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Abstract In this paper, we obtain a large deviation principle for quadratic forms of Gaussian sta-
tionary processes. It is established by the conjunction of a result of Roch and Silbermann on the
spectrum of products of Toeplitz matrices together with the analysis of large deviations carried out
by Gamboa, Rouault and the first author. An alternative proof of the needed result on Toeplitz
matrices, based on semi-classical analysis, is also provided.
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1 Introduction

For any bounded measurable real function f on the torus T = [−π, π[, the ℓ2(N) Toeplitz and Hankel
operators are respectively defined as

(1.1) T (f) =
(
f̂i−j

)
i,j≥0

and H(f) =
(
f̂i+j+1

)
i,j≥0

where (f̂n) stands for the sequence of Fourier coefficients of f . We refer the reader to the books
of Böttcher and Silbermann [3], [4] for a general presentation of Toeplitz operators. A well-known
identity between the product T (f)T (g) and T (fg) is

(1.2) T (fg)− T (f)T (g) = H(f)H(g̃)

where g̃(x) = g(−x). The analogue of identity (1.2) for finite section Toeplitz matrices is given by
the formula of Widom [16]

(1.3) Tn(fg)− Tn(f)Tn(g) = PnH(f)H(g̃)Pn +QnH(f̃)H(g)Qn

where the projection Pn and the operator Qn are given by

Pn(x0, x1, x2, . . .) = (x0, x1, . . . , xn, 0, . . .),

Qn(x0, x1, x2, . . .) = (xn, xn−1, . . . , x0, 0, . . .),
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Université Bordeaux 1, Institut de Mathématiques de Bordeaux,
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and Tn(f) is the finite section of order n ≥ 1 of T (f) which means that Tn(f) is identified with
PnT (f)Pn. In other words, our operators will be considered as operators on ImP and ImPn where
P stands for the projection operator on ℓ2(N). We clearly have Q2

n = Pn, PnQn = QnPn = Qn, and
QnTn(f)Qn = Tn(f̃).

The classical Szegö theorem deals with the asymptotic behavior of the spectrum of a single
Toeplitz matrix. It states that if f is a bounded measurable real function on T, the limiting set of
eigenvalues of the sequence (Tn(f)) is exactly

σ(T (f)) = [essinff, esssupf ],

where σ(T (f)) denotes the spectrum of the operator T (f). Moreover, the empirical spectral measure
of (Tn(f)) converges to Pf which is the image probability of the uniform measure on T by the
application f . In other words, if λn0 , . . . , λ

n
n are the eigenvalues of Tn(f), then for any bounded

continuous real function ϕ

(1.4) lim
n→∞

1

n

n∑

k=0

ϕ(λnk ) =
1

2π

∫

T

ϕ(f(x)) dx.

In particular, the maximum eigenvalue of Tn(f) converges to esssupf while the minimum eigen-
value of Tn(f) converges to essinff . One can find more details in Section 5.2 of [10] or in Section 5.4
of [4]. Our purpose is to make use of similar results for the spectrum of the product of two Toeplitz
matrices Tn(f)Tn(g). Several authors have investigated the asymptotic behavior of the spectrum of
Tn(f)Tn(g). More precisely, it was shown in Lemma 5 of [1] or Lemma 2.6 of [15] that if f and g

are two bounded measurable real functions on T, then the empirical spectral measure associated
with the sequence (Tn(f)Tn(g)) converges to the limiting measure Pfg. However, the limiting set of
eigenvalues of (Tn(f)Tn(g)) is much more difficult to understand. Via a theorem of Roch and Silber-
mann, we shall see that, as soon as f and g ≥ 0 are bounded piecewise continuous real functions,
the limiting set of eigenvalues of (Tn(f)Tn(g)) coincides with the spectrum of the limiting operator
T (f)T (g). In particular, the maximum and the minimum eigenvalues of Tn(f)Tn(g) both converge
to the maximum and minimum of the spectrum of T (f)T (g).

In this paper, we make use of the previous results on Toeplitz operators to obtain a large deviation
principle (LDP) for quadratic forms of Gaussian stationary processes. More precisely, consider a
centered stationary real Gaussian process (Xn) with bounded piecewise continuous spectral density
g. It was shown in [1] an LDP for subsequences of the empirical periodogram (Wn(f)) integrated
over a bounded piecewise continuous real function f . We can now deduce a full LDP for the sequence
(Wn(f)).

We also give an alternative proof of the theorem of Roch and Silbermann in the particular case
of Toeplitz operators with continuous symbols. Our approach is based on semi-classical analysis and
scattering theory by construction of quasimodes which are approximative eigenvectors. We hope that
this microlocal approach can be used in other situations.

