N
N

N

HAL

open science

Edge-reinforced random walk, Vertex-Reinforced Jump
Process and the supersymmetric hyperbolic sigma model
Christophe Sabot, Pierre Tarres

» To cite this version:

Christophe Sabot, Pierre Tarres. Edge-reinforced random walk, Vertex-Reinforced Jump Process and
the supersymmetric hyperbolic sigma model. Journal of the European Mathematical Society, 2015,

10.4171/JEMS/559 . hal-00642484

HAL Id: hal-00642484
https://hal.science/hal-00642484

Submitted on 18 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00642484
https://hal.archives-ouvertes.fr

EDGE-REINFORCED RANDOM WALK, VERTEX-REINFORCED
JUMP PROCESS AND THE SUPERSYMMETRIC HYPERBOLIC
SIGMA MODEL

CHRISTOPHE SABOT AND PIERRE TARRES

ABSTRACT. Edge-reinforced random walk (ERRW), introduced by Coppersmith
and Diaconis in 1986 [5], is a random process that takes values in the vertex set
of a graph G, which is more likely to cross edges it has visited before. We show
that it can be interpreted as an annealed version of the Vertex-reinforced jump pro-
cess (VRJP), conceived by Werner and first studied by Davis and Volkov [7, 8|,
a continuous-time process favouring sites with more local time. We calculate, for
any finite graph G, the limiting measure of the centred occupation time measure
of VRJP, and interpret it as a supersymmetric hyperbolic sigma model in quantum
field theory [13]. This enables us to deduce that VRJP is recurrent in any dimension
for large reinforcement, using a localisation result of Disertori and Spencer [12].

1. INTRODUCTION

Let (2, F,P) be a probability space. Let (G;~) be a nonoriented locally finite
graph, and denote by V(G) (resp. E(G)) its set of vertices (resp. edges). Let
(ac)ecr () be a sequence of positive initial weights associated to each edge e € E(G).

Let (X,,)nen be a random process that takes values in the set of vertices of GG, and
let F, = 0(Xo,...,Xn) be the filtration of its past. For any e € E(G), n € NU {o0},
let

(1.1) Zn(e) = > Wiy s xid=c} + Ge

k=1
be the number of crosses of e up to time n, plus the initial weight a.

Then (X,,)nen is called Edge Reinforced Random Walk (ERRW) with starting point
ro € G and weights (a¢)cer(c), if Xo = xo and, for all n € N,

Zn({Xn,J})
T e, Zal({X k)

The Edge Reinforced Random Walk was introduced in 1986 by Diaconis [5]; on
finite graphs it is a mixture of reversible Markov chains, and the mixing measure can
be determined explicitly ([9], see also [14, 25|) which has applications in Bayesian
statistics [11].

On infinite graphs, the research has so far focused on recurrence/transience criteria.
On acyclic or directed graphs, the walk can be seen as a random walk in an independent
random environment 23], and a recurrence/transience phase transition is observed on
trees [2, 15, 23, 28|. In the case of infinite graphs with cycles, recurrence criteria and

(1.2) P(Xni=J | Fo) =1,

2000 Mathematics Subject Classification. primary 60K37, 60K35, secondary 81T25, 81T60.
This work was partly supported by the ANR projects MEMEMO and MEMEMO2, and by a

Leverhulme Prize.
1



2 C. SABOT AND P. TARRES

asymptotic estimates can be obtained on graphs of the form Z x G, G finite graph,
and on a certain two-dimensional graph [18, 20, 22, 21, 26]. Recurrence or transience
on ZF, k > 2, is still unresolved.

Also, this original ERRW model [5] has triggered a number of similar models of
self-organization and learning behaviour; see detailed surveys by Davis [6], Merkl and
Rolles [19], Pemantle [24], Tarrés [29] and To6th [30], with different perspectives on
the topic.

Our first result relates the ERRW to the Vertex-Jump Reinforced Process (VRJP),
conceived by Werner and studied by Davis and Volkov |7, 8|, Collevechio [3, 4] and
Basdevant and Singh [1].

We call VRJP with weights (W )ccp () a continuous-time process (Y;);>o on V(G),
starting at time 0 at some vertex zo € V(G) and such that, if Y is at a vertex z € V/(G)
at time ¢, then, conditionally on (Yj, s < t), the process jumps to a neighbour y of x
at rate Wi, 1Ly (t), where

t
Ly(t) =1 +/ ]I{Ys=y} ds.
0

The main results of the paper are the following. In Section 2, Theorem 1, we express
the ERRW as the annealed version of the VRJP with independent gamma random
conductances. Section 3 is dedicated to showing, in Theorem 2, that the VRJP is a
mixture of time-changed Markov jump processes, with a computation the mixing law.
In Section 6, we relate that mixing law with the supersymmetric hyperbolic sigma
model introduced by Disertori, Spencer and Zirnbauer in [13] and prove recurrence of
VRJP in any dimension for large reinforcement (cf Corollary 1), using a localization
result in [12].

