbotin | On the law of frequency of errors[END_REF] introduced a family of distribution, generally known as the Exponential Power (EP) distribution, characterized by a scale parameter a > 0, a shape parameter b > 0 and a location parameter m. The EP density reads

The Asymmetric Exponential Power distribution

f EP (x; b, a, m) = 1 2ab 1/b Γ(1/b + 1) e -1 b | x-m a | b (1) 
where Γ(x) is the Gamma function. The Gaussian distribution is recovered when b = 2 while when b < 2 the distributions are heavy-tailed: the lower is the shape parameter b the fatter the density tails. This model has been studied by many scholar: cfr. among others [START_REF] Box | a note on regions of kurtosis[END_REF], [START_REF] Turner | On heuristic estimation methods[END_REF] and [START_REF] Vianelli | La misura di variabilità condizionata in uno schema generale delle curve normali di frequenza[END_REF]. Inferential aspects of the EP distribution inside the Maximum Likelihood framework have been analyzed in [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF] and [START_REF] Capobianco | Robust aspect of the generalized normal distribution[END_REF]. In order to deal with both fat tails and skewness [START_REF] Azzalini | Further results on a class of distributions which includes the normal ones[END_REF] considered the skewed exponential power (SEP) distribution

f SEP (x; b, a, m, λ) = 2 Φ(sign(z) |z| b/2 λ 2/b) f EP (x; b, a, m) (2) 
where z = (xm)/a , a,b > 0, -∞ < m < ∞, -∞ < x < ∞, -∞ < λ < ∞ and Φ is the normal distribution function. It easy to see that f SEP reduces to f EP when λ = 0 so that the normal case is obtained when (λ, b) = (0, 2). The Maximum Likelihood inference problem for this distribution is discussed in details in [START_REF] Diciccio | Inferential aspects of the skew exponential power distribution[END_REF].

In the present paper we suggest an alternative way to tackle the presence of heavy tails and skewness. We 

A k (x) = x k+1 x -1 Γ k + 1 x . (4) 
The AEP reduces to the EP when a l = a r and b l = b r . The density in (3) can be easily integrated to obtain 

F AEP (x; p) = a l A 0 (b l ) C Q( 1 b l , x -m a l b l ) θ(m -x)+ 1 - a r A 0 (b r ) C Q( 1 b r , x -m a r br ) θ(x -m) , (5) 
where

Q(α, x) is the regularized upper incomplete gamma function Q(α, x) = Γ(α, x)/Γ(α).
The mean µ AEP and the variance σ 2 AEP of the AEP distribution can be straightforwardly derived

µ AEP = m + 1 C a 2 r A 1 (b r ) -a 2 l A 1 (b l ) σ 2 AEP = a 3 r C A 2 (b r ) + a 3 l C A 2 (b l ) . (6) 
Moreover, it is possible to express the generic h-th central moment M h as a finite series

M h = h q=0 h q 1 C h-q+1 a q+1 r A h (b r ) + a q+1 l A h (b l ) a 2 r A 1 (b r ) -a 2 l A 1 (b l ) h-q . ( 7 
)
The AEP constitutes a natural extension of the family originally proposed by Subbotin, hence the results derived in the present paper apply also to the latter.

Maximum Likelihood Estimation

Consider a set of N observations {x 1 , . . . , x N } and assume that they are independently drawn from the AEP distribution with parameters p 0 . We are interested in the estimation of p from that sample. The Maximum Likelihood estimate p is obtained maximizing the empirical likelihood or, equivalently, minimizing the nega-tive log-likelihood, computed taking the logarithm of the likelihood function and changing its sign

p = arg min p N i=1 L AEP (x i ; p 0 ) where L AEP (x; p 0 ) = -log f AEP (x; p 0 ) . (8) 
The Cramer-Rao lower bound for the estimates standard error in the case of unbiased estimators is provided by the 5 × 5 information matrix J(p 0 ), defined as the expected value of the cross-derivative

J i,j (p 0 ) = E p 0 [∂ i L AEP (x; p 0 ) ∂ j L AEP (x; p 0 )] , (9) 
where E p 0 [.] is the theoretical expectation computed using the true values p 0 and where the indexes i and 

j
J b l b l = 1 C a l B ′′ 0 (b l ) - 1 C 2 a 2 l (B ′ 0 (b l )) 2 + a l Cb l B 2 (b l ) - 2a l Cb 2 l B 1 (b l ) + 2a l Cb 3 l B 0 (b l ) J b l br = - 1 C 2 a l a r B ′ 0 (b l )B ′ 0 (b r ) J b l a l = 1 C B ′ 0 (b l ) - 1 C 2 a l B 0 (b l )B ′ 0 (b l ) - 1 C B 1 (b l ) J b l ar = - 1 C 2 a l B 0 (b r )B ′ 0 (b l ) J b l m = 1 b l C (log b l -γ) J brbr = 1 C a r B ′′ 0 (b r ) - 1 C 2 a 2 r (B ′ 0 (b r )) 2 + a r Cb r B 2 (b r ) - 2a r Cb 2 r B 1 (b r ) + 2a r Cb 3 r B 0 (b r ) J bra l = - 1 C 2 a r B 0 (b l )B ′ 0 (b r ) J brar = 1 C B ′ 0 (b r ) - 1 C 2 a r B 0 (b r )B ′ 0 (b r ) - 1 C B 1 (b r ) J br m = - 1 b r C (log b r -γ) J a l a l = - 1 C 2 B 2 0 (b l ) + b l + 1 a l 1 C B 0 (b l ) J a l ar = - 1 C 2 B 0 (b l )B 0 (b r ) J a l m = - b l Ca l J ar ar = - 1 C 2 B 2 0 (b r ) + b r + 1 a r 1 C B 0 (b r ) J ar m = b r Ca r J mm = b -1/b l +1 l a l C Γ 2b l -1 b l + b -1/br+1 r a r C Γ 2b r -1 b r ( 10 
)
where γ is the Euler-Mascheroni constant and, for any integer k, it is

B k (x) = x 1 x -k k h=0 k h log h x Γ (k-h) 1 + 1 x , ( 11 
)
where Γ (k) stands for the k-th derivative of the Gamma function.

proof. See Appendix A.

In principle the elements of the inverse information matrix J -1 can be directly obtained from the expressions in (10). None of these elements, however, is identically zero, nor any easy simplification can be found. For these reasons, we decided not to report here their cumbersome expressions. In general, for practical purposes, it is much more convenient to compute the elements of J and obtain the elements of J -1 by numerical inversion. The situation changes if one considers the original symmetric EP obtained when a l = a r = a and b l = b r = b. For this case the information matrix has been derived in [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF]. To ease the comparison of the general and the particular case, we report the result here using our notation. 1 One has

Theorem 3.2 (Information matrix of EP density) Consider the Exponential Power distribution defined in

(1) for the set of parameters (b, a, m) . The Fisher information matrix J (b, a, m) defined as

Ji,j (b, a, m) = E b,a,m [∂ i L EP (x; b, a, m) ∂ j L EP (x; b, a, m)] , (12) 
where

L EP (x; b, a, m) = -log f EP (x; b, a, m) is found to be        1 b 3 [ψ(1 + 1/b) + log b] 2 + ψ ′ (1+1/b) b 3 1 + 1 b -1 b 3 -1 ab log b + ψ 1 + 1 b 0 -1 ab log b + ψ 1 + 1 b b a 2 0 0 0 b -2/b+1 Γ(2-1/b) a 2 Γ(1+1/b)        (13)
1 Notice that the expansion of the element J-1 b,a of the inverse information matrix reported in [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF] contains a mistake: the term

[log b + ψ(1 + 1 b )]
in the numerator is incorrectly squared.

and its inverse reads

        b 4 -b+(1+b)ψ ′ (1+ 1 b ) ab 2 [log b+ψ(1+ 1 b )] -b+(1+b)ψ ′ (1+ 1 b ) 0 ab 2 [log b+ψ(1+ 1 b )] -b+(1+b)ψ ′ (1+ 1 b ) a 2 [b(-1+log 2 b)+(1+b)ψ ′ (1+ 1 b )+2bψ(1+ 1 b ) log b+bψ 2 (1+ 1 b )] b [-b+(1+b) ψ ′ (1+ 1 b )] 0 0 0 a 2 b 2/b-1 Γ(1+ 1 b ) Γ(2-1 b )         (14) 
Proof. Since L EP (x; b, a, m) = L AEP (x; p) where p = (b, b, a, a, m), the elements of ( 13) can be easily found starting from the elements of the AEP reported in Theorem 3.1. Consider for instance the shape parameter b. The derivative with respect to b of L EP is the sum of the derivatives with respect to b l and b r of L AEP .