The paper is organized as follows. In Section 2, we recall a theorem of Roch and Silbermann.
Section 3 is devoted to the application in probability. An enlightening example is treated in Section
4. Then, we give our alternative proof of the result of Roch and Silbermann in the case of Toeplitz
operators with continuous symbols. This result and our functional point of view on Toeplitz operators
are given in Section 5. The convergence of the spectrum is proved in Section 6. Finally, in Section 7,
we propose an alternative proof of Coburn’s theorem dealing with the essential spectrum of products
of Toeplitz operators.
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2 Results on Toeplitz operators

Denote by A the Banach algebra of all sequences (An) of uniformly bounded linear operators on
ImPn endowed with the sum and the composition term by term, and the supremum of the operator
norm of the elements. Let B be the collection of all sequences (An) of A for which one can find two
bounded linear operators A and Ã in ImP such that

An → A, A∗
n → A∗, QnAnQn → Ã, QnA

∗
nQn → Ã∗,

where ∗ stands the adjoint operator and → stands for the strong convergence. Finally, denote by C
the smallest closed subalgebra of A containing the collection of all sequences (Tn(f)) where f are
bounded piecewise continuous real functions. In fact, C is a subalgebra of B and

Tn(f) → T (f), QnTn(f)Qn → T (f̃).

We refer to Section 2.5 of [4] for more details on B. We are now in position to state a theorem of
Roch and Silbermann.

Theorem 2.1 (Roch–Silbermann) Let (Tn) be a sequence of selfadjoint operators of C. Moreover,

denote the strong limits of Tn and QnTnQn by T and T̃ , respectively. For λ ∈ R, the following properties

are equivalent:

i) λ ∈ σ(T ) ∪ σ(T̃ ),

ii) λ is the limit of a sequence (λn) where λn ∈ σ(Tn),

iii) λ is the limit of a subsequence (λnk
) where λnk

∈ σ(Tnk
).

Theorem 2.1 was established in [14] together with several examples of application. It is given, in
its present form, in Theorem 4.16 of [4].

A direct application of this result is as follows. First of all, let us introduce some notations. Let
f and g be two bounded piecewise continuous real functions with g ≥ 0. From Lemma 6.1 below, the
sequence (Tn(g)

1/2) as well as (Tn(g)
1/2Tn(f)Tn(g)

1/2) belong to C,

Tn(g)
1/2Tn(f)Tn(g)

1/2 → T (g)1/2T (f)T (g)1/2,

QnTn(g)
1/2Tn(f)Tn(g)

1/2Qn → T (g̃)1/2T (f̃)T (g̃)1/2.

On ImPn, we clearly have

σ
(
Tn(f)Tn(g)

)
= σ

(
Tn(g)

1/2Tn(f)Tn(g)
1/2),

with the same multiplicity. Moreover, by Lemma 6.6, we also have on ImP

σ
(
T (g)1/2T (f)T (g)1/2

)
= σ

(
T (f)T (g)

)
= σ

(
T (f̃)T (g̃)

)
= σ

(
T (g̃)1/2T (f̃)T (g̃)1/2

)
.

Denote the maximum and minimum eigenvalues of Tn(f)Tn(g) by

λnmax(f, g) = maxσ
(
Tn(f)Tn(g)

)
,

λnmin(f, g) = minσ
(
Tn(f)Tn(g)

)
.

In addition, denote the extrema of the spectrum of T (f)T (g) by

λmax(f, g) = maxσ
(
T (f)T (g)

)
,

λmin(f, g) = minσ
(
T (f)T (g)

)
.

One can observe that, in general, we do not know if λmax(f, g) and λmin(f, g) are eigenvalues.
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Corollary 2.2 Assume that f and g are two bounded piecewise continuous real functions on T with

g ≥ 0. Then, the limiting sets of eigenvalues of the sequence (Tn(f)Tn(g)) are given by σ(T (f)T (g)). In
particular,

lim
n→∞

λnmax(f, g) = λmax(f, g),(2.1)

lim
n→∞

λnmin(f, g) = λmin(f, g).(2.2)

In Section 4, we shall show via an example related to Gaussian autoregressive process that it is not
true in general that for two bounded continuous real functions f and g, λmax(f, g) = sup(fg) or
λmin(f, g) = inf(fg). One can also observe that the norm of T (g)1/2T (f)T (g)1/2 is not always equal
to ‖fg‖∞ or ‖f‖∞‖g‖∞. The situation is totally different from the case of a single Toeplitz operator
T (f) with bounded continuous real function as λmax(f, 1) = sup(f) and λmin(f, 1) = inf(f).

3 Application in probability

Let (Xn) be a centered stationary real Gaussian process with bounded piecewise continuous spectral
density g ≥ 0 which means that

E[XjXk] =
1

2π

∫

T

exp(i(j − k)x)g(x) dx.

We assume in all the sequel that g is not the zero function. For any bounded piecewise continuous
real function f on the torus T, we are interested in the asymptotic behavior of

(3.1) Wn(f) =
1

2πn

∫

T

f(x)

∣∣∣∣
n∑

j=0

Xj exp(ijx)

∣∣∣∣
2

dx.

