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Introduction

For any bounded measurable real function f on the torus T = [-π, π[, the ℓ 2 (N) Toeplitz and Hankel operators are respectively defined as (1.1)

T (f ) = f i-j i,j≥0
and

H(f ) = f i+j+1 i,j≥0
where ( fn) stands for the sequence of Fourier coefficients of f . We refer the reader to the books of Böttcher and Silbermann [START_REF] Böttcher | Analysis of Toeplitz operators[END_REF], [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF] for a general presentation of Toeplitz operators. A well-known identity between the product T (f )T (g) and T (f g) is

(1.2) T (f g) -T (f )T (g) = H(f )H( g)
where g(x) = g(-x). The analogue of identity (1.2) for finite section Toeplitz matrices is given by the formula of Widom [START_REF] Widom | Asymptotic behavior of block Toeplitz matrices and determinants[END_REF] (1.3) Tn(f g) -Tn(f )Tn(g) = PnH(f )H( g)Pn + QnH( f )H(g)Qn where the projection Pn and the operator Qn are given by and Tn(f ) is the finite section of order n ≥ 1 of T (f ) which means that Tn(f ) is identified with PnT (f )Pn. In other words, our operators will be considered as operators on Im P and Im Pn where P stands for the projection operator on ℓ 2 (N). We clearly have Q 2 n = Pn, PnQn = QnPn = Qn, and QnTn(f )Qn = Tn( f ).

The classical Szegö theorem deals with the asymptotic behavior of the spectrum of a single Toeplitz matrix. It states that if f is a bounded measurable real function on T, the limiting set of eigenvalues of the sequence (Tn(f )) is exactly

σ(T (f )) = [essinff, esssupf ],
where σ(T (f )) denotes the spectrum of the operator T (f ). Moreover, the empirical spectral measure of (Tn(f )) converges to P f which is the image probability of the uniform measure on T by the application f . In other words, if λ n 0 , . . . , λ n n are the eigenvalues of Tn(f ), then for any bounded continuous real function ϕ (1.4) lim

n→∞ 1 n n k=0 ϕ(λ n k ) = 1 2π T ϕ(f (x)) dx.
In particular, the maximum eigenvalue of Tn(f ) converges to esssupf while the minimum eigenvalue of Tn(f ) converges to essinff . One can find more details in Section 5.2 of [START_REF] Grenander | Toeplitz forms and their applications[END_REF] or in Section 5.4 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF]. Our purpose is to make use of similar results for the spectrum of the product of two Toeplitz matrices Tn(f )Tn(g). Several authors have investigated the asymptotic behavior of the spectrum of Tn(f )Tn(g). More precisely, it was shown in Lemma 5 of [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF] or Lemma 2.6 of [START_REF] Capizzano | Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach[END_REF] that if f and g are two bounded measurable real functions on T, then the empirical spectral measure associated with the sequence (Tn(f )Tn(g)) converges to the limiting measure P f g . However, the limiting set of eigenvalues of (Tn(f )Tn(g)) is much more difficult to understand. Via a theorem of Roch and Silbermann, we shall see that, as soon as f and g ≥ 0 are bounded piecewise continuous real functions, the limiting set of eigenvalues of (Tn(f )Tn(g)) coincides with the spectrum of the limiting operator T (f )T (g). In particular, the maximum and the minimum eigenvalues of Tn(f )Tn(g) both converge to the maximum and minimum of the spectrum of T (f )T (g).

In this paper, we make use of the previous results on Toeplitz operators to obtain a large deviation principle (LDP) for quadratic forms of Gaussian stationary processes. More precisely, consider a centered stationary real Gaussian process (Xn) with bounded piecewise continuous spectral density g. It was shown in [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF] an LDP for subsequences of the empirical periodogram (Wn(f )) integrated over a bounded piecewise continuous real function f . We can now deduce a full LDP for the sequence (Wn(f )).

We also give an alternative proof of the theorem of Roch and Silbermann in the particular case of Toeplitz operators with continuous symbols. Our approach is based on semi-classical analysis and scattering theory by construction of quasimodes which are approximative eigenvectors. We hope that this microlocal approach can be used in other situations.

The paper is organized as follows. In Section 2, we recall a theorem of Roch and Silbermann. Section 3 is devoted to the application in probability. An enlightening example is treated in Section 4. Then, we give our alternative proof of the result of Roch and Silbermann in the case of Toeplitz operators with continuous symbols. This result and our functional point of view on Toeplitz operators are given in Section 5. The convergence of the spectrum is proved in Section 6. Finally, in Section 7, we propose an alternative proof of Coburn's theorem dealing with the essential spectrum of products of Toeplitz operators.