In other terms, in computing the elements of the Fisher information matrix for the EP distribution, one has to consider the substitution ∂ ∂b ↔ ∂ ∂b l + ∂ ∂br so that, for instance,

Ja,b (b, a, m) = E [∂ a L EP ∂ b L EP ] = E [(∂ b l L AEP + ∂ br L AEP ) (∂a l L AEP + ∂ ar L AEP )] = J a l ,b l (p) + J a l ,br (p) + J ar ,b l (p) + J ar,br (p) .
The other elements are obtained in an analogous way.

Q.E.D.

Properties of the Estimators

We investigate now, form an analytical point of view, the sufficient conditions for consistency, asymptotic normality and asymptotic efficiency of the AEP maximum likelihood estimators. The behavior of these estimators are different whenever the parameter m ought to be estimated or can be consider known. We analyze the two cases separately, starting with the case of unknown m.

From the definition of AEP in (3) the parameters p = (b l , b r , a l , a r , m) belong to the open set D = (0, +∞) × (0, +∞) × (0, +∞) × (0, +∞) × (-∞, +∞). Let p 0 be the true parameters value, then Theorem 3.3 (Consistency) For any p 0 ∈ D maximum likelihood estimator p is consistent, that is p converges in probability to its true value p 0 .

Proof. For any p 0 ∈ D there exists a compact P ⊂ D such that:

1. p 0 ∈ P 2. ∀p = p 0 , p ∈ P, it is f (x i |p) = f (x i |p 0 ) 3. ∀p ∈ P, log f (x i |p) is continuous 4. E[sup P | log f (x i |p)|] < ∞.
According to Theorem 2.5 in [START_REF] Newey | Large sample estimation and hypothesis testing[END_REF] (Chapter 36 pag. 2131) these four conditions are sufficient to prove the statement.

Q.E.D.

While consistency is easy to prove in general, finding sufficient conditions for asymptotic normality and efficiency is much more difficult. However, both can be found to apply for sufficiently large values of the shape parameters. Proof. The proof follows directly from the proofs of the previous theorems. Indeed when m is known no discontinuities in the derivatives of ∂log f (x i |p)/∂p j emerge and hence the conditions required by Theorem 3.3 and by Theorem 3.4 are always satisfied. 

Q.E.D.

Basically, the previous Theorem guarantee that when m is known, the maximum likelihood estimates of p are consistent, asymptotically efficient and normal on the whole parameter space. Of course, the same thing also applies to the symmetric EP density [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF].

Extending the Fisher information matrix

The presence of singularities which forbids the extension of the results of Theorem 3.4 to small values of b's also affects the domain of definition of the elements of the Fisher matrix J.

The function B k (x) defined in (11) and all its derivatives are defined for x > 0 and for any k. Consequently, all the elements of J in (10), apart from J mm , are defined on the whole parameter space. The latter element, on the contrary, is only defined when both b l and b r are greater than 0.5. When b l or b l move toward 0.5, the gamma function contained in that element encounters a pole (in x = 0) so that J mm diverges. Of course, this phenomenon does not happen when the parameter m can be considered known. In that case, the 4x4 Fisher matrix (upper left block of J) is defined for any value of b l and b r and, according to Theorem 3.5, this matrix can be used to characterize the asymptotic error of the estimates over the whole parameter space.

The presence of a pole in J mm seems to suggest that, when m is unknown, the Fisher information matrix cannot be used to obtain a theoretical benchmark of the asymptotic errors involved in the ML estimation for small value of b. It turns out that this is not true. Indeed, the only estimates whose error diverges is m.

To see how this mechanism works, consider the symmetric case in (13). In this case the Fisher matrix J has a block diagonal structure, so that the value of the bottom right block, Jm,m , does not affect the computation of the inverse of the upper left block, which contains the standard error of the estimates â and b and their cross correlation. Due to this block diagonal structure, the fact that m is known or not, does not have any effect on the asymptotic error of the estimates of the first two parameters. Hence, one can imagine that the upper left block of the Fisher information matrix can be used to obtain a theoretical values for the standard deviations σ b and σ a also for b < 0.5.

In the asymmetric case, the block-diagonal structure of the Fisher information matrix disappears. In general, the fact that m is known or that its value has to be estimated does have an effect on the elements of the inverse information matrix associated with the standard error of the a's and b's estimates. Nonetheless a peculiar cancellation in the computation of the elements of J -1 allows to recover a result analogous to the one found in the symmetric case. More precisely, when b l or b r goes toward 0.5, the element J m,m diverges and, correspondingly, J -1 m,m goes to 0, but, at the same time, the covariance terms of J -1 involving m tend to 0, so that the elements in the 4x4 upper left block remains finite. In fact, the 4x4 upper-left block of J -1 become positive definite and is equal to the 4x4 inverse Fisher information matrix obtained in the case in which m is known. Hence, analogously to the symmetric case, the elements of J can be used to recover a theoretical benchmark for the error of the estimated b's and a's on the whole parameters space. To illustrate the described behavior, the error on b and â estimated as the square root of the diagonal elements of J -1 are reported in Figure 3 and Figure 4, respectively. For comparisons, both the case with m known and unknown are considered, and the associated element of the EP case J-1/2 is also reported. As can be clearly seen from the insets, when b → 0.5 the element of J -1 for the case of m unknown case are indistinguishable for the same elements computed assuming m known. The same behavior can be observed also when only one parameter between b l and b r converges to 0.5.

What is the meaning of the inverse Fisher information matrix for values of b lower then 0.5? Can we exploit the continuation of the upper-left block of J -1 to investigate asymptotic efficiency and normality of ML estimators also in the region of the parameter space where b is low? Using extensive numerical simulations we will try to answer these questions in the next Section.

Numerical Analyses

The analyses of this section focus on two aspects of the ML estimation of the Symmetric and Asymmetric Exponential power distribution. First, we analyze the presence of bias in the estimates. We know from Theorem 3.3 that this bias progressively disappears when the sample becomes larger, but we are interested in characterizing its magnitude for relatively small samples. Second, we address the issue of the estimate errors, analyzing their behaviors for small samples and trying to describe their asymptotic dynamics. These investigations are performed using numerical simulation. For a given set of parameters p 0 we generate a large number of i.i.d. samples of size N then, for each parameter p ∈ p 0 , we compute the sample mean of the estimated value p(N ;

p 0 ) = E N [p|p 0 ]
, where the expectation is computed over all the generated samples, and the associated bias p(N ; p 0 ) = p(N ; p 0 )p 0 .

This value is an estimate of the bias of p and, in general, depends on the true value p 0 . Since the ML estimates are consistent on the whole parameter space, we expect that lim N →+∞ p(N ; p 0 ) = 0. The second measure that we consider is the sample variance of the estimated values, that is

σ 2 p (N ; p 0 ) = E N (p -p) 2 |p 0 .
Notice that the previous two quantities together define the Root Mean Squared Error of the estimate p RMSE (N ;

p 0 ) = E N [(p -p 0 ) 2 |p 0 ] = p2 + σ 2 p .

Symmetric Exponential Power distribution

Consider the symmetric Exponential Power distribution. In Table 6 we report the values of the bias and the estimates standard deviation for the three parameters a, b and m computed using 10, 000 independent samples of size N , with N running from 100 to 6400 and for different values of b. For the present qualitative discussion the value of the parameters a and m is irrelevant; hence we fix their value to 1 and 0, respectively. The values of the bias and the estimates standard deviation for the parameters a and b in the case of m known are reported in Table 7.

