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with a relation to Gene Regulatory Networks

Jan-Ake Larsson?, Niclas Wadstromer?, Ola Hermanson®, Urban Lendahl?, Robert Forchheimer®

%Department of Electrical Engineering, Linkdping University, Sweden
b Karolinska Institutet, Stockholm, Sweden

Abstract

A cell lineage is the ancestral relationship between a group of cells that originate from a single founder cell. For example,
in the embryo of the nematode Caenorhabditis elegans an invariant cell lineage has been traced, and with this information
at hand it is possible to theoretically model the emergence of different cell types in the lineage, starting from the single
fertilized egg. In this report we outline a modelling technique for cell lineage trees, which can be used for the C. elegans
embryonic cell lineage but also extended to other lineages. The model takes into account both cell-intrinsic (transcription
factor-based) and -extrinsic (extracellular) factors as well as synergies within and between these two types of factors.
The model can faithfully recapitulate the entire C. elegans cell lineage, but is also general, i.e. it can be applied to
describe any cell lineage. We show that synergy between factors, as well as the use of extrinsic factors, drastically
reduce the number of regulatory factors needed for recapitulating the lineage. The model gives indications regarding
co-variation of factors, number of involved genes and where in the cell lineage tree that asymmetry might be controlled by
external influence. Furthermore, the model is able to emulate other (Boolean, discrete and differential-equation-based)
models. As an example, we show that the model can be translated to the language of a previous linear sigmoid-limited
concentration-based model (Geard and Wiles, 2005). This means that this latter model also can exhibit synergy effects,
and also that the cumbersome iterative technique for parameter estimation previously used is no longer needed. In
conclusion, the proposed model is general and simple to use, can be mapped onto other models to extend and simplify
their use, and can also be used to indicate where synergy and external influence would reduce the complexity of the

regulatory process.
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1. Introduction

1.1. Cell lineage and control of cell differentiation

All cells in the adult individual are derived from the
fertilized egg cell, and are thus ancestrally related in the
organism. In the cell lineage, cells undergo differentiation
to various cell types and to understand the principles for
this progression from uncommitted to specialized cells is
of importance. The differentiation of cells from pluripo-
tent to specialized cell types is controlled by the genes in
the genome of each cell. With very few exceptions, the
genome, i.e., the collection of genes in the chromosomes,
is the same in all cells, but what endows a cell with its
unique characteristics is the subset of the total number
of genes that is activated in each cell type (Lécuyer and
Tomancak, 2008).

Both cell-intrinsic and -extrinsic mechanisms control
which genes to express in a given situation (Bannister and
Kouzarides, 2005). On the cell-intrinsic side, an impor-
tant regulation of genes is executed by transcription fac-
tors, DNA-binding proteins that control gene expression
by binding to regulatory regions (enhancers and/or pro-
moters) for the different genes, and which can turn the
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gene on or off. The degree of compaction and accessibility
of the DNA in the chromosomes is also a critical com-
ponent in gene regulation, and the DNA can be directly
modified by methylation but also subjected to regulation
by histone proteins, which bind to DNA in chromatin and
in turn can be modified by epigenetic mechanisms. Ad-
ditional control levels for gene expression are regulation
of the stability of mRNAs or proteins. A key aspect of
cell differentiation is also regulation by asymmetric cell
division, where one cell divides to generate two distinct
daughter cells by localizing specific proteins, asymmetric
determinants, to only one of the daughter cells.
Cell-extrinsic modes of gene regulation involve commu-
nication between cells at various distances and levels. Cell-
cell communication mechanisms range from direct cell-
cell interaction mechanisms to more long-range influences,
exerted for example by secretion of ligands from one cell
that bind to and activate cell-bound receptors on other
cells, followed by transmission of these signals into gene
regulatory events in the cell nucleus. When invoking cell-
extrinsic mechanisms, it is also important to consider the
spatial organization of cells in the organism: cells located
next to each other can engage in direct cell-cell communi-
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cation, whereas more distantly related cells can contribute
by production of diffusible factors.

When modelling cell lineage it is important to have de-
tailed information about a defined cell lineage with regard
both to cell division and the resulting cell types. Given the
size and complexity of most multicellular organisms, trac-
ing of entire cell lineages has proven difficult and has only
been achieved in a few, select cases. The most well under-
stood cell lineage is derived from the nematode Caenorhab-
ditis elegans (C. elegans). This worm is usually a herma-
phrodite (there are males, but they are rare), in the adult
stage approximately one millimetre long, and composed of
less than 1000 cells, not counting the germ cells. Due to its
transparency, it has been possible to use light microscopy
to monitor every cell division in the developing nematode,
and thus deduce the complete embryonic cell lineage (Sul-
ston et al., 1983; see also www.wormatlas.org for images
of the worm and a depiction of the entire cell lineage tree).
More recently, DNA sequencing of the C. elegans genome
has revealed that it contains approximately 20000 genes.

1.2. Models of dynamic gene regulatory networks

A traditional way to model the interactions between
genes in the cell is the so called Gene Regulatory Network
(GRN) description. This is a (directed) graph description
in which the vertices correspond to genes and edges to
transcription factors. Edges are also assigned with a sym-
bol to express whether transcription factors act as activa-
tors (+ or a normal arrowhead |) or repressors (— or a bar
as arrowhead 1), see Fig. 1. The synergy between these
transcription factors (whether they combine in a linear or
nonlinear way) is usually defined separately. Examples of
recent GRN models are Platzer and Meinzer (2004) and
Oliveri et al. (2008). Although such a graph gives a very
informative map of gene relations it does not tell about
the dynamics of the system, and therefore has limitations
in its use.

Early models that included dynamics started to appear
in the 1950s and 1960s. These models were differential
equation models (inspired by the chemical model of Tur-
ing, 1952) and binary (Boolean) models (Kauffman, 1969;
Thomas, 1973). Later, also other types of models such
as rule-based and stochastic models were proposed, see
de Jong (2002) and Smolen et al. (2000) for excellent re-
views. Recent examples of modelling work include Platzer
and Meinzer (2004), Geard and Wiles (2005), and Lohaus
et al. (2007). A Boolean model is characterized by genes
that are either on or off, and the expressed transcription
factors are present or not at any specific instance in time.
The set of genes (or transcription factors) are termed state
variables and are collected into a state vector. In the differ-
ential equation models state variables take on continuous
levels. Although other types of models have been devel-
oped, the Boolean models and differential equation models
are still the main types studied today.

