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A SHARP ANALYSIS ON THE ASYMPTOTIC BEHAVIOR OF

THE DURBIN-WATSON STATISTIC FOR THE FIRST-ORDER

AUTOREGRESSIVE PROCESS

BERNARD BERCU AND FRÉDÉRIC PROIA

Abstract. The purpose of this paper is to provide a sharp analysis on the as-
ymptotic behavior of the Durbin-Watson statistic. We focus our attention on the
first-order autoregressive process where the driven noise is also given by a first-
order autoregressive process. We establish the almost sure convergence and the
asymptotic normality for both the least squares estimator of the unknown param-
eter of the autoregressive process as well as for the serial correlation estimator
associated to the driven noise. In addition, the almost sure rates of convergence
of our estimates are also provided. It allows us to establish the almost sure con-
vergence and the asymptotic normality for the Durbin-Watson statistic. Finally,
we propose a new bilateral statistical test for residual autocorrelation.

1. INTRODUCTION

The Durbin-Watson statistic is very well-known in Econometry and Statistics. It
was introduced by the pioneer works of Durbin and Watson [6], [7], [8], in order to
test the serial independence of the driven noise of a linear regression model. The
statistical test based on the Durbin-Watson statistic works pretty well for linear
regression models, and its power was investigated by Tillman [20]. However, as it
was observed by Malinvaud [14] and Nerlove and Wallis [15], its widespread use
in inappropriate situations may lead to inadequate conclusions. More precisely, for
linear regression models containing lagged dependent random variables, the Durbin-
Watson statistic may be asymptotically biased. In order to prevent this misuse,
Durbin [4] proposed alternative tests based on the redesign of the original one.
Then, he explained how to use them in the particular case of the first-order au-
toregressive process previously investigated in [14] and [15]. Maddala and Rao [13]
and Park [16] showed by simulations that alternative tests significantly outperform
the inappropriate one even on small-sized samples. Inder [10], [11] and Durbin [5]
went even deeper in the approximation of the critical values and distributions of the
alternative tests under the null hypothesis. Afterwards, additional improvements
were brought by King and Wu [12] and more recently, Stocker [17] gave substantial
contributions to the study of the asymptotic bias in the Durbin-Watson statistic
resulting from the presence of lagged dependent random variables.

Key words and phrases. Durbin-Watson statistic, Autoregressive process, Residual autocorrela-
tion, Statistical test for serial correlation.
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Our purpose is to investigate several open questions left unanswered during four
decades on the Durbin-Watson statistic [4], [5], [15]. We shall focus our attention
on the first-order autoregressive process given, for all n ≥ 1, by

(1.1)

{
Xn = θXn−1 + εn

εn = ρεn−1 + Vn

where the unknown parameters |θ| < 1, |ρ| < 1. Via an extensive use of the theory of
martingales [3], [9], we shall provide a sharp and rigorous analysis on the asymptotic
behavior of the least squares estimators of θ and ρ. The previous results of conver-
gence were only established in probability [14], [15]. We shall prove the almost sure
convergence as well as the asymptotic normality of the least squares estimators of θ
and ρ. We will deduce the almost sure convergence and the asymptotic normality
for the Durbin-Watson statistic. Therefore, we shall be in the position to propose
a new bilateral test for residual autocorrelation under the null hypothesis as well as
under the alternative hypothesis.

The paper is organized as follows. Section 2 is devoted to the estimation of the
autoregressive parameter. We establish the almost sure convergence of the least

squares estimator θ̂n to the limiting value

(1.2) θ∗ =
θ + ρ

1 + θρ
.

One can observe that θ∗ = θ if and only if ρ = 0. The asymptotic normality of θ̂n as
well as the quadratic strong law and the law of iterated logarithm are also provided.
Section 3 deals with the estimation of the serial correlation parameter. We prove
the almost sure convergence of the least squares estimator ρ̂n to

(1.3) ρ∗ = θρθ∗ =
θρ(θ + ρ)

1 + θρ
.

As before, the asymptotic normality of ρ̂n, the quadratic strong law and the law
of iterated logarithm are also provided. It allows us to establish in Section 4 the

almost sure convergence of the Durbin-Watson statistic D̂n to

(1.4) D∗ = 2(1− ρ∗)

together with its asymptotic normality. Our sharp analysis on the asymptotic be-

havior of D̂n is true whatever the values of the parameters θ and ρ inside the interval
]− 1, 1[. Consequently, we are able in Section 4 to propose a new bilateral statistical
test for residual autocorrelation. A short conclusion is given in Section 5. All the
technical proofs of Sections 2, 3, and 4 are postponed in Appendices A, B, and C,
respectively.
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2. ON THE AUTOREGRESSIVE PARAMETER

Consider the first-order autoregressive process given by (1.1) where the initial
values X0 and ε0 may be arbitrarily chosen. In all the sequel, we assume that (Vn)
is a sequence of square-integrable, independent and identically distributed random
variables with zero mean and variance σ2 > 0. In order to estimate the unknown
parameter θ, it is natural to make use of the least squares estimator θ̂n which
minimizes

∆n(θ) =
n∑

k=1

(Xk − θXk−1)
2.

Consequently, we obviously have for all n ≥ 1,

(2.1) θ̂n =

∑n
k=1

XkXk−1∑n
k=1

X2
k−1

.

Our first result concerns the almost sure convergence of θ̂n to the limiting value

θ∗ given by (1.2). One can observe that the convergence in probability of θ̂n to θ∗

was already proven in [14], [15]. We improve this previous result by establishing the

almost sure convergence of θ̂n to θ∗.

Theorem 2.1. We have the almost sure convergence

(2.2) lim
n→∞

θ̂n = θ∗ a.s.

Our second result deals with the asymptotic normality of θ̂n where we denote

(2.3) σ2
θ =

(1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3
.

Theorem 2.2. Assume that (Vn) has a finite moment of order 4. Then, we have

the asymptotic normality

(2.4)
√
n
(
θ̂n − θ∗

) L−→ N (0, σ2
θ).

Remark 2.1. In the well-known case where the residuals are not correlated, which

means that ρ = 0, we clearly have θ∗ = θ, σ2
θ = 1 − θ2 and we find again the

asymptotic normality
√
n
(
θ̂n − θ

) L−→ N (0, 1− θ2).

After establishing the almost sure convergence of the estimator θ̂n and its asymp-
totic normality, we focus our attention on the almost sure rates of convergence.

Theorem 2.3. Assume that (Vn) has a finite moment of order 4. Then, we have

the quadratic strong law

(2.5) lim
n→∞

1

log n

n∑

k=1

(
θ̂k − θ∗

)2
= σ2

θ a.s.
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where σ2
θ is given by (2.3). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
θ̂n − θ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
θ̂n − θ∗

)

= σθ a.s.(2.6)

Consequently,

(2.7) lim sup
n→∞

(
n

2 log log n

)(
θ̂n − θ∗

)2
= σ2

θ a.s.

Proof. The proofs are given in Appendix A. �

Remark 2.2. It clearly follows from (2.7) that

(2.8)
(
θ̂n − θ∗

)2
= O

(
log log n

n

)
a.s.

This almost sure rate of convergence will be useful in all the sequel.

3. ON THE SERIAL CORRELATION PARAMETER

This section is devoted to the estimation of the serial correlation parameter ρ.
First of all, it is necessary to evaluate, at step n, the least squares residuals given,
for all 1 ≤ k ≤ n, by

(3.1) ε̂k = Xk − θ̂nXk−1.

The initial value ε̂0 may be arbitrarily chosen and we take ε̂0 = X0. Then, a natural
way to estimate ρ is to make use of the least squares estimator

(3.2) ρ̂n =

∑n
k=1

ε̂kε̂k−1∑n
k=1

ε̂ 2
k−1

.