The purpose of this section is to provide the last step in the analysis of the large deviation properties
of (Wn(f)) by establishing an LDP for (Wn(f)) in the spirit of the original work of [1] or of Bryc
and Dembo [6]. We refer the reader to the book of Dembo and Zeitouni [7] for the general theory
on large deviations. The covariance matrix associated with the vector X(n) = (X0, . . . , Xn)

t is Tn(g).
Consequently, it immediately follows from (3.1) that

(3.2) Wn(f) =
1

n
X(n)tTn(f)X

(n) =
1

n
Y (n)tTn(g)

1/2Tn(f)Tn(g)
1/2Y (n)

where the vector Y (n) has a Gaussian N (0, In) distribution. In order to investigate the large deviation
properties of (Wn(f)), it is necessary to calculate the normalized cumulant generating function given,
for all t ∈ R, by

Ln(t) =
1

n
logE

[
exp(ntWn(f))

]
.

For convenience and in all the sequel, we use of the notation that log t = −∞ if t ≤ 0. We deduce
from (3.2) and standard Gaussian calculation that for all t ∈ R

Ln(t) =−
1

2n
log det

(
In − 2tTn(g)

1/2Tn(f)Tn(g)
1/2)

=−
1

2n

n∑

k=0

log(1− 2tλnk ),

where λn0 , . . . , λ
n
n are the eigenvalues of Tn(g)

1/2Tn(f)Tn(g)
1/2. For all t ∈ R, let

Lfg(t) = −
1

4π

∫

T

log(1− 2tf(x)g(x)) dx,
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and denote by Ifg its Fenchel-Legendre transform

Ifg(x) = sup
t∈R

{
xt− Lfg(t)

}
.

Furthermore, for all x ∈ R, let

(3.3) Jfg(x) =





Ifg(a) +
1

2λmin(f, g)
(x− a) if x ∈]−∞, a]

Ifg(x) if x ∈]a, b[

Ifg(b) +
1

2λmax(f, g)
(x− b) if x ∈ [b,+∞[

where a and b are the extended real numbers given by

a = L′
fg

(
1

2λmin(f, g)

)

if λmin(f, g) < 0 and λmin(f, g) < inf(fg), a = −∞ otherwise, while

b = L′
fg

(
1

2λmax(f, g)

)

if λmax(f, g) > 0 and λmax(f, g) > sup(fg), b = +∞ otherwise. We immediately deduce from Theorem
1 of [1] together with Corollary 2.2, that an LDP holds for (Wn(f)).

Theorem 3.1 The sequence (Wn(f)) satisfies an LDP with good rate function Jfg. More precisely, for

any closed set F ⊂ R

lim sup
n→∞

1

n
logP(Wn(f) ∈ F ) ≤ − inf

x∈F
Jfg(x),

while for any open set G ⊂ R

lim inf
n→∞

1

n
logP(Wn(f) ∈ G) ≥ − inf

x∈G
Jfg(x).

Remark 3.2 Denote by µ the derivative of Lfg at point zero

µ =
1

2π

∫

T

f(x)g(x)dx.

Then, we have Jfg(µ) = 0 and it follows from Theorem 3.1 that for all x > µ

lim
n→∞

1

n
logP(Wn(f) ≥ x) = −Jfg(x),

whereas for all x < µ

lim
n→∞

1

n
logP(Wn(f) ≤ x) = −Jfg(x).
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4 An illustrative example

Let a and θ be two real numbers with |θ| < 1 and consider the two bounded continuous real functions
f and g given by

f(x) = a+ cos(x) and g(x) =
1

1 + θ2 − 2θ cos(x)
.

The goal of this section is to study the limiting set of eigenvalues of the sequence (Tn(f)Tn(g)). We
clearly have ‖f‖∞ = |a|+ 1 and ‖g‖∞ = (1− |θ|)−2. The function g is simply the spectral density of
a Gaussian autoregressive process [1]. If θ = 0, g = 1 and the product Tn(f)Tn(g) reduces to Tn(f).
Consequently, λmax(f, 1) = a+ 1 and λmin(f, 1) = a− 1. If θ 6= 0, denote

aθ = −
(1 + θ)

2θ
and bθ = −

(1− θ)

2θ
.

It is more convenient to work with the inverse of Tn(g). As a matter of fact, Tn(g)
−1 is a tridiagonal

matrix quite similar to Tn(g
−1) except that, at the two diagonal corners of Tn(g

−1), the coefficient
1 + θ2 is replaced by 1

Tn(g)
−1 =




1 −θ 0 . . .

−θ 1 + θ2 −θ . . .

. . . . . . . . . . . .

. . . −θ 1 + θ2 −θ

. . . 0 −θ 1



.

It is not hard to see that det(Tn(g)
−1) = 1 − θ2. In order to find the eigenvalues λ of the product

Tn(f)Tn(g), it is equivalent to calculate the zeros of its characteristic polynomial which correspond
also to the zeros of det(Mn(t)) where

Mn(t) = tTn(f)− Tn(g)
−1

with t = 1/λ. As Tn(f) and Tn(g)
−1 are both tridiagonal matrices, we can easily compute det(Mn(t)).

