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Abstract

Automatic segmentation of data into coherent subsets is impor-
tant in applications as varied as signal processing, bioinformatics and
pharmacology. Under this general framework, we investigate the prob-
lem of data-driven reconstruction of an unknown, piecewise-constant
density function and propose two methods to solve it; the first is di-
rectly inspired by the segmentation approach, whereas the second uses
a maximum likelihood approach. Motivated by a problem in pharma-
cometrics, we then introduce a segmentation algorithm which fits into
the same general framework and is used for automatically binning data
for model assessment purposes.

Keywords: Segmentation; Signal; Piecewise-constant density func-
tion; Maximum likelihood; Pharmacology; Visual Predictive Check;
Dynamic programming; Histogram.

1 Introduction

In numerous real-world situations it is desirable to take a set of data
and break it up into subsets which are meaningful for the given context.
In a sense, the context induces knowledge as to what a typical subset looks
like, and the question becomes to encode this knowledge into a well-defined
mathematical criteria that can automatically create relevant subsets.

If data is multi-dimensional, a natural framework for creating subsets
is clustering (see [1] for review) whereby some function of the coordi-
nates/features of each object is used to define clusters of data. A simple



example is to separate a mixed bag of oranges and plums into two clusters
based on the features colour and diameter.

One type of clustering is of particular interest for the present article.
It involves cases where one data coordinate/feature has a natural ordering
along an axis (e.g., time) and a constraint is imposed that clusters must be
sets of consecutive data points with respect to this feature. This is known as
segmentation.

Segmentation is a pervasive goal in several distinct settings. One main
body of research and application is signal processing. For instance, one may
want to identify speech segments from a radio broadcast or segment an audio
stream into acoustically homogenous blocks [2, 3|. More generally, one may
wish to detect the set of points at which a signal’s variance changes, thus
dividing the data points into “constant variance” segments [4].

In the field of biology, segmentation of genomic profiles is also a commonly
performed task. The most well-known case is the analysis of copy number
profiles, which present the ratio of DNA from diseased cells compared with
normal cells at a set of ordered points along the genome. Contiguous regions
of a disease genome can be copy-number normal (ratio = 1), gained (ratio
> 1) or lost (ratio < 1), and the goal is to demarcate the boundary between
regions of different constant copy number. A large number of solutions have
been proposed to do this [5, 6, 7, 8, 9, 10, 11].

Several of these signal segmentation strategies share a certain method-
ology that we would like to generalise to settings where the data is not
a signal in the traditional sense. To explain, suppose that our n data
points have a feature x that is (or can be) ordered: z; <z < ... <z,
Furthermore, suppose that we have a real-valued function ¢ so that for any
partition 1 = {I;,..., Ik} of the indices 1,...,n into K distinct subsets
In ={ig-1+1,...,ix},k=1,..., K (with by definition iy = 0 and ix = n),
we can calculate g({x;,7 € I}). This function g gives a measure of how well
the subset matches what a typical subset should look like for a given context.
Then, we can propose to minimise

K

I =3 g({wi € L})

k=1

over all possible partitions I of size K.
For a given K, such a minimisation is intractable via brute force (i.e., test-
ing every possible partition) once n >> K, as there are (Z:ll) possibilities.
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However, using dynamic programming (see [12] for review), it turns out that
it suffices to pre-calculate g for each possible segment (which can be done in
O(n?) operations rather than O(n')), then run an iterative algorithm (also
O(n?)) to find the minimum for a given K.

In this paper, we therefore consider problems which can be reformulated
as segmentation tasks, and then attempt to solve them by defining a suitable
function ¢g and running a dynamic programming algorithm to find optimal
solutions. The unifying theme is that the choice of a relevant and computa-
tionally feasible ¢ is a critical step in marrying each situation to a intuitively
reasonable segmentation.

In the first part of the paper, we attempt to answer the following question:
given data generated from an unknown piecewise-constant density function
(i.e., a density that looks like a histogram), recover the density function; that
is, locate the set of points at which the density changes, and thus the shape
of the histogram. We frame the search for the set of (change-) points as a
1-d segmentation along the x axis; the boundaries between segments are the
segmentation points we are looking for. We propose two methods to do this,
each of which requires recourse to the definition of a function g as well as
dynamic programming.