The asymptotic behavior of θ̂n and ρ̂n are quite similar. However, one can realize
that the results of this section are much more tricky to establish than those of the
previous one. We first state the almost sure convergence of ρ̂n to ρ∗.

Theorem 3.1. We have the almost sure convergence

(3.3) lim
n→∞

ρ̂n = ρ∗ a.s.

Our next result deals with the joint asymptotic normality of θ̂n and ρ̂n. Denote

(3.4) σ2
ρ =

(1− θρ)

(1 + θρ)3
(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2)

)
.

In addition, let Γ be the semi-definite positive covariance matrix given by

(3.5) Γ =

(
σ2
θ θρσ2

θ

θρσ2
θ σ2

ρ

)
.
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Theorem 3.2. Assume that (Vn) has a finite moment of order 4. Then, we have

the joint asymptotic normality

(3.6)
√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N

(
0,Γ
)
.

In particular,

(3.7)
√
n
(
ρ̂n − ρ∗

) L−→ N (0, σ2
ρ).

Remark 3.1. The covariance matrix Γ is invertible if and only if θ 6= −ρ since one

can see by a straightforward calculation that

det(Γ) =
σ2
θ(θ + ρ)2(1− θρ)

(1 + ρ2)
.

Moreover, in the particular case where θ = −ρ,

√
n θ̂n

L−→ N
(
0,

1 + θ2

1− θ2

)
and

√
n ρ̂n

L−→ N
(
0,

θ4(1 + θ2)

1− θ2

)
.

Finally, if the residuals are not correlated which means that ρ = 0,

√
n ρ̂n

L−→ N
(
0, θ2

)
.

The almost sure rates of convergence for ρ̂n are as follows.

Theorem 3.3. Assume that (Vn) has a finite moment of order 4. Then, we have

the quadratic strong law

(3.8) lim
n→∞

1

log n

n∑

k=1

(
ρ̂k − ρ∗

)2
= σ2

ρ a.s.

where σ2
ρ is given by (3.4). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)

= σρ a.s.(3.9)

Consequently,

(3.10) lim sup
n→∞

(
n

2 log log n

)(
ρ̂n − ρ∗

)2
= σ2

ρ a.s.

Proof. The proofs are given in Appendix B. �

Remark 3.2. We obviously deduce from (3.10) that

(3.11)
(
ρ̂n − ρ∗

)2
= O

(
log log n

n

)
a.s.
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The estimators θ̂n and ρ̂n are self-normalized. Consequently, the asymptotic vari-
ances σ2

θ and σ2
ρ do not depend on the variance σ2 associated to the driven noise

(Vn). We now focus our attention on the estimation of σ2. The estimator ρ̂n allows
us to evaluate, at step n, the least squares residuals given, for all 1 ≤ k ≤ n, by

V̂k = ε̂k − ρ̂nε̂k−1.

Then, we propose to make use of

σ̂2
n =

1

n

n∑

k=1

V̂ 2
k .

We have the almost sure convergence

(3.12) lim
n→∞

σ̂2
n =

σ2
(
(1 + θρ)2 − (θρ)2(θ + ρ)2

)

(1− θρ)(1 + θρ)3
a.s.

The proof is left to the reader as it follows essentially the same lines as that of (3.3).

4. ON THE DURBIN-WATSON STATISTIC

We shall now investigate the asymptotic behavior of the Durbin-Watson statistic
[6], [7], [8] given, for all n ≥ 1, by

(4.1) D̂n =

∑n
k=1

(ε̂k − ε̂k−1)
2

∑n
k=0

ε̂ 2
k

.

One can observe that D̂n and ρ̂n are asymptotically linked together by an affine
transformation. Consequently, the results of the previous section allow us to estab-

lish the asymptotic behavior of D̂n. We start with the almost sure convergence of

D̂n to D∗.

Theorem 4.1. We have the almost sure convergence

(4.2) lim
n→∞

D̂n = D∗ a.s.

Our next result deals with the asymptotic normality of D̂n. It will be the keystone
of a new bilateral statistical test deciding in particular, for a given significance level,
whether residuals are autocorrelated or not. Denote σ2

D = 4σ2
ρ where the variance

σ2
ρ is given by (3.4).

Theorem 4.2. Assume that (Vn) has a finite moment of order 4. Then, we have

the asymptotic normality

(4.3)
√
n
(
D̂n −D∗

) L−→ N (0, σ2
D).

Remark 4.1. We immediately deduce from (4.3) that

(4.4)
n

σ2
D

(
D̂n −D∗

)2 L−→ χ2

where χ2 has a Chi-square distribution with one degree of freedom.
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Before providing our statistical test, we focus our attention on the almost sure

rates of convergence for D̂n which are based on the asymptotic linear relation be-

tween D̂n and ρ̂n.

Theorem 4.3. Assume that (Vn) has a finite moment of order 4. Then, we have

the quadratic strong law

(4.5) lim
n→∞

1

log n

n∑

k=1

(
D̂k −D∗

)2
= σ2

D a.s.

In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
D̂n −D∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
D̂n −D∗

)

= σD a.s.(4.6)

Consequently,

(4.7) lim sup
n→∞

(
n

2 log log n

)(
D̂n −D∗

)2
= σ2

D a.s.

We are now in the position to propose our new bilateral statistical test built on

the Durbin-Watson statistic D̂n. First of all, we shall not investigate the trivial
case θ = 0 since our statistical test procedure is of interest only for autoregressive
processes. In addition, we shall note the existence of a critical case as introduced
in Remark 3.1. Indeed, if θ = −ρ, the covariance matrix Γ given by (3.5) is not
invertible and the distribution of the statistic associated to the test we plan to
establish will be degenerate. For this reason, we suggest a preliminary test for the
hypothesis “θ = −ρ”, allowing us to switch from one test to another if necessary.
More precisely, we first wish to test

H0 : “θ = −ρ” against H1 : “θ 6= −ρ”.

Under the null hypothesis H0, it is easy to see that D∗ = 2. According to Remark
3.1, we have

(4.8)
n(1− θ2)

4θ4(1 + θ2)

(
D̂n − 2

)2 L−→ χ2

where χ2 has a Chi-square distribution with one degree of freedom. Moreover, the
model can be rewritten under H0, for all n ≥ 2, as

(4.9) Xn = θ2Xn−2 + Vn.

Then, we propose to make use of the standard least squares estimator ϑ̂ 2
n of θ2

(4.10) ϑ̂ 2
n =

∑n
k=2

Xk−2Xk∑n
k=2

X2
k−2

.

UnderH0, we have the almost sure convergence of ϑ̂ 2
n to θ2. In addition, we obviously

have D∗ 6= 2 under H1. These results under the null and the alternative hypothesis
lead to Theorem 4.4, whose proof immediately follows from (4.8).
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Theorem 4.4. Assume that (Vn) has a finite moment of order 4, θ 6= 0 and ρ 6= 0.
Then, under the null hypothesis H0 : “θ = −ρ”,

(4.11)
n(1− ϑ̂ 2

n)

4(ϑ̂ 2
n)

2(1 + ϑ̂ 2
n)

(
D̂n − 2

)2 L−→ χ2

where χ2 has a Chi-square distribution with one degree of freedom. In addition,

under the alternative hypothesis H1 : “θ 6= −ρ”,

(4.12) lim
n→∞

n(1− ϑ̂ 2
n)

4(ϑ̂ 2
n)

2(1 + ϑ̂ 2
n)

(
D̂n − 2

)2
= +∞ a.s.