Since we consider 10000 replications, the standard error on the reported bias estimation is nothing but the estimator standard deviation over √ 10, 000. The bias estimates which results two standard deviation away from zero are reported in bold face in Tables 6 and7. Looking at the first column of Table 6 for each estimate, one observes that the ML estimates of a and b are sometimes biased, while the estimated bias for m is never significantly different from zero. Notice that in all cases in which it is present, the bias seems to decrease proportionally to 1/N (for both known and unknown m). For the parameter a the bias stops to be significantly different from zero also for medium-sized samples (N around 400) while for b it is in general significant until largest sample sizes are reached. It is worthwhile to notice that, when the parameter m is considered known, the bias of the estimated values of a and b tends to increase, irrespectively of the true value of b.

Let us consider now the estimated standard errors σ p (N ) in Table 6. The first thing to notice is that they are always at least one order of magnitude greater that the estimated biases, so that the contribution of the latter to the estimates Root Mean Squared Error is in general negligible. This means that, for any practical purposes, the ML estimates of the symmetric Power Exponential distribution can be considered unbiased.

This is also true if one consider the case with m known, reported in Table 7. Indeed the values of the estimates standard error are practically identical for the two cases with only a couple of exceptions when N is small and b large. In this cases (see, for example, N = 100 and b = 1.4) the standard error is much bigger when also m has to be estimated.

The second thing to notice is that the estimated standard errors seem to decrease with the inverse squared root of N . Indeed in Figure 5 we report for three different values of b, √ N σ a (N ) and √ N σ b (N ), for m unknown (left panels) and known (right panels). Notwithstanding the presence of noticeable small sample effects, these products always converge toward an asymptotic value. Since the convergence is from above, the efficiency of the estimator for small sample is lower than the Cramer-Rao bound, implying a small sample For the case of unknown m, in order to compare the asymptotic behavior of the Monte Carlo estimates of the standard error with the theoretical prediction we consider the large samples limit

lim N →∞ √ N σ p (N ; p 0 ) = σ ASY p (p 0 ) . (15) 
We compute these values by extrapolating the 3 observations relative to the largest values of N estimating with OLS the intercept of the following linear relation

√ N σ p ∼ α + β 1 N . ( 16 
)
The results for the different values of b are reported in Table 1 together with the theoretical prediction obtained from J-1 in (13). As expected, the agreement is extremely good, with discrepancies around 0.5%, in the region b ≥ 2 , where the Theorem 3.4 applies. In this region, the ML estimators of the EP density are, indeed, asymptotically efficient, so that the observed agreement serves as a consistency check of our extrapolation procedure. The same degree of agreement, however, is also observable in the region 0.5 < b < 2, where the Fisher information matrix is defined but no theoretical results guarantee the efficiency of the estimator for large samples. Moreover, quite surprising, the agreement remains high, for the a and b estimators, also in the region b < 0.5, where the Fisher information matrix cannot be defined according to (12) but can be analytically continued, as discussed in Section 3.2.

In conclusions, the previous numerical investigation extends in many respect the analytical findings of the existing literature. We have show that for the symmetric Exponential Power distribution 1. the bias of the ML estimators, being very small, can be safely ignored at least for samples with more than 100 observations.

2. the ML estimators of a, b and m are asymptotically efficient, independently of the value of the true parameters and of the fact that the value of m is known or unknown. 3. the continuation of the Fisher information matrix to the region with b < .5 can be used to obtain a reliable measure of the error involved in the ML estimation of parameters a and b.

σ ASY J -1 σ ASY J -1 σ ASY J -1 (b l ,

Asymmetric Exponential Power distribution

This Section extends the numerical analysis to the case of Asymmetric Exponential Power distribution. For the sake of clarity, we split our analysis in two steps. First, we analyze the asymptotic behavior of the ML estimates when the true parameters have symmetric values. Second, we comment on the observed effects when different degrees of asymmetry characterize the true values of the shape parameters b l and b r .

In Table 8 we report the values of the bias and the estimates standard deviation for the five parameters a l , a r , b l , b r and m computed using 10, 000 independent samples of size N , with N running from 100 to 6400.

The samples are randomly generated from (3) considering different values for the parameters b l = b r . Again the exact value of the a's and m parameters is irrelevant for the present discussion and we set a l = a r = 1 and m = 0 for all simulations. As can be seen, the picture that emerges is identical to the symmetric case.

The bias is in general present for small samples, apart for the estimate m which seems in general unbiased.

When present, the bias tends to decrease proportionally to 1/N and, for the parameters a l and a r it becomes statistically indistinguishable from zero with the increase of the sample size. Notice that for N > 100, the bias is always at least one order of magnitude smaller than the standard deviation. Consequently, also in the case of Asymmetric Exponential Power distribution, when the true parameters are symmetric, and for sufficiently large samples (N > 100), the ML estimates can be considered, for any practical purposes, unbiased. Also the behavior of the estimates standard deviation is substantially identical to what observed in the case of symmetric distribution. Indeed, the plots in Figure 6 (left panels) confirm that the rescaled estimates √ N σ p (N ) approach flat lines when N becomes large, making the asymptotic efficiency apparent. However, the small sample effect seems to last a little longer: when one consider small values of b (see the top left panel in Figure 6) it is still noticeable for sample as large as 1000 observations.

In Table 9 we report the values of the bias and the estimates standard deviation for the four parameters b l , b r , a l and a r , obtained with the Monte Carlo procedure illustrated above, in the case in which the parameter m is assumed known. No large differences are observed in the behavior of biases and standard deviations with respect to the case of unknown m . The general increase of the bias level, already observed for the symmetric distribution, is still there. Concerning the estimates standard errors, notice that the right panels in Figure 6 display behavior similar to what observed in the left panels, confirming that the deviations from the Cramer-Rao bound is essentially due to small sample effect. In the case of m known, these effects tend to disappear completely when N > 400.

In order to judge the reliability of J -1 in estimating the observed errors, we compute the asymptotic values of the standard errors σ ASY p extrapolating the three estimates obtained with the largest samples (N = 1600, 3200, 6400) following the same procedure used above (cf. equation ( 16)). The results are reported in Table 2 (upper part). Again, the agreement between the values extrapolated from numerical simulations and the theoretical values obtained from the inverse information matrix J -1 is remarkably high: discrepancies are around 1% both in the region of high and low b's, confirming that J -1 can be used to obtain a value of the asymptotic standard errors of the estimates also in the region in which Theorem 3.4 does not apply.

Finally, we have explored the behavior of the ML estimator when the true values of the parameters b l and b r are different. Results are reported in Table 10 for a selection of different values of the two shape parameters.

The most noticeable effect of the introduction of asymmetry in the true values of the parameters is an increase in the biases of their estimates. First, in this situation, also the estimate of location parameter m results biased.

Second, the observed biases of the estimates of b remain statistically different from zero also for relatively large samples (N = 6400). Again, when the sample size increases, the biases still decrease proportionally to 1/N . At the same time, the behavior of the estimates standard error σ p resembles the ones observed in the previous cases: as the plots in Figure 7 show, all the rescaled standard errors defined accordingly to (15) asymptotically approach flat lines so that the ML estimator can be considered asymptotically efficient. The different asymptotic behaviors of the bias and the standard error imply that for sufficiently large samples, the contribution of the former to the estimates root Mean Squared Errors becomes negligible. Indeed, it is already the case for sample sizes around 100 observations. As in the symmetric case these results do not change when m is known (cfr. Table 11).

We conclude the section on the numerical analysis with some brief comment on the technical aspects of ML estimation. The solution of the problem in ( 8) is in general made difficult by the fact that both the AEP and EP densities are not analytic functions. The situation becomes more severe when small values of the shape parameter b are considered. In this case, the likelihood as a function of the location parameter m possesses many local maxima, located on the observations which compose the samples. In order to overcome this difficulties, the ML estimation presented above have been obtained with a three steps procedure: in each case the negative likelihood minimization started with initial conditions obtained with a simple method of moments. Then a global minimization was performed in order to obtain a first ML estimate, which is later refined performing several separate minimizations in the different intervals defined by successive observations in the neighborhood of the first estimate. Even if this method is not guaranteed to provide the global minimum, we checked that in the whole range of parameters analyzed, discrepancies were always negligible. 2 For further details on the minimization methods utilized the reader is referred to [START_REF] Bottazzi | Subbotools user's manual[END_REF].