Results on Toeplitz operators

Denote by A the Banach algebra of all sequences (An) of uniformly bounded linear operators on Im Pn endowed with the sum and the composition term by term, and the supremum of the operator norm of the elements. Let B be the collection of all sequences (An) of A for which one can find two bounded linear operators A and A in Im P such that

An → A, A * n → A * , QnAnQn → A, QnA * n Qn → A * ,
where * stands the adjoint operator and → stands for the strong convergence. Finally, denote by C the smallest closed subalgebra of A containing the collection of all sequences (Tn(f )) where f are bounded piecewise continuous real functions. In fact, C is a subalgebra of B and

Tn(f ) → T (f ), QnTn(f )Qn → T ( f ).
We refer to Section 2.5 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF] for more details on B. We are now in position to state a theorem of Roch and Silbermann.

Theorem 2.1 (Roch-Silbermann) Let (Tn) be a sequence of selfadjoint operators of C. Moreover, denote the strong limits of Tn and QnTnQn by T and T , respectively. For λ ∈ R, the following properties are equivalent:

i) λ ∈ σ(T ) ∪ σ( T ),
ii) λ is the limit of a sequence (λn) where λn ∈ σ(Tn), iii) λ is the limit of a subsequence (λn k ) where λn k ∈ σ(Tn k ).

Theorem 2.1 was established in [START_REF] Roch | Limiting sets of eigenvalues and singular values of Toeplitz matrices[END_REF] together with several examples of application. It is given, in its present form, in Theorem 4.16 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF].

A direct application of this result is as follows. First of all, let us introduce some notations. Let f and g be two bounded piecewise continuous real functions with g ≥ 0. From Lemma 6.1 below, the sequence (Tn(g) 1/2 ) as well as (Tn(g) 1/2 Tn(f )Tn(g) 1/2 ) belong to C,

Tn(g) 1/2 Tn(f )Tn(g) 1/2 → T (g) 1/2 T (f )T (g) 1/2 , QnTn(g) 1/2 Tn(f )Tn(g) 1/2 Qn → T ( g) 1/2 T ( f )T ( g) 1/2 .
On Im Pn, we clearly have σ Tn(f )Tn(g) = σ Tn(g) 1/2 Tn(f )Tn(g) 1/2 , with the same multiplicity. Moreover, by Lemma 6.6, we also have on Im

P σ T (g) 1/2 T (f )T (g) 1/2 = σ T (f )T (g) = σ T ( f )T ( g) = σ T ( g) 1/2 T ( f )T ( g) 1/2 .
Denote the maximum and minimum eigenvalues of Tn(f )Tn(g) by

λ n max (f, g) = max σ Tn(f )Tn(g) , λ n min (f, g) = min σ Tn(f )Tn(g) .
In addition, denote the extrema of the spectrum of T (f )T (g) by

λmax(f, g) = max σ T (f )T (g) , λ min (f, g) = min σ T (f )T (g) .
One can observe that, in general, we do not know if λmax(f, g) and λ min (f, g) are eigenvalues.

Corollary 2.2 Assume that f and g are two bounded piecewise continuous real functions on T with g ≥ 0. Then, the limiting sets of eigenvalues of the sequence (Tn(f )Tn(g)) are given by σ(T (f )T (g)). In particular,

lim n→∞ λ n max (f, g) = λmax(f, g), (2.1) lim n→∞ λ n min (f, g) = λ min (f, g). (2.2)
In Section 4, we shall show via an example related to Gaussian autoregressive process that it is not true in general that for two bounded continuous real functions f and g, λmax(f, g) = sup(f g) or λ min (f, g) = inf(f g). One can also observe that the norm of

T (g) 1/2 T (f )T (g) 1/2 is not always equal to f g ∞ or f ∞ g ∞.
The situation is totally different from the case of a single Toeplitz operator T (f ) with bounded continuous real function as λmax(f, 1) = sup(f ) and λ min (f, 1) = inf(f ).