For a significance level α where 0 < α < 1, the acceptance and rejection regions
are given by A = [0, zα] and R =]zα,+∞[ where zα stands for the (1− α)-quantile
of the Chi-square distribution with one degree of freedom. The null hypothesis H0

will be accepted if the empirical value

n(1− ϑ̂ 2
n)

4(ϑ̂ 2
n)

2(1 + ϑ̂ 2
n)

(
D̂n − 2

)2
≤ zα,

and rejected otherwise. Assume now that we accept H0, which means that we admit
de facto the hypothesis “θ = −ρ”. For a given value ρ0 such that |ρ0| < 1, we wish
to test whether or not the serial correlation parameter is equal to ρ0, setting

H0 : “ρ = ρ0” against H1 : “ρ 6= ρ0”.

One shall proceed once again to the test described by Theorem 4.4, taking ρ20 in

lieu of ϑ̂2
n, insofar as one can easily agree that our test statistic satisfies the same

properties, underH0 as underH1, by virtue of Remark 3.1. This alternative solution
is necessary to avoid the degenerate situation implied by the critical case θ = −ρ.
Let us now focus on the more widespread case where the preliminary test leads to

a rejection of H0, admitting “θ 6= −ρ”. For that purpose, denote θ̃n = θ̂n + ρ̂n − ρ0
and D̃n = 2

(
1− ρ̃n

)
where

(4.13) ρ̃n =
ρ0θ̃n(θ̃n + ρ0)

1 + ρ0θ̃n
.

One can observe that our statistical test procedure works whatever the value of the
autoregressive parameter θ inside the interval ]− 1, 1[ with θ 6= −ρ. Moreover, it
follows from (2.2) and (3.3) that under the null hypothesis H0,

lim
n→∞

θ̃n = θ + ρ0 − ρ0 = θ a.s.

To construct our statistical test, we need to introduce more notations. Denote

ân = −ρ0
(
θ̂n + θ̃n) = −ρ0

(
2θ̂n + ρ̂n − ρ0),

b̂n = 1− ρ0θ̂n,
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and let ŵn be the vector of R2 given by ŵ ′
n = (ân, b̂n). In addition, let

(4.14) Γ̂n =

(
α̂n ρ0θ̃nα̂n

ρ0θ̃nα̂n β̂n

)
.

where α̂n and β̂n are defined as

α̂n =
(1− θ̃ 2

n)(1− ρ0θ̃n)(1− ρ20)

(1 + ρ0θ̃n)3
,

β̂n =
(1− ρ0θ̃n)

(1 + ρ0θ̃n)3

(
(θ̃n + ρ0)

2(1 + ρ0θ̃n)
2 + (ρ0θ̃n)

2(1− θ̃ 2
n)(1− ρ20)

)
.

Furthermore, denote

(4.15) τ̂ 2
n =

4

(1 + ρ0θ̃n)2
ŵ ′

nΓ̂nŵn.

Theorem 4.5. Assume that (Vn) has a finite moment of order 4, θ 6= ρ0 and θ 6= −ρ.
Then, under the null hypothesis H0 : “ρ = ρ0”,

(4.16)
n

τ̂ 2
n

(
D̂n − D̃n

)2 L−→ χ2

where χ2 has a Chi-square distribution with one degree of freedom. In addition,

under the alternative hypothesis H1 : “ρ 6= ρ0”,

(4.17) lim
n→∞

n

τ̂ 2
n

(
D̂n − D̃n

)2
= +∞ a.s.

One can observe by a symmetry argument on the role played by θ and ρ, that the
assumption θ = ρ0 is not restrictive since the latter can be seen as another way of
expressing Theorem 4.5. From a practical point of view, for a significance level α
where 0 < α < 1, the acceptance and rejection regions are given by A = [0, zα] and
R =]zα,+∞[ where zα stands for the (1−α)-quantile of the Chi-square distribution
with one degree of freedom. The null hypothesis H0 will be accepted if the empirical
value

n

τ̂ 2
n

(
D̂n − D̃n

)2
≤ zα,

and rejected otherwise. Moreover, if one wishes to test

H0 : “ρ = 0” against H1 : “ρ 6= 0”,

our statistical test procedure is very simple. As a matter of fact, we are in the

particular case ρ0 = 0 which means that D̃n = 2, ân = 0 and b̂n = 1. We can also

replace θ̃n by θ̂n so τ̂ 2
n reduces to τ̂ 2

n = 4θ̂ 2
n .

Theorem 4.6. Assume that (Vn) has a finite moment of order 4, θ 6= 0 and θ 6= −ρ.
Then, under the null hypothesis H0 : “ρ = 0”,

(4.18)
n

4θ̂ 2
n

(
D̂n − 2

)2 L−→ χ2
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where χ2 has a Chi-square distribution with one degree of freedom. In addition,

under the alternative hypothesis H1 : “ρ 6= 0”,

(4.19) lim
n→∞

n

4θ̂ 2
n

(
D̂n − 2

)2
= +∞ a.s.

Proof. The proofs are given in Appendix C. �

5. CONCLUSION

Via an extensive use of the theory of martingales, we have provided a sharp

analysis on the asymptotic behavior of the least squares estimators θ̂n and ρ̂n which

has allowed us to deduce the asymptotic behavior of the Durbin-Watson statistic D̂n

for the first-order autoregressive process. More precisely, we have established the

almost sure convergence and the asymptotic normality for all three estimators θ̂n,

ρ̂n and D̂n. In addition, we have proposed a new bilateral statistical procedure for

testing serial correlation, built on D̂n. All these results give a new light on the well-
known test of Durbin-Watson in a context of lagged dependent random variables.
From a practical standpoint and for a matter of completeness, we may wonder about
the estimation of the true values of the parameters θ and ρ. As soon as θ 6= −ρ,
we can estimate θ and ρ by solving the nonlinear system of two equations given, for

ân = θ̂n + ρ̂n and b̂n = ρ̂n/θ̂n, by





lim
n→∞

ân = θ + ρ

lim
n→∞

b̂n = θρ
a.s.

One can easily find two couples of solutions, symmetrically linked together. For
example, assuming θ < ρ, we propose to make use of

θ̃n =
ân −

√
â 2
n − 4b̂n

2
and ρ̃n =

ân +

√
â 2
n − 4b̂n

2
,

merely inverting the values of θ̃n and ρ̃n whether, for some statistical argument, we
would rather choose θ > ρ. By the same token, it is also possible to estimate the
true variances σ2, σ2

θ , σ
2
ρ and σ2

D. For example, via convergence (3.12), we propose

to estimate σ2 by

σ̃ 2
n =

(
(1− b̂n)(1 + b̂n)

3

(1 + b̂n)2 − (ânb̂n)2

)
σ̂2
n.

This work lifts the veil on a set of questions for long left unanswered about the
pioneer works of Durbin and Watson [6], [7], [8], [14], [15]. As an improvement,
it would be useful to extend our analysis to p-order autoregressive processes. In
addition, it would be very interesting to investigate the asymptotic behavior of the

Durbin-Watson statistic D̂n in the explosive case where |θ| > 1 or |ρ| > 1.
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Appendix A

PROOFS OF THE AUTOREGRESSIVE PARAMETER RESULTS

A.1. Proof of Theorem 2.1.

We start with some useful technical lemmas we shall make repeatedly use of. The
proof of the first one may be found in [3] page 24.

Lemma A.1. Assume that (Vn) is a sequence of independent and identically dis-

tributed random variables such that, for some a ≥ 1, E[|V1|a] is finite. Then,

(A.1) lim
n→∞

1

n

n∑

k=1

|Vk|a = E[|V1|a] a.s.

and

(A.2) sup
1≤k≤n

|Vk| = o(n1/a) a.s.

Lemma A.2. Assume that (Vn) is a sequence of independent and identically dis-

tributed random variables such that, for some a ≥ 1, E[|V1|a] is finite. If (Xn)
satisfies (1.1) with |θ| < 1, |ρ| < 1, then

(A.3)
n∑

k=1

|Xk|a = O(n) a.s.

and

(A.4) sup
1≤k≤n

|Xk| = o(n1/a) a.s.