In the second part of the paper, we consider a more general problem,
that of constructing a good histogram representation of a 1-d finite data set
in any chosen subject of interest, whether it be mathematics, psychology,
biology, marketing, etc. A “good” histogram should aim to be made up of a
set of bins which give a reasonable “discrete summary” of data which itself
may be discrete or continuous. The two simplest binning strategies are: i)
equal-width (k bins of the same width); and ii) equal-size (same number of
data points in each bin). However, for a finite data set, both can give poor
summaries of the data. For example, if there is a high density of points in
a small localised region that is surround by low density, both methods can
lead to putting a bin edge in the middle of the high density area, thus mixing
high and low density regions in bins to the left and right, giving a poor local
summary of the data. Variable-width histograms, like those we will propose
in the present paper using a segmentation-based approach, can improve the
histogram “summary” of finite data sets.

Before introducing this approach, let us describe the application which
provides the motivation for the second part of the paper. A Visual Predictive
Check (VPC) is a graphical tool for model assessment used to compare the
distribution of real observations with that of simulated data [13, 14, 15, 16].
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Summary statistics of the observed and simulated data are compared visually.
The simulated data itself is generated from the mathematical model expected
to characterise the underlying biological process. Typically, the summary
statistics are related to the median and two extreme percentiles, e.g., the
10"" and 90*. Thus, for time-course data one can plot the relevant median
and percentiles of both the real and simulated data with respect to time, and
visually compare them. If the model is good, we would expect the simulated
median and percentiles to be systematically “close” to the real data ones.
One strategy to help quantify this is to create a confidence interval (CI) for
the percentiles based on the simulated data, and then visually check how well
the percentiles calculated on the real data “fit inside” the interval [17].

When trying to visually compare the real and simulated data as above,
the real data are first typically binned into specific time intervals; otherwise,
the predicted ClIs may exhibit overly “bumpy” patterns, making visual in-
terpretation difficult. As mentioned earlier, there are two “simple” binning
strategies: equal-width and equal-size, that apply to pharmacometric time-
course data. Unfortunately, the design of typical experiments makes both
these options inherently poor “summaries” of the real data. This may end
up hiding the evidence of a poor model choice, or incorrectly rejecting the
correct model when doing a VPC.

In this contribution, we present a binning strategy tuned to pharmaco-
metric time-course data that automatically determines a “good” binning, i.e.,
a well-chosen number of bins and their edges. Note that in this application,
we are not building a histogram per se, merely finding the edges of the data
bins; but the methodology leads directly to building a histogram if that is the
final goal. As before, the binning strategy we introduce involves a suitably
defined function g and dynamic programming to determine the edges, as well
as a model-selection approach to select the number of bins. In practice, this
leads to irregularly sized bins that better correspond to the clusters we see
in the data. Consequently, we improve the match between the real data and
the VPC “summary”, leading to better model diagnosis in practice.



2 Data-driven reconstruction of piecewise-
constant density functions

Suppose that we have data generated from an unknown piecewise-constant
density function

K
Pk
f(:(}) ; r— 2h1 {zr—1<@<21} ( )
on [0,1], where 0 = 2y < z; < ... < zg = 1 are the bin boundaries and py

the probability that z is contained in the kth bin. We have that > p, = 1,
and for all purposes, f is a density that looks like a histogram. We are
interested in trying to reconstruct f using data X; ~ f. In the following, we
present two ways to attack the problem. The first, inspired by the statistical
framework for finding change-points in (or segmenting) signals, is to consider
the data to be a signal on [0, 1] and to look for places where this signal has
change-points; this means finding the location of the edges of the piecewise-
constant bins. The second is a maximum-likelihood approach which predicts
the location of bin edges. The idea which unifies these two methods, along
with the VPC method to be described subsequently, is that in each case, we
can define a suitable function g and a quantity J(I) that can be optimised
over all partitions I of the data into K subsets.

