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Abstract

We consider a semiparametric single index regression model involving a p-dimensional quantitative covariable

x and a real dependent variable y. A dimension reduction is included in this model via an index x′β. Sliced

inverse regression (SIR) is a well-known method to estimate the direction of the Euclidean parameter β which is

based on a “slicing step” of y in the population and sample versions. The goal of this paper is twofold. On the one

hand, we focus on a recursive version of SIR which is also suitable for multiple indices model. On the other one,

we propose a new method called SIRoneslice when the regression model is a single index model. The SIRoneslice

estimator of the direction of β is based on the use of only one “optimal” slice chosen among the H slices. Then,

we provide its recursive version. We give an asymptotic result for SIRoneslice approach. Simulation study shows

good numerical performances of SIRoneslice method and clearly exhibits the main advantage of using recursive

versions of the SIR and SIRoneslice methods from a computational times point of view. A real data set is also

used to illustrate the approach. Some extensions are discussed in concluding remarks. The proposed methods

and criterion have been implemented in R and the corresponding codes are available from the authors.

Keywords: recursive estimation, semiparametric regression model, sliced inverse regression (SIR).

1 Introduction

In statistical applications, high-dimensional data became common. In a regression framework, let y ∈ R be

the response variable and x ∈ Rp be the regressor. In order to study the relationship between y and x, it is

usual to impose assumptions for a specific structure on the mean regression function of y on x such as linearity

or additivity. To cope with dimensionality, in a dimension reduction setting, many authors suppose that x
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can be replaced by a linear combination of its components, β′x, without losing information on the conditional

distribution of y given x. This assumption can be expressed as

y ⊥ x | β′x (1)

where the notation u1 ⊥ u2 | u3 means that the random variable u1 is independent of the random variable u2

given any values for the random variable u3. An example where (1) holds is the following single index model

with an additive error:

y = f(β′x) + ε, (2)

where ε ⊥ x, the distribution of ε is arbitrary and unknown, and f is an unknown real-valued function. In

this model, sufficient dimension reduction of the regression is achieved and leads to summary plot of y versus

β′x which provides graphical modelling information. Then, it is possible to nonparametrically estimate the link

function f on the reduced data, more efficiently in the sense that the curse of dimensionality has been overcome.

Finally, when (1) holds, it straightforwardly also holds for any vector collinear to β. Let us call E := span(β)

the dimension reduction subspace, also named effective dimension reduction (EDR) space following Duan and Li

(1991) in their original presentation of sliced inverse regression (SIR).

Li (1991) consider a multiple indices regression model. The Euclidean parameter β is a p ×K matrix: β =

[β1, . . . , βK ] where the vectors βk are assumed linearly independent. The EDR space is now the K-dimensional

linear subspace of Rp spanned by the βk’s.

Methods based on the use of inverse regression are available in literature for estimating the EDR space. In

order for inverse regression to be useful in estimating the EDR space, some of them, like SIR and related methods

(for instance principal Hessian direction introduced by Li (1992) or sliced average variance estimation discussed

by Cook (2000)) place certain conditions on the marginal distribution of the covariable x. In this paper, we will

focus on SIR. Let us then now recall the theory of SIR and its necessary assumption on x. The SIR approach

relies on the following assumption often called linearity condition (LC):

For all b ∈ Rp,E [b′x | β′x] is linear in x′β. (3)

The LC is required to hold only for the true Euclidean parameter β. Since β is unknown, in practice it is

not possible to verify a priori this assumption. Hence, we can assume that LC holds for all possible β, which

is equivalent to elliptical symmetry of the distribution of x. Recall that the well-known multivariate normal

distribution is an example of such a distribution. Finally Hall and Li (1993) mentioned that the LC is not a

severe restriction because this LC holds to a good approximation in many problems as the dimension p of the

predictors increases, see also Chen and Li (1998) or Cook and Ni (2005) for interesting discussions on the LC.
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Let us consider a monotone transformation T . Under model (1) and LC, Duan an Li (1991) showed that the

centered inverse regression curve satisfies:

E[x | T (y)]− µ ∈ Span(Σβ), (4)

where µ := E[x] and Σ := V(x). This result implies that the space spanned by the centered inverse curve,

{E[x | T (y)] − E[x] : y ∈ Y} where Y is the support of response variable y, is a subspace of the EDR space

but it does not guarantee equality. For instance, pathological model has been identified in the literature and are

called symmetric dependent model: that is model for which the centered inverse regression curve is degenerated.

From (4), the centered inverse regression curve can be used to recover the EDR space if the model is not

pathological. Indeed, a direct consequence of this result is that the covariance matrix of this curve,

Γ := V(E[x | T (y)]),

is degenerate in any direction Σ-orthogonal to β (i.e. to the βk’s for a multiple indices model). Therefore, the

eigenvectors associated with the non null eigenvalues of Σ−1Γ are EDR directions, which means that they span

the EDR space E.

In the slicing step of SIR, the range of y is partitioned into H slices {s1, . . . , sH}. With such slicing, the

covariance matrix Γ can be straightforwardly written this way:

Γ :=

H∑
h=1

ph(mh − µ)(mh − µ)′

where ph = P (y ∈ sh) and mh = E[x | y ∈ sh]. Let us consider a random sample {(xi, yi), i = 1, . . . , n} generated

from model (1). By substituting empirical versions of µ, Σ, ph and mh for their theoretical counterparts, we

obtain an estimated basis of E spanned by the eigenvector b̂SIR associated with the largest eigenvalue of the

estimate Σ̂−1
n Γ̂n of Σ−1Γ where

Σ̂n =
1

n

n∑
i=1

(xi − x̄n)(xi − x̄n)′ and Γ̂n =

H∑
h=1

p̂h,n(m̂h,n − x̄n)(m̂h,n − x̄n)′,

with

x̄n =

n∑
i=1

xi/n, p̂h,n =
1

n

n∑
i=1

I[yi∈sh] =
n̂h,n
n

and m̂h,n =
1

n̂h,n

∑
i∈sh

xi,

the notation I[.] designating the indicator function. This approach is the one proposed by Duan and Li (1991)

and Li (1991) when they initially introduced SIR approach. The SIR method has been extensively studied by

several authors, see for instance Hsing and Carroll (1992), Zhu and Ng (1995), Saracco (1997), Chen and Li

(1998), Cook and Ni (2005) among others.

The goal of this paper is twofold. On the one hand, we focus on recursive version of SIR which is suitable for

multiple indices model and has never been introduced in the previous literature. The recursive approach relies
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on the use of the estimator defined on the n− 1 first observations (xi, yi) and the new observation (xn, yn). For

instance, we can illustrate this recursive framework with the following practical example where the data do not

arrive at the same time and thus the recursive version of SIR is useful. Let us consider a database of costumers

(of a website for example) which increases as time goes by. The statistician uses this database in order to infer

the association between a dependent variable y (the amount of expenses for example) and a p-dimensional vector

x of covariables (some numerical informations given by the consumer when he creates an account on this website

for instance). For each new costumer, the recursive SIR approach does not require the use of the entire database

(which can be huge) to update the relationship between y and x (that is the EDR direction) and the time-saving

will be important from a computational point of view. On the other hand, we propose a new method called

SIRoneslice when the regression model is a single index model. We define in Section 2 the SIRoneslice estimator

of the direction of β based on the use of only one “optimal” slice chosen among the H slices. Then, we provide

in Section 3 the recursive versions of the SIR and SIRoneslice procedures and we also establish an asymptotic

result for the SIRoneslice estimator. The proof is postponed in the Appendix. In Section 4, a simulation study

shows very good numerical performances of SIRoneslice method and clearly exhibits the main advantage of using

recursive versions of the SIR and SIRoneslice methods from a computational times point of view. A real data

set is used to illustrate the proposed approach. All the methods have been implemented in R. Finally concluding

remarks are given in Section 5.

