
HAL Id: hal-00642643
https://hal.science/hal-00642643v1

Submitted on 3 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraints driven subscription using Confidence
Interval model

Jean-Luc Sarrade, Stéphane Perrin

To cite this version:
Jean-Luc Sarrade, Stéphane Perrin. Constraints driven subscription using Confidence Interval model.
12th IMEKO TC1 & TC7 Joint Symposium on Man Science & Measurement, Sep 2008, ANNECY,
France. pp.CD-ROM. �hal-00642643�

https://hal.science/hal-00642643v1
https://hal.archives-ouvertes.fr

12th IMEKO TC1 & TC7 Joint Symposium on

 Man Science & Measurement

September, 3 – 5, 2008, Annecy, France

CONSTRAINTS DRIVEN SUBSCRIPTION

USING CONFIDENCE INTERVAL MODEL

Jean-Luc Sarrade

1
, Stéphane Perrin

2

1 Soft Formation Corp., Alex, France, jean-luc.sarrade@univ-savoie.fr

2 LISTIC, Univsersité de Savoie, Annecy, France, stephane.perrin@univ-savoie.fr

Abstract: In the context of intelligent instrument network,

i.e. intelligent sensors and actuators, the user or the designer

has to manipulate variable network functions. Service model

allows the designer to formalize and manipulate information

access. Service model also permits to, check, control and

react from instrument data and this approach is web-enable.

Producer-Consumer pattern facilitates design and intelligent

instrument networking. The connection between producer

and consumer can be checked (i.e. type of data) and filtered

(condition of sending). We propose to extend the producer-

consumer approach using service model for variable

subscription service where conditions of subscription

constraint could be expressed. We consider interval

confidence model of data and several consumers to produce

the event or data to be subscribed. A prototype is presented

to illustrate and validate the approach on the OSGi platform.

Keywords: subscription, constraint, interval confidence

1. INTRODUCTION

Intelligent instruments, i.e. intelligent sensors and actuators,

are now commonly used in industry and home automation

[1][2]. Recent studies [3][4][5] discuss their design and

model. Intelligent instruments have to exchange

measurement information. To support them, variable

network is generally used when using fieldbus.

In a context of intelligent instrument network, when

using fieldbus network, variable network model is native

inside the protocol. So associated functionalities from

variable network are usually offered by the network

protocol, like Echelon network or CAN network for basics

uses. According to the filedbus protocol, the initiative access

can come from the producer (push) or the consumer (pull).

Generally, these functionalities for variable network

management are limited to access mode, i.e write or read,

and the fieldbus protocol deals with variable updating

process.

The generalization of Internet supports low cost

interconnection solutions/gateway for various network

system - wireless or not: Zig-Bee, Bluetooth, RFID,

Echelon, CAN, X10, etc… - needs the same kind of

functionalities.

In a context of no-filedbus networks, like Internet - TCP-

IP protocol, the variable access functionality can be obtain

by service modeling. The use of service model facilitates

intelligent instrument networking and allows

producer/consumer pattern [6]. Recent studies propose

component model based on producer/consumer pattern [7].

In addition, service model approach is web-enable.

Due to its process capability, intelligent instrument is

able to provide various functions: corrected value, signal

processing, etc… Network variable access can be

considered as service in a non-fieldbus network. In addition,

service model can be support dynamic functionalities:

service detection, plug-and-play capability, etc…

We suppose to use interval confidence model to

represent information in order to improve knowledge of

information and so, to improve decision process.

Information is supposed provided from sensors or fusion

process. The entity providing the results of fusion process

from one or several producer can be considered as a

producer. Coupled with filtering functionality, this producer

is able to provide subscription services.

This paper presents a solution to give the possibility to

the user (or a consumer) to request a subscription service

dynamically. User (or a consumer) has to be able to generate

a new subscription service by giving the description of

sources (consumers) and the aggregation/fusion process.