2.1 A change-point estimation approach

Suppose we have X; ~ f, ¢ = 1,...,n where f is a piecewise-constant
density function on [0, 1]. As the density is uniform in each bin, the inverse
F~! of the true cumulative distribution function (cdf) F' is piecewise-linear
and continuous, and as long as we never have p, = pi,1, the slope of '~}
changes at each bin edge. Using data x4, ..., z,, we can construct the inverse
of the empirical cdf F; ! (plotted as {(i/n,z;),i = 1,...,n}) and we know
that by Glivenko-Cantolli, F;! converges uniformly to F~'. This motivates
the following method.

For a given number of bins K, we propose to construct a linear spline with
knots 7,...,Tk_1 to approximate the unknown F~!. If the knot locations
are allowed to be in general position, there is no analytic solution to this
problem, and care must be taken to avoid local minima; a great deal of
research has been undertaken to provide reasonable solutions (see [18] for



review). We therefore limit ourselves to splines with knots located at u; := %

We propose to estimate F~! by minimising the criteria

Jis() == Z Z (s — agu; — by)? (2)

k=1 i€l

over all partitions I with K subsets, with the spline continuity constraint
apme + by = ap1mp +bpq fork=1,... . K — 1.

2.1.1 Algorithm

An exhaustive search for the solution of this minimisation problem re-
mains intractable for even moderately sized n as we must search among
(;?_11) solutions.

We remark that without any continuity constraint, the criteria Jpg de-
fined in (2) decomposes as a sum of independent terms over each bin. Then,
minimisation of Jpg is straightforward using a dynamic programming algo-
rithm [12]. Unfortunately, the spline continuity constraint means that we
cannot directly do this. A practical alternative consists of: 1) minimising
Jus(I) without the continuity constraint, using dynamic programming; 2)
placing a knot at the K — 1 end-points %, e ZKn*I of each subset I of the
optimal partition I*; 3) attempting to improve the discontinuous solution
with a continuous one. Precisely, we independently and randomly move each
knot in order to improve the criteria, and repeat until convergence.

We deliberately do not go into further details about this procedure since
the alternative proposed below will be shown to be much easier to implement

while providing better results.

2.2 A maximum-likelihood approach

We now propose an alternative approach based on parameter estimation
which turns out to have good computational properties and, as will be seen,
generally superior performance. Suppose once more that the density is given
by (1). For data x1, ..., z, generated from f, it is straightforward to calculate
the relevant log-likelihood:

K n
Zl — Zl—
3 S ]

k=1 =1



Maximising with respect to p and substituting back in, we obtain:

K

L(z,p(z),z) =— Z 1, <oiczy log (Z n(z = 2-) ) (3)

"1
k=1 i=1 i=1 ~{zr—15mi<z1}

It remains to provide data-driven estimates of the z;. For any partition I of
the data into K subsets, let us define ny = iy — 14—y and dj, := x;, — z;,_,
(with convention o = 0 and xx = 1). Estimating 2z, with z;, in (3) would
imply that we should try to minimize the criteria

Jun(l) = —2L(z,p(2),2) (4)
= 2anlog (nn—cik) (5)

over all partitions I of size K. Moreover, Jyy, is a criteria like Jpg that can
be optimised over all partitions of the data into K subsets using dynamic
programming.

Remark: Denoting (Z;) the estimates of the (z;), we can show using the
general results of [19] that maxy |2, — z|| = Op(1/n).

2.3 A comparison of the two methods

Figures 1(a)-(c) illustrate the first change-point estimation approach for
one simulated trial with n = 100 data points. The original piecewise-constant
density is displayed in Figure 1(a). Figure 1(b) shows the inverse of the orig-
inal cumulative density function F~! together with the observations. Here,
F~!is a continuous and piecewise-linear function. The knots are the lim-
its of the bins. Figure 1(c) displays the estimate of F~! obtained with the
first method, i.e., by minimising criteria Jpg under the continuity constraint.
We see that the obtained solution fits very well the observed data but the
locations of the estimated bins slightly differ from the original ones.