Application in probability

Let (Xn) be a centered stationary real Gaussian process with bounded piecewise continuous spectral density g ≥ 0 which means that

E[X j X k ] = 1 2π T exp(i(j -k)x)g(x) dx.
We assume in all the sequel that g is not the zero function. For any bounded piecewise continuous real function f on the torus T, we are interested in the asymptotic behavior of (3.1)

Wn(f ) = 1 2πn T f (x) n j=0 X j exp(ijx) 2 dx.
The purpose of this section is to provide the last step in the analysis of the large deviation properties of (Wn(f )) by establishing an LDP for (Wn(f )) in the spirit of the original work of [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF] or of Bryc and Dembo [START_REF] Bryc | Large deviations for quadratic functionals of Gaussian processes[END_REF]. We refer the reader to the book of Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] for the general theory on large deviations. The covariance matrix associated with the vector X (n) = (X 0 , . . . , Xn) t is Tn(g).

Consequently, it immediately follows from (3.1) that

(3.2) Wn(f ) = 1 n X (n)t Tn(f )X (n) = 1 n Y (n)t Tn(g) 1/2 Tn(f )Tn(g) 1/2 Y (n)
where the vector Y (n) has a Gaussian N (0, In) distribution. In order to investigate the large deviation properties of (Wn(f )), it is necessary to calculate the normalized cumulant generating function given, for all t ∈ R, by

Ln(t) = 1 n log E exp(ntWn(f )) .
For convenience and in all the sequel, we use of the notation that log t = -∞ if t ≤ 0. We deduce from (3.2) and standard Gaussian calculation that for all t ∈ R

Ln(t) = - 1 2n log det In -2tTn(g) 1/2 Tn(f )Tn(g) 1/2 = - 1 2n n k=0 log(1 -2tλ n k ),
where λ n 0 , . . . , λ n n are the eigenvalues of Tn(g) 1/2 Tn(f )Tn(g) 1/2 . For all t ∈ R, let

L f g (t) = - 1 4π T log(1 -2tf (x)g(x)) dx,
and denote by I f g its Fenchel-Legendre transform

I f g (x) = sup t∈R xt -L f g (t) .
Furthermore, for all x ∈ R, let

(3.3) J f g (x) =            I f g (a) + 1 2λ min (f, g) (x -a) if x ∈] -∞, a] I f g (x) if x ∈]a, b[ I f g (b) + 1 2λmax(f, g) (x -b) if x ∈ [b, +∞[
where a and b are the extended real numbers given by

a = L ′ f g 1 2λ min (f, g) if λ min (f, g) < 0 and λ min (f, g) < inf(f g), a = -∞ otherwise, while b = L ′ f g 1 2λmax(f, g)
if λmax(f, g) > 0 and λmax(f, g) > sup(f g), b = +∞ otherwise. We immediately deduce from Theorem 1 of [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF] together with Corollary 2.2, that an LDP holds for (Wn(f )). 

) ∈ F ) ≤ -inf x∈F J f g (x), while for any open set G ⊂ R lim inf n→∞ 1 n log P(Wn(f ) ∈ G) ≥ -inf x∈G J f g (x). Remark 3.2 Denote by µ the derivative of L f g at point zero µ = 1 2π T f (x)g(x)dx.
Then, we have J f g (µ) = 0 and it follows from Theorem 3.1 that for all x > µ lim n→∞

1 n log P(Wn(f ) ≥ x) = -J f g (x),
whereas for all x < µ lim n→∞ 1 n log P(Wn(f ) ≤ x) = -J f g (x).

An illustrative example

Let a and θ be two real numbers with |θ| < 1 and consider the two bounded continuous real functions f and g given by

f (x) = a + cos(x) and g(x) = 1 1 + θ 2 -2θ cos(x)
. The goal of this section is to study the limiting set of eigenvalues of the sequence (Tn(f )Tn(g)). We clearly have f ∞ = |a| + 1 and g ∞ = (1 -|θ|) -2 . The function g is simply the spectral density of a Gaussian autoregressive process [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF]. If θ = 0, g = 1 and the product Tn(f )Tn(g) reduces to Tn(f ). Consequently, λmax(f, 1) = a + 1 and λ min (f, 1) = a -1. If θ = 0, denote

a θ = - (1 + θ) 2θ and b θ = - (1 -θ) 2θ
.