The models are generally nonlinear and will therefore
require numerical evaluation. Being dynamic they describe
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Figure 1: Part of gene regulatory network for the specification of the
skeletogenic micromere lineage of the sea urchin embryo (modified
from Oliveri et al., 2008).

the progression of the state variables over time. These vari-
ables typically represent the concentration of factors (for
example, proteins). In the most simplistic case, the vari-
ables are binary valued and the “activation” of a gene and
the corresponding expression of the protein is considered
to be one and the same event (Kaletta et al., 1997; Platzer
and Meinzer, 2004). In reality, levels of mRNA and protein
expression do not always co-segregate, for example as a
result of post-translational regulation of the mRNA. Pro-
tein and mRNA concentrations can thus vary over a wide
range of values and most models today therefore use either
multilevel or continuous values to represent them (Thomas
et al., 1995; Bodnar, 1997; Bernot et al., 2004). When bi-
nary models are extended in this way they are referred to
as multilevel Boolean models. Synergy relations, which in
the binary case can be described by Boolean expressions
(see e.g. Materna and Davidson, 2007; Knabe et al., 2008)
become more complex though as there will be many more
possible factor combinations (see Schilstra and Bolouri,
2003, for a discussion on various cis-regulatory functions).

An important issue concerns the representation of the
time axis. Time may either be assumed to be discrete or
continuous. Discretization may be for a purely mathemati-
cal or computational reason (time is sampled at sufficiently
high rate to capture any nuance of the measured data), or
the sampling interval is matched to some natural period
of the modelled system, e.g., cell divisions.

Typically, binary and multilevel models use discretized
time while differential equation models use continuous time.
However, in the latter case it is straightforward to trans-
late the differential equation into a discrete time difference
equation. It is less common to combine binary (or multi-
level) state variables with continuous time although some
of the earlier proposals were actually such “automata theo-
retic” models (Thomas, 1973, 1978) as well as more recent



proposals such as that of Siebert and Bockmayr (2008).

Several authors have attributed the seemingly robust
behaviour of the error-prone biological process to the fix-
point property found in some non-linear feedback systems
(Plahte et al., 1994; Kaneko, 1997; Furusawa and Kaneko,
1998b,a; Silva and Martins, 2003; Yoshida et al., 2005;
Mochizuki, 2008). By this property is meant that the sys-
tem will eventually reach a final stable state or a cycle
of states (an attractor) even if the initial conditions are
changing or there has been some perturbation during the
process. Depending on the state definition such a fix-point
could correspond to a fully specialized cell or even the for-
mation of the whole organism. The proposal is elegant but
it is usually a non-trivial task to find the non-linear system
which has a set of predefined fix-points.

A crucial issue in cell lineage modelling concerns the
mechanism behind asymmetric division. A simple assump-
tion is that there is a specific factor (”asymmetric deter-
minant”) produced prior to cell division and found only in
one of the progeny cells, (see e.g. Geard and Wiles, 2005).
Such a simple mechanism is however too restricted to allow
modelling of general lineage trees. Instead, two different
factors can be used, one for each progeny cell. A yet more
advanced model may use different asymmetric factors at
different locations in the tree. This is strictly not neces-
sary but could lead to more plausible descriptions from a
biological point of view (Jan and Jan, 1998).

Some works address the relations between cell lineage
and (3D) morphology. If morphological information is
available it can be incorporated into the model, e.g., to
control the influence of extrinsic factors or morphology
(Bodnar, 1997; Bodnar and Bradley, 2001; Platzer and
Meinzer, 2004; Smith et al., 2007). Alternatively, morpho-
logical features such as shape or colouring may be pre-
dicted from the model (see e.g. Furusawa and Kaneko,
2000; Silva and Martins, 2003).

Although most studies today are focused on differential
equation approaches, there seems to be a renewed inter-
est in Boolean models. The rationale is that quantita-
tive knowledge of concentrations is usually not possible to
obtain. Furthermore, the computational complexity of a
Boolean model is lower, making it possible to evaluate rea-
sonably large systems of cells. Examples of recent publi-
cations are Silva and Martins (2003); Bernot et al. (2004);
Platzer and Meinzer (2004) and Siebert and Bockmayr
(2008). Dedicated software packages have been developed
to support the various types of models (Braun et al., 2003;
Albert et al., 2008). Analysis techniques from the elec-
tronic field is also applicable as discussed in Dubrova et al.
(2005). Evaluating a model to see how well it describes a
biological function can be made in many ways. Some mod-
els are "high-level” in the sense that they only attempt
to explain basic phenomena such as oscillatory behaviour
or statistical distribution of factors or cell types (Furu-
sawa and Kaneko, 1998a, 2000; Banzhaf, 2003), other are
closer to known biological processes (Platzer and Meinzer,
2004) or even specific organisms (Bodnar and Bradley,

2001; Davidson, 2006). Related work that aims at estab-
lishing links between gene products and factor contents
in the various cells is also essential to tune the models to
approach “real life” (Bodnar and Bradley, 2001; Howard-
Ashby et al., 2006; Wei et al., 2006).

1.8. Modelling the Caenorhabditis elegans cell lineage

The embryonic C. elegans cell lineage serves as a good
starting point to model cell lineages, and there are several
modelling strategies that can be considered for this type of
study. Notably, Geard and Wiles (2005) applied a state-
continuous, time discrete model. They used additive (lin-
ear) functions to describe both the promotor relationships
as well as the current levels of activation of the genes. The
latter are passed through a sigmoid function to constrain
between 0 (not active) and 1 (fully active). They treat
asymmetric cell division by a “relative position” input that
is not considered part of the internal state, which is asym-
metrically distributed, always to the right-hand daughter.
This input, along with the gene activation in the mother
cell, is used to calculate the gene activation in the daugh-
ter cells. A similar model can be found in Lohaus et al.
(2007), with values ranging from —1 to +1 and where the
asymmetric input only influences one specific gene.

A _different modelling approach is used in Lee et al.
(2008). Here, a probabilistic (Bayesian) network is used to
build relations between gene perturbations and tissue-type
changes. Based on known genotype/phenotype relations
the network was able to accurately predict phenotypical
result of non-trained mutations.

In another report, a Boolean model is introduced to de-
scribe the first two steps in epigenesis, namely determina-
tion of polarity and blastomere fate (Platzer and Meinzer,
2004). The determination of organ identity and morpho-
genesis is not part of the model. Although the model only
uses binary-valued concentrations, the authors manage to
show close agreement between modelled behaviour and the
cell lineage deduced in vivo. While the aim is to closely fol-
low the available transcription factors (which are based on
real protein concentrations measured in the cells at vary-
ing states in the developing phase) at some places in their
model, they have to introduce “pseudo-genes” to account
for inconsistencies in their model. Many of these incon-
sistencies seem to be due to the lack of multiple-valued
concentrations as well as lack of a mechanism for auto-
matic decay of protein concentrations.