Next section presents the architecture of a solution for

subscription process in a consumer/producer context.

2. SUBSCRIPTION FACILITIES

2.1. Introduction and context

The context of our studies is based on consumer

producer model. This approach allows the user or designer

of application to focalized on information to be exchange,

the communication protocol is dealt with the

consumer/producer model implementation.

Our proposition consists to propose an architecture

model where creating dynamically an aggregation/fusion

process from one or several sensors is possible. In addition,

a consumer has the possibility to make subscription process

using filter. The filter contains the condition of sending the

information to the consumer.

2.2. Producer-consumer

A connector bind the producer P to the consumer C.

Connector supports the communication capabilities and

could be able to verify the compatibility of exchanged data

type. Fig 1 illustrates consumer/producer representation.

Fig. 1. Producer-Consumer symbol

The connection type could be declined into different

kind : event (i.e. alarm) or data (i.e. measure).

The connector or the producer can contain the condition

of sending information from the producer. It is usually

possible to fix the condition of updating information for the

consumer side. This kind of functionality can be expressed

when binding (for example: Echelon network binding

process or filter using OSGi platform [6]).

Designer of application is able to choice exchange mode

access: push, pull and expressed conditions to allow the

updating process to take place: threshold, hysteresis, time

frequency, etc. By this way, it is possible to implement

subscription functionality. But usually, the constraints of

subscription either are authorized by the system (for basic

subscription constraints) or have to be implemented using

specific code to be added into the producer. See Fig 2.

Fig. 2. Filter positioning

2.3. Fusion process

Otherwise, when system is running, a consumer, called

Cd, could need new information. This can be computed from

known information from several consumers. In this scenario,

consumer Cd can express fusion process. Then several

scenarios are possible:

- Fusion process is a shared resource (i.e. service) and

be evocable from the consumer. In this case, consumer Cd

has to be into relation with the provider of fusion process

(i.e a service) and be able to transmit parameters. For

example, in the case of a weighted arithmetic mean process

as fusion process, Cd has to be connected to the fusion

process service and transmit parameters (ie identifier of each

providers) and weight for each value.

- Fusion process is not available in the system as

shared resource. Then, consumer Cd could nevertheless

obtain the result of fusion process if it is possible to provide

an external fusion code or if a parser exists to provide

desired fusion process (i.e external class in an OSGi

platform) from a description given by the consumer (XML

file for example).

The first scenario is more flexible and OSGi platform

allows dynamical update/upload of bundles. Then new

fusion process can be (re)loaded into the application during

the platform running. This approach could be used to

assume the second scenario.

2.4. Information type

The information entity exchanged throw the data flow is

defined as below:

IE=<ic, id, unit, properties, date> (1)

where:

id is the identifier of this information entity,

ic = { Vmin, Vmax } is the confidence interval of the

measured or computed values,

unit is the SI unit in which the values Vmin and Vma are

expressed,

properties is a list of properties that contains various

semantic information like the nature of data or the location.

This list of properties is used to facilitate binding process

when id of data is not used.

properties={

(name1, value),

 (name2, value), (2)

 …

}

2.5. Subscription capability

Subscription functionalities providing by systems are

usually basic and fixed by the system. They are usually not

include interval confidence representation.

In the next section, we propose an architecture which

includes confidence interval on filter constraints. We show

that the user can create dynamically a new subscription

service instance and the associated non-basic filter.

In addition, several sources could be necessary to the

fusion process. This can be appeared when system is

running. Then the proposed architecture presented in the

next section propose to take into consideration the

possibility to a consumer to subscribe to an information

formed from desired fusion process.

P C

connector

P C

connector

 Filter

3. FUSION/SUBSCRIPTION ARCHITECTURE

In this section we describe the architecture to allows the

user - or a consumer - to dynamically request information

from fusion process and expressed the condition of updating

(i.e. filter of sending).