It is more convenient to work with the inverse of Tn(g). As a matter of fact, Tn(g) -1 is a tridiagonal matrix quite similar to Tn(g -1 ) except that, at the two diagonal corners of Tn(g -1 ), the coefficient 1 + θ 2 is replaced by 1

Tn(g) -1 =       1 -θ 0 . . . -θ 1 + θ 2 -θ . . . . . . . . . . . . . . . . . . -θ 1 + θ 2 -θ . . . 0 -θ 1       .
It is not hard to see that det(Tn(g) -1 ) = 1θ 2 . In order to find the eigenvalues λ of the product Tn(f )Tn(g), it is equivalent to calculate the zeros of its characteristic polynomial which correspond also to the zeros of det(Mn(t)) where

Mn(t) = tTn(f ) -Tn(g) -1
with t = 1/λ. As Tn(f ) and Tn(g) -1 are both tridiagonal matrices, we can easily compute det(Mn(t)).

Via the same lines than in Lemma 11 of [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF], we find that for n large enough, Mn(t) is negative definite only on the domain D = D 1 ∪ D 2 with

D 1 = -2θ 2 < p ≤ -θ 2 and q 2 < -4θ 2 (p + θ 2 ) , D 2 = p < -2θ 2 and p < -|q| ,
where p = at-(1+θ 2 ) and q = t+2θ. In term of the variable λ, the inverses of the boundaries of D give the extrema of σ(T (f )T (g)) that is λmax(f, g) and λ min (f, g). After some tedious but straightforward calculations, we obtain three inverses of the boundaries

a -1 (1 + θ) 2 , a + 1 (1 -θ) 2 , - 1 4θ(1 + aθ) .
Two of them coincide with inf(f g) and sup(f g). It only depends on the location of a with respect to -(1 + θ 2 )/(2θ). The last one can be λmax(f, g) > sup(f g) or λ min (f, g) < inf(f g). It only depends on the sign of θ as well as on the location of a with respect to the interval [a θ , b θ ]. More precisely, if θ > 0 then λmax(f, g) = sup(f g) while

λ min (f, g) = 1 -4θ(1 + aθ) < inf(f g) = min a -1 (1 + θ) 2 , a + 1 (1 -θ) 2 if a ∈]a θ , b θ [ and λ min (f, g) = inf(f g) otherwise. Moreover, if θ < 0 then λ min (f, g) = inf(f g) while λmax(f, g) = 1 -4θ(1 + aθ) > sup(f g) = max a -1 (1 + θ) 2 , a + 1 (1 -θ) 2 if a ∈]a θ , b θ [ and λmax(f, g) = sup(f g) otherwise.

Toeplitz operators and functional calculus

We will prove the following result which implies Corollary 2.2 for continuous fonctions.

Theorem 5.1 Let f and g be two bounded continuous real functions with g ≥ 0. For λ ∈ R, the following properties are equivalent:

i) λ ∈ σ(T (f )T (g)),
ii) λ is the limit of a sequence (λn) where λn ∈ σ(Tn(f )Tn(g)), iii) λ is the limit of a subsequence (λn k ) where λn k ∈ σ(Tn k (f )Tn k (g)).

First, let us interpret the projection operators Pn and P as spectral projectors of the derivation operator and introduce the main ingredients of the proofs.

A functional point of view

We consider the Toeplitz operators T (f ) and Tn(f ) as the cut-off, in frequencies, of the operator of multiplication by f . To be more precise, let us introduce the Fourier transform, F : L 2 (T) → ℓ 2 (Z), defined by

k = u k = 1 2π π -π u(x)e -ikx dx.
The operator F is an isomorphism. We denote by F -1 its inverse, and we introduce the projections P and Pn as P : u ∈ ℓ 2 (Z) -→ (. . . , 0, 0, u 0 , u 1 , . . .) ∈ ℓ 2 (Z)

Pn : u ∈ ℓ 2 (Z) -→ (. . . , 0, 0, u 0 , u 1 , . . . , un, 0, 0, . . .) ∈ ℓ 2 (Z).

On the other hand, if we identify f ∈ L ∞ (T) with L(f ), the bounded operator defined on L 2 (T) by

u ∈ L 2 (T) -→ f u ∈ L 2 (T),
we have T (f ) = P f P and Tn(f ) = Pn f Pn, with P = F -1 P F and Pn = F -1 PnF. In the following, we will systematically identify f with the operator L(f ). Since 1

i d dx (e ikx ) = ke ikx ,
the derivation operator D defined on

H 1 (T) = {u ∈ L 2 (T); d dx u ∈ L 2 (T)} = {u ∈ L 2 (T); (kû k ) k ∈ ℓ 2 (Z)} by D : u ∈ H 1 (T) -→ 1 i d dx u ∈ L 2 (T)
is self-adjoint on L 2 (T) and F DF -1 is the diagonal operator (kδ k,j ) k,j∈Z . For any bounded Borel function ϕ, the bounded operator ϕ(D) is defined with the help of the functional calculus for selfadjoint operators. It satisfies