2. FRoM ERRW 1O VRJP.

It is convenient here to consider a time changed version of (Y5): consider the positive
continuous additive functional of (Yj)

A = [ = > tos(L(5)

and the time changed process

Xt - YAfl(t).
Let (T3(t)) be the local time of the process (X;)

t
Tm(t):/() ]l{Xu:x}du.

Lemma 1. The inverse functional A~ is given by

¢
A_l(t):/ eIy,
0

The law of the process X; is described by the following: if at time t the process X; is
at the position i, then it jumps to a neighbor j of i at rate

Wi eROAT0),



Proof. First note that
T (A(s)) = log(La(s)),

since ]
(TZ‘(A(S)))/ = A/(S)E{XA(S):w} = L ]]-{YS::E}-
Ys(s)
Hence,
1
A—l L — L A—l — Ix,(t)
( (t)) A/(A_l(t)) Xt( (t)) € )

which yields the expression for A, It remains to prove the last assertion:
]P)(Xt—i-dt = ]|E) = IP)(YAfl(zt-kdzt) = ]|E)
= Wi, (A7) ()L (A7 (t))dt
= W, jeTXt ® T gy
O

In order to relate ERRW to VRJP, let us first define the following process (X;)er s
initially introduced by Rubin, Davis and Sellke [6, 27|, which we call here continuous-
time ERRW with weights (ac)ccr(e) and starting at X, := o at time 0:

o Let (V)eer()kez, be a collection of independent exponential random vari-
ables with EV,¢ = (a. + k)~

e Fach edge e has its own clock, which only runs when the process (Xt>t>0 is
adjacent to e.

e Each time an edge e has just been crossed, and at time 0, its clock sets up an
alarm at distance V/¢ if e has been crossed k times so far (V7 at time 0).

e Each time an edge e sounds an alarm, X, crosses it instantaneously.

time-line of

€o
"/’06() ‘/06() _"_ ‘/16()
€1
‘/661 ‘/061 + ‘/161
€2
‘/662 ‘/062 + ‘/162
€3

Let 7, be the n-th jump time of (Xt)t>0> with the convention that 7y := 0.

Lemma 2. (Dawvis [6], Sellke [27]) Let (X,)nen (resp. (Xi)is0) be an ERRW (resp.
continuous-time ERRW) with weights (a.)e € E(G), starting at some vertex xo €

V(G). Then (X;,)ns0 and (X,)n>0 have the same distribution.

Theorem 1. Let (X;);50 be a continuous-time ERRW with weights (a.)cer(q). Then
there ezists a sequence of independent random variables W, ~ Gamma(ae, 1), e €
E(G), such that, conditionally on (We)eer(c), (X1)is0 has the same law as the time
modification (X¢)i>o of the VRJP with weights (We)eer(q); in other words, if X is at
vertex x at time t, it jumps to a neighbour y of x with probability vayeTz(tHTy(t) dt.
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In particular, the ERRW (X,,)n>0 has the same law as the annealed law of the
discrete time process associated with a VRJP in random independent conductances

W, ~ Gammal(a,).

Proof. For any e € E(G), define the simple birth process {Nf,t > 0} with initial
population size a., by

k—1
N¢ = ae—i-sup{k €Nst. » VF< t}.

=0

This process is sometimes called the Yule process: by a result of D. Kendall [16] (see
also [29]), there exists W, := lim N;e™!, with distribution Gamma(a,,1), such that,
conditionally on W, {N;W = 0} is a Poisson process with unit parameter, where

fw () :=log(1 +t/W);
hence N, increases between times ¢ and ¢ + dt with probability We' dt = (fi;!)'(t) dt.

Let us now condition on (We)eep ). If X is at vertex x at time ¢, it jumps to a
neighbour y of = at rate W, ,el=O+®), 0

3. THE MIXING MEASURE OF VRJP.

Next we study VRJP. Given fixed weights (We)ccr(q), we denote by (X;)¢>o the time
modification of the VRJP defined in the previous Section starting at site Xy := iy at
time 0 and (7;(t));ev its local time.

It is clear from the definition that the joint process ©, = (X, (Ti(t))icy) is a time

continuous Markov process on the state space V x RY with generator L defined on
C* bounded functions by

LA6T) = (57 ) D)+ LN, M T) €V xRY,

where L(T') is the generator of the jump process on V at frozen T defined for g € RY:
L(T)(9)()) = Y_ Wi e"Ti(g(j) — 9(3)), VieV.
jev
We denote by P, r the law of the Markov process with generator L starting from the
initial state (zo, 7).