3.1. Subscription request

The user or a consumer has to create a subscription

entity. Elements to create the required subscription have to

be provided into the system. This information contains:

- list of producer,

- identifiers of aggregation/fusion process,

- identifiers and parameters of filter.

This information could be placed into an xml file; fig 3

illustrates consumer's request of subscription.

Note that list of producers could be replaced by yellow

page service for example

Fig. 3. consumer's request of subscription

3.2. Subscription service steps.

Consumer/user launch the request and then subscription

service entity receives the request of user/consumer and the

xml description. Here steps for subscription process

- a new (virtual) provider Sub is generated.

- Each provider is connected to the Sub entity (virtual

sensor), according to the specified constraints (xml

description).

- Connection between Sub entity and

fusion/aggregation process is done.

- Finally a the virtual provider Sub is connected to the

consumer Cd.

The Fig 4 shows a snapshot of configuration after these

steps.

3.3. Constraints

The subscription constraints are provided from

consumer's request. Some of them could be specified by the

system for the most current of them (i.e. threshold, time

frequency, etc.) and other could be dynamically provided by

the consumer Cd to the provider Sub. In the same way, the

consumer Cd can also specify the fusion process and some of

its internal parameters.

The combining of constraints is also possible.

Example of constraint combining (using interval

confidence)

(Vmin1<0.5 and V max1 > 0.7) and (3)

((V min2>3.1 and Vmax2 >3.2)

3.4. Fusion/aggregation process

Consumer Cd requests to the system the desired fusion

process. It also provides parameters. For example, formula

(5) defines, the results desired information If: computed

using weighted average Aw method:

If= Aw (I1,w ;, I2, w2.;, In , wn) (4)

Aw identifier will be used to identify/find the

corresponding service of weighted average method in the

system. In [8], author explains how propagate interval

confidence; results can be used to compute the weight

average.

Fig. 4. snapshot of configuration after subscription process

3.5. Fusion/aggregation information and subscription

Consumer's request could contain both fusion method

identifier and (filter) subscription constraints.

If= Aw (I1,w ;, I2, w2.;, In , wn) (5)

Ifmoy(1-5%) < If < Ifmoy(1+5%) (6)

In (5), fusion process is defined and in (6) the condition

of sending value is defined. If is send to the consumer when

(6) is true.

4. PROTOTYPE

An implementation of the proposed architecture is

developed on Open Services Gateway Initiative (OSGi)

platform [6]. The OSGi Alliance creates open specifications

for the network delivery of managed services to devices in

Cd Subscription service

Description/

aggregation /

fusion process

P1

Sub

Filter

Cd

P2

Pn

Fusion

process

(alert or data)

Xml format

Description of
parameters of

fusion process

Description of
parameters of

filtering

Xml format

the home, car, mobile and other environments. The OSGi

Service Platform specifications provide all the necessary

mechanisms required to be able to manage these services

over networked devices. Any device which has the OSGi

Service Platform installed on it, can manage the life-cycle of

the components in the device along with installing, updating

or removing services without disrupting the operation of the

system. At the core of the OSGi Service Platform

Specification is the OSGi Framework. It provides a general-

purpose, secure, and managed Java framework that supports

the deployment of bundles.

The OSGi Framework provides the infrastructure to

dynamically install, uninstall, update, start and stop bundles.

The bundles use the OSGi Framework to register and

deregister their services, and also to look up and track other

bundles services.

Implementation of our proposed architecture is based on

OSGi platform and is used Consumer and Producer bundles.

In this section, we describe the implement of our proposed

architecture based on OSGi. First, we present producer

consumer binding specified in [6]. That facilitates the

explanation of the proposed subscription implementation.

Finally fusion/aggregation integration is described.

4.1. Consumer and Producer in OSGI platform

Producer and Consumer are defined in OSGI

specifications [6]. A wire is necessary to connect a producer

and a consumer. The wireCommand Bundle allows the

designer of application to create wires.