ϕ(D) = F -1 M (ϕ)F,
where M (ϕ) is the operator

u ∈ ℓ 2 (Z) -→ (. . . , ϕ(k) u k , . . .) ∈ ℓ 2 (Z).
In particular, if 1 I denotes the indicator function of the interval I, we have

1 [0,+∞[ (D) = P and 1 [0,n] (D) = 1 [0,1] (n -1 D) = Pn.
Moreover, note that if supp(ϕ) ⊂ [a, b], we have the trivial properties

1 [a,b] (D) ϕ(D) = ϕ(D) and 1 [a,b] (D) e ikx = e ikx 1 [a-k,b-k] (D).
In the rest of the paper, a function is a o c a→b (1) if, for each c fixed, the function goes to 0 as a tends to b. In the same way, a function is a O c (1) if, for each c fixed, the function is a O(1).

A commutator estimate

In this subsection, we recall a standard result of the functional analysis. For ρ ∈ R, we denote by

S ρ (R) the class of functions ϕ in C ∞ (R) such that |∂ k s ϕ(s)| ≤ C k s ρ-k , for k ≥ 0. Here x = (1 + |x| 2 ) 1/2 . Lemma 5.2 (Lemma C.3.2 of [8]
) Let A, B be self-adjoint operators on a Hilbert space with B and

[A, B] bounded. If ϕ ∈ S ρ (R) with ρ < 1, then [ϕ(A), B] ≤ Cϕ [A, B] .
Here, [A, B] = AB -BA denotes the commutator. The constant Cϕ only depends on ϕ.

Applying this lemma, we immediately obtain

Lemma 5.3 Let f ∈ C 0 (T) and ϕ ∈ S ρ (R) with ρ ≤ 0. Then [ϕ(εD), f ] = o ε→0 (1). 
Proof By Weierstrass's theorem, there exist

f k ∈ C 1 (T) satisfying f k → f in L ∞ (T). Then, viewed as operators, we have f k → f . Remark that [εD, f k ] = -εif ′ k . From Lemma 5.2, we obtain [ϕ(εD), f k ] ≤ εCϕ f ′ k ∞.
Then, using the assumption that ϕ is bounded,

[ϕ(εD), f ] =[ϕ(εD), f k ] + o k→∞ (1) = O k (ε) + o k→∞ (1) =o ε→0 (1), since [ϕ(εD), f ] does not depend on k.
on Im P such that λn → λ. As T (g) 1/2 T (f )T (g) 1/2 ≤ µ, we necessarily have λ ∈ [-µ, µ] and then M ≥ |λ| + 1. In particular, for n large enough, M > |λn| + 1/2. Therefore, λn is an eigenvalue of Tn(g) 1/2 Tn(f )Tn(g) 1/2 on Im Pn because

Tn(g) 1/2 Tn(f )Tn(g) 1/2 + M (P -Pn) = Tn(g) 1/2 Tn(f )Tn(g) 1/2 ⊕ ⊥ M (P -Pn),
is a block diagonal operator with respect to the orthogonal sum Im P = Im Pn ⊕ ⊥ Im(P -Pn).

The implication iii) gives i)

Let λ N be a sequence of eigenvalues of

T N (f )T N (g) such that λ N → λ ∈ R.
Here N is a subsequence of N and we have to show that λ is in the spectrum of T (f )T (g). From Theorem 5.4, we know that [inf(f g), sup(f g)] is always inside the spectrum of T (f )T (g). Thus, we can assume that (6.2)

λ / ∈ inf(f g), sup(f g) .
By Weierstrass's theorem, there exists a sequence of functions

(f k ) ∈ C ∞ (T) such that f k → f in L ∞ (T) and supp f k ⊂ [-k, k].
We also consider (g k ) a sequence corresponding to g with the same properties mutatis mutandis. In particular, for all n ∈ N, (6.3)

Tn(f ) = Tn(f k ) + o k→∞ (1) and T (f ) = T (f k ) + o k→∞ (1).
Recall that, by definition, a o k→∞ (1) is uniform with respect to n.