Finally, Azevedo et al. (2005) use a Boolean rule-based
model to measure cell lineage complexity. They compare
the complexity of the C. elegans lineage and three other
metazoan lineages, and also use the measure on random
lineages. They find that real lineages are simpler than the
corresponding random lineages and discuss a number of
reasons for this. They conclude with the suggestion that
cell positioning and number poses a constraint that leads
to this behaviour.

The aim of the present study is to produce a model
that can generate the C. elegans embryonic cell lineage,



but that will also have the power to generate cell lineage
trees in general. We aim to include a number of important
characteristics from the cell lineage in our model. First,
cell divisions occur at definite moments in time, which
could be used as a natural discretization; this is naturally
represented in the tree itself. Second, we obviously need
means to account for factor content in the cells and its
production (e.g., transcription). Third, we need a mecha-
nism for symmetric and asymmetric cell division. Fourth,
the various types of differentiated cells (neurons, muscle
cells etc) should be represented in the model. Fifth, not
only the repertoire of transcription factors, but also their
concentrations can influence the gene regulatory output.
Sixth and last, we explore how the use of cell-extrinsic in-
fluence as well as cell-intrinsic regulation including synergy
effects that affect the complexity of the model.

All these aspects have been taken into consideration
when establishing the cell lineage model. We aim to keep
model complexity (relatively) low, without losing descrip-
tive power. This is handled through a modified Boolean
model, here denoted meta-Boolean model, which is able to
handle synergy, decay of concentrations, as well as cell-
cell signaling. Our hypothesis is that, while a traditional
Boolean model is general, our tweaked (meta-Boolean)
model is biologically plausible, and has several features
that makes it useful in the context of currently used mod-
els. In particular, it can be used to investigate whether
the inclusion of cell-cell signaling reduces the complexity
of the resulting lineage descriptions, which would enable a
more detailed analysis of, e.g., the suggestion of Azevedo
et al. (2005).

2. Model construction

We have chosen to model the presence of factors, or
their concentration, not the activity of genes as is the usual
interpretation of a GRN. It is therefore important to note
that we use the notion of Factor intentionally to refrain
from talking about proteins or other specific biological sub-
stances as such. The factors used here are intended to con-
stitute a general framework describing proteins as well as
other substances (e.g., calcium ions), external influences
like cell-to-cell signalling, or even purely physical factors
like external pressure. This is similar to, but slightly more
general in scope than the use of BICs (Biological Informa-
tion Carriers) in Platzer and Meinzer (2004). Further, we
intentionally use the notion of Regulator instead of Gene,
again aiming for a general framework where regulators de-
scribe a process where presence of one factor leads to later
presence of another, rather than the actual physical pro-
cesses involved, say in transcription, synthesis, or degra-
dation.

2.1. Construction of a meta-Boolean model

We must stress that we do not intend to model the dy-
namics of, for example, transcription factors at very low

concentration or their binding to the promotor in the ge-
netic transcription regulation. Nor are we intending to find
steady states of the genetic regulation system. Instead, we
intend to systematize dependencies and control of cell dif-
ferentiation and division at a more coarse-grained level,
governing the emergence of a cell lineage tree. We there-
fore start by using a Boolean representation with yes/no
assignments to statements of the form “factor X has con-
centration in the interval 1 to 2 units.” In what follows, we
will first use a purely Boolean model, but will later extend
this to a model with multiple levels.

It is sometimes argued that a Boolean model is less
powerful than a model with continuous levels (e.g., Smolen
et al., 2000), but as we shall see, for the present purposes,
this is not the case. In fact, when time is discretized,
a model with quantized levels is mathematically equiva-
lent to a model with continuous concentration levels. This
is because it is possible to enumerate the possible levels
at each time in the continuous-level model and use these
as quantized levels in the fully discrete model. Also, we
concentrate on a deterministic model here, and note that
probabilistic effects can be included at a later step using,
for example, Monte-Carlo methods.

The main aim of the present paper is to model cell
lineage, so the process of cell division must be included in
the model. This is usually not done in the gene-regulatory-
network (GRN) models that are common in the field, but
is not difficult to include. For example, in Geard and Wiles
(2005), cell division is the basis for the time discretization
of the model: at every time-step, there is a cell division.
Here, a slightly more general approach is used, by assign-
ing a special factor or factors that initiate cell division.
This can be interpreted as a corresponding biological pro-
cess where a special factor keeps the cell cycle running,
which is in line with the current understanding of how
the cell cycle actually is controlled. Another process that
needs to be included is asymmetric cell division. There are
several biological processes that results in asymmetric cell
division. For example, in the Drosophila embryo a partic-
ularly well characterized asymmetric process invokes the
asymmetric determinant Numb, which is localized to one
of the two daughter cells in an asymmetric cell division
(Gonczy, 2008). It is quite simple to include this in the
model, and the notation is described below.

The choice of notation may seem to be a minor issue,
but an appropriate choice of notation is very helpful in
solving a given problem, while an inappropriate choice may
hide simple solutions from view. Therefore we have chosen
to deviate from the usual notation, by not giving the map
from one time-step to the next as a matrix, as is usually the
case in mathematical representations of dynamic GRNs.
Our choice here will instead be a rule set on the form
“factor A will be present in the next time-step if factor B is
present in the current” (a discussion of rule-set formalisms
can be found in de Jong, 2002).

In most dynamic GRN frameworks, the map from one
set of concentrations to the updated set at a later time



Figure 2: An example tree in canonical form. The root node contains
the factor A, and the leaves contain E, I, K, L, M, N, O, and P,
respectively.

is taken to be linear, limited by a sigmoid function (see
de Jong, 2002, for a discussion of sigmoid functions in GRN
models). This seems to be a severe restriction because it
seems to prohibit synergy effects. In the present model,
we explicitly allow synergistic (multiplicative) influence of
factors, which will enable simplifications in the model in
the form of reductions in the needed number of distinct
factors, and in the needed number of regulator expressions.
We will also see, in Section 5.2, that this is already present
in some GRN frameworks, even though it is not explicitly
visible in the formalism.

2.2. Factor content, transcription, and synergy

We start by defining a mathematical nomenclature to
formally describe a cell lineage tree, factor content, and
factor production (for example, transcription). A tree is a
well-studied object in mathematics, and is in our case rep-
resented by the cell lineage tree. The cells are called nodes
and the connections between a node and its daughters are
known as edges. The terminal cells are denoted leaves,
and the top cell in the tree (the zygote) is called the root
of the tree. The order of the daughters is normally not
important in the mathematical literature, but in a biolog-
ical system the order may be of importance. In the case
where the order is not important, there are several ways
to draw a tree, and there is in this case a standard way to
sort the branches so that the deepest branches are to the
left to the tree. This is known as the canonical form of the
tree (see Fig. 2).