By the strong Markov property, the law of (X;, T'(t) — T') under P(,, 1 is equal to
the law of the process starting from (x¢,0) with conductances

WT — W, .eTi+Ti
iyj = 7’7]6 * 7.
For simplicity, we let P, := P, .

We show, in Proposition 1, that the centred occupation times converge a.s., and
calculate the limiting measure in Theorem 2 i). In Theorem 2 ii) we show that the
VRJP (Ys)s>o0 (as well as (X;):>0) is a mixture of time-changed Markov jump processes.

This limiting measure can be interpreted as a supersymmetric hyperbolic sigma
model. We are grateful to a few specialists of field theory for their advice: Denis Perrot
who mentioned that the limit measure of VRJP could be related to the sigma model,
and Krzysztof Gawedski who pointed out reference [13]|, which actually mentions
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a possible link of their model with ERRW, suggested by Kozma, Heydenreich and
Sznitman, cf [13]| Section 1.5.

Note that when G is a tree, if the edges are for instance oriented e towards the root,
letting V., = e¥*~V the random variables (V) are independent and are distributed
according to an inverse gaussian law. This was understood in previous works on VRJP

7.8, 3, 4, 1].

Theorem 1 and Theorem 2 enable us to retrieve, in Section 5 the limiting measure of
ERRWs, computed by Coppersmith and Diaconis in [5] (see also [14]) as the annealed
measure arising from Theorem 1. This explains its renormalization constant, which
had remained mysterious so far.

Proposition 1. Suppose that G is finite and set N = |V|. The following limits exist
P;, a.s.

io
) t
Ui = tll)riloﬂ(t) N’

forallieV.

Theorem 2. Suppose that G is finite and set N = |V/|
i) Under Pi,, (Us)iey has the following density distribution on Ho = {(u;), > u; = 0}
1 Ui ,—H(Wu
(31) We oe ( ) D(W, U),
where )
H(W,u) =2 | Z W; j sinh® (i(u, - u]))
{i.jreB(V)
and D(W,u) is any diagonal minor of the N x N matriz M (W, u) with coefficients

W, jetitei ifi #j
=D kev Wine" ™ ifi=j

ii) Let (U;)icv be a random variable in Hy distributed according to (3.1). Let (Z;) be
the Markov jump process starting at iq and with jump rates from i to j

1
§Wi7j6Uj_Ui .

mij =

Let (1;(t)) be the local times of the process Z at time t. Consider the positive continuous
additive functional of Z

B(t):/o ;Jidu—z:\/l—l-l

Y, = Zp-1(5).
Then the annealed law of Y is the law of the VRJIP (Ys)4s0 with conductances (W ;).

In particular, the discrete process associated with (Yy) is a mixture of reversible Markov
chains with conductances W; ;eVitUi.

and the time changed process

N.B.: 1) the density distribution is with respect to the Lebesgue measure on H,
which is Hiev\ (o} Qi for any choice of jo in V. We simple write du for any of the

[Ticv oy dui
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2) The diagonal minors of the matrix M (W, u) are all equal since the sum on any line
or column of the coefficients of the matrix are null.

Remark 1. Remark that usually a result like ii) makes use of de Finetti’s theorem:
here, we provide a direct proof exploiting the explicit form of the density. In Section
5, we apply i) and ii) to give a new proof of Diaconis-Coppersmith formula including
its de Finetti part.

Remark 2. The fact that (3.1) is a density is not at all obvious. Our argument is
probabilistic: (3.1) is the law of the random variables (U;). It can also be explained
directly as a consequence of supersymmetry, see (5.1) in [13].

4. PROOF OF THE PROPOSITION 1 AND THEOREM 2

4.1. Proof of Proposition 1. We provide an interesting argument based on mar-
tingales, although there may be a more direct proof.

By a slight abuse of notation, we also use notation L(T") for the N x N matrix
M (WY, T) of that operator in the canonical basis. Let T be the N x N matrix with
coefficients equal to 1, i.e. T, ; =1 for all ¢, j € V, and let I be the identity matrix.

Let us define, for all T € RV,

Q(T) = /OOO (e“L(T) - %) du,

LT) converges towards I/N at exponential rate.

which exists since e*
Then Q(T) is a solution of the Poisson equation for the Markov Chain L(T"), namely
I

L) =QMLT) =1~ .

Observe that L(T') is symmetric, and thus Q(7') as well.

For all T € RV and i, j € V, let E](7;) denote the expectation of the first hitting
time of site j for the continuous-time process with generator L(T"). Then

1
QT)iy = B/ (1) + Q(T);
since, for all j € V, i — EI(7;)/N is a solution of the Poisson equation. As a
consequence, Q(1");; is nonpositive for all j, using > .., Q(T);; = 0.