As already observed in [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF] for the EP distribution, when the value of the shape parameter b is large and the size of the sample relatively small, the minimization procedure can fail to converge. In the case of Asymmetric Exponential Power distribution the situation is in general worsened especially when the shape parameters b l and b r present largely different true values (see for example N = 100, b l = 0.5 and b r = 2.5 in Table 8). The number of failures is reported in the columns "K" of the relevant Tables.

Empirical Applications

In the present section we test the ability of the Asymmetric Power Exponential to fit empirical distributions obtained from different economic and financial datasets. We compare the AEP with the Skewed Exponential Power (SEP), the α-Stable family and the Generalized Hyperbolic (GHYP) estimating their parameters via maximum likelihood procedures (for parametrization and details on the SEP, the α-Stable and on the GHYP see [START_REF] Diciccio | Inferential aspects of the skew exponential power distribution[END_REF], [START_REF] Nolan | Parametrizations and modes of stable distributions[END_REF] and [START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques, and Tools[END_REF] respectively). In order to evaluate the accuracy of the agreement between the empirical observed distributions and the theoretical alternatives we consider two complementary measures of goodness-of-fit, the Kolmogorov-Smirnov D and the Cramer-Von

Mises W 2 defined as

D = sup n F Emp (x n ) -F T h (x n ) W 2 = 1 12n + n F Emp (x n ) -F T h (x n ) 2 , (17) 
where F Emp and F T h stands for the empirical and theoretical distribution respectively. These two statistics can be considered complementary as they capture somehow different effects. The D statistics is indeed proportional to the largest observed absolute deviation of the theoretical form the empirical distribution while the W 2 is intended to account for their "average" discrepancy over the entire sample.

Notice that the following discussion is not focused on assessing whether the deviation of the theoretical models from actual data can be considered a significant signal of misspecification. Rather, we are interested in evaluating the relative abilities of the different families to properly describe the behavior of the empirical 2 Observed discrepancies were generally due to the presence of several clustered observations 

French Electricity Market

As a first application we analyze data from Powernext, the French power exchange. We consider a data set containing the day-ahead electricity prices, in different hours, from November 2001 to August 2006,3 and we build the empirical distribution of the corresponding daily log returns. Then using the goodness-of-fit statistics defined in equation ( 17) we investigate the ability of the four competing families to reproduce the observed distributions. Results are reported in Table 3.

Two main evidences emerge from the reported figures. First, the AEP outperforms all the other distributions both in terms of the Kolmogorov-Smirnov and of the Cramer-Von Mises statistics. In particular, from Table 3, it is clear that while the observed Kolmogorov-Smirnov statistics D is, for the AEP, only slightly lower than the ones obtained for the other families the same appears not true in the case of the Cramer-Von Mises test. Indeed, the values of the W 2 statistic are significantly lower for the AEP being always less than half of the average of the other three. In order to provide a more revealing, albeit qualitative, assessment of the relative ability of the different families in reproducing the empirical distribution we present, in Figure 8, two plots, for the AEP and the GHYP respectively, of the function ∆(x) defined as Deviations of ∆(x) from the constant line y = 0 represent the local discrepancy between the theoretical an the empirical distribution. This figure, while confirming in accordance with formal tests the better fit of the AEP, adds also some interesting insights: the AEP is clearly better in the whole central part of the distribution and in its upper tail, while the opposite is true for the lower tail where the GHYP seems slightly preferable. 4The second evidence emerging from Table 3 regards the difference between the estimated values of the AEP shape parameters b l and b r , which suggests the presence of substantial asymmetries in the empirical distribution of electricity price returns. This finding is not a peculiar feature of the French market but applies to a number of different power exchanges, see [START_REF] Sapio | The two faces of electricity auctions. a joint analysis of price and volume growth distributions in day-ahead power exchanges[END_REF] for a broader analysis. As such, it provides a potent, empirically based, case for the development of class of distributions able to cope at the same time with fat tails and skewness.

∆(x) = F Emp (x) -F T h (x) . (18) 
To sum up, our evidence suggests that the AEP fits systematically better the skewed distribution function of the log returns of French electricity prices presenting, at the same time, the lowest overall discrepancy and the lowest maximum deviation from the corresponding empirical benchmark.

Exchange rates Market

As a second application we consider exchange rates data collected from FRED R , a database of over 15,000 U.S. economic time series available at the Federal Reserve Bank of St. Louis. We select a dataset containing 5 different exchange rates and we focus on the most recent one thousand observations.5 We build empirical distributions of the (log) differenced exchange rates series and, as we did in the previous section, we test the relative ability of the 4 families under investigation to fit their observed counterpart.

Results of the goodness-of-fit test are reported in Table 4. Once again the AEP and the GHYP clearly show, when compared with the other two families, a better ability to reproduce the empirical distributions with the former displaying the best results in four out of five sample considered. To add further evidence, Figure 9 reports the function ∆(x) for the exchange growth rates of U.S. Dollar vs. Euro: the difference between the two families appears, if compared with Figure 8, rather mild even if it is apparent the better capability of the AEP to fit the extreme upper tail of the empirical distribution.

Stock Markets

As a last application we consider daily log returns of a sample of 30 stocks, 15 from the London Stock Exchange (LSE) and 15 from the Milan Stock Exchange (MIB) chosen among the top ones in terms of capitalization and liquidity. 6The results of the goodness-of-fit tests performed using the D and W 2 statistics is reported in Table 5. As can be seen the obtained results are more ambiguous than in the previous two analyses on electricity power prices and exchange rates. While also in this case the AEP and the GHYP systematically outperform both the α-Stable and the SEP, it seems less clear how to rank them in terms of their capability to fit the empirical returns distributions. On the one hand, for the majority of the stocks, the Generalized Hyperbolic seems better in approximating the overall shape of the empirical density, as witnessed by the lower values of the W 2 14, 2007. statistic. On the other hand the highest observed deviation D is almost always lower for the AEP (cfr. again Table 5). Anyway, one should be very cautious in ranking these two families, also because the respective values of D and W 2 are very close to each other.

Goodness of fit -W2

We can, however, obtain other interesting insights analyzing in depth the unique case in which the AEP appears to performs substantially better than all the other three families, GHYP included: the stock price returns of the INVENSYS PLC, a British company represented in the LSE by the abbreviation ISY. It turns out that in this case the log-returns observed present two peculiar features: they display a significant degree of skewness and they include one rather anomalous observation in the upper tail, as can be seen from the empirical density displayed in Figure 10 together with the AEP (thick solid line) and GHYP (dashed line) fits.

The function ∆(x) reported in Figure 11 shows that the quality of the fit provided by the GHYP is remarkably worse than the one obtained using the AEP. The impression is that the concomitant presence of a significant degree of skewness and very few anomalous observations negatively affects the ability of the GHYP to capture the observed distribution, notably worsening its fit. To further investigate this impression, we run the following experiment. From the original sample of the ISY stock returns we removed the top 1% observations, thus inducing the original distribution to become more symmetric. 7 Then we replicate the goodness-of-fit analysis.

We obtain values of both the Cramer-Von Mises and the Kolmogorov-Smirnov statistics that are very close to each other: 0.0327 and 0.0224 respectively for the AEP and 0.0351 and 0.0186 for the GHYP. The fact that the discrepancy between the two families is strongly reduced supports our conjecture that the GHYP appears 7 Coherently the left and right estimated shape parameters of the AEP become more similar: on the symmetrized sample b l is found to be 1.029(0.099) while br is found equal to 1.085(0.089). 

Conclusions

This paper introduces a new family of distributions, the Asymmetric Exponential Power (AEP), able to cope with asymmetries and leptokurtosis and at the same time allowing for a continuous variation from nonnormality to normality. We discuss the Maximum Likelihood estimation of the AEP parameters, investigating the properties of their sampling distribution using both analytical and numerical methods.