Remark A.1. In the particular case a = 2, we obtain that
n∑

k=1

X2
k = O(n) and sup

1≤k≤n
X2

k = o(n) a.s.

Proof. It follows from (1.1) that for all n ≥ 1,

(A.5) |Xn| ≤ |θ|n|X0|+
n∑

k=1

|θ|n−k|εk|.

Consequently, as |θ| < 1, we obtain that

(A.6) sup
1≤k≤n

|Xk| ≤
1

1− |θ|
(
|X0|+ sup

1≤k≤n
|εk|
)
.

By the same token, as |ρ| < 1, we also deduce from (1.1) that

(A.7) sup
1≤k≤n

|εk| ≤
1

1− |ρ|
(
|ε0|+ sup

1≤k≤n
|Vk|
)
.

Hence, (A.2) together with (A.6) and (A.7) obviously imply

sup
1≤k≤n

|Xk| = o(n1/a) a.s.
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Furthermore, let b be the conjugate exponent of a,

1

a
+

1

b
= 1.

It follows from (A.5) and Holder’s inequality that for all n ≥ 1,

|Xn| ≤
(
|θ|n|X0|a +

n∑

k=1

|θ|n−k|εk|a
)1/a( n∑

k=0

|θ|n−k

)1/b

which implies that

|Xn|a ≤
(

n∑

k=0

|θ|n−k

)a/b(
|θ|n|X0|a +

n∑

k=0

|θ|n−k|εk|a
)
,

≤
( ∞∑

k=0

|θ|k
)a/b(

|θ|n|X0|a +
n∑

k=1

|θ|n−k|εk|a
)
,

≤
(
1− |θ|

)−a/b
(
|θ|n|X0|a +

n∑

k=1

|θ|n−k|εk|a
)
.

Consequently,

n∑

k=1

|Xk|a ≤
(
1− |θ|

)−a/b
(

n∑

k=1

|θ|k|X0|a +
n∑

k=1

k∑

ℓ=1

|θ|k−ℓ|εℓ|a
)
,

≤
(
1− |θ|

)−a/b
(
|X0|a

n∑

k=1

|θ|k +
n∑

ℓ=1

|εℓ|a
n∑

k=ℓ

|θ|k−ℓ

)
,

≤
(
1− |θ|

)−a
(
|X0|a +

n∑

k=1

|εk|a
)
.(A.8)

Via the same lines, we also obtain that

(A.9)
n∑

k=1

|εk|a ≤
(
1− |ρ|

)−a
(
|ε0|a +

n∑

k=1

|Vk|a
)
.

Finally, (A.1) together with (A.8) and (A.9) lead to (A.3), which completes the
proof of Lemma A.2. �

Proof of Theorem 2.1. We easily deduce from (1.1) that the process (Xn) satisfies
the fundamental autoregressive equation given, for all n ≥ 2, by

(A.10) Xn = (θ + ρ)Xn−1 − θρXn−2 + Vn.
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For all n ≥ 0, let

Sn =
n∑

k=0

X2
k ,(A.11)

Pn =
n∑

k=1

XkXk−1,(A.12)

Mn =
n∑

k=1

Xk−1Vk(A.13)

where P0 = 0 and M0 = 0. It is not hard to see from (A.10) that for all n ≥ 2,

Pn = (θ + ρ)Sn−1 − θρPn−1 +Mn + ρX0(ε0 −X0)

which implies that

(A.14) (1 + θρ)Pn = (θ + ρ)Sn−1 +Mn + θρXnXn−1 + ρX0(ε0 −X0).

Via (2.1), (A.14) leads to the main decomposition

(A.15) θ̂n =
θ + ρ

1 + θρ
+

1

1 + θρ

Mn

Sn−1

+
1

1 + θρ

Rn

Sn−1

where the remainder term

Rn = θρXnXn−1 + ρX0(ε0 −X0).

For all n ≥ 1, denote by Fn the σ-algebra of the events occurring up to time n, Fn =
σ(X0, ε0, V1, . . . , Vn). We infer from (A.13) that (Mn) is a locally square-integrable
real martingale [3], [9] with predictable quadratic variation given by 〈M〉0 = 0 and
for all n ≥ 1,

〈M〉n =
n∑

k=1

E[(Mk −Mk−1)
2|Fk−1],

=
n∑

k=1

E[X2
k−1V

2
k |Fk−1] = σ2Sn−1.

Furthermore, it follows from (A.10) and Corollary 1.3.25 of [3] that n = O(Sn) a.s.
Then, we deduce from the strong law of large numbers for martingales given e.g. by
Theorem 1.3.15 of [3] that

lim
n→∞

Mn

〈M〉n
= 0 a.s.

which of course ensures that

(A.16) lim
n→∞

Mn

Sn−1

= 0 a.s.

It remains to show that the remainder Rn = o(Sn−1) a.s. We have from (A.4) with
a = 2 that |Xn| = o(

√
n) a.s. which implies that Rn = o(n) a.s. However, we
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already saw that n = O(Sn) a.s. Hence,

(A.17) lim
n→∞

Rn

Sn−1

= 0 a.s.

Finally, it follows from (A.15) together with (A.16) and (A.17) that

lim
n→∞

θ̂n =
θ + ρ

1 + θρ
a.s.

which achieves the proof of Theorem 2.1.

A.2. Proof of Theorem 2.2.

In order to establish the asymptotic normality of the least squares estimator θ̂n,
it is necessary to be more precise in Lemma A.2 with a = 2.

Lemma A.3. Assume that the initial values X0 and ε0 are square-integrable and

that (Vn) is a sequence of square-integrable, independent and identically distributed

random variables with zero mean and variance σ2 > 0. Then,

(A.18) lim
n→∞

1

n

n∑

k=1

X2
k = ℓ a.s.

where the limiting value

(A.19) ℓ =
σ2(1 + θρ)

(1− θ2)(1− θρ)(1− ρ2)
.

In addition, if ℓ1 = θ∗ℓ, then

(A.20) lim
n→∞

1

n

n∑

k=1

XkXk−1 = ℓ1 a.s.

Proof. We deduce from the fundamental autoregressive equation (A.10) together
with straightforward calculations that for all n ≥ 2,

Sn = (θ + ρ)2Sn−1 + (θρ)2Sn−2 + Ln − 2θρ(θ + ρ)Pn−1

+2(θ + ρ)Mn − 2θρNn + ξ1

where Sn, Pn and Mn are respectively given by (A.11), (A.12) and (A.13), the last
term ξ1 = (1− 2θρ− ρ2)X2

0 + ρ2ε20 + 2θρX0ε0 + 2ρ(ε0 −X0)V1 and, for all n ≥ 2,

Ln =
n∑

k=1

V 2
k ,(A.21)

Nn =
n∑

k=2

Xk−2Vk.(A.22)

Consequently,

(A.23) (1− (θ + ρ)2 − (θρ)2)Sn = Ln − 2θρ(θ + ρ)Pn + 2(θ + ρ)Mn − 2θρNn − Tn
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where the remainder term

Tn = ((θ + ρ)2 + (θρ)2)X2
n + (θρ)2X2

n−1 − 2θρ(θ + ρ)XnXn−1 − ξ1.

It follows from (A.1) with a = 2 that

(A.24) lim
n→∞

Ln

n
= σ2 a.s.

In addition, we already saw from equation (A.14) that Pn = θ∗Sn−1 + o(Sn−1) a.s.
which clearly implies

(A.25) Pn = θ∗Sn + o(Sn) a.s.