Let us fix [ € V. We want to study the asymptotics of T;(t) —t/N as t — oc:

= [ QUK T du— [ Q)
(4.1) — QIO - Q)xoa + M(0) ~ [ 52 QT W),

where
Mit) = —Q(T(8)) s + Q0)xos + / E(Q().0)(Xu. T(u)) du

is a martingale for all [. Recall that L is the generator of (T'(), X;).
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The following lemma shows in particular the convergence of Q(7(t))x, for all &, [,
as t goes to infinity. It is a purely determistic statement, which does not depend on
the trajectory of the process X; (as long as it only performs finitely many jumps in a
finite time interval), but only on the added local time in W7.

Lemma 3. Forallk, 1 € V, Q(T(t))r, converges ast goes to infinity, and

L] du < oo.

|l

Proof. Forall k, [ € V| let us compute %Q(T)k,l for any ¢, k, [ € V: by differentiation
of the Poisson equation,

1M = () (5rr) am)

Now, for any real function f on V/,

P S WEFG) = f@)  if k=i
(k) = § Wi (f()) = f(F)) if ko~ k
0 otherwise.

Hence

= Z Wii(F(5) = () (Mpimry — Lj=ny)

and, therefore,

IBINES Z WQ(T )i — QT QT )iy — Q(T);,)

(42) Z kV”Q Z Q(T)Vi,j,lv

where we use the notation f(V,;) = f(j) — f(¢) in the second equality, and the fact
that Q(7') is symmetric in the third one.

In particular, for all [ € V and t > 0,

43) GO = QW = 3 Wiy QT M), )"

Now recall that Q(7'(t));,; is nonpositive for all ¢ > 0; therefore it must converge, and

/ > Wy (QUT(1)vx,,0)" = (Q(T(20)) = Q(0)1s < oc.

J~Xt

The convergence of Q(7'(t))r; now follows from Cauchy-Schwarz inequality, using
(4.2): for all t > s:

(QT(1)) — Q(T(5)))| = / S WE QT ()vr, kQ(T (W), 1 du

s J~Xu

< Q) - @<T<s>>>k,k¢ (QT (1) — QT ()1

thus Q(7'(t))x, is Cauchy sequence, which converges as t goes to infinity. Now, using
again Cauchy-Schwarz inequality
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‘aTXU w,l du
/ Z W, QT (W)vy, , x. QT (u)vy, 1| du
> (Q(T(o0)) — Q(T(O)))k,k\/(Q(T(OO)) — Q(T(0)))11,
kev
which enables us to conclude. ]

We now show that (M;(t));>o converges, which completes the proof: indeed, this
implies that the size of the jumps in that martingale goes to 0 a.s., and therefore that
Q(T'(t))x,, must converge as well; then (4.1) enables us to conclude.

Let us compute the quadratic variation of the martingale (M,(t));>0 at time ¢:

(%E (M(T(t+¢e)) — Mz(t))2|ft))

e=0

- (d%E (QT(t+e))x1en — Q(T(t))Xtyl)2|ft))

= R(T'(t))x..
where, for all (i,1,T) € V x V x RV, we let
R(T)iy = L(Q*().0) (i, T) = 2Q(T)is L(Q(.) 1) (4, T);

here Q*(T") denotes the matrix with coefficients (Q(T'); )%, rather than Q(T') composed
with itself. But

Q). T) = 2(Q(T)),, (

e=0

0
oT;

an) -+ (Lem),,

il
Q1) L(Q().) (1, T) = (Q(T)),, (%Q(T)) + Q(T)i (L(T)Q(T))i

il

so that
R(T)iy = L(T)(Q*(T))ig — 2Q(T)ia(L(T )Q(T))u

= Z WZ; ((Q(T)j,l)2 _ (Q(T) — 2@ zl Z ]l _ Q(T)z,l>
T 2 0
_ ; WE(Q(T)v,,1) = o7 QT

using (4.2) in the last equality. Thus
*d
< My, My > o= / @Q(U)z,z du = Q(T'(00))11 — Q(0)1y < —=Q(0)1y < o0.
0

Therefore (M;(t))¢>o is a martingale bounded in L?, which converges a.s.

Remark 3. Once we know that T;(t) — t/N converges we know that T(c0) = o0,
Q(T(00))is = 0, and that the last inequality is in fact an equality. Hence, we have the
equality < M, M} >.= —Q(0),,.



4.2. Proof of Theorem 2 i). We consider, forip € V, T € RV, A € H,
(4.4) U(ig, T, \) = / etio <M= g (W u)du,

Ho
where

(4.5) (W', U) = e "W/ DWT T,
and W, = W; ;e" 7. We will prove that

1 Z.
W\D(ZQ, T, )\) = Eio,T (6 <)\7U>) 5

V2T
for allip € V, T € RV.