We present a series of analytical results on the consistency, asymptotic efficiency and asymptotic normality of the ML estimator of the AEP parameters. They are basically an extension of results previously known for the symmetric Exponential Power and prove that the estimator is consistent over the whole parameter space and that they are asymptotically efficient and normal when b l and b r are both greater or equal 2 (cfr. Table 5 for a summary of these results). At the same time, we derive the Fisher information matrix of the AEP, showing that it is well defined in the parameter space where b l and b r are grater than 0.5. In this derivation we obtain the result for the symmetric EP as a special case, fixing a mistake present in a previous work [START_REF] Agró | Maximum likelihood estimation for the exponential power function parameters[END_REF]. Furthermore, we prove that a relevant part of the Fisher information matrix J can be continuously extended to the whole parameter space. Indeed we show that even when b l and b r are smaller than 0.5 the upper-left 4x4 block of the inverse information matrix continues to be finite and positive definite. This suggests that the information matrix can be used to obtain theoretical asymptotic values for the estimates standard errors also when the values of the shape parameters are less than .5. We prove this conjecture numerically: using extensive Monte Carlo simulations we show that, first, ML estimators are always asymptotically efficient (i.e. scale with √ N ) even if, especially in presence of strong asymmetries, small sample effects are present and, second, that the inverse information matrix provides accurate measures of the ML estimates also in the region of the parameter space where J is defined via analytic continuation, that is where b l , b r < 0.5. The numerical investigation of the asymptotic behavior of the ML estimator also shows that a bias is in general present, but due to its negligible contribution to the Mean Squared Error of the estimates, it can safely be ignored for any practical purpose even when the sample size is relatively small (cfr. again Table 5 for a summary of the results).

On the empirical side, our investigations provide rather strong motivations for the use of the Asymmetric Exponential Power distribution for descriptive purposes. Indeed, using a selection of diverse economic and financial data, we show that the AEP performs better, in terms of its ability to approximate empirical distributions, than other commonly used families. Moreover, even in those situations in which its performance seems comparable to the one obtained with the best alternative available, namely the Generalized Hyperbolic, the AEP seems able to provide a more robust fitting framework in presence of significant skewness and anomalous observations.

Two elements of the study of the inferential aspects of the AEP distribution are not discussed in the present contribution and still need to be investigated: the behavior of the ML estimator for small sample sizes and the characterization of the error associated with the estimate of the location parameter m when b l , b r < 0.5.

We did not pursue these issues here because we consider them, from a practical point of view, of a secondary relevance. Indeed, in the large majority of applications in which the use of the AEP could result useful, one typically has at his disposal samples of several hundreds of observations and the shape parameters b rarely take values below 0.5.

A Appendix

Before deriving the information matrix J matrix for the AEP distribution let us solve the following useful integral

I l λ,k = m -∞ dxf (x) m -x a l λ log x -m a l k k ∈ N, λ ∈ R + . ( 19 
)
Substituting ( 3) in ( 19) and changing the variable to t = 1 b l

x-m a l b l one obtains

I l λ,k = a l b λ+1 b l -1-k l C +∞ 0 dt e -t t λ+1 b l -1 (log t + log b l ) k (20)
that expanding the summation becomes

I l λ,k = a l b λ+1 b l -1-k l C k h=0 k h log h b l +∞ 0 dt e -t t λ+1 b l -1 log k-h t (21) 
and finally

I l λ,k = a l b λ+1 b l -1-k l C k h=0 k h log h b l Γ (k-h) λ + 1 b l (22)
where Γ (i) is the ith derivative of the Gamma function and where we used ( cfr. [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF] eq. 4.358)

+∞ 0 dx log n x x v-1 e -x = Γ (n) (x) .
For instance, when λ = b l we get

I l b l ,k = a l C b 1 b l -k l k h=0 k h log h b l Γ (k-h) b l + 1 b l = a l C B k (b l ) (23) 
where B k (x) is defined in (11). When λ = b l -1 one has

I l b l -1,k = a l C b -k l k h=0 k h log h b l Γ (k-h) (1) (24) 
while when λ = 2b l it is

I l 2b l ,k = a l C b 1 b l +1-k l k h=0 k h log h b l Γ (k-h) 2b l + 1 b l . ( 25 
)
and when k = 0 and λ

= h ∈ N it is I l h,0 = a l C A h (b l ) where A h (x) is defined in (4). Correspondingly I r λ,k = +∞ m dxf (x) x -m a r λ log x -m a r k (26) = a r b λ+1 br -1-k r C k h=0 k h log h b r Γ (k-h) λ + 1 b r k ∈ N, λ ∈ R + (27) 
We provide below preliminary calculations needed to derive the Fisher information matrix J of f (x; p).

They must be used in conjunction with equations ( 23), ( 24), ( 25) and ( 27) to obtain expressions in (10).

J b l b l = Z +∞ -∞ dxf (x; p) 1 C a l B ′ 0 (b l ) + - 1 b 2 l ˛x -m a l ˛bl + 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) ! 2 = = a l C B ′′ 0 (b l ) - a 2 l C 2 (B ′ 0 (b l )) 2 + 1 b l I l b l ,2 - 2 b 2 l I l b l ,1 + 2 b 3 l I l b l ,0 . J b l br = Z +∞ -∞ dxf (x; p) 1 C a l B ′ 0 (b l ) + - 1 b 2 l ˛x -m a l ˛bl + 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) ! 1 C arB ′ 0 (br) + - 1 b 2 r ˛x -m ar ˛br + 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) ! = - a l ar C 2 B ′ 0 (b l )B ′ 0 (br) . J b l a l = Z +∞ -∞ dxf (x; p) 1 C a l B ′ 0 (b l ) + - 1 b 2 l ˛x -m a l ˛bl + 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) ! 1 C B0(b l ) - ˛x -m a l ˛bl θ(m -x) ! = 1 C B ′ 0 (b l ) - a l C 2 B0(b l )B ′ 0 (b l ) - 1 a l I l b l ,1 . J b l ar = Z +∞ -∞ dxf (x; p) 1 C a l B ′ 0 (b l ) + - 1 b 2 l ˛x -m a l ˛bl + 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) ! 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! = - a l C 2 B0(br)B ′ 0 (b l ) . J b l m = Z +∞ -∞ dxf (x; p) 1 C a l B ′ 0 (b l ) + - 1 b 2 l ˛x -m a l ˛bl + 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) ! 1 a l ˛x -m a l ˛bl -1 θ(m -x) - 1 ar ˛x -m ar ˛br-1 θ(x -m) ! = 1 a l I l b l -1,1 . J br br = Z +∞ -∞ dxf (x; p) 1 C arB ′ 0 (br) + - 1 b 2 r ˛x -m ar ˛br + 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) ! 2 = = ar C B ′′ 0 (br) - a 2 r C 2 (B ′ 0 (br)) 2 + + 1 br I r br ,2 - 2 b 2 r I r br ,1 + 2 b 3 r I r br ,0 . J br a l = Z +∞ -∞ dxf (x; p) 1 C arB ′ 0 (br) + - 1 b 2 r ˛x -m ar ˛br + 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) ! 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! = - ar C 2 B0(b l ) B ′ 0 (br) . J br ar = Z +∞ -∞ dxf (x; p) 1 C arB ′ 0 (br) + - 1 b 2 r ˛x -m ar ˛br + 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) ! 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! = 1 C B ′ 0 (br) - ar C 2 B0(br) B ′ 0 (br) - 1 ar I r br ,1 . J br m = Z +∞ -∞ dxf (x; p) 1 C arB ′ 0 (br) + - 1 b 2 r ˛x -m ar ˛br + 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) ! 1 a l ˛x -m a l ˛bl -1 θ(m -x) - 1 ar ˛x -m ar ˛br-1 θ(x -m) ! = - 1 ar I r br -1,1 . Ja l a l = Z +∞ -∞ dxf (x; p) 1 C B0(b l ) - ˛x -m a l ˛bl θ(m -x) ! 2 = - 1 C 2 B 2 0 (b l ) + b l + 1 a 2 l I l b l ,0 . Ja l ar = Z +∞ -∞ dxf (x; p) 1 C B0(b l ) - ˛x -m a l ˛bl θ(m -x) ! 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! = = - 1 C 2 B0(b l ) B0(br) . Ja l m = Z +∞ -∞ dxf (x; p) 1 a l ˛x -m a l ˛bl -1 θ(m -x) - 1 ar ˛x -m ar ˛br-1 θ(x -m) ! 1 C B0(b l ) - ˛x -m a l ˛bl θ(m -x) ! = - b l a 2 l I l b l -1,0 . Ja r ar = Z +∞ -∞ dxf (x; p) 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! 2 = - 1 C 2 B 2 0 (br) + br + 1 a 2 r I r br ,0 . Ja r m = Z +∞ -∞ dxf (x; p) 1 a l ˛x -m a l ˛bl -1 θ(m -x) - 1 ar ˛x -m ar ˛br-1 θ(x -m) ! 1 C B0(br) - ˛x -m ar ˛br θ(x -m) ! = - br a 2 r I r br -1,0 . Jmm = Z +∞ -∞ dxf (x; p) 1 a l ˛x -m a l ˛bl -1 θ(m -x) - 1 ar ˛x -m ar ˛br-1 θ(x -m) ! 2 = = 1 a 2 l I l 2b l -2,0 + 1 a 2 r I r 2br -2,0 .