Our initial choice of discretizing time at cell division
is clearly visible in the tree. Each cell has a “factor con-
tent” that describes the properties of the present cell. Of
course, nothing prevents a more fine-grained discretization
of time, in which case a time-step might not correspond to
a cell division, as indicated in Fig. 3a. Our initial choice
of Boolean factors is also visible: in the root, the factor
named A is present and it is not present in any of the fol-
lowing daughters. The regulators of our model produce
factors that are present in the next time-step, and factors
that are not produced disappear.

a) b)

Figure 3: a) The regulator g(B|A) denotes that B is produced if A is
present. b) The regulator g(D|B, C) denotes that D is only produced
if both B and C are present.

To describe the production of factors we have chosen
to use regulator expressions to establish rules on the form
“Factor B will be produced if factor A is present” and the
notation we use is

9(BJA).

The vertical bar is borrowed from conditional expressions
in probability theory where it is read explicitly as “given
that.” The expression would then read “Given that factor
A is present, factor B will be produced”.

This notation makes it simple to write down expres-
sions for synergy effects, where two factors are needed to
produce a third:

9(D|B, ),

where the factor D would be produced only if both B and
C are present, see Fig. 3b.

2.3. Symmetric and asymmetric cell division

We now need to model cell division by assigning a
mechanism in the model that initiates cell division. One
could use one specific factor that initiates cell division, but
since we want to be able to model asymmetric cell divi-
sion, we have chosen to have two specific factors a and b,
with the following characteristics: i) the factors are always
produced simultaneously by rules on the form

g(a,b|E),

and ) the factors a and b immediately induce cell divi-
sion upon production and disappear immediately after cell
division. The process as represented within the model is
indicated in Fig. 4a. This has bearings to proteins in the
real, biological cell cycle, where levels of certain proteins
such as cyclins oscillate during the different phases of the
cell cycle.

It is important to stress that the individual factors a
and b in our model are not intended to correspond to ac-
tual proteins or other chemical substances. Instead they
serve as formal markers of the physical asymmetry ap-
pearing in asymmetric cell division. Such a system lends
support from biology, as in the above described example
where asymmetric distribution of the protein Numb plays
a key role in the asymmetric cell division process in the
Drosophila embryo (Génczy, 2008). In this case, the factor
Numb is uniformly produced in the mother cell, is asym-
metrically distributed during the cell division process, and
can subsequently be found in only one of the two daughter
cells.



a)

Figure 4: a) Cell division as represented in the model by the reg-
ulator g(a,b|E). b) Asymmetric cell division using the regulators
g(a,b|F) and g(B|F,a). ¢) Symmetric cell division using the regula-
tors g(a, b|G), g(B|G,a) and ¢g(B|G, b); alternatively using g(a, b|G)
and g(B|G).

Thus, the mechanism required for asymmetric cell di-
vision would be as follows: production of a factor which
is present only in one of the daughter cells is described by
an expression on the form

9(BIF, a),

which represents a process where production of the factor
B is controlled by presence of the factor F, but after cell
division the factor B is only present in one of the daughter
cells, and not in the other (unless it is produced through
another rule), see Fig. 4b.

In the case of symmetric cell division, both daughters
receive the same content, and the factors a and b are only
needed to account for the division itself as indicated in
Fig. 4c. In what follows, the indices a and b on the edges
will be suppressed, and the distinction will be left-right in
the drawn tree instead.

Remarkably, with the regulator functions that are de-
scribed in Fig. 4b, all cell lineage trees can be generated.
Mathematically, this is because every division is given by
regulators like that in Fig. 4a, and the content of every
daughter as in Fig. 4b. This is true even in the absence of
synergy; the asymmetric division mechanism of Fig. 4b is
all that is needed. There is thus a one-to-one correspon-
dence between a given tree and a list of regulator expres-
sions (and a start node), see the Appendix for a formal
proof.

To construct a given tree, we give each node a name
and identify the name with a (formal) factor. Now if the
node “A” is not a leaf (if it divides) like in Fig. 2, add a
division regulator expression g(a, b|A). For each daughter,
add a regulator expression that produces the content of it,
in Fig. 2 the result is g(B|A, a) and g(C|A,b). For each of
the produced nodes, continue this process; in Fig. 2 this
results in

g(a,blA), g(B|A,a), g(C|A,b), g(a, bB),
g(D[B,a), g(E|B,b), g(a, b|C), g(F|C, a),
9(G|C,b), g(a,b|D), g(H[D, a), g(I|D, b), ...

For the example in Fig. 2, there will be 7 divisions and 14
content specifications, in total 21 regulator expressions,
and to generate the whole tree, the start node and its
content is also needed.

Figure 5: Part of the C. elegans lineage tree. The terminal cell types
are hypodermis (H), nerve (N) and programmed cell death (X). The
intermediate nodes are labeled using the established nomenclature
for C. elegans (“a” for “anterior” and “p” for “posterior” denotes the
post-division cell position relative to the orientation of the embryo,
see e.g., Sulston et al., 1983). The cell names are here used simply
as names of the node-specific factors.

Figure 6: The example tree from Fig. 2 using all the possible reduc-
tions from identifying identical subtrees.

2.4. Cell differentiation and repression

In a biological cell lineage tree, many terminal cells are
of the same type, and are really not unique in the manner
suggested in Fig. 2. If we allow several cells in the tree
to share “name,” or really factor content, we can directly
model cell differentiation. As an example, we can directly
model a part of the C. elegans lineage tree, see Fig. 5
(more on modelling C. elegans in Section 3 below). The
factor assignment is simple and there are 10 factors, 7 divi-
sion regulator expressions, and 14 factor-specific regulator
expressions, for example g(H|Caaaa, a).

Now, returning to the example in Fig. 2 but having
identical terminal cells (leaves), i.e., only considering the
form of the tree, we can see that many cell divisions are
symmetric and some subtrees occur in more than one place
in the tree. We can now perform an assignment of factors
such that cells that have identical subtrees also have the
same factor content (see Fig. 6). This enables a large sim-
plification, in that it reduces the number of factors and
regulators needed to model a given tree. The list of regu-
lators is reduced because all the instances of one subtree
are generated by the same set of regulators. Another re-
duction occurs for symmetric cell division, as described
earlier. In this way, the number of regulators is decreased,
from 21 needed for the assignment in Fig. 2 above, to 5
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Figure 7: The regulator g(I| —A, H) denotes that I is not produced
if A and H are both present but only if H is present and A is not.