2 A “one slice-based SIR” approach

Under model (1) and the LC, E[x | T (y)] can be written as, for each slice h,

E[x | y ∈ sh] = µ+ khΣβ, (5)

where

kh =
E[(x− µ)′β | y ∈ sh]

β′Σβ
, (6)

details are given in Appendix A.

For all h = 1, . . . ,H, let

zh := E[x | y ∈ sh]− µ = mh − µ.

We have respectively from (5) and (6)

zh = khΣβ and kh =
z′hβ

β′Σβ
. (7)

Then, zh falls along a line spanned by Σβ if kh is non null. From (7), if the scalar kh is non null, we can estimate
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an EDR direction from a random sample {(xi, yi), i = 1, . . . , n}, using the following estimator:

b̂h,n := Σ̂−1
n ẑh,n,

with ẑh,n = m̂h,n − x̄n. If kh is non null, b̂h,n is a
√
n-consistent estimator of the EDR direction since it can

easily be shown that b̂h,n converges to khβ at root n rate.

Note that, contrary to the usual SIR approach, we do not use in this SIRoneslice approach the information

from all the H slices. We only focus on one slice h̃ for which kh̃ is non null. In some situations, for instance when

the regression model is partially symmetric, the estimator b̂h̃,n obtained for the “best” slice h̃ performs better

than b̂SIR. This point is illustrated in the simulation study described in Section 4. One choice of this best slice

will be discussed hereafter.

In the following, let us assume that β is such that || β ||Σ= 1. Then the term kh is given by kh = z′hβ but

depends on the unknown index parameter β. However, from (7), we have β = 1
kh

Σ−1zh, and using || β ||Σ= 1,

we get 1
(kh)2 z

′
hΣ−1ΣΣ−1zh = 1 and then

(kh)2 =|| zh ||2Σ−1 ,

which can be easily estimated from the sample data. From this result, we can propose an “optimal” slice for the

SIRoneslice approach defined by:

ho = arg max
h

(kh)2, (8)

and the corresponding population version of the estimator is then

βho :=
Σ−1zho

|| zho ||Σ−1

.

From a computational point of view, it is easy to estimate each kh from a sample by substituting zh and Σ

by their sample versions ẑh,n and Σ̂n. Then we find that

(k̂h,n)2 =|| ẑh,n ||2Σ̂−1
n
.

From these values, we can define

ĥon = arg max
h

(k̂h,n)2. (9)

With this choice of slice, the corresponding Σ̂n-normalized estimator is

β̂ĥo
n,n

:=
Σ̂−1
n ẑĥo

n,n

|| ẑĥo
n,n
||Σ̂−1

n

. (10)

By the law of large numbers, it can be shown that β̂ĥo
n,n

converges almost surely to ±β.

Straightforwardly, an alternative estimator of the direction of β, which is not Σ̂n-normalized, is given by

b̂ĥo
n,n

:= Σ̂−1
n ẑĥo

n,n
. (11)
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In Theorem 3.1, we show that this estimator converges almost surely at
√

log(log n)/n rate to

bho := Σ−1zho (12)

which is collinear to β under model (1) and the LC.

3 Recursive versions of SIR and “one slice-based SIR” approaches

We first present in Section 3.1 the recursive versions of the SIR methods and we give recursive expressions of x̄n,

Σ̂n, Σ̂−1
n , p̂h,n and ẑh,n. Then, we define in Section 3.2 the recursive SIR estimator of the EDR direction as the

major eigenvector of the recursive expression of the matrix of interest Σ̂−1
n Γ̂n. Then, we propose in Section 3.3

the recursive version of the SIRoneslice estimator. The almost surely convergence at
√

log(log n)/n rate of the

SIRoneslice estimator is obtained in Section 3.4.

3.1 Description of the recursive approach

Let us consider that the sample {(xi, yi), i = 1, . . . , n} is splitted into two subsets: the subsample of the first

(n− 1) observations {(xi, yi), i = 1, . . . , n− 1} and the new observation (xn, yn).

Let us first give the recursive form of the estimators x̄n , Σ̂n and Σ̂−1
n of µ, Σ and Σ−1.

The recursive expression of the empirical mean x̄n is the following:

x̄n =
1

n

n∑
i=1

xi =
n− 1

n
x̄n−1 +

1

n
xn = x̄n−1 +

1

n
Φn (13)

where Φn = xn − x̄n−1.

In the first term, we can observe the presence of x̄n−1, the empirical mean of the first (n − 1) observations,

and in the second one, the presence of the nth observation xn. Similarly, the recursive form of the empirical

covariance matrix Σ̂n is given by:

Σ̂n =
1

n

n∑
i=1

(xi − x̄n)(xi − x̄n)′

=
n− 1

n
Σ̂n−1 +

n− 1

n2
(xn − x̄n−1)(xn − x̄n−1)′

=
n− 1

n
Σ̂n−1 +

n− 1

n2
ΦnΦ′n.

(14)

It can be shown, via Riccati equation, that the inverse of Σ̂n has the following recursive expression:

Σ̂−1
n =

n

n− 1
Σ̂−1
n−1 −

n

(n− 1)(n+ ρn)
Σ̂−1
n−1ΦnΦ′nΣ̂−1

n−1 (15)

where ρn = Φ′nΣ̂−1
n−1Φn.
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Let us now give the recursive form of the estimators p̂h,n and m̂h,n of ph and mh. Denote by h∗ the slice

containing yn, the nth observation of y. We can now give the recursive expression of the estimator p̂h,n of ph:

p̂h,n =


n−1
n p̂h∗,n−1 + 1

n if h = h∗,

n−1
n p̂h,n−1 otherwise.

(16)

The recursive form of m̂h,n is given by:

m̂h,n =


m̂h∗,n−1 + 1

n̂h∗,n−1+1Φh∗,n if h = h∗,

m̂h,n−1 otherwise,

(17)

where Φh∗,n = xn − m̂h∗,n−1.

From (13) and (17), we obtain the recursive form of ẑh,n:

ẑh,n =


ẑh∗,n−1 − 1

nΦn + 1
n̂h∗,N−1+1Φh∗,n if h = h∗,

ẑh,n−1 − 1
nΦn otherwise.

(18)

3.2 Recursive SIR

Using the recursive forms of x̄n, p̂h,n, Σ̂−1
n and ẑh,n, we describe the recursive form of the matrix interest Σ̂−1

n Γ̂n

so that determine the eigenvector associated with the largest eigenvalue of this matrix.

In writing the form Γ̂n

Γ̂n =
∑
h6=h∗

p̂h,nẑh,nẑ
′
h,n + p̂h∗,nẑh∗,nẑ

′
h∗,n,

we can deduce from (16) and (18) the following recursive form for Γ̂n :

Γ̂n =
n− 1

n
Γ̂n−1 −

n− 1

n2

H∑
h=1

p̂h,n−1

(
ẑh,n−1Φ′n + Φnẑ

′
h,n−1

)
+
n− 1

n3
ΦnΦ′n +

n− 1

n
p̂h∗,n−1Ah∗,n +

1

n
Bh∗,nB

′
h∗,n

(19)

with

Ah∗,n =
1

n̂h∗,n−1 + 1

(
ẑh∗,n−1Φ′h∗,n + Φh∗,nẑ

′
h∗,n−1

)
− 1

n(n̂h∗,n−1 + 1)

(
ΦnΦ′h∗,n + Φh∗,nΦ′n

)
+

1

(n̂h∗,n−1 + 1)2
Φh∗,nΦ′h∗,n

and Bh∗,n = ẑh∗,n−1 −
1

n
Φn +

1

n̂h∗,n−1 + 1
Φh∗,n.