B Appendix

Consider a set of N observations {x 1 , . . . , x N } and assume that they are independently drawn from an AEP distribution of unknown parameters p 0 . According to [START_REF] Lehmann | Theory of Point Estimation[END_REF],the ML estimates of these parameters p obtained trough (8) are asymptotically normal and efficient if the following 4 regularity conditions apply:

A. there exists an open subset ℘ of P containing the true parameter point p 0 such that for almost all x, the density f AEP (x|p) admits all third derivatives (∂ 3 /∂p h ∂p j ∂p k )f AEP (x) for all p ∈ ℘ ;

B. the first and second logarithmic derivatives of f AEP satisfy the equations

E ∂ log f AEP (x; p) ∂p j = 0 ∀j (28) 
and

J jk (p) = H jk (p) ∀j, k , (29) 
where

H jk (p) = E -∂ 2 log f AEP (x;p) ∂p j ∂p k .
C. the elements J hj (p) are finite and the matrix J(p) is positive definite for all p in ℘;

D. there exists functions M hjk such that

∂ 3 ∂p h ∂p j ∂p k log f AEP (x|p) ≤ M hjk (x) ∀p ∈ ℘ where m hjk = E p 0 [M hjk (x)] < ∞ ∀h, j, k .
Below we will prove that these four conditions are satisfied in the subset ℘

= [2, +∞) × [2 + ∞) × (0, +∞) × (0, +∞) ⊂ D.
In what follows we will denote f AEP simply by f , the meaning being understood.

A. Condition A. is always satisfied since any derivative of f AEP present, at most, a single discontinuity in correspondence of x = m.

B. Since it is

E » ∂ log f (x; p) ∂a l - = Z +∞ -∞ dxf (x; p) " - 1 C B0(b l ) + ˛x -m a l ˛bl θ(m -x) # = - 1 C B0(b l ) + 1 C B0(b l ) = 0 . E » ∂ log f (x; p) ∂ar - = Z +∞ -∞ dxf (x; p) " - 1 C B0(br) + ˛x -m ar ˛br θ(x -m) # = - 1 C B0(br) + 1 C B0(br) = 0 . E » ∂ log f (x; p) ∂b l - = Z +∞ -∞ dxf (x; p) " - 1 C a l B ′ 0 (b l ) + 1 b 2 l ˛x -m a l ˛bl - 1 b l ˛x -m a l ˛bl log ˛x -m a l ˛! θ(m -x) # = a l b 1/b l -2 l C » (log(b l ) -1)Γ(1 + 1/b l ) + ψ(1 + 1/b l )Γ(1 + 1/b l ) + Γ(1 + 1/b l )+ -log(b l )Γ(1 + 1/b l ) -ψ(1 + 1/b l )Γ(1 + 1/b l ) - = 0 . E » ∂ log f (x; p) ∂br - = Z +∞ -∞ dxf (x; p) " - 1 C arB ′ 0 (br) + 1 b 2 r ˛x -m ar ˛br - 1 br ˛x -m ar ˛br log ˛x -m ar ˛! θ(x -m) # = arb 1/br -2 r C » (log(br) -1)Γ(1 + 1/br) + ψ(1 + 1/br)Γ(1 + 1/br)+ + Γ(1 + 1/br) -log(br)Γ(1 + 1/br) -ψ(1 + 1/br)Γ(1 + 1/br) - = 0 . E » ∂ log f (x; p) ∂m - = Z +∞ -∞ dxf (x; p) " -1 a l ˛x -m a l ˛bl -1 θ(m -x) + 1 ar ˛x -m ar ˛br-1 θ(x -m) # = = -1 C B0(b l -1) + -1 C B0(br -1) = 0 .
the first part (Equation 28) of Condition B is satisfied. Moreover it is

In order to prove (29), notice that when f (x; p) ∂log f (x; p)/∂p j are continuous functions, this equation is a simple consequence of an integration by parts. Hence it remains to prove (29) only in those cases where a derivative with respect to the parameter m is involved. One has

H b l m = Z +∞ -∞ dxf (x) " 1 a l ˛x -m a l ˛bl -1 log ˛x -m a l ˛θ(m -x) # = 1 a l I l b l -1,1 = J b l m H br m = Z +∞ -∞ dxf (x) " 1 ar ˛x -m ar ˛br-1 log ˛x -m ar ˛θ(x -m) # = - 1 ar I r br -1,1 = J br m Ha l m = - Z +∞ -∞ dxf (x) " b l a 2 l ˛x -m a l ˛bl -1 θ(m -x) # = - b l a 2 l I l b l -1,0 = Ja l m Ha rm = - Z +∞ -∞ dxf (x) " br a 2 r ˛x -m ar ˛br-1 θ(x -m) # = - br a 2 r I r br -1,0 = Ja r m Hmm = Z +∞ -∞ dxf (x) " b l -1 a 2 l ˛x -m a l ˛bl -2 θ(m -x) + br -1 a 2 r ˛x -m ar ˛br-2 θ(x -m) # = = b l -1 a 2 l I l b l -2,0 + br -1 a 2 r I r br -2,0 = Jmm
and ( 29) is proved.

C. According to Theorem 3.1 the matrix J exists and is positive definite for b l , b r > .5. When one of these two parameters moves toward the value .5 the element J mm encounters a pole and the matrix is no longer defined.

D. Consider the case when p

h = p j = p k = m. It is easy to show that ∂ 3 ∂m 3 log f (x|p) = (b l -1)(b l -2) a 3 l x -m a l b l -3 θ(m -x) - (b r -1)(b r -2) a 3 r x -m a r br-3 θ(x -m) . (30) 
If one defines

M mmm (x) = (b l -1)(b l -2) a 3 l x -m a l b l -3 + (b r -1)(b r -2) a 3 r x -m a r br-3 (31) it follows that ∂ 3 ∂m 3 log f (x|p) ≤ M mmm (x) ∀p ∈ ℘. Moreover, for b l , b r > 2 it is E [M mmm ] < ∞.
Using the same argument it is straightforward to prove that when b l , b r > 2 condition D is satisfied also for all other cases. Q.E.D. 
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 12 Figure 1: Densities of the AEP(1,2,1,b r ) with b r = 5, b r = 1 and b r = 0.5.

  runs over the five elements of p, (b l , b r , a l , a r , m). In practice, one usually assumes p 0 = p. In the next Sections we will show that, notwithstanding the presence of finite-sample biases and of analytical problems in extending the definition of J to small values of b l and b r , the elements of this matrix can be used to characterize the statistical errors associated to ML estimates on a large part of the parameters space. The expression of the elements of the Fisher information matrix for the AEP distribution are provided in the following Theorem 3.1 (Information matrix of AEP density) The elements of the Fisher information matrix J(p) of the Asymmetric Exponential Power distribution (3) are

Theorem 3. 4 (

 4 Asymptotic Normality and Efficiency) If b l , b r ≥ 2 the unique a solution p of the maximum likelihood problem (8) is asymptotically normal and efficient in the sense that √ N (pp 0 ) converges in distribution to N {0, [J(p)] -1 }. Proof. For the proof see Appendix B. Analogous results were derived in Agró (1995) for the symmetric Exponential Power distribution (1). The reason why the asymptotic efficiency and normality of the ML estimator can only be proved when b l , b r ≥ 2 is due to the presence of singularities in the derivatives of L AEP with respect to the parameter m. When this parameter is considered known, the situation becomes much simpler. In this case the vector of unknown parameters p = (b l , b r , a l , a r ) belongs to the open set D = (0, +∞) × (0, +∞) × (0, +∞) × (0, +∞). Let p 0 be the true parameters value, then the following holds Theorem 3.5 (Consistency, Asymptotic Normality and Efficiency) If m is known, the solution p of the maximum likelihood problem (8) converges in probability to its true value p 0 ; p is also asymptotically normal and efficient in the sense that √ N (pp 0 ) converges in distribution to N {0, [J(p)] -1 }.