Lemma 4. The function ¥ s solution of the Feynman-Kac equation
iNig W (io, T, \) + (LW)(ig, T, \) = 0.
Proof. Let T; = T, — % ZjeV T;. With the change of variables @; = v, +T;, we obtain
(4.6) U(io, T, \) = / etio~Tio d N> (WT 4 — T)diy
Ho
Remark now that H(WT 4 —T) = HWT @ — T) since H(W?T,u) only depends on

the differences u; — u;. We observe that the coefficients of the matrix M (W7, u) only
contain terms of the form W; je+Titui+Ti hence

\/D(WT, i—T)=en~ 2T/DW,a).
Finally, < \,T >=< X, T > since A\ € Hy. This implies that

(47) \I/(io, T’ )\) — / er T} €ﬁi0 =Ty, 6i<)\,ﬁ—T>e—H(WT,1]—T) /D(W ﬁ)dﬁ

Ho
We have
0
HWT a-T
o7, (W, a—-T)
= 0 2 Z W, ;elit1i sinh? 1(71Z —a; =T, +Tj)
8E 5] 2 J J

{ij}eE
1 1
= 2 Z Wig jel ot (sinh2 (5(11@0 —u; =T + TJ)) 3 sinh (@, — ; — T3, + TJ))
Jrvio
— Z Wio’jeTio‘FTj (e—ﬂi0+ﬁj+Ti0—Tj o 1)
Jrio
= TOLT) ) i),
Hence,

0
T,

— / (i)\ioeﬁio— i 4 L(T) (eﬂ—T)(Z»O)) 6Zj T} ei<)\,ﬁ—T>e—H(WT,a—T) /D(VV, ﬂ)dﬂ
Ho
= X, W(io, T, \) + (L(T)W) (g, T, N).

\Il(i(b T7 )\)
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This gives
(L) (ig, T, \) = —iXig (i, T, \).

Since W is a solution of the Feynman-Kac equation we have that for all ¢ > 0
Wi, T, \) = Eiyir ("M O20(X, T (1), 1) )

where we recall that T;(t) = Tj(t) — t/N. When, t tends to infinity 7T;(¢) tends to
+00. We need first to prove that W(X,, T'(¢), \) is dominated and that P;, a.s.

(4.8) Tim (X, T(1), ) = T
We have, denoting by 7 the set of spanning trees of G,

eapWhu) = etne 0T 37Tt

TeT ecT

< eN maX;cv |uz‘€ 2 Z{z jtev W (ul ug D(WT’ 0)
(49) < (Z eNui + e_Nui) ) Z{z jtev W (uz ug D(WT’ 0)

iev
This is a gaussian integrand: for any real a and 75 € V,

/ i e ™2 Liigyev Wi (=) | /DT 0)du
Ho
— e_%tﬂQ(T)iOviO/6_%<U_H’Q(T)i ( (U aQ(T i, / WT O du

— ¢ %aZQ(T)i07i0(27T)(N—1)/2.

where Q(T') is defined at the beginning of Section 4.1. Therefore for all iy € V,
(T;) € RV
|W(ig, T, N)| < 2 Z(QW)(N—l)/Qe—%NQQ(T)i,i’

eV
But WT® is increasing in ¢, hence
|\I/(Xt, ’ QZ 27T N1/2 —7N2 ()
eV
for all £ > 0. Let us prove now (4.8). We have

\II(Xta T( )a )‘)
_ /6i<)\’u>€uxt 6_2 Y ligtev Wz;.(t) sinhz(%(ui—uj)) D(WT(t), u)du

. 2t /Ny T(t) o v2/1 —
_ /el<>\7u>6uxt€—22{i,j}eve INW, 5 sinh® (5 (wi—uy)) D(WT(t),u)e(N_l)t/Ndu.

Changing to variables i; = e/Nu;, we deduce that U(X,, T(t), \) equals

i<Ae—t/Ni> e=t/Nay, 25 WI®e2t/N Gnp2(le—t/N (g, _q. = LN~ g~
/ez e u> e Uxy o Z{z,;}ev i,j (3 (@ —15)) D(WT(t),e t/Nu)du.




11

Since lim;_, Ti(t) = Uj;, the integrand converges pointwise to the Gaussian integrand

6—%2{@]‘}6\/"‘/&(%—%)2 D(WU,0),
whose integral is / 97 . Consider U; = supyso T5(t) and U; = infy T5(t). Pro-
ceeding as in (4.9) the integrand is dominated for all ¢ by

_ ~ T 0 U
eNe™ N maxiey |ail =3 X i jyev Wi (@a—ii;)? D(WT® 0)

< (Z et 4 e_Nf”') e~ Eaer Wi @) [ DT ),
eV
which is integrable, which yields (4.8) by dominated convergence.