Via the same lines than in Lemma 11 of [1], we find that for n large enough,Mn(t) is negative definite
only on the domain D = D1 ∪ D2 with

D1 =
{
−2θ2 < p ≤ −θ2 and q2 < −4θ2(p+ θ2)

}
,

D2 =
{
p < −2θ2 and p < −|q|

}
,

where p = at−(1+θ2) and q = t+2θ. In term of the variable λ, the inverses of the boundaries of D give
the extrema of σ(T (f)T (g)) that is λmax(f, g) and λmin(f, g). After some tedious but straightforward
calculations, we obtain three inverses of the boundaries

a− 1

(1 + θ)2
,

a+ 1

(1− θ)2
, −

1

4θ(1 + aθ)
.

Two of them coincide with inf(fg) and sup(fg). It only depends on the location of a with respect
to −(1 + θ2)/(2θ). The last one can be λmax(f, g) > sup(fg) or λmin(f, g) < inf(fg). It only depends
on the sign of θ as well as on the location of a with respect to the interval [aθ, bθ]. More precisely, if
θ > 0 then λmax(f, g) = sup(fg) while

λmin(f, g) =
1

−4θ(1 + aθ)
< inf(fg) = min

(
a− 1

(1 + θ)2
,
a+ 1

(1− θ)2

)

if a ∈]aθ, bθ[ and λmin(f, g) = inf(fg) otherwise. Moreover, if θ < 0 then λmin(f, g) = inf(fg) while

λmax(f, g) =
1

−4θ(1 + aθ)
> sup(fg) = max

(
a− 1

(1 + θ)2
,
a+ 1

(1− θ)2

)

if a ∈]aθ, bθ[ and λmax(f, g) = sup(fg) otherwise.
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5 Toeplitz operators and functional calculus

We will prove the following result which implies Corollary 2.2 for continuous fonctions.

Theorem 5.1 Let f and g be two bounded continuous real functions with g ≥ 0. For λ ∈ R, the following

properties are equivalent:

i) λ ∈ σ(T (f)T (g)),

ii) λ is the limit of a sequence (λn) where λn ∈ σ(Tn(f)Tn(g)),

iii) λ is the limit of a subsequence (λnk
) where λnk

∈ σ(Tnk
(f)Tnk

(g)).

First, let us interpret the projection operators Pn and P as spectral projectors of the derivation
operator and introduce the main ingredients of the proofs.

5.1 A functional point of view

We consider the Toeplitz operators T (f) and Tn(f) as the cut-off, in frequencies, of the operator of
multiplication by f . To be more precise, let us introduce the Fourier transform, F : L2(T) → ℓ2(Z),
defined by

(Fu)k = ûk =
1

2π

∫ π

−π

u(x)e−ikxdx.

The operator F is an isomorphism. We denote by F−1 its inverse, and we introduce the projections
P̂ and P̂n as

P̂ :û ∈ ℓ2(Z) 7−→ (. . . , 0, 0, û0, û1, . . .) ∈ ℓ2(Z)

P̂n :û ∈ ℓ2(Z) 7−→ (. . . , 0, 0, û0, û1, . . . , ûn, 0, 0, . . .) ∈ ℓ2(Z).

On the other hand, if we identify f ∈ L∞(T) with L(f), the bounded operator defined on L2(T) by

u ∈ L2(T) 7−→ fu ∈ L2(T),

we have
T (f) = P f P and Tn(f) = Pn f Pn,

with P = F−1P̂F and Pn = F−1P̂nF . In the following, we will systematically identify f with the
operator L(f). Since

1

i

d

dx
(eikx) = keikx,

the derivation operator D defined on

H1(T) = {u ∈ L2(T);
d

dx
u ∈ L2(T)} = {u ∈ L2(T); (kûk)k ∈ ℓ2(Z)}

by

D : u ∈ H1(T) 7−→
1

i

d

dx
u ∈ L2(T)

is self-adjoint on L2(T) and FDF−1 is the diagonal operator (kδk,j)k,j∈Z. For any bounded Borel
function ϕ, the bounded operator ϕ(D) is defined with the help of the functional calculus for self-
adjoint operators. It satisfies

ϕ(D) = F−1M(ϕ)F ,
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where M(ϕ) is the operator

û ∈ ℓ2(Z) 7−→ (. . . , ϕ(k)ûk, . . .) ∈ ℓ2(Z).

In particular, if 1I denotes the indicator function of the interval I, we have

1[0,+∞[(D) = P and 1[0,n](D) = 1[0,1](n
−1D) = Pn.

Moreover, note that if supp(ϕ) ⊂ [a, b], we have the trivial properties

1[a,b](D)ϕ(D) = ϕ(D) and 1[a,b](D) eikx = eikx 1[a−k,b−k](D).

In the rest of the paper, a function is a oca→b(1) if, for each c fixed, the function goes to 0 as a tends
to b. In the same way, a function is a Oc(1) if, for each c fixed, the function is a O(1).

5.2 A commutator estimate

In this subsection, we recall a standard result of the functional analysis. For ρ ∈ R, we denote by
Sρ(R) the class of functions ϕ in C∞(R) such that

|∂ksϕ(s)| ≤ Ck〈s〉
ρ−k,

for k ≥ 0. Here 〈x〉 = (1 + |x|2)1/2.