Figures 2(a)-(c) compare the original density function with various esti-
mates. Figure 2(a) displays the optimal empirical estimate, assuming that
the location of the bins is known. For a given sequence of data, this is clearly
the best estimate that we can expect to obtain. The second estimate, dis-
played in Figure 2(b), is the least-square estimate obtained by minimising
Jrs under the continuity constraint. It is therefore directly derived from the
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estimate of F~! displayed Figure 1(c). Lastly, Figure 2(c) presents the max-
imum likelihood estimate, obtained by minimising .Jy;,. We remark that for
this particular example, the maximum likelihood solution almost coincides
with the optimal empirical estimate.

091 o 0.9

251
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Figure 1: Change-point estimation for density reconstruction. (a)
The original 5-bin histogram-like density f; (b) its inverse cumulative distribution
function (cdf) F~! in blue and the observations in magenta. Vertical lines indi-
cate the change-points, i.e. the limits of the bins; (c) the least-squares optimal
5-segment piecewise-linear smoothing obtained by minimising Jr¢ under the con-
tinuity constraint is displayed in green. Green (resp. dotted) vertical lines indicate
the estimated (resp. original) change-points.

Obviously a unique simulation is not enough for demonstrating the
superiority of a given method. Thus, in 100 trials, we generated n €
{20, 50, 100, 200, 500, 1000} data points from random 5-bin histogram-like
densites on [0, 1], then applied the two algorithms to attempt to reconstruct
the true densities. Reconstruction quality was measured as the average dis-
tance (i.e., integral of the difference) between the true and estimated den-
sities (as in Figure 2). Results were averaged over the 100 trials and are
presented in Figure 3 for both the change-point and maximum-likelihood ap-
proaches. We see clearly that the maximum likelihood approach gives better
results than the least-square approach, for any sample size. Futhermore, for
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Figure 2: Comparison of different estimators for density reconstruc-
tion. (a) The original 5-bin histogram-like density f in blue and the optimal
empirical estimate in green, assuming that the location of the bins is known, (b)
the least-squares estimate obtained by minimising Jrg under the continuity con-
straint, (c) the maximum likelihood estimate, obtained by minimising Jysr..

n = 1000, the maximum likelihood approach is nearly 300 times faster (0.13
secs compared with 36 secs) on a typical current laptop computer. Lastly, as
described above, the maximum likelihood estimate can easily be computed
using a dynamic programming algorithm. We therefore strongly recommend
this method for reconstructing piecewise constant densities, and consider only
it for model selection below.

2.4 A model selection approach for estimating the num-
ber of bins

When the number of bins is unknown, we propose to estimate it by min-
imising a penalised criteria:

U(I) = Jun(I) + pen(K (1)), (6)

where K (I) is the number of bins of partition I and ‘pen’ is an increasing
function.
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Figure 3: Reconstruction quality as a function of the number of data points for the
continuous version of the change-point estimation (cont. LS) and the maximum-
likelihood approach (ML).

The unknown criteria that we wish to optimise using this approach is the
expectation £ (d( . fn)> of the distance between the estimated density fn,

obtained with the proposed method, and the optimal empirical density f,
obtained using the original knots. This expectation is estimated by Monte-
Carlo: we perform a very large number of simulations (N = 16000 here)
with different sample sizes (between n = 200 and n = 2000) and different
density functions f. We then test different penalisations for which we esti-
mate the expectation of this criteria from the N simulations and look for the
penalisation which minimises this expectation.

The Bayesian Information Criteria (BIC) suggests defining pen(K) =
2 x log(n) * K since there are 2 parameters per bin to estimate (the density
and the right limit). Extensive numerical experiments we performed showed
that BIC provided poor results for estimating the number of bins and thus
the unknown density function. Instead, these experiments suggested the use
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of a penalisation of the form

pen(K) = K * (1 + P2 log(n)). (7)

For a given density f, observations and values of 5 and Sy, let fn(ﬁl, fa) be
the estimated density obtained by minimising (7). We obtained optimal val-
ues of 1 = —15 and [y = 3.7 by calibration, 7.e. by minimising the criteria

E (d( * (B, ﬁg))) estimated from the N simulations.

Remark 1: Using the general results of [19], we can show that the estimate
K, of the number of bins converges to the true number K.