From (15) and (19), we obtain the recursive form of the matrix interest Σ̂−1
n Γ̂n:

Σ̂−1
n Γ̂n = Σ̂−1

n−1Γ̂n−1 + Σ̂−1
n−1Ch∗,n −

1

n+ ρn
Σ̂−1
n−1ΦnΦ′nΣ̂−1

n−1

[
Γ̂n−1 + Ch∗,n

]
(20)
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where

Ch∗,n = − 1

n

H∑
h=1

p̂h,n−1

(
ẑh,n−1Φ′n + Φnẑ

′
h,n−1

)
+

1

n2
ΦnΦ′n + p̂h∗,n−1Ah∗,n +

1

n− 1
Bh∗,nB

′
h∗,n.

Finally, for a multiple indices model, we obtain an estimated basis of E spanned by the eigenvectors associated

with the K largest eigenvalues of the estimate Σ̂−1
n Γ̂n of Σ−1Γ.

3.3 A recursive version of the SIRoneslice approach

We gave in (10) and (11) the non-recursive expression of the estimators β̂ĥo
n,n

and b̂ĥo
n,n

. From (15) and (18), it is

possible to obtain their corresponding recursive expression. We only detail in this paper the recursive expression

of b̂ĥo
n,n

= Σ̂−1
n ẑĥo

n,n
:

b̂ĥo
n,n

= n
n−1 Σ̂−1

n−1ẑĥo
n,n−1 −

1
n−1 Σ̂−1

n−1Φn − 1
(n−1)(n+ρn) Σ̂−1

n−1ΦnΦ′nΣ̂−1
n−1(nẑĥo

n,n−1 − Φn)

+ 1
n−1Φ′

ĥo
n,n

(
Σ̂−1
n−1 − 1

(n+ρn) Σ̂−1
n−1ΦnΦ′nΣ̂−1

n−1

)
I[h∗=ĥo

n],

where h∗ still designates the slice containing the nth observation. In a care of simplicity, we do not provide the

recursive expression of β̂ĥo
n,n

since this expression is a cumbersome and very complicated expression.

3.4 An asymptotic result for SIRoneslice

The asymptotic result needs the following additional assumptions:

(A1) The observations (xi, yi), i = 1, ..., n, are sampled independently from the model (2).

(A2) The support of y is partitioned into H fixed slices s1, . . . , sH such that ph 6= 0,∀h = 1, . . . ,H.

(A3) ∃!ho such that kho > kh.

In the following, let || . || denote the usual Euclidean norm.

Theorem 3.1 Under model (1), LC and assumptions (A1), (A2) and (A3), we have for n large enough

|| b̂ĥo
n,n
− bho ||= O

(√
log(log n)

n

)
a.s.

where bho , defined in (12), is collinear to β.

The proof of this Theorem is given in Appendix B. Note that in the asymptotic context of this theorem, the

selected slice ĥon converges to the optimal “theoretical” slice ho (which is fixed and unknown). With finite samples,

ĥon may slightly vary but will provide an optimal “empirical” slice.
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4 Simulation study and real data application

In this section, in order to compare the numerical performance of SIRoneslice versus SIR, we will only focus on

single index regression model. Nevertheless let us recall that the recursive version of SIR can be straightforwardly

applied to multiple indices regression model.

In the simulation study, we will consider the four methods described in the previous sections: SIR, SIRoneslice,

and their recursive versions (recursive SIR and recursive SIRoneslice). In Section 4.1, we describe the simulated

model which will be used in the simulation study. We compare in Section 4.2 the computational times of the

four methods and we will observe that the recursive versions are the fastest ones. Let us recall here that SIR

and recursive SIR (resp. SIRoneslice and recursive SIRoneslice) applied on the same data {(xi, yi), i = 1, . . . , n}

provide the same estimations, only the manner to calculate the estimate differs (recursive version or non recursive

one). For this reason, we only compare the quality of the estimations obtained from SIR and SIRoneslice in

Section 4.3. We also provide in this subsection a naive bootstrap criterion in order to select the number H of

slices for SIRoneslice. In Section 4.4, we exhibit the evolution of the quality of the recursive SIRoneslice estimator

according to the sample size n.

Finally a real data application is postponed in Section 4.5 in order to show the predictive performance of

SIRoneslice versus SIR.

4.1 Presentation of the simulated model

In the simulation study, we consider the following regression model in order to generate simulated datasets:

y = (x′β)2 exp(x′β/A) + ε, (21)

where x follows a p-dimensional centered normal distribution with covariance matrix Σ defined below, ε follows

the normal distribution N (0, σ) with σ = 1.5, and β = (1,−1, 2,−2, 0, . . . , 0)′. The covariance matrix Σ is chosen

as follows: Σ = Λ′Λ + 0.5Ip where the p2 components of the p × p matrix Λ have been generated from the

uniform distribution on [−2, 2], the second term 0.5Ip allows to avoid numerical inversion problem for Σ. In this

simulation study, for each value p of the dimension, we generate a covariance matrix Σ which will be used for

each replication. The parameter A has an influence on the form on the dependence between the index x′β and y.

• When the value of A is small (for instance A = 1), the model presents “no symmetric dependence” since

the exponential part in (21) is predominant. Since each slice is informative on the direction of β, SIR which

is based on the H slices will performs pretty well to recover the EDR direction as well as the proposed

SIRoneslice which is based on only one (“optimal”) slice.
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• When the value of A is medium (for instance A = 2.5), the model presents a “moderate symmetric depen-

dence”, the influence of the exponential part tends to disappears in favor of the squared polynomial part.

In this case, SIR may not perform well contrary to the SIRoneslice which can recover information on the

EDR direction from the “best” selected slice which does not potentially suffer of symmetric dependence.

• When the value of A is high (for instance A = 5), the model presents a “strong symmetric dependence”

since the squared polynomial part in (21) is predominant. Each slice suffers of symmetry dependence

and then the two approaches, SIR and SIRoneslice, will not properly recover the EDR direction, however

SIRoneslice may possibly provide suitable estimation obtained from an “optimal” selected slice which escape

from symmetric dependence if the number of slices is large enough.

These comments will be illustrated in Section 4.3. From this model, we will generate n× p datasets for various

values of A (=1, 2.5 and 5), p (=5, 10, 15 and 20) and n (=300, 600, 900 and 1200). For each simulated sample,we

estimate the direction of β with SIR, recursive SIR, SIRoneslice and/or recursive SIRoneslice . Let us denote by

b̂ the corresponding estimated EDR direction. Since only the direction of β is identifiable, we use the following

efficiency measure in order to evaluate the numerical quality of the estimator:

cos2(b̂, β) =
(b̂′Σβ)2

(b̂′Σb̂)(β′Σβ)
.

The closer this squared cosine of the angle between b̂ and β is to one, the better is the estimation.

All the methods (SIR, SIRoneslice, recursive SIR and recursive SIRoneslice) have been implemented in R.