Lemma 5.2 (Lemma C.3.2 of [8]) Let A,B be self-adjoint operators on a Hilbert space with B and

[A,B] bounded. If ϕ ∈ Sρ(R) with ρ < 1, then

‖[ϕ(A), B]‖ ≤ Cϕ‖[A,B]‖.

Here, [A,B] = AB −BA denotes the commutator. The constant Cϕ only depends on ϕ.

Applying this lemma, we immediately obtain

Lemma 5.3 Let f ∈ C0(T) and ϕ ∈ Sρ(R) with ρ ≤ 0. Then

[ϕ(εD), f ] = oε→0(1).

Proof By Weierstrass’s theorem, there exist fk ∈ C1(T) satisfying fk → f in L∞(T). Then, viewed
as operators, we have fk → f . Remark that [εD, fk] = −εif ′k. From Lemma 5.2, we obtain

‖[ϕ(εD), fk]‖ ≤ εCϕ‖f
′
k‖∞.

Then, using the assumption that ϕ is bounded,

[ϕ(εD), f ] =[ϕ(εD), fk] + ok→∞(1) = Ok(ε) + ok→∞(1)

=oε→0(1),

since [ϕ(εD), f ] does not depend on k.
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5.3 Essential spectrum of the product of Toeplitz operators

Here, we recall, in our setting, a consequence of a theorem of Coburn [5] concerning the essential
spectrum of the product of Toeplitz operators. This result has been extended by Douglas to a more
general framework (see [12, Theorem 4.5.10]). We shall give in section 7 an alternative proof of the
following theorem, more related to our approach.

Theorem 5.4 (Coburn) Let f and g be two bounded continuous real functions with g ≥ 0. The bounded
self-adjoint operator T (g)1/2T (f)T (g)1/2 satisfies on ImP

σess
(
T (g)1/2T (f)T (g)1/2

)
=

[
inf(fg), sup(fg)

]
.

Here, σess(A) denotes the essential spectrum of A.

In Theorem 5.4, the operator T (g)1/2T (f)T (g)1/2 is viewed as an operator on ImP . On L2(T),
this operator is a block diagonal operator with respect to the orthogonal sum L2 = ImP⊕⊥ Im(1−P )
and is equal to 0 on Im(1− P ). In particular, we have

Remark 5.5 If the operator T (g)1/2T (f)T (g)1/2 is viewed on L2(T), we have

σess
(
T (g)1/2T (f)T (g)1/2

)
=

[
inf(fg), sup(fg)

]
∪ {0}.

6 Proof of Theorem 5.1

The goal of this section is to prove Theorem 5.1. First of all, one can observe that part ii) clearly
implies iii). In the next subsection, we first show that i) implies ii).

6.1 The implication i) gives ii)

Lemma 6.1 Let f and g be two bounded piecewise continuous real functions with g ≥ 0. Then,

Tn(g)
1/2Tn(f)Tn(g)

1/2 −→ T (g)1/2T (f)T (g)1/2

strongly on L2(T). If λ belongs to the spectrum of T (f)T (g) on ImP , then there exists an eigenvalue λn
of Tn(f)Tn(g) on ImPn such that λn → λ.

Proof Since Pn −→ P , it follows from Lemma III.3.8 of [11] that for all f ∈ L∞(T), Tn(f) −→ T (f).
In particular, from Problem VI.14 of [13] (see also Theorem VI.9 of [13]), Tn(g)

1/2 −→ T (g)1/2.
Consequently, we deduce from Lemma III.3.8 of [11] that

(6.1) Tn(g)
1/2Tn(f)Tn(g)

1/2 −→ T (g)1/2T (f)T (g)1/2,

on L2(T). In particular, we obtain on ImP

Tn(g)
1/2Tn(f)Tn(g)

1/2 +M(P − Pn) −→ T (g)1/2T (f)T (g)1/2,

for allM ∈ R. We choose µ = ‖f‖∞‖g‖∞ andM = µ+1. Therefore, it follows from Corollary VIII.1.6
together with Theorem VIII.1.14 of [11] that, for each λ belonging to the spectrum σ(T (f)T (g)) =
σ(T (g)1/2T (f)T (g)1/2) on ImP , there exists an eigenvalue λn of the matrix

Tn(g)
1/2Tn(f)Tn(g)

1/2 +M(P − Pn),
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on ImP such that λn → λ. As ‖T (g)1/2T (f)T (g)1/2‖ ≤ µ, we necessarily have λ ∈ [−µ, µ] and then
M ≥ |λ| + 1. In particular, for n large enough, M > |λn| + 1/2. Therefore, λn is an eigenvalue of
Tn(g)

1/2Tn(f)Tn(g)
1/2 on ImPn because

Tn(g)
1/2Tn(f)Tn(g)

1/2 +M(P − Pn) = Tn(g)
1/2Tn(f)Tn(g)

1/2 ⊕⊥ M(P − Pn),

is a block diagonal operator with respect to the orthogonal sum ImP = ImPn ⊕⊥ Im(P − Pn).