Moreover, (Nn) given by (A.22) is a locally square-integrable real martingale sharing
the same almost sure properties than (Mn). More precisely, its predictable quadratic
variation is given by 〈N〉n = σ2Sn−2 which means that

(A.26) lim
n→∞

Mn

Sn

= 0 and lim
n→∞

Nn

Sn

= 0 a.s.

Furthermore, we have from (A.4) with a = 2 that X2
n = o(n) a.s. It ensures by use

of n = O(Sn) a.s. that

(A.27) lim
n→∞

Tn

Sn

= 0 a.s.

Therefore, it follows from the conjunction of (A.23), (A.25), (A.26), and (A.27) that

(A.28) (1− (θ + ρ)2 − (θρ)2 − 2θρ(θ + ρ)θ∗)Sn = Ln + o(Sn) a.s.

Finally, dividing both sides of (A.28) by n and letting n goes to infinity, we deduce
from (A.24) that

lim
n→∞

Sn

n
=

σ2(1 + θρ)

(1− θρ)(1− θ2)(1− ρ2)
a.s.

lim
n→∞

Pn

n
=

σ2(θ + ρ)

(1− θρ)(1− θ2)(1− ρ2)
a.s.

These two limits will often be used in all the sequel. �

Proof of Theorem 2.2. We are now in the position to prove the asymptotic

normality of θ̂n. We have from the main decomposition (A.15) that for all n ≥ 2,

(A.29)
√
n
(
θ̂n − θ∗

)
=

√
n

(
σ2

1 + θρ

)
Mn

〈M〉n
+
√
n

(
1

1 + θρ

)
Rn

Sn−1

.

We shall make use of the central limit theorem for martingales given e.g. by Corollary
2.1.10 of [3], to establish the asymptotic normality of the first term in the right-
hand side of (A.29). On the other hand, we will also show that the second term√
nRn/Sn−1 goes to zero almost surely. First of all, it follows from (A.18) that

(A.30) lim
n→∞

〈M〉n
n

= σ2ℓ a.s.
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From now on, in order to apply the central limit theorem for martingales, it is
necessary to prove that the Lindeberg condition is satisfied. For all n ≥ 1, denote
∆Mn = Xn−1Vn. One only has to show that for all ε > 0,

(A.31)
1

n

n∑

k=1

E
[
|∆Mk|2I|∆Mk|≥ε

√
n|Fk−1

] P−→ 0.

However, we have assumed that (Vn) has a finite moment of order 4, τ 4 = E[V 4
1 ].

Hence, for all n ≥ 1, E[|∆Mn|4|Fn−1] = E[X4
n−1V

4
n |Fn−1] = τ 4X4

n−1. In addition, we
deduce from (A.3) with a = 4 that

(A.32)
n∑

k=1

X4
k = O(n) a.s.

Therefore, for all ε > 0,

1

n

n∑

k=1

E
[
|∆Mk|2I|∆Mk|≥ε

√
n|Fk−1

]
≤ 1

ε2n2

n∑

k=1

E
[
|∆Mk|4|Fk−1

]
,

≤ τ 4

ε2n2

n∑

k=1

X4
k−1.

Consequently, (A.32) ensures that

1

n

n∑

k=1

E
[
|∆Mk|2I|∆Mk|≥ε

√
n|Fk−1

]
= O(n−1) a.s.

and the Lindeberg condition is clearly satisfied. We can conclude from the central
limit theorem for martingales that

(A.33)
1√
n
Mn

L−→ N
(
0, σ2ℓ

)

in which the asymptotic variance is the deterministic limit given by (A.30). More-
over, as ℓ > 0, we have from (A.33) and Slutsky’s lemma that

(A.34)
√
n

Mn

〈M〉n
L−→ N

(
0, σ−2ℓ−1

)
.

It only remains to prove that
√
nRn = o(Sn−1) a.s. We have from (A.4) with a = 4

that |Xn| = o(n1/4) a.s. which implies that
√
nRn = o(n) a.s. Hence,

(A.35) lim
n→∞

√
n

Rn

Sn−1

= 0 a.s.

Finally, it follows from (A.29) together with (A.34) and (A.35) that

√
n
(
θ̂n − θ∗

) L−→ N
(
0, σ2

θ

)

where the asymptotic variance

σ2
θ =

σ2

ℓ(1 + θρ)2
=

(1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3

which achieves the proof of Theorem 2.2.
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A.3. Proof of Theorem 2.3.

Denote by fn the explosion coefficient associated with the locally square-integrable
real martingale (Mn), given for all n ≥ 0, by

(A.36) fn =
X2

n

Sn

.

It clearly follows from (A.18) that fn tends to zero almost surely. Consequently, by
virtue of the quadratic strong law for martingales given by Theorem 3 of [1] or [2],

(A.37) lim
n→∞

1

log n

n∑

k=1

fk

(
M2

k

Sk−1

)
= σ2 a.s.

In addition, by summation of equation (A.15), we have for all n ≥ 1,

n∑

k=1

fkSk−1

(
θ̂k − θ∗

)2
=

1

(1 + θρ)2

n∑

k=1

fk

(
M2

k

Sk−1

)
+

1

(1 + θρ)2

n∑

k=1

fk

(
R2

k

Sk−1

)

+
2

(1 + θρ)2

n∑

k=1

fk

(
MkRk

Sk−1

)
.

We already saw from (A.35) that R2
n = o(Sn−1) a.s. Moreover, by the elementary

inequality x ≤ − log(1 − x) where 0 ≤ x ≤ 1, we obtain that fn ≤ − log(1 − fn)
which means that fn ≤ log Sn − log Sn−1. Thus,

n∑

k=1

fk

(
R2

k

Sk−1

)
= O(1) + o

(
n∑

k=1

fk

)
= O(1) + o (log Sn) = o (log n) a.s.

Consequently, the second term of the summation is negligible compared to the first
one. Furthermore, the third one is a cross-term and this ensures that it also plays a
negligible role compared to the first term. Thereby,

(A.38) lim
n→∞

1

log n

n∑

k=1

fkSk−1

(
θ̂k − θ∗

)2
=

σ2

(1 + θρ)2
a.s.

Finally, as in the proof of Corollary 8 in [1], we deduce from (A.18) and (A.38) that

lim
n→∞

1

log n

n∑

k=1

(
θ̂k − θ∗

)2
=

σ2

ℓ(1 + θρ)2
a.s.

=
(1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3
a.s.

which completes the proof of the quadratic strong law (2.5). We shall now proceed
to the proof of the law of iterated logarithm given by (2.6). Kolmogorov’s law of
iterated logarithm was extended to the martingale framework by Stout [18], [19],
and a simplified version of this result may be found in Corollary 6.4.25 of [3]. In
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order to apply the law of iterated logarithm for martingales, it is only necessary to
verify that

(A.39)
+∞∑

k=1

X4
k

k2
< +∞ a.s.

For all n ≥ 0, denote

Tn =
n∑

k=1

X4
k

with T0 = 0. We clearly have
+∞∑

k=1

X4
k

k2
=

+∞∑

k=1

Tk − Tk−1

k2
=

+∞∑

k=1

(
2k + 1

k2(k + 1)2

)
Tk.

However, we already saw from (A.32) that Tn = O(n) a.s. Consequently,

+∞∑

k=1

X4
k

k2
= O

(
+∞∑

k=1

Tk

k3

)
= O

(
+∞∑

k=1

1

k2

)
= O(1) a.s.

which immediately implies (A.39). Then, we obtain from the law of iterated loga-
rithm for martingales that

lim sup
n→∞

( 〈M〉n
2 log log〈M〉n

)1/2
Mn

〈M〉n
= − lim inf

n→∞

( 〈M〉n
2 log log〈M〉n

)1/2
Mn

〈M〉n
= 1 a.s.