Finally, let u N ∈ Im P N be an eigenvector of T N (f )T N (g) associated with λ N and satisfying u N = 1. From (6.3), [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF]. (6.5) In the following, we denote Dn = n -1 D.

T N (f )T N (g)u N = λ N u N = λu N + o N →∞ (1) (6.4) T N (f k )T N (g k )u N = λu N + o N →∞ (1) + o k→∞

Localization of the eigenvectors

Lemma 6.2 Let ϕ ∈ C ∞ 0 (]0, 1[). Then, in L 2 (T) norm, ϕ(D N )u N = o N →∞ (1).
Proof From Lemma 5.3, we have [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF]. (6.6) Applying two times this estimate, we obtain

ϕ(D N )T N (f ) =ϕ(D N )1 [0,1] (D N )f 1 [0,1] (D N ) = ϕ(D N )f 1 [0,1] (D N ) =f ϕ(D N )1 [0,1] (D N ) + o N →∞ (1) =f ϕ(D N ) + o N →∞
ϕ(D N )T N (f )T N (g)u N = f ϕ(D N )T N (g)u N + o N →∞ (1) = f gϕ(D N )u N + o N →∞ (1).
Then, (6.4) gives

(f g -λ)ϕ(D N )u N = o N →∞ (1). Since λ / ∈ [inf(f g), sup(f g)],
the function (f gλ) -1 belongs to L ∞ (T) and the lemma follows from the last equation. 

6.6 Let f, g ∈ L ∞ (T). Then σ T ( f )T ( g) = σ T (g)T (f ) .
Proof For A a bounded linear operator on L 2 , we define A t by

(A t u, v) = (u, Av), for all u, v ∈ L 2 . Simple calculi give f t = f , P t [a,b] = P [-b,-a] , (AB) t = B t A t and then T (f ) t = P [0,+∞[ f P [0,+∞[ t = P ]-∞,0] f P ]-∞,0] .
By the same way, since

J = J * = J -1 , JP ]-∞,0] f P ]-∞,0] J = P [0,+∞[ f P [0,+∞[ = T ( f ).
Combining these identities concerning t and J, we get

J(T ( f )T ( g)) t J -1 =J P ]-∞,0] gP ]-∞,0] P ]-∞,0] f P ]-∞,0] J =T (g)T (f ). (6.16)
Since JA t Jz = J(Az) t J, A and JA t J have the same spectrum and the lemma follows.

7 Proof of Theorem 5.4

We give here an alternative proof of Coburn's theorem.

Let ψ ∈ C ∞ (R) satisfying ψ = 1 near [2, +∞[ and ψ = 0 near ] -∞, 1]. For ε > 0, we have on Im P T (g) 1/2 T (f )T (g) 1/2 =T (g) 1/2 ψ(εD)T (f )ψ(εD)T (g) 1/2 + Rε =T (g) 1/2 ψ(εD)f ψ(εD)T (g) 1/2 + Rε, (7.1) 
where Rε = T (g) 1/2 (1ψ(εD))T (f )ψ(εD)T (g) 1/2 + T (g) 1/2 T (f )(1ψ(εD))T (g) 1/2 , is a self-adjoint operator of finite rank. Recall that if A ≥ 0 is a bounded operator with A ≤ 1, then

A 1/2 = +∞ j=0 c j (1 -A) j ,
where 1 -A ≤ 1 and j≥0 |c j | ≤ 2 < +∞. On the other hand, Lemma 5.3 implies T (g)ψ(εD) =P gP ψ(εD) = P gψ(εD) = P ψ(εD)g + o ε→0 [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF] =ψ(εD)g + o ε→0 (1), (7.2) Then, for a fixed δ > 0 such that T (g) ≤ g ∞ < δ -1 , we have

T (g) 1/2 ψ(εD) =δ -1/2 T (δg) 1/2 ψ(εD) =δ -1/2 +∞ j=0 c j (1 -T (δg)) j ψ(εD) =δ -1/2 J j=0 c j (1 -T (δg)) j ψ(εD) + o J→∞ (1) =δ -1/2 ψ(εD) J j=0 c j (1 -δg) j + o J→∞ (1) + o J ε→0 (1) =δ -1/2 ψ(εD)(δg) 1/2 + o J→∞ (1) + o J ε→0 (1 
) =ψ(εD)g 1/2 + o ε→0 (1), (7.3) since these quantities do not depend on J. Using this identity and its adjoint, (7.1) becomes