6.2 The implication iii) gives i)

Let λN be a sequence of eigenvalues of TN (f)TN (g) such that λN → λ ∈ R. Here N is a subsequence
of N and we have to show that λ is in the spectrum of T (f)T (g). From Theorem 5.4, we know that
[inf(fg), sup(fg)] is always inside the spectrum of T (f)T (g). Thus, we can assume that

(6.2) λ /∈
[
inf(fg), sup(fg)

]
.

By Weierstrass’s theorem, there exists a sequence of functions (fk) ∈ C∞(T) such that fk → f

in L∞(T) and supp f̂k ⊂ [−k, k]. We also consider (gk) a sequence corresponding to g with the same
properties mutatis mutandis. In particular, for all n ∈ N,

(6.3) Tn(f) = Tn(fk) + ok→∞(1) and T (f) = T (fk) + ok→∞(1).

Recall that, by definition, a ok→∞(1) is uniform with respect to n.

Finally, let uN ∈ ImPN be an eigenvector of TN (f)TN (g) associated with λN and satisfying
‖uN‖ = 1. From (6.3),

TN (f)TN (g)uN = λNuN = λuN + oN→∞(1)(6.4)

TN (fk)TN (gk)uN = λuN + oN→∞(1) + ok→∞(1).(6.5)

In the following, we denote Dn = n−1D.

6.2.1 Localization of the eigenvectors

Lemma 6.2 Let ϕ ∈ C∞
0 (]0, 1[). Then, in L2(T) norm,

ϕ(DN )uN = oN→∞(1).

Proof From Lemma 5.3, we have

ϕ(DN )TN (f) =ϕ(DN )1[0,1](DN )f1[0,1](DN ) = ϕ(DN )f1[0,1](DN )

=fϕ(DN )1[0,1](DN ) + oN→∞(1)

=fϕ(DN ) + oN→∞(1).(6.6)

Applying two times this estimate, we obtain

ϕ(DN )TN (f)TN (g)uN = fϕ(DN )TN (g)uN + oN→∞(1)

= fgϕ(DN )uN + oN→∞(1).

Then, (6.4) gives
(fg − λ)ϕ(DN )uN = oN→∞(1).

Since λ /∈ [inf(fg), sup(fg)], the function (fg − λ)−1 belongs to L∞(T) and the lemma follows from
the last equation.
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Now, we take ϕ ∈ C∞
0 (]0, 1[, [0, 1]) such that ϕ = 1 near [ε, 1− ε] for ε > 0 small enough (we choose

ε = 1/8). Let ϕ− ∈ C∞
0 ([−ε, 2ε], [0, 1]) and ϕ+ ∈ C∞

0 ([1− 2ε, 1 + ε], [0, 1]) be two functions such that

ϕ− + ϕ+ ϕ+ = 1,

in the neighborhood of [0, 1]. Set

(6.7) u±N = ϕ±(DN )uN = ϕ±(DN )1[0,1](DN )uN .

As ‖uN‖ = 1, it follows from Lemma 6.2 that

(6.8) ‖u−N + u+N‖ = 1+ oN→∞(1).

In particular, we can assume, up to the extraction of a subsequence, that

∀N ‖u−N‖ ≥ 1/3 or ∀N ‖u+N‖ ≥ 1/3.

In the next section, we will suppose that

(6.9) ‖u−N‖ ≥ 1/3.

The case ‖u+N‖ ≥ 1/3 follows essentially the same lines and is treated in Section 6.2.3. But before,
we show that u−N and u+N are both quasimodes of TN (f)TN (g) (this means that they are eigenvectors
modulo a small term).

Lemma 6.3 We have

TN (fk)TN (gk)u
±
N = λu±N + ok→∞(1) + okN→∞(1).

Proof As in (6.6), using Lemma 5.3, we get

TN (fk)TN (gk)u
±
N =1[0,1](DN )fk1[0,1](DN )gk1[0,1](DN )ϕ±(DN )uN

=1[0,1](DN )fk1[0,1](DN )gkϕ
±(DN )1[0,1](DN )uN

=1[0,1](DN )fk1[0,1](DN )ϕ±(DN )gk1[0,1](DN )uN + okN→∞(1)

=1[0,1](DN )ϕ±(DN )fk1[0,1](DN )gk1[0,1](DN )uN + okN→∞(1)

=ϕ±(DN )TN (fk)TN (gk)uN + okN→∞(1).(6.10)

The lemma follows from (6.5), (6.7) and the last identity.

6.2.2 Concentration near the low frequencies

Here, we assume (6.9) and we prove that u−N , viewed as an element of ImP , is a quasimode of
T (fk)T (gk).

Lemma 6.4 For 4k ≤ N , we have

T (fk)T (gk)u
−
N = TN (fk)TN (gk)u

−
N .

Remark 6.5 In fact, for 4k ≤ N ≤ n, we have

Tn(fk)Tn(gk)u
−
N = TN (fk)TN (gk)u

−
N .
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Proof Recall that, if u, v are two functions of L2(T) such that supp û ⊂ [a, b] and supp v̂ ⊂ [c, d], then
supp ûv ⊂ [a+ c, b+ d]. By definition,

(6.11) T (fk)T (gk)u
−
N = PfkPgkPϕ

−(DN )uN = PfkPgkPNϕ
−(DN )uN .