Whence, as 〈M〉n = σ2Sn−1, we deduce from (A.18) that

lim sup
n→∞

(
n

2 log log n

)1/2
Mn

Sn−1

= − lim inf
n→∞

(
n

2 log log n

)1/2
Mn

Sn−1

=
σ√
ℓ

a.s.(A.40)

Furthermore, we obviously have from (A.35) that

(A.41) lim
n→∞

(
n

2 log log n

)1/2
Rn

Sn−1

= 0 a.s.

Finally, (2.6) follows from the conjunction of (A.15), (A.40) and (A.41), completing
the proof of Theorem 2.3.
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Appendix B

PROOFS OF THE SERIAL CORRELATION PARAMETER RESULTS

B.1. Proof of Theorem 3.1.

In order to establish the almost sure convergence of the least squares estimator
ρ̂n, it is necessary to start with a useful technical lemma.

Lemma B.1. Assume that the initial values X0 and ε0 are square-integrable and

that (Vn) is a sequence of square-integrable, independent and identically distributed

random variables with zero mean and variance σ2 > 0. Then,

(B.1) lim
n→∞

1

n

n∑

k=2

XkXk−2 = ℓ2 a.s.

where the limiting value

(B.2) ℓ2 =
σ2
(
(θ + ρ)2 − θρ(1 + θρ)

)

(1− θ2)(1− θρ)(1− ρ2)
.

Proof. Proceeding as in the proof of Lemma A.3, we deduce from (A.10) that for all
n ≥ 2,

(B.3) Qn =
n∑

k=2

XkXk−2 = (θ + ρ)Pn−1 − θρSn−2 +Nn

where Sn, Pn and Nn are respectively given by (A.11), (A.12) and (A.22). We
already saw in Appendix A that Nn = o(n) a.s. Hence, it follows from (A.18) and
(A.20) that

lim
n→∞

Qn

n
= (θ + ρ)ℓ1 − θρℓ = ℓ2 a.s.

which achieves the proof of Lemma B.1. �

Proof of Theorem 3.1. We are now in the position to prove the almost sure
convergence of ρ̂n to ρ∗ given by (1.3). For all n ≥ 1, denote

In =
n∑

k=1

ε̂kε̂k−1 and Jn =
n∑

k=0

ε̂ 2
k .

It is not hard to see that

In = Pn − θ̂n(Sn−1 +Qn) + θ̂ 2
nPn−1,(B.4)

Jn = Sn − 2θ̂nPn + θ̂ 2
nSn−1.(B.5)

Consequently, it follows from convergence (2.2) together with (A.18), (A.20) and
(B.1) that

lim
n→∞

In
n

= ℓ1 − θ∗(ℓ+ ℓ2) + (θ∗)2ℓ1 a.s.

= θρθ∗ℓ(1− (θ∗)2) a.s.

= ρ∗ℓ(1− (θ∗)2) a.s.(B.6)
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since ρ∗ = θρθ∗. By the same token,

lim
n→∞

Jn
n

= ℓ− 2θ∗ℓ1 + (θ∗)2ℓ a.s.

= ℓ(1− (θ∗)2) a.s.(B.7)

One can observe that ℓ > 0 and |θ∗| < 1, which implies that ℓ(1 − (θ∗)2) > 0.
Therefore, we deduce from (3.2), (B.6) and (B.7) that

lim
n→∞

ρ̂n = lim
n→∞

In
Jn−1

=
ρ∗ℓ(1− (θ∗)2)

ℓ(1− (θ∗)2)
= ρ∗ a.s.

which completes the proof of Theorem 3.1.

B.2. Proof of Theorem 3.2.

First of all, we already saw from (A.15) that

(B.8) Sn−1

(
θ̂n − θ∗

)
=

Mn

1 + θρ
+

Rn(θ)

1 + θρ

where Rn(θ) = θρXnXn−1+ρX0(ε0−X0). Our goal is to find a similar decomposition
for ρ̂n − ρ∗. On the one hand, we deduce from (A.14) that

(B.9) Pn = θ∗Sn +
Mn

1 + θρ
+

ξPn
1 + θρ

where ξPn = Rn(θ)− (θ+ ρ)X2
n. On the other hand, we obtain from (B.3) and (B.9)

that

(B.10) Qn =
(
(θ + ρ)θ∗ − θρ)

)
Sn + θ∗Mn +Nn + ξQn

with ξQn = θ∗ξPn − (θ + ρ)XnXn−1 + θρ(X2
n + X2

n−1). Then, it follows from (B.4),
(B.9) and (B.10) together with tedious but straightforward calculations that

(B.11) In = θ∗
(
θρ− θ∗ρ∗

)
Sn +

(
1− θ∗ρ∗

1 + θρ

)
Mn − θ∗Nn −

(
θ̂n − θ∗

)
Fn + ξIn

where Fn = Sn +Qn −
(
θ̂n + θ∗

)
Pn,

ξIn = θ̂nX
2
n − θ̂ 2

nXnXn−1 +

(
1 + (θ∗)2

1 + θρ

)
ξPn − θ∗ξQn .

Via the same lines, we also find from (B.5), (B.9) and (B.10) that

(B.12) Jn−1 =
(
1− (θ∗)2

)
Sn −

(
2θ∗

1 + θρ

)
Mn −

(
θ̂n − θ∗

)
Gn + ξJn

where Gn = 2Pn −
(
θ̂n + θ∗

)
Sn,

ξJn = −X2
n + 2θ̂nXnXn−1 − θ̂ 2

n(X
2
n +X2

n−1)−
(

2θ∗

1 + θρ

)
ξPn .
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Replacing In and Jn−1 by the expansions (B.11) and (B.12), we obtain from the
identity Jn−1(ρ̂n − ρ∗) = In − ρ∗Jn−1 that

Jn−1

(
ρ̂n − ρ∗

)
=

(
1 + θ∗ρ∗

1 + θρ

)
Mn − θ∗Nn −

(
θ̂n − θ∗

)
Hn + ξIn − ρ∗ξJn

where Hn = Fn − ρ∗Gn. One can observe that the leading term depending on Sn

vanishes as it should, since
(
θ∗
(
θρ− θ∗ρ∗)

)
− ρ∗

(
1− (θ∗)2

))
= 0.

Consequently, we deduce from (B.8) that

(B.13) Jn−1

(
ρ̂n − ρ∗

)
=

TnMn

1 + θρ
− θ∗Nn +

Rn(ρ)

1 + θρ

where

Tn = 1 + θ∗ρ∗ − Hn

Sn−1

,

Rn(ρ) = (1 + θρ)(ξIn − ρ∗ξJn)−
Rn(θ)Hn

Sn−1

.

In contrast to (B.8), it was much more tricky to establish relation (B.13). We are

now in the position to prove the joint asymptotic normality of θ̂n and ρ̂n. Using the
same approach as in [21], it follows from (B.8) and (B.13) that

(B.14)
√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
=

1√
n
AnZn +Bn

where

Zn =

(
Mn

Nn

)
,

An =
n

1 + θρ




1

Sn−1

0

Tn

Jn−1

−(θ + ρ)

Jn−1


 and Bn =

√
n

1 + θρ




Rn(θ)

Sn−1

Rn(ρ)

Jn−1


 .

On the one hand, we obtain from (A.18), (A.20), (B.1) and (B.7) that

(B.15) lim
n→∞

An = A a.s.

where A is the limiting matrix given by

(B.16) A =
1

ℓ(1 + θρ)(1− (θ∗)2)

(
1− (θ∗)2 0

θρ+ (θ∗)2 −(θ + ρ)

)
.

On the other hand, as in the proof of (A.35), we clearly have

(B.17) lim
n→∞

Bn =

(
0

0

)
a.s.
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Furthermore, (Zn) is a two-dimensional real martingale [3], [9] with increasing pro-
cess given, for all n ≥ 2, by

〈Z〉n = σ2

(
Sn−1 Pn−1

Pn−1 Sn−2

)
.