T (g) 1/2 T (f )T (g) 1/2 =ψ(εD)f gψ(εD) + Rε + o ε→0 (1)
=T (f g) + Rε + eε, (7.4) where eε = o ε→0 (1) and Rε = Rε + (ψ(εD) -1)T (f g)ψ(εD) + T (f g)(ψ(εD) -1), is a self-adjoint operator of finite rank. In particular, eε is a self-adjoint operator. Since, on Im

P inf(f g) ≤ T (f g) ≤ sup(f g), we get σ(T (f g) + eε) ⊂ [inf(f g) -o ε→0 (1), sup(f g) + o ε→0 (1)
]. As Rε is of finite rank, we obtain, from Weyl's theorem [13, Theorem S.13],

σess T (g) 1/2 T (f )T (g) 1/2 = σess(T (f g) + eε) ⊂ [inf(f g)o ε→0 (1), sup(f g) + o ε→0 [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF]].

As the essential spectrum of T (g) 1/2 T (f )T (g) 1/2 does not depend on ε, we get (7.5) σess T (g) 1/2 T (f )T (g) 1/2 ⊂ [inf(f g), sup(f g)],

which is the first inclusion of Coburn's theorem. =(f g)(x 0 )v + O αβ -1 + oα→∞(1). (7.8) Taking β = α 2 → +∞, (7.6) implies v = 1 + oα→∞(1). On the other hand, (7.8) leads to T (f )T (g)v = (f g)(x 0 )v + oα→∞(1).

Then, (f g)(x 0 ) ∈ σ(T (f )T (g)) = σ(T (g) 1/2 T (f )T (g) 1/2 ). Therefore, (7.9) inf(f g), sup(f g) ⊂ σ T (g) 1/2 T (f )T (g) 1/2 .

Recall that the essential spectrum of a self-adjoint bounded operator on an infinite Hilbert space is never empty. Therefore, if inf(f g) = sup(f g), (7.5) implies the theorem.

Assume now that inf(f g) < sup(f g). Then [inf(f g), sup(f g)] is an interval with non empty interior. From the definition of the essential spectrum, this interval is necessarily inside the essential spectrum of T (g) 1/2 T (f )T (g) 1/2 . This achieves the proof of the second inclusion of Coburn's theorem.

Theorem 3 . 1 1 n

 311 The sequence (Wn(f )) satisfies an LDP with good rate function J f g . More precisely, for any closed set F ⊂ R lim sup n→∞ log P(Wn(f

Lemma

  

2 ∞

 2 Now, let ϕ ∈ C ∞ ([-1, 1], [0, 1]) with ϕ L 2 = 1. For x 0 ∈ T and α, β ∈ N, we set u = α 1/2 ϕ α(xx 0 ) e iβx and v = P u ∈ Im P, which satisfies u = 1. We have (1 -P )u =α 1/2 1 ]-∞,0] (D)e iβx ϕ α(xx 0 ) =α 1/2 e iβx 1 ]-∞,-β] (D)ϕ α(xx 0 ) =α 1/2 e iβx 1 ]-∞,-β] (D)(D + i) -M (D + i) M ϕ α(xx 0 ) =O β -M α M ,(7.6) in L 2 norm for any M ∈ N. Moreover, for a continuous function ℓ, we have(7.7) ℓu = ℓ(x 0 )α 1/2 ϕ α(xx 0 ) e iβx + oα→∞(1), in L 2 norm. Using that T (ℓ) 1/2 ≤ ℓ 1/, for all function ℓ ∈ L ∞ with ℓ ≥ 0, we getT (f )T (g)v =P f P gP u = P f P gu + O αβ -1 =g(x 0 )P f P u + O αβ -1 + oα→∞(1) =g(x 0 )P f u + O αβ -1 + oα→∞(1)=(f g)(x 0 )P u + O αβ -1 + oα→∞(1)
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Essential spectrum of the product of Toeplitz operators

Here, we recall, in our setting, a consequence of a theorem of Coburn [START_REF] Coburn | The C * -algebra generated by an isometry[END_REF] concerning the essential spectrum of the product of Toeplitz operators. This result has been extended by Douglas to a more general framework (see [START_REF] Nikolski | Operators, functions, and systems: an easy reading[END_REF]Theorem 4.5.10]). We shall give in section 7 an alternative proof of the following theorem, more related to our approach.