4.3. Proof of Theorem 2 ii). The same change of variables as in (4.6) and (4.7),
applied to T; = log \;, implies that, for any jo € V and (\;);ey positive reals, letting

A= X/ (TT; M),

2
Lo —u, X\ Lu;—uy) [
1 <\ T3 (i) Wi,»AiA(e?( g [0 ez (v >
— e“jo_logo‘jo)e 2 I ! ! \/: \/)\7 \ /D(W’ U)
V2T Ho
is the density of a probability measure, which we call *°. Remark that this density

can be rewritten as
1

T
Let (U;) be a random variable distributed according to (3.1). Let (Z;) be the Markov
jump process starting at 7o and with jump rates from 7 to j

1 iy
§Wi7j6U] UZ.

€Uj0—log(xj0)e—% Z” Wi i (A2eI ™" - \A)) D(W u)

Let (F7)io be the filtration generated by Z, and let EY be the quenched law of
the process Z starting at i. We denote by ({x(t))rev the vector of local times of the
process Z at time ¢.

Let us first prove that the law of U conditioned on FZ is
(4.10) LUIFE) = 02,
where \i(t) = \/1+;(t). Indeed, let ¢ > 0: if 7,..., 7k denote the jumping times

of the Markov process Z; up to time ¢, then for any positive test function,

B (010 2 D)) =

0 k—1
1 . U
> > (I §Wiz,iz+1)/ D((t5), (i))e"~Voe s 0 (S Waae T ) =t gy gy,
[0,]*

k=0 i1,...,ix =0
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with the convention ;. = t. Hence, for any test function G,

E (G(U)|F7)

fHo G(u)e 2 e HWu)=3 Sy (Sjms Wi e~ )lu(t) V' DW, u)du
Jiy, €% e HW) =5 Tiev (S Wise™ ™ )u®) | /DWW, w)du

Var Y [ Gu)era oo et o W ue s 0N 0) BT, adu
NGT I Jrgg €1t Az = Ty Wis M6 =X N 0) /DT, w)du

recall that (X\;(t));ey are independent of u, and that X;(t) = y/1 + [;(¢). The denomi-
nator is 1 since it is the integral of the density of 2%, This proves (4.10).

Subsequently, by (4.10), conditioned on (F7), if the process Z is at i at time ¢,
then it jumps to a neighbour j of ¢ with rate

1 A(t),s U,—U; ]. X] (t) 1 )\j(t)
_|/]/Z. BV J iy — _|/]/Z. - — _|)|/Z. . .
2 »J (6 ) 2 5J )\Z (t) 2 5] )\z (t)
In order to conclude, we now compute the corresponding rate for Y: by definition,

B/(t) = 1;
2/1+14(t)

Therefore, similarly as in the proof of Lemma 1,
P (Viras = 1F7) = P (Zorioran = JIF7)
1 1 A\i(B~Y(s))
= Wy, J d
2 BB () W (B(s)
= Wy, \(B7(s)) ds.

Let (L;(s)) be the local time of the process Y. Then

(LB = B 0Ly = 51+ L) H g,

This implies L;(B(t)) = /1 + ;(t) — 1 and
P (Varas = 177 ) = Whig(1 4+ Ly(s)) ds

This means that the annealed law of Y is the law of a VRJP with conductances (Wij)-

5. BACK TO DIACONIS-COPPERSMITH FORMULA

It follows from de Finetti’s theorem for Markov chains [10] that the law of the
ERRW is a mixture of reversible Markov chains; its mixing measure was explicitly
described by Coppersmith and Diaconis ([5], see also |14, 25]).

Theorems 1 and 2 enable us to retrieve this so-called Coppersmith-Diaconis formula,
including its de Finetti part: they imply that the ERRW (X, ),en follows the annealed
law of a reversible Markov chain in a random conductance network z; ; = VVZ-,jeU’iJFUJ
where W, ~ Gammal(a.), e € E, are independent random variables and, conditioned
on W, the random variables (U;) are distributed according to the law (3.1).
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Let us compute the law it induces on the random variables (z.). The random vari-
able (x.) is only significant up to a scaling factor, hence we consider a 0-homogeneous
bounded measurable test function ¢; by Theorem 2,

E (¢((z)))