We deduce from (A.18) and (A.20) that

(B.18) lim
n→∞

1

n
〈Z〉n = L a.s.

where L is the positive-definite symmetric matrix given by

(B.19) L = σ2ℓ

(
1 θ∗

θ∗ 1

)
.

We also immediately derive from (A.32) that (Zn) satisfies the Lindeberg condition.
Therefore, we can conclude from the central limit theorem for multidimensional
martingales given e.g. by Corollary 2.1.10 of [3] that

(B.20)
1√
n
Zn

L−→ N (0, L) .

Finally, we find from the conjunction of (B.14), (B.15), (B.17), and (B.20) together
with Slutsky’s lemma that

√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N

(
0, ALA′

)
.

One can easily check the identity Γ = ALA′ via (B.16) and (B.19), where Γ is given
by (3.5), which achieves the proof of Theorem 3.2.

B.3. Proof of Theorem 3.3.

The proof of the quadratic strong law for θ̂n relies on the quadratic strong law for
the martingale (Mn) given by (A.37)

lim
n→∞

1

log n

n∑

k=1

fk

(
M2

k

Sk−1

)
= σ2 a.s.

which implies that

(B.21) lim
n→∞

1

log n

n∑

k=1

(
Mk

Sk−1

)2

=
σ2

ℓ
a.s.

In order to establish a similar result for ρ̂n, we shall introduce a suitable martingale
(Ln) which is a linear combination of (Mn) and (Nn). The sequence (Ln) is defined
by L0 = 0, L1 = X0V1 and, for all n ≥ 2,

(B.22) Ln = Mn − aNn = L1 +
n∑

k=2

(Xk−1 − aXk−2)Vk
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where

a =
θ + ρ

θρ+ (θ∗)2
.

We infer from (A.13) and (A.22) together with (B.22) that (Ln) is a locally square-
integrable real martingale with predictable quadratic variation given by 〈L〉0 = 0,
〈L〉1 = σ2X2

0 and for all n ≥ 2,

〈L〉n = σ2
(
Sn−1 − 2aPn−1 + a2Sn−2

)
.

Moreover, we clearly deduce from (A.18) and (A.20) that

(B.23) lim
n→∞

〈L〉n
n

= σ2ℓb a.s.

where b = 1− 2aθ∗ + a2. It also comes from a tedious calculation that

(B.24) b =
a2(1− θ2)(1− ρ2)c

(θ + ρ)2(1 + θρ)4

where c = (θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2). Then, via the same arguments
as in the proof of (B.21), we obtain from (B.23) that

(B.25) lim
n→∞

1

log n

n∑

k=1

(
Lk

Sk−1

)2

=
σ2b

ℓ
a.s.

Furthermore, it follows from (B.13) that

(B.26) Jn−1

(
ρ̂n − ρ∗

)
=

(
θρ+ (θ∗)2

1 + θρ

)
Ln + ζn =

θ∗Ln

a
+ ζn

where

ζn =

(
Tn − θρ− (θ∗)2

1 + θρ

)
Mn +

Rn(ρ)

1 + θρ
.

We obtain from (B.21) and the almost sure convergence of Tn to θρ+ (θ∗)2 that

n∑

k=1

(
ζk

Sk−1

)2

= o(log n) a.s.

Consequently, (B.25) and (B.26) lead to

lim
n→∞

1

log n

n∑

k=1

(
Jk−1

Sk−1

)2 (
ρ̂k − ρ∗

)2
=

σ2b(θ∗)2

a2ℓ
a.s.

In addition, we get from (B.7) that

lim
n→∞

Jn
Sn

= 1− (θ∗)2 a.s.

which implies that

(B.27) lim
n→∞

1

log n

n∑

k=1

(
ρ̂k − ρ∗

)2
=

σ2b(θ∗)2

a2ℓ(1− (θ∗)2)2
a.s.
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However, we clearly have from (A.19) that

σ2(θ∗)2

ℓ(1− (θ∗)2)2
=

(θ + ρ)2(1− θρ)(1 + θρ)

(1− θ2)(1− ρ2)
.

Finally, we can deduce from (B.24) and (B.27) that

lim
n→∞

1

log n

n∑

k=1

(
ρ̂k − ρ∗

)2
=

(1− θρ)c

(1 + θρ)3
= σ2

ρ a.s.

which completes the proof of the quadratic strong law (3.8). The law of iterated
logarithm given by (3.9) is much more easy to handle. In order to make use of the
law of iterated logarithm for the martingale (Ln), it is only necessary to verify that

+∞∑

k=1

(Xk − aXk−1)
4

k2
< +∞ a.s.

which of course follows from (A.39). Consequently, we obtain that

lim sup
n→∞

( 〈L〉n
2 log log〈L〉n

)1/2
Ln

〈L〉n
= − lim inf

n→∞

( 〈L〉n
2 log log〈L〉n

)1/2
Ln

〈L〉n
= 1 a.s.

Therefore, we deduce from (B.23) that

lim sup
n→∞

(
n

2 log log n

)1/2
Ln

〈L〉n
= − lim inf

n→∞

(
n

2 log log n

)1/2
Ln

〈L〉n
=

1

σ
√
ℓb

a.s.

Whence, the convergence

lim
n→∞

Jn−1

〈L〉n
=

1− (θ∗)2

σ2b
a.s.

implies that

lim sup
n→∞

(
n

2 log log n

)1/2
Ln

Jn−1

= − lim inf
n→∞

(
n

2 log log n

)1/2
Ln

Jn−1

=
σ
√
b√

ℓ(1− (θ∗)2)
a.s.(B.28)

One can be convinced that the remainder term ζn at the right-hand side of (B.26)
plays a negligible role compared to Ln. Finally, (B.26) and (B.28) ensure that

lim sup
n→∞

(
n

2 log log n

)1/2(
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2(
ρ̂n − ρ∗

)

=
σ
√
bθ∗

a
√
ℓ(1− (θ∗)2)

= σρ a.s.

which ends the proof of Theorem 3.3.
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Appendix C

PROOFS OF THE DURBIN-WATSON STATISTIC RESULTS

C.1. Proof of Theorem 4.1.

First of all, we establish a very useful linear relation between the Durbin-Watson

statistic D̂n and the least squares estimator ρ̂n, which allows us to deduce the as-

ymptotic behavior of D̂n. For all n ≥ 1, set

In =
n∑

k=1

ε̂kε̂k−1, Jn =
n∑

k=0

ε̂ 2
k , Kn =

n∑

k=1

(
ε̂k − ε̂k−1

)2
,

fn =
ε̂ 2
n

Jn
.

It is not hard to see that

Kn =
n∑

k=1

ε̂ 2
k − 2

n∑

k=1

ε̂kε̂k−1 +
n∑

k=1

ε̂ 2
k−1 = 2

(
Jn−1 − In

)
+ ε̂ 2

n − ε̂ 2
0 .

Consequently, it follows from (4.1) that

(C.1)
(
Jn−1 + ε̂ 2

n

)
D̂n = 2

(
Jn−1 − In

)
+ ε̂ 2

n − ε̂ 2
0 .

Therefore, dividing both sides of (C.1) by Jn−1, we obtain that

(C.2) D̂n = 2(1− fn)
(
1− ρ̂n

)
+ ξn

where

ξn =
ε̂ 2
n − ε̂ 2

0

Jn
.

We already saw from (B.7) that

(C.3) lim
n→∞

Jn
n

= ℓ(1− (θ∗)2) a.s.

with ℓ(1 − (θ∗)2) > 0, which implies that both fn and ξn converge to zero almost
surely. Hence, we deduce from (C.2) that

lim
n→∞

D̂n = D∗ a.s.

where D∗ = 2(1− ρ∗), which completes the proof of Theorem 4.1.