The simulation study has been made with this software. The corresponding codes are available from the authors.

4.2 Comparison of computational times between non recursive and recursive ap-
proaches of SIR and SIRoneslice

In this part of the simulation study, we only focus on the computational times of the four estimators SIR, recursive

SIR, SIRoneslice and recursive SIRoneslice. For each method and for a given simulated sample of size N , we

measure in seconds the computational time needed to calculate the corresponding estimators b̂n of the EDR

direction for n going from N0 = 30 in N , where b̂n is the estimator only based on the first n observations of the

sample. More precisely, the computational time is the global time needed to calculate the N −N0 + 1 estimators:

b̂N0
, b̂N0+1, . . . , b̂N−1 and b̂N .

For various values of p and N , we generate B = 100 replicated samples from model (21) with A = 2.5. Then,

for each method and each simulated sample, we estimate the EDR direction for various values of H.

In Table 1, we set the number H of slices to 10 and we give the means of computational times and the

corresponding standard deviations evaluated on the B = 100 replicated samples for different values of p (=5, 10,
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15, 20) and N (=300, 600, 900 and 1200). In Table 2, we set the size N to 900 and we give these means and the

corresponding standard deviations evaluated on the B = 100 replicated samples for different values of p (=5, 10,

15, 20) and H (=5, 10, 15 and 20). From the reading of these tables, one can exhibit the following comments.

• From Table 1, one can observe that SIR and Sironeslice provide nearly the same computational times

in mean with a slight advantage for SIRoneslice which does not require an eigenvalue decomposition. Not

surprisingly, the larger are the dimension p or the size N , the larger is the mean of computational times. The

recursive versions of SIR and Sironeslice provide very smaller mean of computational times in comparison

with their non recursive versions. Moreover the recursive SIRoneslice method is clearly the fastest one:

recursive SIRoneslice seems to be twice faster than recursive SIR. One explanation of this gain in term

of computational time is certainly due to the recursive calculation of the p × p matrix inverse Σ̂n. Note

that when the dimension p increases, the computational time in mean of recursive methods only slightly

increases contrary to the non recursive ones: for instance, the computational time is multiplied by around

2 from p = 5 to p = 20 for the non recursive approaches, whereas it is multiplied by around 1.4 (resp. 1.1)

for recursive SIR (resp. recursive SIRoneslice). For all the methods, the computational time increases at

the same rate according to size N .

• From Table 2, the main information is that the computational times in mean are penalized by the number H

of slices. The recursive approaches are always widely the fastest ones. One can however mention that for SIR

and recursive SIR, the computational times are multiplied by around 2 from H = 5 to H = 20 for all values

of p while these computational times are multiplied by around 3 for SIRoneslice and recursive SIRoneslice.

This phenomenon is explained by the cost of the research of the “optimal” slice which spends more times

for large value of H. Nevertheless, the advantage of the recursive approaches remain very important in

terms of computational times: for instance when p = 20 and H = 20, the recursive SIRoneslice is still

around 12 times (resp. around 1.8 times) faster than SIR (resp. recursive SIR).

4.3 SIRoneslice versus SIR

In this part of this simulation, the goal is to study the numerical behavior of SIRoneslice and to compare it with

SIR. To do this, we generate B = 500 datasets of size n = 300 from model (21) with p = 10 and for different

values of A (=1, 2.5, 5). For each simulated sample, we estimate the EDR direction with the non recursive

versions of SIR and SIRoneslice. We first illustrate the efficiency of the choice of the “optimal” slice ĥon by our

proposed criterion on an example when H = 5 (arbitrary fixed) and A = 1. Then we consider several values

of H in order to evaluate the possible influence of this tuning parameter on the quality of the estimators for
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p = 5 p = 10 p = 15 p = 20

N = 300
SIR 1.790 (0.055) 2.318 (0.012) 2.881 (0.016) 3.486 (0.011)
recursive SIR 0.502 (0.008) 0.547 (0.009) 0.608 (0.010) 0.708 (0.011)
SIRoneslice 1.671 (0.007) 2.113 (0.008) 2.608 (0.010) 3.126 (0.016)
recursive SIRoneslice 0.255 (0.010) 0.260 (0.006) 0.262 (0.002) 0.282 (0.005)

N = 600
SIR 3.908 (0.043) 5.099 (0.017) 6.366 (0.009) 7.740 (0.014)
recursive SIR 1.044 (0.017) 1.147 (0.019) 1.258 (0.014) 1.478 (0.018)
SIRoneslice 3.580 (0.016) 4.683 (0.014) 5.795 (0.011) 6.976 (0.016)
recursive SIRoneslice 0.526 (0.006) 0.536 (0.004) 0.546 (0.006) 0.580 (0.002)

N = 900
SIR 6.120 (0.009) 8.128 (0.022) 10.235 (0.030) 12.523 (0.030)
recursive SIR 1.594 (0.015) 1.735 (0.017) 1.921 (0.027) 2.245 (0.021)
SIRoneslice 5.665 (0.028) 7.487 (0.016) 9.358 (0.015) 11.327 (0.013)
recursive SIRoneslice 0.796 (0.007) 0.816 (0.006) 0.826 (0.003) 0.881 (0.004)

N = 1200
SIR 8.522 (0.014) 11.380 (0.014) 14.390 (0.058) 17.901 (0.045)
recursive SIR 2.137 (0.018) 2.325 (0.029) 2.564 (0.019) 2.952 (0.024)
SIRoneslice 7.909 (0.009) 10.537 (0.016) 13.200 (0.013) 16.253 (0.046)
recursive SIRoneslice 1.071 (0.005) 1.098 (0.010) 1.113 (0.005) 1.187 (0.008)

Table 1: Computational times (in seconds) for calculating estimators b̂n of the direction of β (for n going from
N0 = 30 to N) with SIR, recursive SIR, SIRoneslice and recursive SIRoneslice methods (with H = 10): mean and
standard deviation in parentheses, calculated on B = 100 replicated samples from the model (21) with A = 2.5
and different values of p and N

p = 5 p = 10 p = 15 p = 20

H = 5
SIR 4.888 (0.053) 5.824 (0.152) 7.365 (0.060) 9.063 (0.014)
recursive SIR 1.421 (0.013) 1.554 (0.017) 1.750 (0.018) 2.077 (0.020)
SIRoneslice 3.534 (0.010) 4.686 (0.007) 5.976 (0.010) 7.318 (0.009)
recursive SIRoneslice 0.481 (0.001) 0.496 (0.005) 0.504 (0.002) 0.540 (0.005)

H = 10
SIR 6.120 (0.009) 8.128 (0.022) 10.235 (0.030) 12.523 (0.030)
recursive SIR 1.594 (0.015) 1.735 (0.017) 1.921 (0.027) 2.245 (0.021)
SIRoneslice 5.665 (0.028) 7.487 (0.016) 9.358 (0.015) 11.327 (0.013)
recursive SIRoneslice 0.796 (0.007) 0.816 (0.006) 0.826 (0.003) 0.881 (0.004)

H = 15
SIR 7.489 (0.007) 10.081 (0.022) 12.832 (0.054) 15.697 (0.096)
recursive SIR 1.766(0.016) 1.918 (0.019) 2.319 (0.023) 2.470 (0.006)
SIRoneslice 7.594 (0.050) 9.992 (0.047) 12.457 (0.043) 15.031 (0.091)
recursive SIRoneslice 1.092 (0.009) 1.117 (0.006) 1.135 (0.008) 1.207 (0.005)