1 1 aw
= — o(x) ere_We e'ion/D(W, u)e_H(W’“)—du
Vv 27TN ! R¥ xHo eel_g F(a'e) w
where we write dv‘(,V =1l.cr d”if Changing to coordinates w; = u; — u;, yields
. - AW
C(a) / )| [ Weee™e | e o™/ DWW, a)e WD —du
REXRV\{Z'O} cCE |14
with dii = [T, 4 and C(a) = — b (HeeE i ) But
1 _ _ _
> W.— HW,u) = -5 D Wit (e 4 e
ecl {i,j}€E
The change of variables
(@i = Wize"™ ™) jer, (v = €7 iev\(io}) »
with v;, = 1 implies
—ZW H(W,u) = ——szxz,
e€el IS
where ; = >, ;2 ;, and E (¢((z.))) is equal to the integral
o 1 " dx. dv;
'(a) /¢ (H :17“6> (H v; +1)/2> (I D(z)e 2 Ziev vits (H 5 ) (H U—U> ,
ecE eV ecE ¢ itip
with a; = >, jmi @iy, D(x) is determinant of any diagonal minor of the N x N matrix

L5 if i #j
- ZkNi Tik if i = J

, B 2—N+1 L
Cla) = Vo (}EIE F(ae)> '

Let eg be a fixed edge, we normalize the conductance to be 1 at eg by changing to

variables
X
(ye = _6) ) (Zi = xeovi)iev )
TLeg e#ep

with y., = 1. Now, observe that

d e d i d e d 1
() ()= (o) (),
eckl 1#10 ecE e#eq eV

We deduce that E (¢((x.))) equals the integral

a; 1 1 . (d d
C(a) /Rifo\{eo} ¢(y) (H y?) (H zib/z) 22/ D(y)e 2 Ziev i (gy) (72) :

eeE eV

Mmij =

and
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with dy—y = [Tose, dyye and dz = HZEV —t. Therefore, integrating over the variables z;
f_Tleenye dy
E ) =C" / : celb e D(y) [ —
W) =@ [, 0 (Hievyz““*”/z W ().

where
21=N=Tecr ae T(aiy/2) [Tz, T((a: + 1)/2)

w(N=U/2 [leep Iac)
which is Diaconis-Coppersmith formula: the extra term (|F| — 1)! in [14, 11] arises

from the normalization of (z.)cep on the simplex A = {d z. = 1} (see Section 2.2

11,

C//( )

6. THE SUPERSYMMETRIC HYPERBOLIC SIGMA MODEL

We first relate VRJP to the supersymmetric hyperbolic sigma model studied in
Disertori, Spencer and Zirnbauer [13, 12|. For notational purposes, we restrict our
attention to the d-dimensional lattice, that is, our graph is Z¢ with z ~ y if |[z—y|; = 1.
Let us add a vertex § connected to 0, that is, consider the graph with vertices Z¢U{d}
with an extra edge {6,0}.

Assume that we are given positive conductances on the network : in order to be
closer to [13, 12|, we denote by 3,, = W, the conductances on the edge {z,y}, if
z,y € Z% and € = W5 the conductance on the edge {0,6}. Note that VRIJP on Z?

and on Z? U {0} are easy to compare.

For any connected finite subset V C Z? containing 0, let ,uf,’ﬁ be a generalization of
the measure studied in [12] (see (1 1)-(1.7) in that paper), namely

H 27T Zkevtke_FV(Vt)e_M\s/(t) \ /det A%/

iev
ZEHV \/% —FV Vt E(t)m
where A, = A® and D5, = D¢ are defined by, for all 4, j € V', by
0 li—jl>1
A5 = e Djel = § —elith li—j] =1

iji ﬁij€ti+tj + €€t0 ]IZ':() 7 = ]

Fy(Vt):= > By(cosh(t; —t;) — 1)
i,jEN{i,j}EE
M (t) := e(coshty — 1).
The fact that ,u}:/’ﬁ is a probability measure can be seen as a consequence of super-
symmetry (see (5.1) in [13]).

Set V. = V U {d§}. Let us again use notation (U;),.; for the limiting centred
occupation times of VRJP on V starting at ¢, and consider the change of variables,
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from H, into RY, which maps u; to t; := u; — us. Then, by Theorem 2, for any test
function ¢,

1
B (6 = U9) = v / O — ug)e*se 0 /DT, 0) du
1

27T)N/2/ o(t) Yiss ti o= H(W:) /D(W,t) <H dti>

1#£6
= 137 (6(1),
which means that U —Ujy is distributed according to ,u‘%}ﬁ . Indeed, let ¢« be the canonical

injection RV ~—>~]RV; then Aj, is the restriction to V' x V of the matrix M (W, (t))
(which is on V' x V') (so that det A5, = D(W,w(t))), and Fy (Vt)+ M (t) = H(W,w(t)).

Set, for all 5 > 0,
< odt —B(cosh t—
Ig = \/5/ —c Bleosht—-1)

which is strictly increasing in (.
Let 3¢ be defined as the unique solution to the equation
I50e% D (24 — 1) = 1
foralld > 1, 3¢ := c if d = 1.