C.2. Proof of Theorem 4.2.

We shall now prove the asymptotic normality of D̂n using (3.7). On the one hand,
we clearly have from (C.2) that

(C.4)
√
n
(
D̂n −D∗) = −2(1− fn)

√
n
(
ρ̂n − ρ∗

)
+ 2(ρ∗ − 1)

√
nfn +

√
nξn.

On the other hand, we deduce from (A.4) with a = 4 that

sup
1≤k≤n

ε̂ 2
k = o(

√
n) a.s.
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which, via (C.3), implies that

(C.5) lim
n→∞

√
nfn = 0 and lim

n→∞

√
nξn = 0 a.s.

Then, it follows from (3.7), (C.4) and (C.5) together with Slutsky’s lemma that

√
n
(
D̂n −D∗

) L−→ N (0, σ2
D)

where σ2
D = 4σ2

ρ, which achieves the proof of Theorem 4.2.

C.3. Proof of Theorem 4.3.

We immediately deduce from relation (C.2) that

(C.6) D̂n −D∗ = −2(1− fn)
(
ρ̂n − ρ∗

)
+ ζn

where ζn = 2(ρ∗ − 1)fn + ξn. Consequently, by summation of (C.6), we obtain that
for all n ≥ 1,

(C.7)
n∑

k=1

(
D̂k −D∗

)2
=

n∑

k=1

(
4(1− fk)

2
(
ρ̂k − ρ∗

)2
+ ζ2k − 4(1− fk)ζk

(
ρ̂k − ρ∗

))
.

Since fn goes to zero almost surely, we have

n∑

k=1

ζ2k = O(1) +O

(
n∑

k=1

f 2
k

)
= O(1) + o

(
n∑

k=1

fk

)
= o(log n) a.s.

Hence, we infer from (3.8) and (C.7) that

lim
n→∞

1

log n

n∑

k=1

(
D̂k −D∗

)2
= 4σ2

ρ = σ2
D a.s.

Furthermore, the law of iterated logarithm (4.6) immediately follows from (3.9) and
(C.5), which completes the proof of Theorem 4.3.

C.4. Proof of Theorem 4.5.

We shall now establish the asymptotic behavior associated to our Durbin-Watson

statistical test. It follows from the identity θ̃n = θ̂n + ρ̂n − ρ0 and (4.13) that



ON THE ASYMPTOTIC BEHAVIOR OF THE DURBIN-WATSON STATISTIC 27

ρ̂n − ρ̃n = ρ̂n −
ρ0θ̃n(θ̃n + ρ0)

1 + ρ0θ̃n
,

=
ρ̂n + ρ0θ̃nρ̂n − ρ0θ̃n(θ̃n + ρ0)

1 + ρ0θ̃n
,

=
ρ̂n + ρ0θ̃n(ρ̂n − θ̃n − ρ0)

1 + ρ0θ̃n
,

=
ρ̂n − ρ0θ̃nθ̂n

1 + ρ0θ̃n
.

Hence, if γ̂n = ρ̂n − θρ0θ̂n and δ̂n = θ̂n + ρ̂n − θ − ρ0, we find that

(C.8) ρ̂n − ρ̃n =
ρ̂n − ρ0θ̂n(θ̂n + ρ̂n − ρ0)

1 + ρ0θ̃n
=

γ̂n − ρ0θ̂nδ̂n

1 + ρ0θ̃n
.

Denote

θ∗0 =
θ + ρ0
1 + θρ0

and ρ∗0 =
θρ0(θ + ρ0)

1 + θρ0
.

Since ρ∗0 = θρ0θ
∗
0 and θ∗0 + ρ∗0 = θ + ρ0, we obtain that γ̂n = ρ̂n − ρ∗0 − θρ0(θ̂n − θ∗0)

and δ̂n = θ̂n + ρ̂n − θ∗0 − ρ∗0. Consequently, we deduce from (C.8) that

(C.9) ρ̂n − ρ̃n =
a(θ̂n − θ∗0) + b(ρ̂n − ρ∗0)

1 + ρ0θ̃n
− ρ0δ̂n(θ̂n − θ∗0)

1 + ρ0θ̃n

where a = −ρ0(θ + θ∗0) and b = 1 − ρ0θ
∗
0. On the other hand, it follows from (C.2)

that

D̂n − D̃n = 2(1− fn)
(
1− ρ̂n

)
+ ξn − 2

(
1− ρ̃n

)
,

= −2
(
ρ̂n − ρ̃n

)
− 2fn

(
1− ρ̂n

)
+ ξn,

= −2
(
ρ̂n − ρ̃n

)
+∆n(C.10)

where ∆n = ξn − 2fn
(
1− ρ̂n

)
. Therefore, (C.9) together with (C.10) imply that

(C.11)
√
n
(
D̂n − D̃n

)
= − 2w′Wn

1 + ρ0θ̃n
+

2ρ0δ̂nv
′Wn

1 + ρ0θ̃n
+
√
n∆n

where v and w are the vectors of R2 given by v ′ = (1, 0), w ′ = (a, b) and

Wn =
√
n

(
θ̂n − θ∗0
ρ̂n − ρ∗0

)
.

We already saw by (C.5) that

(C.12) lim
n→∞

√
n∆n = 0 a.s.
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Moreover, as |δ̂n| ≤ |θ̂n − θ∗0|+ |ρ̂n − ρ∗0|, the almost sure rates of convergence given
by (2.8) and (3.11) ensure that under the null hypothesis H0,

∣∣∣δ̂nv′Wn

∣∣∣ = O

(
log log n√

n

)
a.s.

leading to

(C.13) lim
n→∞

δ̂nv
′Wn = 0 a.s.

Consequently, it follows from the joint asymptotic normality (3.6) together with
Slutsky’s lemma, (C.11), (C.12) and (C.13) that under the null hypothesis H0,

(C.14)
√
n
(
D̂n − D̃n

) L−→ N (0, τ 2)

with

τ 2 =
4

(1 + ρ0θ)2
w′Γw

where the covariance matrix Γ is given by (3.5). We recall from Remark 3.1 that Γ
is invertible as soon as θ 6= −ρ, which implies that τ 2 > 0. In addition, we obtain
from (4.14) and (4.15) that

(C.15) lim
n→∞

τ̂ 2
n = τ 2 a.s.

Finally, we deduce from (C.14), (C.15) and once again from Slutsky’s lemma that
under the null hypothesis H0,√

n

τ̂n

(
D̂n − D̃n

) L−→ N (0, 1)

which obviously implies (4.16). It remains to show that under the alternative hy-
pothesis H1, our test statistic goes almost surely to infinity. We already saw from
(3.3) that

(C.16) lim
n→∞

ρ̂n =
θρ(θ + ρ)

1 + θρ
a.s.

Moreover, as θ̃n converges almost surely to θ + ρ− ρ0, we obtain that

(C.17) lim
n→∞

ρ̃n =
ρ0(θ + ρ)(θ + ρ− ρ0)

1 + ρ0(θ + ρ− ρ0)
a.s.

Hence, it follows from (C.16) and (C.17) that

(C.18) lim
n→∞

(
ρ̂n − ρ̃n

)
=

(θ + ρ)(θ − ρ0)(ρ− ρ0)

(1 + θρ)(1 + ρ0(θ + ρ− ρ0))
a.s.

Under the alternative hypothesis, this limit is equal to zero if and only if θ = ρ0 or
θ = −ρ. However, these particular cases are already excluded from the study of H1.
Consequently, under H1, we deduce from (C.18) that

lim
n→∞

n
(
ρ̂n − ρ̃n

)2
= +∞ a.s.

which, via (C.10), clearly leads to (4.17), completing the proof of Theorem 4.5.
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