Each wire connects one consumer and one producer. A

consumer could be connected to several producers and a

producer could be connected to several consumers; for each

connection, a new wire is used.

Compatibility between the producer and the consumer is

check during run-time wire creation process. The

verification proposed on OSGi specifications [6] can be

based on scopes or types.

The designer can express, in the wire, the condition of

sent from the producer. These functionalities are placed into

the entity named 'filter'. The designer cans choice filtering

type:

- filtering by time (elapsed time),

- filtering by change (update, previous)

- or hysteresis (delta absolute and delta relative).

These five basic filtering conditions are specified in

OSGi specifications [6]. The sending condition of the

associated wire, expressed by this way, is specified when the

wire is created.

To develop our proposed architecture illustrated in fig 4,

we use wire, producer and consumer entities to create

producers P1.. Pn and the consumer Cd. OSGi specifications

[6] don't provide the Sub entity (fig 4). In the next sub-

section, we describe the Sub implementation.

4.2. Subscription entity (Sub).

The Sub (fig 4) entity is also a producer (Cd side) and

consumes data from producers Pi. It is implemented as a

bundle in the OSGi platform, which contains producer and

consumer interfaces. Wires are created to connect each Pi to

the Sub entity. Another wire is created to connect the Sub

entity to the consumer Cd.

4.3. Fusion entity

The fusion process has to provide result from input

values. The process could be aggregation type or any type of

fusion. We have considered that fusion processes could be

used by several Sub entities. That explains why fusion

process is not present in Sub entity. So the fusion entity is

implemented as a service bundle. Fusion process parameters

are described into an xml file. The sub entity has to use this

file entity to know the input fusion parameters. Then each

Sub entity using the fusion process can use its own

parameters for this fusion process.

4.4. Fusion process parameters

There are four types of parameters used in the fusion

process. All of these parameters pass through the Sub:

- The input process parameters: they are provided by

the Sub entity during the running process. These parameters

are collected by the Sub entity from producers Pi.

- Characteristics values can be added to the input

process parameters. In our example a weight is link to the

data of the producers. These different weights are used for

the weighted average method.

- Other parameters, independent of the input Sub

entity data, used by the fusion process, can be fixed

dynamically by the sub entity or by the consumer Cd.

- The output parameters, result of the fusion process.

An XML file provides descriptions of theses parameters.

Sub entity has to read information (contained in this xml

file) in order to be able to bind inputs of fusion process to its

parameters' values (xi, wi) to be sent. All of these parameters

are created in the sub entity. Example of xml description

(see (5) with two inputs):

< Aw_bundle >
 < id_service >
 awservice.Awservice
 < /id_service >
 < type >
 < in >
 < x1 > IE < /x1 >
 < x2 > IE < /x2 >
 < w1 val=3> int < /w1 >
 < w2 val=5> int < /w2 >
 < /in >
 < out >
 < r > IE < /r >
 < /out >
 < /type >
 < help >

…
 < /help >
< /Aw_bundle >

xi and wi are variables associated which Pi (initialized

during the creation process of each wire between Pi and sub

entity). In this example, the used type for xi is IE and is the
measurement value of Pi (see (1)). wi are the weight of each

input of Sub. The Sub entity could provide these parameters

values to the fusion process entity. To perform this, variable

names are used and associated to the input type of

associated fusion process. These variables are x1, x2 and w1,

w2 in the above example. There are also defined into the Sub

entity during creation of wire (between Pi and Sub entities).

Then x1 w1 are associated with the wire1. Wire1 connects Pi.

and Sub. Example of command to create wire1:

wa create P1 Sub val=x1

By this way, values produced by producers are

propagated to the fusion process (xi).