(division) plus 8 (content), in total 13:
9(a,b|A), g(BJA, a), g(C[A, D), g(a, b[B), g(D|B, a),
9(F|B, D), g(a, b|C), g(E[C), g(a, b|D), g(E[D, a),
9(F|D,b), g(a, b|E), g(F[E).

The size of this reduced list can be used as a measure of
complexity of the lineage (Azevedo et al., 2005; see also the
notion of “algorithmic complexity” in Geard and Wiles,
2008). However, further reductions are possible, as will be
shown in what follows.

The simplified regulator list above includes several ways
to produce factor F: from the expressions g(F|E), g(F|D, b)
and g(F|B,b), i.e., the factor F is produced if E is present,
or if D or B are present, and then only in the right-hand
daughter. The structure is that of a “logical OR”, which
can be added to the “logical AND” obtained in the discus-
sion on synergy above. The only thing missing to enable
full Boolean logic is negation, i.e., “logical NOT.”

However, it is acceptable to also include “logical NOT”
in the form of repressors within the model, since these
are commonplace in gene regulation in biological systems.
Transcriptional repressors, in contrast to transcriptional
activators, reduce expression of a given gene by binding
to DNA sequences in the regulatory regions of the gene.
It is important to note that some repressors are not con-
stitutively acting as repressors, but can in some situations
switch to become activators, depending on for example the
presence of auxiliary regulatory proteins or the chromatin
status of the regulatory region (Taatjes et al., 2004). This
motivates us to add a general notation to indicate the be-
haviour of each factor; here, a minus sign. A regulator ex-
pression that corresponds to “I'is produced if H is present
and A is not present” would be denoted (see Fig. 7)

g(I| — A, H).

The mathematical theorem described previously shows
that it is possible to represent all trees within the model
even without invoking repressors. This may be surprising,
since repressors seem to be used in many places in biologi-
cal systems (Taatjes et al., 2004). One possible reason for
the presence of repressors in biological systems is that this
may enable a reduction of the required number of factors,
or regulator expressions. Including repressors in the model
is therefore well motivated, even if not strictly needed to
generate general cell lineage trees.

2.5. Modelling complicated factor content
In biological systems, it is almost never only one factor
that is responsible for the division and differentiation of

Figure 8: Another assignment of factors that is more economical
than previous assignments in terms of regulator expressions.

cells. The simple procedure of associating one factor to
each cell in the tree described above is of course a highly
concentrated description in which one specific factor cor-
responds to a combination of real physical factors, or even
different concentrations of the same factor.

For example, the trees in Fig. 6 and Fig. 8 are iden-
tical in form and end-content, but coded differently; the
corresponding regulator list is

g(B|A,a),g(C|A,b),g(D[B, a), g(E[A), g(E[B, a),
g(E[C),g(E[D, a), g(F|E), g(a, b|E),

that is, one for division and eight for content, in total
nine regulators. The assignment in Fig. 8 uses the explicit
choice of letting the factor E control cell division, and also
letting it generate the content of the leaves F, as is evident
in the regulator list.

This simplifies regulation of cell division from five reg-
ulators to one, and generation of F from three regulators
to one, but complicates regulation of the factor E from
two to four regulator expressions. These changes balance
so that the number of content regulators stay the same,
even though those for division decrease considerably.

In the above assignment we have moved the OR part
of the regulation upward in the tree (less F regulators but
more E regulators). Continuing in the same manner, we
can simplify the OR part by letting the nodes in question
contain more factors. We are effectively moving the OR
part to the content of the top node, rather than having it
in the regulator list. The result is shown in Fig. 9, and the
needed regulator list is

g(BJA,a),g(C|A,b), g(D|B, a), g(E|C),
g(E[D, a), g(F|E), g(a, b|E);

six for content and one for division, in total seven. One
OR remains, because of the continuing asymmetric cell
division present in the tree.

Now, evidently, the factor A is not needed anymore if
we allow for synergy, since the only place where B and
C are present simultaneously is when A is present. If we
substitute A for the pair [B,C] in the above regulator list,
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Figure 9: An even simpler regulator list arises from another factor
assignment.

Figure 10: A fully binary assignment is the most economical as re-
gards the number of factors.

we can remove the factor A entirely. This means that
reassigning factors in this manner, we have reduced the
required factors by one. Indeed, we have simplified both
the regulator list and the required factors by assigning a
combination of factors to each node, instead of as before,
using one factor in each node.

Here, the question arises what representation would
use the least amount of factors, using synergy and the ele-
ments from Boolean logic we have established. The answer
is a fully binary representation where each internal state
from Fig. 6 is assigned a binary combination of factors (see
Fig. 10). This representation would use the regulators

g(a,b|A, —E, —F),
g(A|A,—E, —F,a),g(E|A, —E, —F, a),
g(E|A, —E, —F,b), g(F|A,—E, —F,b),
g(a,b|AJE, —F),
g(A|A,E, —F,a), g(F|AE, —F, a),
g(F|A,E, —F,b),
g(a,b|A,E,F,b),

In terms of factors a minimal representation has a num-
ber of factors that is the number of bits needed to binary
represent the node-associated factors; formally,

log, (#Unique subtrees) < #Factors in binary model.

In our example, there are six unique subtrees, so the mini-
mum number of factors is three. The assignment of Fig. 10
is such that the above regulator list can be reduced greatly,
but this is only due to the assignment; there is no guar-
antee that the regulator list is small for a binary repre-
sentation. Furthermore, when this reduction can not be
made, each regulator contains all the factors, either as ac-
tivators or repressors. Biological systems do not, as a rule,
have this property. While this is the absolute minimum,
there is therefore no reason to expect that a biologically
interesting system actually operates in this manner.

It is interesting to note that synergistic combinations of
factors in the nodes can be used (and will be used below)
to reduce the number of factors and regulator expressions
that are needed for each tree. There are benefits from the
perspective of this model in using synergy, in the form of
fewer factors and regulators being required, at the expense
of a slight increase in regulator complexity; benefits that
can be expected to carry over into the biological system.

2.6. Extending to discrete factor concentrations

Returning to the assignment in Fig. 9, the factor con-
tent and its reduction along each branch of the tree seems
to imply that the factor content corresponds to decreas-
ing concentrations of one and the same factor, rather than
many different factors disappearing one by one. In this
language, the combination [C,E,F] corresponds to a high
concentration of F; and that the combination [E,F] cor-
responds to a medium concentration of F, just enough to
initiate cell division; while F itself corresponds to a low
concentration that does not initiate cell division.

Thus, we propose to represent different concentrations
of factors in our model; this is done by using the notation
F? corresponding to the concentration 3 of the factor F.
The unit of concentration can be chosen freely, and this
will be discussed in more detail below. To make our new
notation include the old notation, we write F for F'. The
regulator expressions denote the change in concentration of
each factor, and the changes are added, in contrast to the
binary model which only represents if a factor is present or
not, and the output of more than one regulator expressions
that result in the same product are simply OR~ed together
(added, modulo 2).