H = 20
SIR 9.046(0.014) 12.251 (0.028) 15.646 (0.032) 19.231 (0.061)
recursive SIR 1.922 (0.014) 2.082 (0.021) 2.325 (0.021) 2.728 (0.011)
SIRoneslice 9.628 (0.013) 12.660 (0.042) 15.760 (0.013) 19.006 (0.083)
recursive SIRoneslice 1.394 (0.005) 1.432 (0.006) 1.459 (0.009) 1.544 (0.007)

Table 2: Computational times (in seconds) for calculating estimators b̂n of the direction of β (for n going from
N0 = 30 to N) with SIR, recursive SIR, SIRoneslice and recursive SIRoneslice methods for different values of H:
mean and standard deviation in parentheses, calculated on B = 100 replicated samples from the model (21) with
A = 2.5, N = 900 and different values of p
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various values of A. From the obtained results, the parameter H needs to be properly chosen and therefore we

provide a naive bootstrap choice for the number of slices for SIRoneslice. Finally we provide simulation results

of comparison of SIRoneslice versus SIR when the tuning parameter H is chosen by the bootstrap criterion.

Illustration of the efficiency of the choice of ĥo
n for SIRoneslice. We only present here

an example results obtained from B = 500 replicated samples from the model (21) with A = 1 and n = 300.

For SIRoneslice, we set H = 5 slices. We plot on Figure 1(a) the boxplots of the B = 500 values of k̂2
h,n for

h = 1, . . . , 5. Clearly, for all the B simulated samples, the value of ĥon = arg maxh (k̂h,n)2 is 5. In Figure 1(b), we

represent the boxplots of the square cosines cos2(b̂h,n, β) for h = 1, . . . , 5. When h = ĥon = 5, the corresponding

boxplot is very close to one contrary to those associated with the other values of h. Hence, one can observe

that the proposed choice for the “optimal” slice seems to be efficient on this example. We do not exhibit other

examples (with different values for A and H) since they provide the same conclusions.

(a) Boxplots of the square cosines of k̂2
h,n (b) Boxplots of the square cosines of b̂h,n
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Figure 1: Illustration of the efficiency of the choice of ĥon for SIRoneslice using model (21) with A = 1, n = 300,
p = 10 and for a fixed number of slices H = 5

Influence of the number H of slices on SIR and SIRoneslice estimates. We consider

here B = 500 replicated samples of size n = 300 from the model (21) with p = 10 and A = 1, 2.5 or 5. For

each simulated sample, we estimate the EDR direction with SIRoneslice and SIR for various values of H (=3,

4, . . . ,10, 15, 20, 25, 30). For each H, the chosen slice for the SIRoneslice method is selected by the proposed

criterion: the slice ĥon is used for estimating the EDR direction. For each value of A, we calculate the mean of

the quality measures of each estimator over the B = 500 samples, see Tables 3-5. Moreover we indicate in these

tables the percent of times when SIRoneslice dominates SIR. From the reading of Tables 3-5, one can observe
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that:

• When the model presents “no symmetric dependence” (A = 1), SIRoneslice and SIR methods does not

seem to be very sensible to the number H of slices. This is particularly true for SIR and this has been

already mentioned by several authors. Even if the means of the square cosines obtained with SIRoneslice

are greater than 0.89 for most values of H, a good choice for H (here between 6 and 10) will provide in

mean square cosine greater than 0.94.

H SIRoneslice SIR Percent of “SIRoneslice�SIR”
3 0.890 0.888 57.8
4 0.924 0.921 55.0
5 0.935 0.934 52.2
6 0.947 0.946 51.2
7 0.946 0.947 47.2
8 0.946 0.950 43.4
9 0.948 0.952 37.6
10 0.944 0.953 32.8
15 0.925 0.953 17.4
20 0.903 0.952 11.0
25 0.886 0.951 8.0
30 0.866 0.949 4.8

Table 3: Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples generated from
model (21) with A = 1, n = 300, p = 10 for different values of H

With this kind of non symmetric dependent model, all slices bring information on the EDR direction. When

the number H of slices becomes large, the number of observations in each slice decreases and straightfor-

wardly the quality measures of the SIRoneslice estimates (based only on one slice) will be penalized whereas

the SIR estimates still provide high quality measures. Finally, note that for values of H lower than 7 (that

is for moderate values of H according to sample size n), half the time SIRoneslice performs better than

SIR.

• When the model present a moderate symmetric dependence (A = 2.5) or a strong symmetric dependence

(A = 5), the two methods are sensitive to the choice of the parameter H. In Table 5, for instance the mean

of square cosine varies from 0.286 (when H = 3) to 0.714 (when H = 30) for SIRoneslice. Therefore, a

good choice of H appears to be important from a computational point of view. We propose in the next

paragraph a naive bootstrap choice for H which provides suitable results.

The symmetric dependence of the model leads to non informative slices to retrieve the EDR direction.

When the number of slices is large, we have more chance to obtain an informative slice which is not affected

by the symmetric dependence. Note that when A = 2.5 or 5, most of the time SIRoneslice performs better

14



than SIR (with percents around 75% for A = 5 and H ≥ 8) and provides quality measures close to 0.71 (in

mean, with H = 30) versus 0.57 for SIR.

H SIRoneslice SIR Percent of “SIRoneslice�SIR”
3 0.610 0.605 56.0
4 0.704 0.682 64.2
5 0.781 0.755 75.6
6 0.804 0.774 74.8
7 0.822 0.789 73.6
8 0.846 0.814 72.2
9 0.865 0.841 69.8
10 0.877 0.857 70.6
15 0.891 0.873 61.2
20 0.885 0.870 59.0
25 0.876 0.870 48.6
30 0.862 0.862 47.2

Table 4: Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples generated from
model (21) with A = 2.5, n = 300, p = 10 for different values of H

H SIRoneslice SIR Percent of “SIRoneslice�SIR”
3 0.286 0.287 47.0
4 0.382 0.357 56.0
5 0.418 0.374 65.4
6 0.487 0.441 66.0
7 0.533 0.477 71.0
8 0.593 0.504 78.0
9 0.641 0.540 76.0
10 0.566 0.487 72.4
15 0.661 0.536 78.8
20 0.687 0.523 77.4
25 0.701 0.556 79.8
30 0.714 0.574 76.6

Table 5: Means of quality measures obtained with SIRoneslice and SIR over B = 500 samples generated from
model (21) with A = 5, n = 300, p = 10 for different values of H

A naive bootstrap choice for the number H of slices for SIRoneslice. We propose hereafter

a criterion in order to choose an “optimal” number H of slices for SIRoneslice. This criterion could also be used

for SIR. The idea is to provide a value of H such that the quality measure of the estimator remains stable over

bootstrap replications of the available sample s(r) = {(xi, yi), i = 1, . . . , n}.