Remark 2: In a non-asymptotic context, Birgé and Massart [25] have shown
that a penalty function of the form

pen(K) = K x (B; + B2 log(n/K))

is optimal for recovering a piecewise-constant signal. Here, using log(n/K)
instead of log(n) does not improve the results.

Remark 3: We did not succeed in improving this penalisation approach us-
ing several adaptive procedures for model selection. The main idea of these
adaptive methods is to assume that the criteria Jy, is a linear function of
the penalisation for models of high dimension (i.e., models with more bins
than the original partition) and detect from which dimension this linear as-
sumption starts to be valid [4, 25]. The slope heuristic proposed by Birgé
and Massart in [25] was quite unstable and could not be implemented prop-
erly in this context. The method proposed by Lavielle in [4] for detecting an
abrupt change in the second derivative of the criteria gave good results, but
on average less good than the penalisation approach.

Remark 4: The risk ratio measures how well the selected partition performs
in comparison to the oracle, i.e., the optimal partition which minimises the
distance d(f7, fn) Here, the risk ratio can be estimated by Monte-Carlo
using a new set of simulated data. The risk ratio is 1.27 with the proposed
penalisation method. It is 1.54 and 1.85 for BIC and the Akaike criteria,
respectively, and 1.40 with the adaptive procedure proposed by Lavielle in
[4]. If the number of bins is fixed to the true number of bins, then the risk
ratio is 1.19.

11



3 Data segmentation for visual predictive checks

3.1 What are visual predictive checks?

Visual predictive checks, or VPCs, are model evaluation methods for
evaluating stochastic models [13, 14, 15, 16]. They provide a way to help
decide whether a model correctly describes given data, as well as to decide if
the model is likely to predict responses in future subjects.

To perform a VPC, first several sets of data are simulated with the
proposed model. Then, the distribution of the simulated data is compared
with the empirical distribution of the true data. Let us describe this VPC
methodology — illustrated in Figure 4 — as implemented in MONOLIX
(www.monolix.org), a software dedicated to the analysis of nonlinear mixed
effects models: a) Observations (y;;1 < i < n) are measured at times
(x;;1 <i < n). nis the total number of observations across the whole set of
individuals; b) Data is grouped into adjacent time intervals (bins); c¢) Several
empirical percentiles are computed for the data in each bin; d) A large
number of datasets are simulated under the model being evaluated, using
the design of the original dataset; e) The data from each simulated dataset
is grouped into the same bins; f) The same percentiles are computed in
each bin for each of the simulated datasets; g) Confidence intervals (CI) for
each percentile are calculated using these simulated percentiles; h) Observed
percentiles are compared with these CIs; i) Regions where the observed
percentiles are not found within the Cls are filled in with red, in order to help
detect misspecified models. Note that a small number of such regions does
not necessarily mean a misspecified model; indeed, it is expected, and the
modeler must make a decision as to whether there are too many such regions.

3.2 Binning

The problem of interest for the current article is to develop a binning
(segmentation) algorithm that is useful in the VPC setting. Furthermore,
we would like the algorithm to integrate into the same framework whereby it
suffices to define an intuitive criteria to optimise over partitions of the data.

Let us suppose that the (pooled) data X; € R, i = 1,...,n is generated
following some (unknown) probability density function X; ~ f. In the VPC
application, X is the variable time. Binning the generated data, i.e., grouping

12
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Figure 4: Visual Predictive Check construction: (a) the data, (b) data
grouped into bins, (c¢) empirical 10", 50" and 90" percentiles computed for each
bin, (d) several simulated data sets, (e) these simulated data sets grouped into
the same bins, (f) the 10™, 50" and 90" percentiles of each simulated data set
computed for each bin, (g) 90% confidence intervals computed from the percentiles
of the simulated data, (h) observed percentiles and 90% confidence intervals, (i)
zones outside of the confidence intervals are filled in with red.

13



the z; into intervals, leads to an approximation of this distribution by a
piecewise-constant one. A binning strategy should aim to be “good” as in:
i) for a given number of bins, the locations of the bin edges must be chosen
so as to minimise heterogeneity of the data in each bin; and ii) the number
of bins must be carefully chosen, i.e., we require a good tradeoff between a
large number of bins and a large number of observations in each bin; the
true distribution can be accurately approximated by a piecewise-constant
distribution with a large number of bins, while a large number of observations
in each bin is required to accurately estimate this true distribution.