The former binary model also had a life-time of each bi-
nary factor of one time step; the corresponding behaviour
here will be to let the concentration decrease by one for
each time-step. We therefore include, for each factor, the
implicit regulator

g(F™h),

which is always active. The concentration levels are bounded
below by zero, no negative concentrations are allowed. The
specific steps are as follows: the model checks what regu-
lator functions are active, decreases the level of each factor
in the cell by one step, and then changes the concentration
as instructed by the active regulator functions.



Figure 11: A factor assignment with two factors and decreasing con-
centration levels.

Concentration changes of factors may also impinge on
asymmetric cell division. This can be achieved by speci-
fying additional reduction of the concentration in one of
the branches, for example, the regulator g(F~'[b) would
make the factor decrease another concentration-level in the
right-hand daughter of each division, in addition to the im-
plicit decrease mentioned above. Note that this regulator
in general does not correspond to transcriptional changes
but rather to processes such as asymmetric distribution.

One assignment that utilizes this fully is presented in
Fig. 11, where there are two factors: one that controls cell
division and another that makes the tree have the appro-
priate asymmetry. The four regulator expressions needed
and their meaning are as follows:

g(a,b|F?): Cell division is initiated if the concentration
of F is two or more.

g(F7'B,b): The concentration of F decreases by one
per time step (implicitly), but is asymmetrically dis-
tributed if B is present.

g(F~'|B%, —F®,b): The concentration of F is even more
asymmetric if the concentration of B is high, unless
the concentration of F is very high.

g(B™2[b): The concentration of B decreases by one per
time step (implicitly) and B is completely asymmet-
ric in that it always goes to the left-hand daughter.

An important observation is that the assignment in
Fig. 11 does not rely on transcription, but only on degra-
dation to reduce the concentration. All factors are present
in the root, and only decreases as time proceeds, so this
asymmetric tree is possible to create without transcrip-
tion. This may be similar to the very earliest stages of
differentiation, where the first cell divisions rely on ma-
ternal mRNA laid down in the egg, and thus can proceed
without de novo mRNA synthesis. When comparing Fig. 6

and Fig. 11, there are obvious correspondences:

A corresponds to [B®, F?J;
B%, F1];

B corresponds to ,

[
[
C corresponds to [F3];
D corresponds to [B, F?]; and
[

E corresponds to [F?].

In other words, the factors from Fig. 6 are represented as
combinations of the two factors at different concentrations
in Fig. 11. The regulator list is simpler, and the list for
Fig. 6 seems to create new factors in each step, (and thus
seems to need transcription), all the while the assignment
in Fig. 11 does not.

It may seem as if the assignment in Fig. 11 reaches
below the minimum of three factors needed to model the
tree, since only two factors are used. This is however not
the case, since we have moved from the binary model to
a model that includes discrete concentration levels. The
possible states in this model are actually many more than
the required six in this case, since we have two factors
that can have five different concentrations each. There
are restrictions as we want the assignment to be plausible
from a biological point of view, but if these are ignored only
one factor at six different levels of concentration is needed.
The details will not be given here since the regulators in
this case do not have the simple decreasing structure as
in the previous example, and are not plausible from the
biological point of view.

As has been discussed earlier, the factors in this model
may or may not correspond to physical proteins. The fac-
tors in this model should be thought of as “meta-factors,”
(hence the name meta-Boolean) and a model factor can
correspond to a combination of several physical factors, a
physical factor at some specified concentration, external
influence such as intracellular signalling, or indeed, even
external pressure. The representation and modelling of
external influence will be further discussed below.

As a final remark, it is immediately obvious that even
for the small example tree we have used here, there is a
very large set of possible factor assignments and regulator
lists. There are even several regulator lists for each factor
assignment. Some of these lists are more plausible from
the biological point of view than others. It is therefore
not likely that a random search through assignments and
regulator lists would yield a biologically relevant model, or
one that is better in that respect than a factor assignment
simply chosen according to some rule. In what follows,
the explicit assignment procedure and reduction of Figs. 2
and 6 will be used, together with ideas for reduction of
factor creation along the line as that used in Fig. 11.



3. Testing the model on the embryonic C. elegans
cell lineage tree

Up to this point, the discussion has been on generic
properties of the model, and it will thus be important to
validate the model on a true cell lineage tree, with vari-
ous differentiated cell types as terminal nodes in the tree.
We will demonstrate usage of the model in the C. elegans
embryonic cell lineage tree, and therefore we first describe
some key aspects of the tree.

3.1. Structure of the C. elegans cell lineage tree

As our example, we will use the C. elegans hermaphro-
dite cell lineage as specified in Sulston et al. (1983). This
lineage tree contains 1341 cells of which 671 are terminal
cells, whereas 670 cells are found in intermediate positions
in the lineage. The terminal cells are post-mitotic, fully
differentiated cells, and many of these cells can be can be
grouped into a few distinct categories with regard to cell
type (muscle, neuron, intestine, hypodermis, ...). Some of
the terminal cells will be eliminated by programmed cell
death, and we count these as a distinct cell type below,
despite the fact that they eventually die. For the purposes
of this example, to demonstrate the presented model, a
coarse-grained grouping of the cell types will be sufficient.
A more detailed tree can equally well be described by the
model, but would be unnecessarily complicated here.

At intermediate positions in the lineage, cells can be
considered identical if they have the same ancestral pedi-
gree and generate the same type of daughter cells. In some
parts of the cell lineage, there are ”sub trees” in the lin-
eage, which are highly related, for example see the muscle
part of the “C” subtree as shown in Fig. 12. Among the
terminal cells of the tree are also 58 cells that will tempo-
rally stop dividing in the embryonic cell lineage, but will
again assume cell division at later stages, and these can
be treated much as the intermediate cells: they belong to
the same group if they eventually generate the same type
of daughter cells.

Of the 670 intermediate cells in the cell lineage tree,
483 cells seem to undergo asymmetric cell division in that
they generate distinct daughter cells. But it is known that
some of the cell divisions that are asymmetric in the tree
(as regards the cell types of the daughters) actually are
internally symmetric cell divisions augmented by external
influence from neighbouring cells. The earliest example of
this in C. elegans is in the second cell division, where the
lineage tree is asymmetric in both divisions, but only the
division in the branch that eventually gives the germ line
is asymmetric (Platzer and Meinzer, 2004, and references
therein).