Let B∗ be the number of bootstrap replications. For r = 1, . . . , B∗, let us consider {(x(r)
i , y

(r)
i ), i = 1, . . . , n} a

non parametric bootstrap replication. According to Efron (1982) naive bootstrap estimate of the mean of the
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expectation of the quality measure cos2(b̂ĥo
n,n
, β) is defined by:

ĝn(H) =
1

B∗

B∗∑
r=1

q̂(r)
n

with

q̂(r)
n =

(
b̂
(r)′
ĥ
o(r)
n ,n

Σ̂nb̂ĥo
n,n

)2

(
b̂
(r)′
ĥ
o(r)
n ,n

Σ̂nb̂
(r)

ĥ
o(r)
n ,n

)(
b̂′
ĥo
n,n

Σ̂nb̂ĥo
n,n

)
where b̂

(r)

ĥ
o(r)
n ,n

is the SIRoneslice estimator based on the bootstrap replication sample s(r). In pratice this criterion

will be computed for values of H from Hmin to Hmax with Hmin and Hmax chosen by the user. An optimal number

of slices can then be defined as: Ĥn = arg maxH ĝn(H).
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Figure 2: An example of the bootstrap criterion on a simulated sample from model (21) with n = 300, p = 10
and A = 2.5

To illustrate this numerical behavior of this proposed criterion, we first consider a simulated sample of size

n = 300 from model (21) with A = 2.5 and p = 10. We set B∗ = 200 and choose Hmin = 3 and Hmax = 25.

In Figure 2, for each value of H in [Hmin;Hmax] the boxplot of the values q̂
(r)
n , r = 1, . . . , B∗ are plotted. One

can see that the dispersion of the q̂
(r)
n ’s are large for too small or too large values of H. The solid line links the

points (H, ĝn(H)) in order to easily see the values of the criterion. One can observe that the criterion chooses in

this example Ĥn = 7. Note that the corresponding boxplot of the q̂
(r)
n ’s shows a small dispersion of these values.

Let us finally mention that our R code provides the numerical values of ĝn(H) for all H and the optimal value

Ĥn if the user is not interested in graphical representation of the criterion.
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In order to show the efficiency of the criterion, we generate 50 samples of size n = 300 from model (21) with

p = 10 and A = 2.5. We keep the same parameter values for the criterion: B∗ = 200, Hmin = 3 and Hmax = 25.

For each simulated sample, we estimate the EDR direction with SIRoneslice using the optimal value Ĥn obtained

with the bootstrap criterion. We also estimate this direction for all values of H in [Hmin;Hmax], and we select

the value of H which provides the maximum value of the quality measure. In Figure 3, we plot the boxplot of the

square cosines obtained with SIRoneslice based on Ĥn slices (named “Bootstrap criterion” in the graphic), the

boxplot of the “best” square cosines as defined above (named “with best value for H” in the graphic) and the

boxplot of the square cosines obtained with SIRoneslice based on all possible values of H in [Hmin;Hmax] (named

“for various values of H” in the graphic). Let us mention that the selection of the “best” number H of slices can

only be done in a simulation study when the true direction β is known whereas our bootstrap criterion can always

be used in practice. One can observe that the quality measures obtained with the proposed bootstrap criterion

are very close to the “best” ones. Note that if the choice of H is arbitrary made by the user, the quality of

the corresponding estimated direction could behave worse, see the large dispersion of the corresponding boxplot.

From these simulation results, the proposed naive bootstrap criterion to select H seems to be useful in practice

and we use it in the sequel.

Figure 3: Illustration of the efficiency of the proposed bootstrap criterion via a simulation study using model
(21) with n = 300, p = 10 and A = 2.5

SIRoneslice versus SIR. We consider B = 500 replicated samples of size n = 300 from the model (21)

with p = 10 and A = 1, 2.5 or 5. For each simulated sample, we estimate the EDR direction with SIR and

SIRoneslice. Note that for the two methods, the number H of slices has been chosen by the proposed bootstrap

criterion introduced in the previous paragraph (with Hmin = 3 and Hmax = 25).
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For each value of A, we plot in Figure 4(a), (c) and (e) the boxplots of the B = 500 values of the corresponding

square cosines of SIR and SIRoneslice estimates. In addition, we represent, in Figure 4(b), (d) and (f), the scatter

plots of the square cosines of the SIR estimates versus those of SIRoneslice estimates. From this figure, one can

point out the following comments.

• When there is no symmetric dependence (A = 1),the two methods provide very good estimations with

square cosines greater than 0.8. Moreover the quality measures for SIRoneslice and SIR are very close.

• When there is moderate symmetric dependence (A = 2.5), SIRoneslice seems to be better than SIR. We

clearly see on the scatter plot that the great majority of the point are over the first bisecting line.

• When there is strong symmetric dependence (A = 5) the quality measures of the SIRoneslice estimates are

largely better than those obtained with SIR. The corresponding scatter plot confirm a uniformly advan-

tage in favor of SIRoneslice. An intuitive explanation of the fact that for a large symmetric dependence

SIRoneslice performs most of the time better than SIR is the following. SIRoneslice is often able to find

a slice such that zh is non null and thus the corresponding estimate performs well, while SIR always uses

all the slices and the corresponding estimate is then disturbed by the numerous “non-informative” slices in

this case.

Dealing with high-dimensional x. We also evaluate the numerical performance of SIRoneslice on

high-dimensional data (p = 50, 100, 150 and 200). We generate B = 500 simulated samples of size n = 1000

from model (21) for three different values of A (=1, 2.5 and 5). We present in Figure 5 all the boxplots of

square cosines obtained with SIRoneslice and we compare them with the square cosines obtained with classical

SIR approach on the same dataset. As in the previous simulation, the number H of slices has been chosen by

the proposed bootstrap criterion with Hmin = 3 and Hmax = 25 for SIR or SIRoneslice. One can observe that

the performance of SIRoneslice and SIR are very similar when A = 1 (no symmetric dependence). When the

model present a moderate symmetric dependence (A = 2.5), SIRoneslice seems to be slightly better than SIR.

When A = 5 (strong symmetric dependence), SIRoneslice clearly outperforms SIR. Not surprisingly, the quality

measure decreases as the dimension p increases and as the symmetric dependence increases.

4.4 Recursive SIRoneslice simulation results

We consider here a samples of size n = 1200 from model (21) with p = 10 and A = 1, 2.5 or 5. We arbitrary set

H = 15 slices. For each simulated sample, we estimate for n = N0 = 60 until N = 1200, the EDR direction with

the recursive SIRoneslice method and we calculate the corresponding quality measures cos2(b̂ĥo
n,n
, β).
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(c) A = 2.5 (d) A = 2.5
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(e) A = 5 (f) A = 5
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Figure 4: Simulation results obtained with SIR and SIRoneslice for B = 500 samples generated from model (21)
with n = 300, p = 10 and different values of A: boxplots and scatter plots of square cosines
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Figure 5: Boxplots of square cosines obtained with SIR and SIRoneslice for B = 100 samples generated from
model (21) with high dimensions p of x, different values of A and n = 1000
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In Figure 6, we represent the evolution of the quality measures cos2(b̂ĥo
n,n
, β) according to n. Not surprisingly,

we clearly observe that the more the sample size n is important, the greater is the quality measure. As previously

mentioned, the parameter A have influence on the dependence between the index x′β and y in (21) and then

effect the quality estimator b̂ĥo
n,n

. For instance, in Figure 6, the estimations are clearly better for small sample

size when the value of A is small.

In Figure 7, we provide, for some various values of N (= 100, 200, 300, 600, 900 and 1200), the boxplots of

cos2(b̂ĥo
n,n
, β) calculated on B = 500 samples simulated from model (21) with p = 10 and A = 2.5. We observe

the same kind of phenomenon as those described in the corresponding case on Figure 6. Since the sample size

n is sizeable, the quality of estimations are very good. For example, the boxplots of the cos2(b̂ĥo
n,n
, β)’s are very

concentrated around the value 0.95 when n ≥ 600.