Since supp ĝk ⊂ [−k, k] and suppF(PNϕ
−(DN )uN ) ⊂ [0, N/4], the Fourier transform of the function

gkPNϕ
−(DN )uN is supported inside [−k,N/4 + k] ⊂ [−k,N ]. In particular,

(6.12) PgkPNϕ
−(DN )uN = PNgkPNϕ

−(DN )uN ,

and the Fourier transform of this function is supported inside [0, N/4 + k]. As before, the Fourier
transform of

fkPNgkPNϕ
−(DN )uN

is supported inside [−k,N/4 + 2k] ⊂ [−k,N ]. Then

(6.13) PfkPNgkPNϕ
−(DN )uN = PNfkPNgkPNϕ

−(DN )uN .

The lemma follows from (6.11), (6.12) and (6.13).

From (6.3), Lemma 6.3 and Lemma 6.4, we get

(6.14) T (f)T (g)u−N = λu−N + ok→∞(1) + okN→∞(1),

for 4k ≤ N . If λ /∈ σ(T (f)T (g)), the operator T (f)T (g)− λ is invertible and then

u−N = ok→∞(1) + okN→∞(1).

From (6.9), we obtain 1/3 ≤ ok→∞(1)+ okN→∞(1). Taking k large enough and then N large enough,
it is clear that this is impossible. Thus,

λ ∈ σ(T (f)T (g)),

which implies Theorem 5.1 under the assumption (6.9).

6.2.3 Concentration near the high frequencies

We replace the assumption (6.9) by ‖u+N‖ ≥ 1/3. Let J be the isometry f 7→ f̃ in L2(T). One can
observe that J(uv) = J(u)J(v). Using the notation P[a,b] = 1[a,b](D), we have P[a,b]J = JP[−b,−a]

and P[a,b]e
icx = eicxP[a−c,b−c]. Combining these identities with Lemma 6.3, we get

TN (Jfk)TN (Jgk)e
iNx(Ju+N ) =P[0,N ](Jfk)P[0,N ](Jgk)P[0,N ]e

iNx(Ju+N )

=eiNxP[−N,0](Jfk)P[−N,0](Jgk)P[−N,0](Ju
+
N )

=eiNxJP[0,N ]fkP[0,N ]gkP[0,N ]u
+
N

=λeiNx(Ju+N ) + ok→∞(1) + okN→∞(1).(6.15)

In particular, ũ−N = eiNx(Ju+N ) satisfies ‖ũ−N‖ ≥ 1/3,

TN (Jfk)TN (Jgk)ũ
−
N = λũ−N + ok→∞(1) + okN→∞(1),

and the support of the Fourier transform of ũ−N is inside [0, N/4]. Hence, we can apply the method

developed in the case ‖u−N‖ ≥ 1/3. The unique difference is that f, g are replaced by f̃ , g̃. Then, we
obtain

λ ∈ σ
(
T (f̃)T (g̃)

)
.

Theorem 5.1 follows from the following lemma and σ(T (f)T (g)) = σ(T (g)T (f)) (the spectrum of
T (f)T (g) is real and (T (f)T (g)− z)∗ = T (g)T (f)− z).
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Lemma 6.6 Let f, g ∈ L∞(T). Then

σ
(
T (f̃)T (g̃)

)
= σ

(
T (g)T (f)

)
.

Proof For A a bounded linear operator on L2, we define At by

(Atu, v) = (u,Av),

for all u, v ∈ L2. Simple calculi give f t = f , P t
[a,b] = P[−b,−a], (AB)t = BtAt and then

T (f)t =
(
P[0,+∞[fP[0,+∞[

)t
= P]−∞,0]fP]−∞,0].

By the same way, since J = J∗ = J−1,

JP]−∞,0]fP]−∞,0]J = P[0,+∞[f̃P[0,+∞[ = T (f̃).

Combining these identities concerning t and J , we get

J(T (f̃)T (g̃))tJ−1 =J
(
P]−∞,0]g̃P]−∞,0]

)(
P]−∞,0]f̃P]−∞,0]

)
J

=T (g)T (f).(6.16)

Since JAtJ − z = J(A− z)tJ , A and JAtJ have the same spectrum and the lemma follows.