3.2. An example: the “C” subtree of the C. elegans lineage
tree

The previously shown C. elegans lineage subtree (Fig. 5)
was modelled using an assignment with node-specific fac-
tors, with the exception of the leaves, and this technique
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can be used to model the entire C. elegans cell lineage
tree (as that present at www.wormatlas.org). The result-
ing list of regulator expressions can be found as supple-
mentary material accompanying this paper. However, a
model with node-specific factors is not very useful because
the content of each node is hidden within the node-specific
factor, perhaps representing a combination of physical fac-
tors that give the properties of that particular node. It is
more interesting to look at attempts to reduce the number
of factors, the number of regulator expressions, and above
all, attempts to follow the biological behaviour. We can
have a closer look at this process using a larger portion
of the C. elegans lineage tree than in Fig. 5, but not the
entire tree; we will look at the part commonly labelled the
“C” part, see Fig. 12.

The large number of states in Fig. 12 can be reduced
by identifying the cells that have identical subtrees. This
makes for a reduction from the 51 node-specific factors of
Fig. 12 to a total number of 18, see Fig. 13.

To reduce the factors even further, let us start by in-
troducing a factor C to control the cell division, much as
in the previous example. We want the cell division to
continue for five generations, so the initial amount of the
factor should be 5, as in Fig. 14a. This tree only needs the
regulator expression

g(a,b|C).

It is also possible to let the factor H be created at the high
initial level of C, making all daughters eventually differ-
entiate into hypodermis cells, as in Fig. 14b. To achieve
this, we only need to add the regulator expression

g(H°|C?).

This suffices for producing a completely symmetric tree
that ends in hypodermis cells; indeed, it would so far be
possible to make due with only one factor, and letting a
high level of this factor control cell division. However,
the needed differentiation is easier to achieve within the
model if differentiation is controlled by a separate factor
from that which controls cell division. Note that the levels
of the factor H may be interpreted, not as a high con-
centration that decreases to a specified level, but instead
a low concentration that increases to a stable level (see
Section 5.1), perhaps controlled by some self-regulatory
transcription process not included in the present descrip-
tion.

Now, to create the muscle part of this subtree, we let
the highest level of the factor H produce a high level of the
factor M in the right-hand daughter (see Fig. 14c). To do
this, we need to add the regulator expression

g(MP|H® b).

We now need an additional cell division in the last step
of the muscle part of the tree. There are several options
here, one would be to simply add one level of C at the cre-
ation of the factor M above, or rather, hinder the decrease



Figure 12: The “C” part of the C. elegans cell lineage tree, using node-specific factors, except for the leaves. There are 4 terminal cell
types: hypodermis (H), nerve (N), programmed cell death (X), and muscle (M). This factor assignment requires 51 factors, 79 factor-specific

regulator expressions and 47 division regulator expressions.
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Figure 13: The “C” part of the C. elegans cell lineage tree, using node-specific factors and reduction by identification of equal subtrees. For
example, the two muscle subtrees (ending in M) are identical in differentiation and form and therefore, the assignment here is made so that
both subtrees start with Cap, instead of as in Fig. 12, starting with Cap and Cpp, resp.. The 4 terminal cell types remain, and the factor
assignment requires in total 18 factors, 21 factor-specific regulator expressions and 14 division regulator expressions.

in the step from mother cell to right-hand daughter in
that step. But this makes the cell-division factor C behave
asymmetrically in one step of the process, which seems like
an unnecessary complication. A simpler, more biologically
plausible way to do this would be to let the factor M slow
the rate of decrease of C in the cells. This would mean
that the level of C would decrease in non-integer steps
(see Fig. 15) by using the regulator expression

g(C%4M): C" decreases to C"~%C instead of C" ™1 if M
is present.

Although it may appear that the factor M causes tran-
scription of the factor C, this need not be the case. It may
simply be that the deterioration of the factor C is slower
when the factor M is present, or the cause may be that
the cell division happens more rapidly when the factor M
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is present; that the time-steps in our model happens more
often in real time when M is present.

The slowed decrease of C in the muscle subtree ensures
that the division continues for one more time step. In
the above example, three time steps need to become four,
which means the 3 units of C present at the top node of
the muscle subtree cannot decrease too fast; there needs
to remain at least 1 unit after three time steps to give
another division. This means that the rate of decrease
needs to be less than 2/3 since a larger decrease would lead
to a too rapid decline in concentration. At the same time,
the decrease needs to be strictly larger than 1/2, since
a smaller decrease would make the divisions continue for
too long. The choice 0.6 is somewhat arbitrary (used here
because the decimal expansion is short), but as mentioned
above, even having a slowed decrease on this form is only



Figure 14: Further reducing the representation by a) letting the
factor C control cell division and start at a high level, b) letting the
factor H be created at this high level of C, and c) letting the factor M
be created in the right-hand daughter at a high level of H. Repeated
cells are suppressed in the above images.

one of many choices. This is because of the large set of
possible factor assignments and regulator lists that gives
the same tree, as discussed at the end of Section 2.

Using non-integer levels may seem like a step towards a
level-continuous model, but this is not the case. What we
have done here is to divide the integer levels of C fivefold.
The usual integer levels of C can now be thought of as
5/5 (five fifths) of C, and the added decrease 0.6 can be
thought of as 3/5 of C, so that the levels now are an integer
number of fifths of C rather than in whole units of C. In
a general mathematical tree (that could be infinite), this
could lead to infinite subdivision of concentration levels, or
in other words, to a level-continuous model. This model is
intended specifically for finite-length and usually relatively
short cell lineage trees, and then, there is no such danger.
For this application, the model is still level-discrete.

Now, for the asymmetry of the “C” subtree; the pres-
ence of nerve cells and programmed cell death in the left
half of the tree. This calls for an asymmetric cell division
in the first generation using, say, the nerve cell factor N,
using the regulator function

g(N|C?, a)

Let us continue this with an increase in N in the left-hand
daughter if N is present and the level of C is high enough

g(N*|C* N, a),

going on with a slower increase in the right-hand daughters
if the level of N is high enough and C is present at a lower
level,

g(N1.2|C’ N1'4, b)

Finally, at a certain point, we need the left-hand daughter
to increase the N content, making the terminal left-hand

12

Figure 15: Letting the factor M slow the decrease of the cell division
controlling factor C, note the extra cell division. The factor C%-6
is suppressed from the terminal muscle cells, because we have im-
plicitly assumed that the level 1 is the lowest level where any factor
contributes to the system in any way; level 1 is the threshold below
which the factor has no effect.

daughter a nerve cell. It is actually easiest to let the reg-
ulator be active at the C2 level, because then the result
can be used to control the programmed cell death as well
through

g(N?4C2? N6 a), g(cell death|N3 b).