4.5 Real data application

We illustrate our approach on a real data set. We consider the horse mussel data which is prevalent in the

literature (see for instance Cook, 1998 or Cook and Weisberg, 1999). The observations correspond to n = 82

horse mussels captured in the Malborough Sounds at the Northeast of New Zealand’s South Island. These data

are available thanks the R package “dr”. Following the results obtained by Cook (1998) which used SIR and

found an unique EDR direction (via a test procedure), we apply SIRoneslice with the muscle mass (M) in g as

response variable and 4 regressors (H, W0.36, S0.11 and L) where H is the shell height in mm, W is the shell

width in mm, S is the shell mass in g and L the shell length in mm. Note that the dependent variable is slightly

transformed as follows y = y + ε, ε ∼ N (0, 0.012) in order to improve the slicing step of SIR and SIRoneslice.

The optimal number of slices has been determined via our bootstrap approach for SIRoneslice and SIR (see

Figure 8(a) and (b)). One can observe in Figure 8(b) that SIR is insensitive to the choice of H and we chose

H = 6 in order to estimate the EDR direction. For SIRoneslice, the bootstrap criterion in Figure 8(a) indicates

that a good choice for H can be 2 or 7. We compute the corresponding EDR direction for these two values of

H and the square cosine between these two directions is around 0.95. We plot in Figure 8(c) the scatter plot of

the dependent variable versus the estimated EDR indices (obtained with SIRoneslice based on H = 7). We add

on this plot the kernel estimator of Y given the estimated index, the bandwidth is obtained by cross validation.

A strong decreasing link between the muscle mass and the index clearly appears in this graphic. Note that the

square cosine between this EDR directions calculated with SIRoneslice and SIR is around 0.98.

Finally we compare the prediction reached on test samples with SIR and SIRoneslice using the following

algorithm.

• Step (i). We split the data into two subsets: SJ = {(yj ,x′j), j ∈ J} the training sample containing almost
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Figure 6: Evolution, according to n, of the quality measures cos2(b̂ĥo
n,n
, β) obtained with recursive SIRoneslice

for three simulated samples from model (21) with p = 10 and various values of A.
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Figure 7: Simulation results obtained with recursive SIRoneslice for B = 500 samples generated from model (21)
with p = 10 and A = 2.5: boxplots of square cosines for various values of n

75% of the total number of observations, and SI = {(yi,x′i), i ∈ I} the test sample of the remaining

observations. Let nJ = card(J) = 62 and nI = card(I) = 20.

• Step (ii). We use the training sample SJ to compute the estimated EDR direction with SIR, denoted b̂SIR,

and with SIRoneslice, denoted b̂SIRoneslice.

• Step (iii). We compute the kernel estimate ŷi of E(y|x′ib̂) for i ∈ I using the sample {(yj ,x′j b̂), j ∈ J} where

b̂ is either b̂SIRoneslice or b̂SIR. Thus we get for i ∈ I, ŷi,SIR for SIR and ŷi,SIRoneslice for SIRoneslice.

• Step (iv). We compute the Mean Square Relative Error (MSRE) for both SIR and SIRoneslice estimates

as follows:

MSRE =
1

nI

∑
i∈SI

(
yi − ŷi
yi

)2

,

where ŷi stands for ŷi,SIR or ŷi,SIRoneslice.

This algorithm is repeated N = 1000 times. Figure 8(d) shows the boxplots of the MSRE values obtained with

SIRoneslice and SIR. SIRoneslice seems to be more efficient than SIR: the range of the boxplot is smaller with

SIRoneslice. Note that nevertheless the median of the MSRE obtained with SIR is lower to the SIRoneslice one.
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(a) Boostrap criterion for SIRoneslice (b) Boostrap criterion for SIR
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(c) Scatter plot for SIRoneslice (d) Boxplots of MSRE for SIRoneslice and SIR
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Figure 8: Application on mussels data
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5 Concluding remarks

In this paper, we first proposed an estimator of the direction of β based on the use of only one “optimal” slice

chosen among the H slices of the slicing step. We called this method SIRoneslice. We also proposed recursive

versions of the SIR and SIRoneslice estimators. We showed the almost surely convergence together with a rate of

convergence for the SIRoneslice estimator. Finally, we illustrated on simulation the good numerical performances

of our SIRoneslice procedure. From a practical point of view, we proposed a naive bootstrap criterion in order

to choose the number H of slices. We clearly exhibited the main advantage of using recursive versions of the

SIR and SIRoneslice methods from a computational times point of view. The SIRoneslice, recursive SIR and

recursive SIRoneslice methods have been implemented in R and the corresponding codes are available from the

authors.

Interesting extensions of this work concern the development of recursive versions for other dimension reduction

approaches such as SAVE (see for instance Cook, 2000), pHd (see for example Li, 1992) or SIRα (see for instance

Li, 1991, or Gannoun and Saracco, 2003). Moreover, in order to save computational time when the dependent

variable y is multivariate, recursive estimators could be also introduced in multivariate SIR methods (see for

example Li et al., 2003, Saracco, 2005 or Barreda et al., 2007).

Appendix A

From the LC, we have

E[x | x′β] = µ+
Σββ′(x− µ)

β′Σβ
.

From model (1) we get

E[x | T (y)] = E{E[x | x′β, T (y)] | T (y)}
= E{E[x | x′β] | T (y)}

We straightforwardly deduce that

E[x | T (y)] = µ+
E[β′(x− µ) | T (y)]

β′Σβ
Σβ.

Hence, when T is a slicing, we obtain for the hth slice:

mh := E[x | y ∈ sh] = µ+ khΣβ

where kh =
E[β′(x− µ) | y ∈ sh]

β′Σβ
.
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Appendix B: proof of Theorem 3.1

For h = 1, . . . ,H, we have b̂h,n − bh = (Σ̂−1
n −Σ−1)ẑh,n + Σ−1(ẑh,n − zh) where bh = Σ−1zh and b̂h,n = Σ̂−1

n ẑh,n.

Then, we can deduce the following inequality:

|| b̂h,n − bh ||2 ≤ 2 || ẑh,n ||2|| Σ̂−1
n − Σ−1 ||2 +2 || Σ−1 ||2|| ẑh,n − zh ||2 . (22)

In the following proof, we first specify the rate of convergence of ẑh,n based on the rates of convergence of

x̄n and m̂h,n. Then, applying Riccati equation for the inverse matrix, we obtain the rate of convergence of Σ̂−1
n .

Finally, we deduce the rate of convergence of b̂h,n.

For a matrix M , we denote by λmax(M) (resp. λmin(M)) its largest (resp. smallest ) eigenvalue.