7 Proof of Theorem 5.4

We give here an alternative proof of Coburn’s theorem. Let ψ ∈ C∞(R) satisfying ψ = 1 near [2,+∞[
and ψ = 0 near ]−∞, 1]. For ε > 0, we have on ImP

T (g)1/2T (f)T (g)1/2 =T (g)1/2ψ(εD)T (f)ψ(εD)T (g)1/2 + R̃ε

=T (g)1/2ψ(εD)fψ(εD)T (g)1/2 + R̃ε,(7.1)

where
R̃ε = T (g)1/2(1− ψ(εD))T (f)ψ(εD)T (g)1/2 + T (g)1/2T (f)(1− ψ(εD))T (g)1/2,

is a self-adjoint operator of finite rank. Recall that if A ≥ 0 is a bounded operator with ‖A‖ ≤ 1,
then

A1/2 =
+∞∑

j=0

cj(1−A)j ,

where ‖1−A‖ ≤ 1 and
∑

j≥0 |cj | ≤ 2 < +∞. On the other hand, Lemma 5.3 implies

T (g)ψ(εD) =PgPψ(εD) = Pgψ(εD) = Pψ(εD)g + oε→0(1)

=ψ(εD)g + oε→0(1),(7.2)

Then, for a fixed δ > 0 such that ‖T (g)‖ ≤ ‖g‖∞ < δ−1, we have

T (g)1/2ψ(εD) =δ−1/2T (δg)1/2ψ(εD)

=δ−1/2
+∞∑

j=0

cj(1− T (δg))jψ(εD)

=δ−1/2
J∑

j=0

cj(1− T (δg))jψ(εD) + oJ→∞(1)

=δ−1/2ψ(εD)
J∑

j=0

cj(1− δg)j + oJ→∞(1) + oJε→0(1)

=δ−1/2ψ(εD)(δg)1/2 + oJ→∞(1) + oJε→0(1)

=ψ(εD)g1/2 + oε→0(1),(7.3)
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since these quantities do not depend on J . Using this identity and its adjoint, (7.1) becomes

T (g)1/2T (f)T (g)1/2 =ψ(εD)fgψ(εD) + R̃ε + oε→0(1)

=T (fg) +Rε + eε,(7.4)

where eε = oε→0(1) and

Rε = R̃ε + (ψ(εD)− 1)T (fg)ψ(εD) + T (fg)(ψ(εD)− 1),

is a self-adjoint operator of finite rank. In particular, eε is a self-adjoint operator. Since, on ImP

inf(fg) ≤ T (fg) ≤ sup(fg),

we get σ(T (fg) + eε) ⊂ [inf(fg) − oε→0(1), sup(fg) + oε→0(1)]. As Rε is of finite rank, we obtain,
from Weyl’s theorem [13, Theorem S.13],

σess
(
T (g)1/2T (f)T (g)1/2

)
= σess(T (fg) + eε) ⊂ [inf(fg)− oε→0(1), sup(fg) + oε→0(1)].

As the essential spectrum of T (g)1/2T (f)T (g)1/2 does not depend on ε, we get

(7.5) σess
(
T (g)1/2T (f)T (g)1/2

)
⊂ [inf(fg), sup(fg)],

which is the first inclusion of Coburn’s theorem.

Now, let ϕ ∈ C∞([−1, 1], [0, 1]) with ‖ϕ‖L2 = 1. For x0 ∈ T and α, β ∈ N, we set

u = α1/2ϕ
(
α(x− x0)

)
eiβx and v = Pu ∈ ImP,

which satisfies ‖u‖ = 1. We have

(1− P )u =α1/21]−∞,0](D)eiβxϕ
(
α(x− x0)

)

=α1/2eiβx1]−∞,−β](D)ϕ
(
α(x− x0)

)

=α1/2eiβx1]−∞,−β](D)(D + i)−M (D + i)Mϕ
(
α(x− x0)

)

=O
(
β−MαM)

,(7.6)

in L2 norm for any M ∈ N. Moreover, for a continuous function ℓ, we have

(7.7) ℓu = ℓ(x0)α
1/2ϕ

(
α(x− x0)

)
eiβx + oα→∞(1),

in L2 norm. Using that ‖T (ℓ)1/2‖ ≤ ‖ℓ‖
1/2
∞ , for all function ℓ ∈ L∞ with ℓ ≥ 0, we get

T (f)T (g)v =PfPgPu = PfPgu+O
(
αβ−1)

=g(x0)PfPu+O
(
αβ−1)+ oα→∞(1)

=g(x0)Pfu+O
(
αβ−1)+ oα→∞(1)

=(fg)(x0)Pu+O
(
αβ−1)+ oα→∞(1)

=(fg)(x0)v +O
(
αβ−1)+ oα→∞(1).(7.8)

Taking β = α2 → +∞, (7.6) implies ‖v‖ = 1+ oα→∞(1). On the other hand, (7.8) leads to

T (f)T (g)v = (fg)(x0)v + oα→∞(1).

Then, (fg)(x0) ∈ σ(T (f)T (g)) = σ(T (g)1/2T (f)T (g)1/2). Therefore,

(7.9)
[
inf(fg), sup(fg)

]
⊂ σ

(
T (g)1/2T (f)T (g)1/2

)
.
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Recall that the essential spectrum of a self-adjoint bounded operator on an infinite Hilbert space
is never empty. Therefore, if inf(fg) = sup(fg), (7.5) implies the theorem.

Assume now that inf(fg) < sup(fg). Then [inf(fg), sup(fg)] is an interval with non empty interior.
From the definition of the essential spectrum, this interval is necessarily inside the essential spectrum
of T (g)1/2T (f)T (g)1/2. This achieves the proof of the second inclusion of Coburn’s theorem.
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