Theorem 5.4 (Coburn) Let f and g be two bounded continuous real functions with g ≥ 0. The bounded self-adjoint operator T (g) 1/2 T (f )T (g) 1/2 satisfies on Im P σess T (g)

Here, σess(A) denotes the essential spectrum of A.

In Theorem 5.4, the operator T (g) 1/2 T (f )T (g) 1/2 is viewed as an operator on Im P . On L 2 (T), this operator is a block diagonal operator with respect to the orthogonal sum L 2 = Im P ⊕ ⊥ Im(1-P ) and is equal to 0 on Im(1 -P ). In particular, we have

The goal of this section is to prove Theorem 5.1. First of all, one can observe that part ii) clearly implies iii). In the next subsection, we first show that i) implies ii).

6.1

The implication i) gives ii) Lemma 6.1 Let f and g be two bounded piecewise continuous real functions with g ≥ 0. Then,

strongly on L 2 (T). If λ belongs to the spectrum of T (f )T (g) on Im P , then there exists an eigenvalue λn of Tn(f )Tn(g) on Im Pn such that λn → λ.

Proof Since Pn -→ P , it follows from Lemma III.3.8 of [START_REF] Kato | Perturbation theory for linear operators[END_REF] that for all f ∈ L ∞ (T), Tn(f ) -→ T (f ). In particular, from Problem VI.14 of [START_REF] Reed | Methods of modern mathematical physics[END_REF] (see also Theorem VI.9 of [START_REF] Reed | Methods of modern mathematical physics[END_REF]), Tn(g) 1/2 -→ T (g) 1/2 . Consequently, we deduce from Lemma III.3.8 of [START_REF] Kato | Perturbation theory for linear operators[END_REF] that (6.1)

In particular, we obtain on Im P

for all M ∈ R. We choose µ = f ∞ g ∞ and M = µ+1. Therefore, it follows from Corollary VIII.1.6 together with Theorem VIII.1.14 of [START_REF] Kato | Perturbation theory for linear operators[END_REF] that, for each λ belonging to the spectrum σ(T (f )T (g)) = σ(T (g) 1/2 T (f )T (g) 1/2 ) on Im P , there exists an eigenvalue λn of the matrix

As u N = 1, it follows from Lemma 6.2 that (6.8)

In particular, we can assume, up to the extraction of a subsequence, that

In the next section, we will suppose that (6.9)

The case u + N ≥ 1/3 follows essentially the same lines and is treated in Section 6.2.3. But before, we show that u - N and u + N are both quasimodes of T N (f )T N (g) (this means that they are eigenvectors modulo a small term). Lemma 6.3 We have

Proof As in (6.6), using Lemma 5.3, we get

The lemma follows from (6.5), (6.7) and the last identity.

Concentration near the low frequencies

Here, we assume (6.9) and we prove that u - N , viewed as an element of Im P , is a quasimode of T (f k )T (g k ).

Lemma 6.4 For 4k ≤ N , we have

Remark 6.5 In fact, for 4k ≤ N ≤ n, we have

the Fourier transform of the function

In particular, (6.12)

and the Fourier transform of this function is supported inside [0, N/4 + k]. As before, the Fourier transform of

The lemma follows from (6.11), (6.12) and (6.13).

From (6.3), Lemma 6.3 and Lemma 6.4, we get (6.14)

, the operator T (f )T (g)λ is invertible and then

From (6.9), we obtain 1/3 ≤ o k→∞ (1) + o k N →∞ [START_REF] Bercu | Large deviations for quadratic forms of stationary Gaussian processes[END_REF]. Taking k large enough and then N large enough, it is clear that this is impossible. Thus, λ ∈ σ(T (f )T (g)), which implies Theorem 5.1 under the assumption (6.9).

Concentration near the high frequencies

We replace the assumption (6.9) by u + N ≥ 1/3. Let J be the isometry f → f in L 2 (T). One can observe that J(uv) = J(u)J(v). Using the notation P 

. (6.15) In particular, u - N = e iN x (Ju + N ) satisfies u - N ≥ 1/3,

and the support of the Fourier transform of u - N is inside [0, N/4]. Hence, we can apply the method developed in the case u - N ≥ 1/3. The unique difference is that f, g are replaced by f , g. Then, we obtain λ ∈ σ T ( f )T ( g) .

Theorem 5.1 follows from the following lemma and σ(T (f )T (g)) = σ(T (g)T (f )) (the spectrum of T (f )T (g) is real and (T (f )T (g)z) * = T (g)T (f )z).