At the creation of the sub entity, the xml file is read in

order to allow the sub entity to initialize all of data

parameters (except input providers' data). The consumer Cd

reads the xml file to know the variable parameters of the

fusion process. The fig 5 illustrates the relation between xml

file and other entities. The consumer Cd can dynamically

modify the parameter values; for example to change weights

in (5).

Fig. 5. snapshot of relations between the xml file and the subscription

entity

In this example, the output of fusion process could be

able to provide the result r (IE type).

4.5. Filter

The Filter entity (fig 4) contains condition of sending.

This is the case for any wire. For the proposed architecture

for subscription process, the filter (fig 4) contains condition

of sending of the result of fusion process to the consumer

Cd. Filter capabilities specified in [6] not allows the user to

easily implemented combination of sending condition, or

express condition non-included in [6]. So we propose to use

a bundle to implement filter process.

For the example illustrated by (5-6), (6) contains

filtering condition. The xml description of filtering

constraints is given below:

< F_bundle >
 < id_service >
 fservice.Fservice
 < /id_service >

 < type >
 < in >
 < oi > IE < /oi >
 < c1 val=0.05> double < /c1 >
 < /in >
 < out >
 < oo > IE < /oo >
 < /out >
 < /type >
 < help >

…
 < /help >
< /F_bundle >

where

oi : data input of filter.

oo : data output of filter.

c1: specific condition used by the filter. In the example

(see (6)), filter consists in sending the input data if its value

is in confidence interval defined by (6). c1 is the value of

tolerance (0.05 by default in the example).

Like for the fusion process, values can be dynamically

modified by the consumer Cd . Same mechanisms are used

both for the fusion process or for the filter process.

5. CONCLUSION AND PERSPECTIVE

We propose in this paper architecture and prototype to

render possible dynamically the subscription functionality.

Our approach facilitates the use of interval confidence

representation for measurement information. One interest of

our proposition is to express the need of consumer

(constraints) and allows him to deal with the system to

automatically obtain (subscription) information in

accordance to its constraints. Consumer is able to

dynamically modify constraints.

REFERENCES

[1] Bloch, G., C. Eugene, M. Robert and C. Humbert,

Measurement Evolution: from Sensors to Information

Producer, IMEKO TC1 TC7, London, UK, pp 335-341, 8-10

September 1993.

[2] Spoelder, H.J.W., A.H. Ullings, F.C.A. Groen, Virtual

Intrumentation: A survey of Standards and their Interrelation,

IEEE/IMTC Instrumentation and Measurement Technology

Conference, pp 676-681, Ottawa Canada, 19-21 May 1997.

[3] Benoit, E., L. Foulloy and J. Tailland, Automatic Smart

Sensors Generation Based on InOMs, 16th IMEKO World

Congress, Vol IX, pp 335-340, Vienna, Austria, 25-28

September 2000.

[4] Riviere, J.M., M. Bayart, J.M. Thiriet, A. Bouras, M. Robert,

Intelligent instruments: some modelling approaches.

Measurement and Control, vol 29, pp. 179 −186, 1996.

[5] Rumbaugh, J., M. Blaha, W Lorensen, F. Eddy, W.

Premerlani, Object Oriented Modeling and Design, Prentice-

Hall International, New Jersey, 1991

[6] OSGi Service Platform, Service Compendium, Release 4,

Version 4.1, OSGi Alliance, 594 pages, May 2005.

[7] Cristina Marin and Mikael Desertot, Sensor Bean : A

Component Platform for Sensor-based Services, In

proceedings of the 3rd International Workshops on

Middleware for Pervasive and Ad-hoc Computing, MPAC'05,,

Xml format

Description of

parameters of

fusion process

Fusion

process
(alert or data)

Sub

Cd

Grenoble, France, 28-29 November 2005.

[8] Mauris G., Propagation of measurement uncertainty expressed

by a possibility distribution with coverage-interval-based

semantics in XVIII IMEKO World Congress, CD-ROM , Rio

de Janeiro, Brasil, September 2006, 5 pages.