3.3 Standard binning strategies

There are various ways to implement binning. The two simplest are: i)
equal-width binning: K bins of length (2,00 — Tmin)/K; and ii) equal-size
binning: K bins, each with n/K data points. If n is not a multiple of K, we
can correct so that each bin has either [n/K] or [n/K] + 1 data points.

In practice, equal-width binning is not appropriate when time-points are
inhomogenously distributed (as is often the case in the VPC application);
some bins contain many data points whereas others are completely empty.
Due to this inherent poor adaptability, we do not consider the method in the
following.

In other situations, several observations are obtained from different pa-
tients at the same time points. This is the case for example in the warfarin
pharmacokinetic (PK) data shown in Figure 5(a). This poses obvious prob-
lems for equal-size binning.

We may wonder if the equal-size binning procedure can be modified to
deal with this case of identical time points, but different number of measure-
ments at each time point? Our first objective is to propose an automatic
procedure which selects bins with “similar” amounts of data in each. Let
1 < Tg < ... < xp be the M different time points and my,ma, ..., my,
the number of measurements taken at each of these time points. As before,
n = »_ m; is the total number of data. For a given number K of bins, we

look for the bins I = (Iy, I, ..., Ix) that minimise the following criteria:
s n
JES(I):Z ZmZ_E . (8)
k=1 Zelk

This can be done using dynamic programming in the same way as for the two
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Figure 5: (a) warfarin pharmacokinetic data, (b) “approximately” equal-size bin-
ning.

previously described algorithms. The segmentation displayed in Figure 5(b)
was obtained by minimising the criteria Jgg with K = 8 bins.

3.4 A new binning procedure

Often, we have data where all time points are different and the data
is “clustered” around various time points, e.g., Fig. 6(a) — simulated data.
In this case, the similar-size solution obtained by minimising Jgg no longer
provides a plausible binning (Fig. 6(b)) as it does not take into account
knowledge of the clusters.

One way to resolve this more general problem is to interpret binning as
clustering or 1-d segmentation, i.e., grouping the n time points x; < 19 <
... < x, into K clusters or segments along the time axis. One possible way
to do this is by I-d K-means clustering [24]. Let us define

Jrm(I) = Z Z (z; — sz)Q ; 9)

k=1 i€l}

where 7}, is the empirical mean of the x;’s in bin Ij:

Ek = Z;,
ng -«



with n; the number of points in bin k. Then, the K-means solution is
found by minimising Jxy over all possible segmentations [ = (I3, Is, ..., Ix)
of the data into K bins. As has become habitual, we can do this using
dynamic programming [12]. Fig. 6(c) shows the optimal binning obtained
by minimising Jiy for K = 6.

(a) (b) (c)
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Figure 6: (a) simulated data, (b) equal-size binning for K = 6, (c) optimal binning
obtained by minimising Jgy for K = 6.

Jku is a least-squares criteria that supposes we are dealing with a ho-
moscedastic model, i.e., the data spread (with respect to time) inside each
cluster is similar. This is not always the case, as for example in Fig. 7(a).
The combined variability of the first two clusters is similar to that of each
of the third, fourth and fifth, whereas the variability of the sixth cluster is
significantly greater than all the others. In this case, the Jxy\ criteria may
not be optimal; Fig 7(b) shows that it groups the first two clusters together,
and splits the sixth cluster in two.

To avoid this, let us introduce a model to better take into account het-
eroscedacity. First, remark that (9) can be rewritten Jin(I) = Yoo, npo?,
where o7 is the empirical variance of the points in I, i.e.,

1

i€ly,
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We propose to modify Jiy by introducing a further parameter:

Remark 1. When § = 1, we have jKM(I, 1) = Jxm(I).