  Figure 3: Relative asymptotic error J -1/2 b l ,b l /b for AEP(b,b,1,1,0) as a function of b. Both the case with m known and unknown are displayed, together with the symmetric (EP) case J-1/2 b,b /b.

Figure 5 :

 5 Figure 5: Rescaled standard error of the estimates of the parameter a (top) and b (bottom) as a function of the sample size N for the symmetric Subbotin distribution with a = 1, m = 0 and for different values of b.

  Figure 6: Rescaled standard error of the estimator of the parameters a l (top) and b l (bottom) as a function of the sample size N , for the Asymmetric Subbotin distribution for a l = a r = 1, m = 0 and different (but equal) values of b l and b r .

  Figure 7: Standard error of the estimator of the parameters a l , a r (top) and b l , b r (bottom) as a function of the sample size N for the Asymmetric Subbotin distribution for different values of b l , b r = 2.5, a l = a r = 1 and m = 0.
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 89 Figure 8: Deviations ∆(x) of the AEP and of the GHYP from the empirical distribution. Data are daily log-returns of the French electricity price at 5 p.m.

Figure 10 :Figure 11 :

 1011 Figure 10: Empirical log-return density together with the AEP and the GHYP fits. Data are daily log-returns of the INVENSYS PLC stock listed at the London Stock Exchange.

Table 1 :

 1 Extrapolated values for the asymptotic (large N ) estimates standard errors together with the theoretical Cramer-Rao values.

		b		a		m	
	b	σ ASY	J -1	σ ASY	J -1	σ ASY	J -1
	0.2 0.3012 0.3016 2.3418 2.3519 0.0186	-
	0.4 0.6366 0.6400 1.7547 1.7489 0.1921	-
	0.6 1.0105 1.0134 1.4849 1.4994 0.5628 0.4130
	0.8 1.4024 1.4198 1.3550 1.3604 0.8499 0.8134
	1.0 1.8608 1.8574 1.2654 1.2715 1.0041 1.0000
	1.2 2.2602 2.3244 1.2100 1.2095 1.0808 1.0700
	1.4 2.7697 2.8194 1.1550 1.1639 1.0912 1.0817
	1.6 3.3065 3.3411 1.1195 1.1287 1.0762 1.0651
	1.8 3.8407 3.8883 1.0928 1.1008 1.0480 1.0353
	2.0 4.4819 4.4599 1.0900 1.0779 1.0036 1.0000
	2.2 4.9894 5.0550 1.0536 1.0587 0.9674 0.9632

inefficiency. Notice, however, that this inefficiency is in general of modest size.

Table 2 :

 2 Extrapolated values for the asymptotic (large N ) estimates standard errors of the EP together with the theoretical Cramer-Rao values.

Table 3 :

 3 Maximum likelihood estimates (standard errors in parenthesis) of the shape parameters, b l and b r , of the AEP density together with the EDF goodness-of-fit statistics for four different families of distribution. Data are daily log returns of electricity prices from the French power exchange, Powernext.

					Goodness of fit -W2			Goodness of fit -D	
	Hour	b l	br	AEP	GHYP	Stable	SEP	AEP	GHYP	Stable	SEP
	10.00 a.m. 0.565 0.022 0.893 0.043 0.287	1.365	1.436	1.339 0.030	0.053	0.051	0.042
	12.00 a.m. 0.625 0.026 0.985 0.051 0.155	0.253	0.644	0.390 0.022	0.024	0.036	0.032
	2.00 p.m.	0.600 0.024 0.999 0.051 0.147	0.752	1.016	0.573 0.026	0.040	0.044	0.035
	5.00 p.m.	0.591 0.023 1.003 0.051 0.193	0.592	0.774	0.847 0.027	0.036	0.037	0.042
	8.00 p.m.	0.650 0.027 0.912 0.046 0.091	0.178	0.576	0.239 0.017	0.024	0.033	0.022

distributions. Hence, all the figures associated with the different statistics should be regarded in comparative and not absolute terms.

Table 4 :

 4 Maximum likelihood estimates (standard errors in parenthesis) of the shape parameters of the AEP density together with the EDF goodness-of-fit statistics for four different families of distribution. Data are daily log first difference on different exchange rates. Source: FRED R Federal Reserve Economic Data.

					Goodness of fit -W2			Goodness of fit -D	
	Currencies	b l	br	AEP	GHYP	Stable	SEP	AEP	GHYP	Stable	SEP
	usd4eu	1.193 0.127 1.503 0.165 0.052	0.073	0.351	3.420 0.018	0.022	0.036	0.107
	usd4uk	1.385 0.172 1.688 0.217 0.037	0.044	0.214	0.120 0.016	0.019	0.035	0.026
	sz4usd	1.455 0.163 1.374 0.167 0.054	0.060	0.339	0.078 0.018	0.019	0.039	0.021
	si4usd	1.110 0.119 1.530 0.153 0.038	0.033	0.066	2.798 0.020	0.016	0.020	0.088
	jp4usd	1.195 0.125 1.541 0.176 0.019	0.029	0.141	0.703 0.014	0.018	0.032	0.059

Table 5 :

 5 Properties of the Maximum Likelihood estimator of the AEP parameters. Bias contribution to RMSE is negligible for any practical application when the sample size N is greater than 100 less robust to the presence in the data of skewness and anomalous observations.

	Theoretical Results	Numerical Analysis
	m known	m unknown	m known	m unknown
	Consistent	Consistent	Biased *	Biased *
	b l ≥ 2, br ≥ 2			
	Asymp. Normal	Asymp. Normal		
	Asymp. efficient Asymp. efficient		
	Consistent	Consistent	Biased *	Biased *
	0.5 < b l < 2, 0.5 < br < 2			
	Asymp. Normal			
	Asymp. efficient	J well defined		Asymp. efficient
	Consistent	Consistent	Biased *	Biased *
	b l ≤ 0.5, br ≤ 0.5			
	Asymp. Normal			
	Asymp. efficient			Asymp. efficient
				

* 

Table 6 :

 6 Bias and Standard Deviation of b, b, â and m estimated on 10000 samples drawn from a Power Exponential distribution. K is the number of times the ML procedure did not converge.

				(b,a,m)=(0.4,1,0)			
	N	b/b	σ b /b	ã/a	σa/a	m	σm	K
	100 -0.018288	0.177637	-0.019566 0.178384	-0.000365 0.059433	
	200	-0.007221	0.118821	-0.008976 0.122441	-0.000642 0.035281	
	400	-0.004860	0.081781	-0.004822 0.086703	-0.000240 0.021029	
	800	-0.002362	0.057095	-0.002149 0.061403	-0.000071 0.012641	
	1600 -0.000950	0.040103	-0.000650 0.043213	-0.000054 0.007717	
	3200 -0.000500	0.028149	-0.000387 0.030772	-0.000060 0.004570	
	6400 -0.000710	0.019966	-0.000173 0.021858	0.000006	0.002715	
				(b,a,m)=(0.8,1,0)			
	N	b/b	σ b /b	ã/a	σa/a	m	σm	K
	100	0.024698	0.217721	-0.005042 0.141531	0.000457	0.102071	
	200	0.010619	0.137288	-0.002619 0.097276	-0.000158 0.068417	
	400	0.004350	0.091226	-0.001645 0.068244	0.000521	0.047679	
	800	0.002038	0.063613	-0.000996 0.047803	-0.000023 0.032717	
	1600	0.000972	0.044655	-0.000196 0.033742	0.000129	0.022560	
	3200	0.000426	0.031728	-0.000006 0.024025	-0.000123 0.015543	
	6400	0.000013	0.021858	-0.000119 0.016879	0.000014	0.010769	
				(b,a,m)=(1.4,1,0)			
	N	b/b	σ b /b	ã/a	σa/a	m	σm	K
	100	0.123678	5.325462	0.005878	0.125171	-0.001145 0.112919	
	200	0.030093	0.161387	0.002007	0.085312	0.000602	0.077747	
	400	0.013300	0.106216	0.000311	0.059140	0.000302	0.055068	
	800	0.006123	0.072968	0.000307	0.041433	0.000249	0.038259	
	1600	0.003050	0.050587	0.000355	0.028948	-0.000124 0.026960	
	3200	0.000927	0.035539	-0.000204 0.020489	0.000240	0.019192	
	6400	0.000280	0.024811	-0.000176 0.014431	0.000081	0.013594	
				(b,a,m)=(2.2,1,0)			
	N	b/b	σ b /b	ã/a	σa/a	m	σm	K
	100	0.491071	12.614268	0.012540	0.120088	-0.000602 0.099523	
	200	0.049846	0.194413	0.005017	0.078570	-0.000744 0.069450	
	400	0.024967	0.126713	0.003576	0.054255	-0.000774 0.047950	
	800	0.011329	0.084521	0.001311	0.037981	-0.000272 0.033816	
	1600	0.005102	0.058735	0.000547	0.026772	0.000015	0.023958	
	3200	0.002471	0.040739	0.000322	0.018683	0.000100	0.016927	
	6400	0.001520	0.028629	0.000298	0.013257	-0.000000 0.012098	