If the parameters 3, are constant over all edges e, equal to 3, then Theorem 2 in
[12] readily implies that VRJP over any graph Z? is recurrent for 3 < 3¢ (i.e. for
large reinforcement).

Theorem 3 (Disertori, Spencer [12|, Theorem 2). Suppose that 5. = 3 for all e, and
that 0 < 3 < 3%. Then there exists a constant Cy > 0 such that, for all v € 74,

17 (e12) < Cy [15e7C2) (24 — 1)]

the inequality being independent of the size of the finite connected subset A C Z4
containing 0.

Corollary 1. For 0 < 3 < 3¢, the VRJP on Z% with constant conductance 3 comes
back to O infinitely often.

Proof. We consider the VRJP on Z? with an extra point § connected to 0 only, and
conductances W, , = 3 and Wy s = 1. The recurrence of this process is equivalent to
the recurrence of the VRJP on Z¢ itself.

On finite size box V', we know from Theorem 2 that (Y},),en, the discrete-time
process associated with (Yj)s>o, is a mixture of reversible Markov chains with con-

_ AQutett 1,5
ductances ¢, , = fe'*"v, where (t,),cv has law ).

Now Theorem 3 implies that i’ ((ce/cs0)/*) decreases exponentially with the dis-
tance from e to 0: indeed, by Cauchy-Schwarz inequality,

“%/’ﬁ((cr,y/%p)l/[l) < [M%}ﬁ(6t”/2)u%,’ﬁ(e(ty—t0)/2)]

< C[M%}ﬁ(etzﬂ)ﬂlﬁ( (Cosh(to) )ty/gﬂ
i|1/2

1/2

1/2

< 20 [l )
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for some C' > 0 such that |z| < 4logC + cosh(z) —

This implies, similarly as in [22] Section 9, that the probability to leave the ball of
radius n before coming back to 0 is exponentially decreasing. A simple argument (see
[17]) then ensures that (Y;,) comes back infinitely often to 0. O

By Theorems 1 and 2, ERRW corresponds to the case where (f.)ccp(q) are inde-
pendent random variables with Gamma(a) distribution for some parameter a > 0: it
is natural to try to infer a similar result for a small enough.

This requires an extension of Theorem 3 for general weights (3. )ccr(q): We propose
one in the following Proposition 2, in the same line of proof as in [12].

Proposition 2. Let I, be the set of non-intersecting paths from 0 to a vertex x in
V. Forallz eV,

i (¢41) < VE Y etareriensamns L [T 1y,
Y€l eEy
where A, and A5 are respectively the set of vertices in the path and its complement.

We can then sum up the upper bound from this result over the random variables
(Be)eck(c), assuming they are random i.i.d. and E (eﬁ”’y) < 0o: this implies recurrence
of VRJP in the ii.d. random environment 3, ~ Gamma(a,p) for any g > 1 and a
small enough, but does not cover the case = 1 of the ERRW.

Proof. (Proposition 2) Let us define, for all ACYV,

(1) 1= T L e (50 M50,
€A 2W

which is not a probability measure in general.

Let I', be the set of non-intersecting paths from 0 to x. For notational purposes,
any element 7 in I', is defined here as the set of non-oriented edges in the path. We
let A, and AZ be respectively the set of vertices in the path and its complement.

First observe that, similarly to (3.1)-(3.4) in [12], Lemma 2 in that paper implies
det D = ce™'= Z H B, det Di%,

vl e€y

g i=¢&;+ Z ﬁ{i,k}etk.

kel {i,k}eE

Let us define, similarly as in (2.12) and (2.14) in [12],

ZV% (t,y) = V/E\g <M€_FBV(VU)

Fy,(Vt) := > Bij(cosh(t; — t;,) — 1).

{j.k}EE,jEA kZA,

where
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Now

pi (e+/2) = vi? (Ve Dyer) = e’ || [ T] e det Di.
vl e€y
(6.1) < \/g Z H \/Beyja\ﬂ, (Zﬂyg(tv)) )

yel'y e€y

ra ’y xZ

Now Z].(t,) approximates the normalization constant
s

Zi = 1= (\fdet D3, ).

with the difference that, in the former, the measure considered is v° instead of v*,

and there is a multiplicative factor e=¥2+(V¥) (which is helpful, since we aim to upper

bound Z}. (t,)). The following lemma, which adapts Lemma 3 [12], provides an upper
Y

bound of ZX% (t,); its proof is very similar, and is left to the reader.
Lemma 5. For any configuration of {ty s.t. k € A}, Z}.(t,) < o210} EB €Ay iy Pid
Y
We combine (6.1) and Lemma 5 to conclude. O
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