Remark 2. If we develop (10) for 0 < 8 < 1, we obtain:

K
Jem(I,B) = > me” log ()
k=1

K

= ) m(1+ Blog(op) + o(B))

K
= n+p Z ni log(o?) + o(B).

k=1

For a fixed data set {x1,...,x,}, there therefore exists some small fy > 0
such that for 8 < [y, minimising Jxy (1, 3) is equivalent to minimising

K
Z ni log(o}).
k=1

This is no other than a criteria typically used to perform segmentation of
signals with respect to change in variance [4]. Thus, moving 5 from Sy to
1 gives a spectrum of solutions that pass from favoring changes in variance
to changes in mean. Fig. 7(b) shows the binning obtained by minimising
jKM(I ,1). Then, as f is set closer and closer to 0, more emphasis is made on
selecting bins with differing variability. Fig. 7(c) shows an intuitively optimal
binning, obtained by minimising jKM(I ,0.2). Exactly the same binning is
obtained with any value of 3 in [0.05 , 0.35].

3.5 Selection of the number of bins

Of course, for any given number of bins K, such a binning can be calcu-
lated. The question then arises as to which K to choose. We propose here
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Figure 7: (a) simulated data, (b) binning minimising Jxn(Z, 1), (c) binning min-
imising Jin (1, 0.2).

to automatically select the number of bins using a model selection approach
with the following penalised criteria:

U(I,8,\) = log (JKMU, 5)) FABK(D), (11)

where K (I) is the number of bins in binning I. We choose the I (and thus
the K) that minimises U(7, 3, A) for A fixed. The larger A is, the fewer
the number of bins selected. Extensive numerical trials suggest the use of

A = 0.3. The § term is included in the penalty because log (JKM(I , ﬁ))
decreases, as a first approximation, like a linear function of 5.

4 Discussion

In many applications we are confronted with the need to take a set of
data and break it up into subsets, and the context tells us what a typical
subset should look like. We aim to encode this knowledge as a mathematical
criteria that can automate the process of selecting subsets, or more precisely
here, perform segmentation of ordered data.

In the first part of the article, we have presented two methods for data-
driven reconstruction of unknown piecewise-constant densities using segmen-
tation approaches. The first method attempts to find change-points in the
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slope of the inverse of the empirical cumulative distribution function, whereas
the second uses a maximum likelihood approach. The set of change-points
are then considered to be the predicted bin edges of the density function,
allowing an empirical density function to be constructed. Numerical exper-
iments indicate that the maximum likelihood approach has significant com-
putational and performance advantages, and we recommend its use over the
change-point detection approach.

In the second part of the article, we considered the general problem of
constructing a good histogram representation of a 1-d finite data set for any
chosen subject of interest, though with a particular application in mind: Vi-
sual Predictive Checks (VPCs) for pharmacometric modelling. Here, real
data have to be binned into specific time intervals because otherwise, the
confidence intervals we are trying to predict may exhibit overly “bumpy”
patterns, making visual interpretation difficult. A good (histogram) binning
should aim to be made up of a set of bins which give a reasonable “dis-
crete summary” of the data, and we show that for VPCs, simple automatic
binning strategies such as equal-width and equal-size are not appropriate.
Consequently, we developed a method - also based on a segmentation ap-
proach - that bridges the gap between 1-d K-means and segmentation based
on finding change-points in variance.

The two parts of the article are unified by a common mathematical frame-
work whereby a real-valued function g is calculated on all n(n+1)/2 possible
contiguous subsets of the original data and then the minimum of the sum
of these values for all possible partitions [ is calculated. The optimal parti-
tion induces the set of bin-edges in each case. Using dynamic programming
techniques, this minimisation can be done practically in O(n?) rather than
O(n*) time. The method we have presented is thus valid for any practical
application where a suitable function ¢ can be defined.

Lastly, we have implemented a model-selection approach whereby the
number of true bins K is not necessarily known in advance and must also
be predicted. We found that it is in general a hard problem to estimate K,
and that for piecewise-constant density reconstruction, a penalty of the form
pen(K) = K x (1 + P2log(n)) outperformed BIC, the non-asymptotic ap-
proach of Birgé and Massart [25| and various other adaptive procedures for
model selection for piecewise-constant densities. Based on extensive numeri-
cal trials, we were also able to propose a well-calibrated penalised criteria to
select the number of bins for the VPC application.
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