Table 7 :

 7 Bias and Standard Deviation of b, b, â and m estimated on 10000 samples drawn from a Power Exponential distribution when m is known. K is the number of times the ML procedure did not converge.

			(b,a)=(0.4,1)		
	N	b/b	σ b /b	ã/a	σa/a	K
	100 0.040468 0.174889	0.018407 0.180738	
	200	0.018971 0.118363	0.007964 0.123157	
	400	0.008160 0.081851	0.003515 0.086975	
	800	0.004253 0.057183	0.002026 0.061492	
	1600 0.002472 0.040050	0.001478 0.043217	
	3200 0.001256 0.028099	0.000692 0.030777	
	6400 0.000170 0.019822	0.000363 0.021830	
			(b,a)=(0.8,1)		
	N	b/b	σ b /b	ã/a	σa/a	K
	100 0.054497 0.207635	0.014160 0.138900	
	200	0.025469 0.134228	0.006792 0.096496	
	400	0.011932 0.090158	0.003114 0.068023	
	800	0.005788 0.063193	0.001341 0.047691	
	1600 0.002764 0.044496	0.000928 0.033709	
	3200 0.001323 0.031615	0.000552 0.024005	
	6400 0.000482 0.021620	0.000168 0.016814	
			(b,a)=(1.4,1)		
	N	b/b	σ b /b	ã/a	σa/a	K
	100 0.074693 0.260163	0.013868 0.121101	
	200	0.033730 0.157512	0.006150 0.084261	
	400	0.015243 0.104988	0.002404 0.058833	
	800	0.007109 0.072519	0.001331 0.041282	
	1600 0.003590 0.050498	0.000879 0.028906	
	3200 0.001153 0.035471	0.000042 0.020489	
	6400 0.000381 0.024579	0.000057 0.014364	
			(b,a)=(2.2,1)		
	N	b/b	σ b /b	ã/a	σa/a	K
	100 0.152469 5.046575	0.014395 0.113174	
	200	0.046257 0.187227	0.006733 0.077362	
	400	0.023759 0.124730	0.004466 0.053871	
	800	0.010726 0.083782	0.001735 0.037794	
	1600 0.004872 0.058559	0.000779 0.026715	
	3200 0.002375 0.040666	0.000445 0.018663	
	6400 0.001438 0.028421	0.000352 0.013206	

Table 10 :

 10 Bias and Standard Deviation of bl , br , âl , âr and m estimated on 10000 samples drawn from an Asymmetric Exponential Power distribution. K is the number of times the ML procedure did not converge.

				(b l ,b r ,a l ,a r ,m)=(0.5,1.5,1,1,0)				
	N	bl /b l	σ b l /b l	br/br	σ br /br	ãl /a l	σa l /a l	ãr/ar	σa r /ar	m	σm	K
	100	0.016059	0.251608 0.066257 0.403796 0.026195 0.228994 -0.009739 0.216587	0.019185	0.191960	84
	200	0.005344	0.147271 0.032755 0.232989 0.012207 0.154975 -0.003246 0.136095	0.006282	0.109004	
	400	0.002462	0.096266 0.016076 0.145892 0.006336 0.106578 -0.001011 0.088222	0.002936	0.066112	
	800	0.000016	0.064622 0.010703 0.098329 0.003381 0.074980	0.001126	0.059925 -0.000526 0.042494	
	1600 -0.000799 0.045051 0.006403 0.068035 0.002236 0.052221	0.000876	0.041374 -0.000907 0.027879	
	3200 -0.000847 0.031354 0.003399 0.047031 0.001514 0.036679	0.000320	0.028286 -0.000393 0.017856	
	6400 -0.000348 0.021951 0.001960 0.032511 0.000977 0.026344	0.000344	0.019415 -0.000313 0.011392	
	N	bl /b l	σ b l /b l	br/br	σ br /br	ãl /a l	σa l /a l	ãr/ar	σa r /ar	m	σm	K
	100	0.022468	0.255162 0.101449 0.555071 0.020517 0.225258 -0.018580 0.219204	0.028914	0.196187 423
	200	0.008303	0.149654 0.050432 0.287029 0.010281 0.153611 -0.004446 0.138285	0.010341	0.112153	
	400	0.004299	0.098062 0.020972 0.169655 0.005071 0.106479 -0.001899 0.086841	0.004974	0.067606	
	800	0.001987	0.065114 0.009224 0.111832 0.001813 0.074475 -0.001770 0.057358	0.002692	0.042156	
	1600	0.000572	0.044927 0.005221 0.077055 0.001262 0.052684 -0.000442 0.039397	0.001054	0.026905	
	3200	0.000452	0.031767 0.003277 0.053408 0.000906 0.036877	0.000328	0.027017	0.000215	0.018008	
	6400	0.000171	0.022005 0.001973 0.036795 0.000444 0.026330	0.000501	0.018571 -0.000034 0.011815	
				(								

(b l ,b r ,a l ,a r ,m)=(0.5,2.5,1,1,0)

b l ,b r ,a l ,a r ,m)=(1.5,2.5,1,1,0)

  

	N	bl /b l	σ b l /b l	br/br	σ br /br	ãl /a l	σa l /a l	ãr/ar	σa r /ar	m	σm	K
	100	0.172840	0.807995 0.163922 1.018400 0.083851 0.413484 -0.003162 0.479259	0.076579	0.635499 238
	200	0.078985	0.394488 0.061394 0.510150 0.048404 0.297385 -0.008636 0.354509	0.050121	0.472570	
	400	0.038409	0.257181 0.019304 0.311780 0.027430 0.215093 -0.007662 0.262142	0.029973	0.352509	
	800	0.020593	0.175969 0.005227 0.211818 0.015980 0.153095 -0.007333 0.189167	0.019614	0.254872	
	1600	0.007903	0.119389 0.005257 0.146614 0.005724 0.105444 -0.001113 0.133336	0.006430	0.178423	
	3200	0.002899	0.083172 0.002837 0.103493 0.002151 0.074641	0.000119	0.095920	0.002139	0.127786	
	6400	0.001851	0.057875 0.001033 0.072014 0.001390 0.051602 -0.000185 0.066737	0.001534	0.088487	

These prices are fixed on day, separately for the 24 individual hours, for delivery on the same day or on the following.

For the sake of clarity we do not report the function ∆(x) for the α-Stable and the SEP, since from Table3it is apparent that their ability to fit the empirical distribution is substantially worse.

The exchange rates analyzed are: U.S. Dollars to one Euro, U.S. Dollars to one U.K. Pound, Japanese Yen to one U.S. Dollar, Singapore Dollars to one U.S. Dollars and Swiss Francs to one U.S. Dollars. The time window goes from August 25, 2003 to August

We use daily closing prices as retrieved from Bloomberg financial data service. The time window considered covers the period between June 1998 and June 2002.
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Table 8: Bias and Standard Deviation of bl , br , âl , âr and m estimated on 10000 samples drawn from an Asymmetric Exponential Power distribution. K is the number of times the ML procedure did not converge.

(b l ,b r ,a l ,a r ,m)=(0.5,0.5,1,1,0)