Step 1: Study of the rate of convergence of (ẑh,n)

For h = 1, . . . ,H, we have ẑh,n − zh = (m̂h,n −mh)− (x̄n − µ). We clearly have

|| ẑh,n − zh ||2 ≤ 2 || m̂h,n −mh ||2 +2 || x̄n − µ ||2 . (23)

Study of the rate of convergence of x̄n

Under assumption (A1), from the Hartman-Wintner law of the iterated logarithm (see Theorem 3.2.9, page 136

of Stout,1974) we have

lim sup
|| Sn − nµ ||2

2n log(log n)
≤ λmax(Σ) a.s.

where Sn =

n∑
i=1

xi. It follows that

lim sup

(
n

2 log(log n)

)
|| x̄n − µ ||2≤ λmax(Σ) a.s.

leading to

|| x̄n − µ ||2= O
(

log(log n)

n

)
a.s. (24)

Study of the rate of convergence of m̂h,n

We have

m̂h,n −mh = m̂h,n −
n

n̂h,n
E[xI[y∈sh]] +

n

n̂h,n
E[xI[y∈sh]]−mh

with

m̂h,n =
1

n̂h,n

n∑
i=1

xiI[yi∈sh] and n̂h,n =

n∑
i=1

I[yi∈sh]
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Similarly to the study of x̄n, we get

‖m̂h,n −mh‖2 ≤ 2
∥∥∥m̂h,n −

n

n̂h,n
E[xI[y∈sh]]

∥∥∥2

+ 2
∥∥∥ n

n̂h,n
E[xI[y∈sh]]−mh

∥∥∥2

. (25)

Let us focus on the first term. We have

n̂h,nm̂h,n =

n∑
i=1

xiI[yi∈sh] =

n∑
i=1

εi(h) + nE[xI[y∈sh]]

where εi(h) = xiI[yi∈sh] −E[xiI[yi∈sh]] = xiI[yi∈sh] −E[xI[y∈sh]]. Let Mn(h) :=
∑n
i=1 εi(h). The sequence (εn(h))

is a sequence of independent random variables with E[εi(h)] = 0 et E[εi(h)ε′i(h)] ≤ Σ + µµ′. We deduce again

from the Hartman-Wintner law of the iterated logarithm that∥∥∥Mn(h)
∥∥∥2

= O
(
n log(log n)

)
a.s.

It follows that ∥∥∥n̂h,nm̂h,n − nE[xI[y∈sh]]
∥∥∥2

= O
(
n log(log n)

)
a.s.

Since we have
n̂h,n

n

a.s.−→ ph where ph = P(y ∈ sh) > 0 (see assumption (A2)), we finally obtain

∥∥∥m̂h,n −
n

n̂h,n
E[xI[y∈sh]]

∥∥∥2

= O
( log(log n)

n

)
a.s. (26)

Let us now study the second term. Since mhph = E[xI[y∈sh]], we have

n

n̂h,n
E[xI[y∈sh]]−mh =

n

n̂h,n
mhph −mh =

mh

n̂h,n

(
nph − n̂h,n

)
. (27)

Moreover, as n̂h,n =
∑n
i=1 Zi(h) + nph with Zi(h) = I[yi∈sh] − E[I[yi∈sh]], we have

n̂h,n − nph = Mn =

n∑
i=1

Zi(h).

By the Hartman-Wintner law of the iterated logarithm, we get∥∥∥n̂h,n − nph∥∥∥2

= O
(
n log(log n)

)
a.s.

Then, using the fact that n̂h,n ∼ phn, we deduce from (27) that∥∥∥ n

n̂h,n
E[xI[y∈sh]]−mh

∥∥∥2

= O
(

log(log n)

n

)
a.s. (28)

Finally, using the rates obtained in (26) and (28), we deduce from (25) that

|| m̂h,n −mh ||2= O
( log(log n)

n

)
a.s. (29)

Study of the rate of convergence of ẑh,n
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Using (24) and (29), we obtain from (23) that

|| ẑh,n − zh ||2= O
( log(log n)

n

)
a.s. (30)

Step 2: Study of the rate of convergence of (Σ̂−1
n )

According to the Riccati equation for the matrix inverse (see for instance Duflo (1997), page 96), we can write

Σ̂−1
n as

Σ̂−1
n = Σ−1 − Σ−1(Σ̂n − Σ)Σ−1 +Rn

where Rn = Σ−1(Σ− Σ̂n)Σ̂−1
n (Σ− Σ̂n)Σ−1. Straightforwardly, we get

|| Σ̂−1
n − Σ−1 ||

2
≤ 2 || Rn ||2 +2 || Σ−1(Σ̂n − Σ)Σ−1 ||2 . (31)

Study of the rate of convergence of Σ̂n

Since Σ̂n = 1
n

∑n
i=1(xi − x̄n)(xi − x̄n)′ = 1

n

∑n
i=1(xi − µ)(xi − µ)′ − (x̄n − µ)(x̄n − µ)′, we can write Σ̂n − Σ =

1
n

∑n
i=1 ei − (x̄n − µ)(x̄n − µ)′, where ei = (xi − µ)(xi − µ)′ − Σ. Therefore, we obtain

|| Σ̂n − Σ ||2 ≤ 2

n2

∥∥∥ n∑
i=1

ei

∥∥∥2

+ 2 || x̄n − µ ||4 . (32)

Let MN (u) = u′
( n∑
i=1

ei

)
u =

n∑
i=1

u′eiu =

n∑
i=1

ei(u), where ei(u) = u′eiu = u′(xi − µ)(xi − µ)′u− u′Σu.

We have E[ei(u)] = E[(u′(xi − µ)(xi − µ)′u− u′Σu] = u′Σu− u′Σu = 0 and

E[(ei(u))2] = E[(u′(xi − µ)(xi − µ)′u− u′Σu)2]

= E[u′(xi − µ)(xi − µ)′uu′(xi − µ)(xi − µ)′u]− (u′Σu)2

≤ E[(u′(xi − µ)(xi − µ)′u)2]

≤ E
[
|| xi − µ ||4

]
× || u ||4 .

We can deduce again from the Hartman-Wintner law of the iterated logarithm that

lim sup
||
∑n
i=1 ei(u) ||2

2n log(log n)
≤ τ4× || u ||4 a.s.

where τ4 = E
[
|| xi − µ ||4

]
. It follows that

∥∥∥ n∑
i=1

ei

∥∥∥2

= O
(
n log(log n)

)
a.s. (33)

From the rates obtained in (24) and (33), we deduce from (32) that

|| Σ̂n − Σ ||2 = O
(

1

n2
n log(log n)

)
+O

((
log(log n)

n

)2
)

a.s.

= O
(

log(log n)

n

)
a.s.

(34)
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Study of the rate of convergence of Rn

We deduce from the expression of Rn that

Rn ≤ λmax(Σ̂−1
n )Σ−1(Σ− Σ̂n)2Σ−1

≤ 1

λmin(Σ̂n)
Σ−1(Σ− Σ̂n)2Σ−1.

Then, we have

|| Rn || ≤
λmax(Σ−2) || Σ̂n − Σ ||2

λmin(Σ̂n)

|| Rn || ≤
|| Σ̂n − Σ ||2

λmin(Σ̂n)λmin(Σ2)
.

From (34),we find that

|| Rn ||2= O
( log(log n)

n2

)
a.s. (35)

Study of the rate of convergence of Σ̂−1
n

Using (34) and (35), we straightforwardly deduce from (31) that

|| Σ̂−1
n − Σ−1 ||2= O

(
log(log n)

n

)
a.s. (36)

Setp 3: Study of the rate of convergence of b̂ĥo
n,n

Finally, from the rates of convergence obtained in (30) et (36), we obtain from (22) that, ∀h = 1, . . . ,H, we have

|| b̂h,n − bh ||2= O
(

log(log n)

n

)
a.s. (37)

Obviously, this result still remains true for h = ho. In addition, since we have ∀h, k̂hn,n → kh , then, under (A3),

∃no such that ∀n > no, (k̂ho,n)2 > (k̂h,n)2. According to the definitions of ho and ĥon given in (8) and (9), we

have ĥon → ho. From this result and ( 37), we obtain that

|| b̂ĥo
n,n
− bho ||2= O

(
log(log n)

n

)
a.s.

This completes the proof of the Theorem 3.1.
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