The expressions involving N are, similarly as above, not
very sensitive to the actual values of the numeric expres-
sions, although they do seem somewhat arbitrary (more
on this in Section 4 below). The resulting tree can be seen
in Fig. 16.

There are several alternatives here, just as in the pre-
vious simple example. For example, the regulator function
involving C* can be made symmetric at the price of intro-
ducing M as a repressor in the later regulator functions so
that the factor N disappears from the muscle subtree af-
ter the first few generations. This would make the muscle
subtrees unequal since the factor N would be present at
the top of one of them. This shows that it is not strictly
necessary to have identical subtrees as hinted in Fig. 13,
but it is possible, and perhaps simpler from one point of
view to have unequal subtrees even if they are equal in
form. On the other hand, it can be undesirable to have
the factor N in the muscle subtree; but we leave this ques-
tion for now. It would be fair to suspect that there is an
almost endless supply of alternatives of this kind, even for
this relatively small part of a lineage tree.

4. Cell-extrinsic factors

In addition to only exploring consequences of altering
cell-intrinsic parameters, it is of interest to also address



Figure 16: The complete “C” subtree, using five factors and nine regulator expressions. Identical branches are suppressed.

how the inclusion of cell-extrinsic factors affects the com-
plexity of the models. Cell-extrinsic factors play a role in
communication between cells and can act on longer dis-
tances, for example in the form of secreted hormones or
growth factors, but also between cells in direct contact,
for example by the Notch signalling mechanism. We will
now have a brief look at cell-extrinsic regulation and how
it can be included in the model. Thus far, if one needs
asymmetry in the lineage tree, the tree needs to be asym-
metric at the top, in the first division. This is evident in
the example above, where the cell death and nerve cells
need an asymmetry already in the very first division. A
cell-extrinsic influence, caused for example by another cell
in the lineage, would make it possible to obtain asymme-
try without having to resort to asymmetric cell division.
Evidence for the importance of cell-cell interaction comes
from many parts of the C. elegans embryonic lineage, as
mentioned one example can be obtained already in the
second cell division (Platzer and Meinzer, 2004).

In the “C” subtree example above, an asymmetry is
introduced already at the first division to enable differen-
tiation to nerve cells in only the left-hand part of the tree.
Deleting the asymmetry in the top division, and the sub-
sequent regulator functions that involve the nerve factor
N will return us to the tree in Fig. 14. At this point, we
have the regulator list

9(a,b|C), g(H?|C?), g(M|H?, b), g(C*#|M).

To return the tree to the desired form, it would be pos-
sible to add (identical) external influence on the two cells
indicated in Fig. 17, and also add the regulators

g(N?|ext. infl.), g(cell death|ext. infl., b).

There are now four different terminal cell types (includ-
ing programmed cell death), each represented with their
own factor, one factor that regulates cell division, and one
that represents the external influence; in total six factors.
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There are also six regulator expressions: one for each inter-
nal factor, and one that controls cell division. We believe
that this model captures the desired behaviour in a natu-
ral way, and is as economical as possible given the need to
control cell division and differentiation into four terminal
cell types, and given the asymmetric structure of the tree.

Incorporating external influence as an element in this
model immediately decreases the complexity in the regu-
lator expressions. It also simplifies the cell content signifi-
cantly, and alleviates the need for a number of asymmetric
divisions, most prominently at the root of the tree. This
suggests that external influence is not only possible, but
necessary to describe a cell lineage tree in a factor- and
regulator-conservative manner. As mentioned above, it is
already known that cell-cell signalling plays a role at the
second division in C. elegans, and suspected to be impor-
tant in subsequent divisions.

We would suggest that the presented model will serve
as a tool to find places in the C. elegans lineage tree where
this external influence is important, where the decrease in
complexity of the model is large. That is, to predict (or
suggest) interesting regions of the embryo where cell-cell
signalling takes place. Another use of the present model
would be to test known extrinsic factors and the simplifi-
cations they enable, as in the C subtree above where the
external influence simplifies the model greatly.

The present model can also be used as a platform for in-
tegration of data derived from models of signaling crosstalk
and information about spatial distribution of cells in C. ele-
gans, to make more definitive hypotheses about the extent
and location of cell-extrinsic effects on the lineage. Re-
cently, a detailed spatio-temporal description of the posi-
tions of cells, and which cells that are engaged in direct
cell-cell contacts has also been published (Hench et al.,
2009). A cursory look at the supplemental data provided
by Hench et al. (2009), although inconclusive at more than
150 cells in the lineage, suggests that one possible exter-
nal influence as indicated in Fig. 17, could be contact be-
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Figure 17: The complete “C” subtree, using six factors (including one for external influence) and six regulator expressions. Identical branches

are suppressed.

tween the cells Caapa, Caapp and ABplapapap. In con-
trast, there appears to be no or very brief contacts be-
tween the ABplapapap cell and other cells in the C subtree
at this level, although this needs to be further analyzed.
This approach can now be used to extend studies like the
one in Fisher et al. (2007) where the intricate intersection
between two cell-extrinsic signaling mechanisms was ana-
lyzed (EGF signaling and Notch/Lin-12 signaling), reveal-
ing novel feedback loops. By combining information from
the model presented here, signaling cross-talk models and
data on the precise spatio-temporal (4D) localization of
cells, refined hypotheses for cell-cell interaction can be for-
mulated and directly tested by various experimental tech-
niques, including laser ablation of specific cells, targeted
expression of RNAi to remove gene function in specific cells
or by analysis of specific gene knock out phenotypes.

5. Comparison with level-continuous, time-discrete
models

It is sometimes stated that a Boolean model has less de-
scriptive power than a continuous model (see, e.g., Plahte
et al., 1994; Smolen et al., 2000). For the purposes here,
this is not the case; we have already noted that the Boolean
model can generate any lineage tree, even without using
synergy, repressors, or external influence. Actually, the
model presented here has the advantage of being simple to
handle, and we have shown that synergy, repressors, and
external influence can be used to decrease the complexity
of the model.

5.1. Discrete concentration levels

Morphogenic activity is often present in biological sys-
tems, so that one factor can induce several cell fates de-
pending on if the concentration is above or below certain
thresholds. Our model naturally includes this behaviour
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Figure 18: Example of quantization of factor concentration at (here
evenly spaced) points in time, in a system with production of the
factor C followed by degradation.

by the quantization used. Indeed, in our model, a quan-
tization of concentration levels is directly invoked by the
natural discretization of the time axis given by cell divi-
sion. In each time frame, any single factor has a well-
defined range of concentration, and thus, natural quanti-
zation to use are for example the highest or lowest point
in the interval, the mean over the interval, or simply a
number that signifies the number of quantized concentra-
tions that are lower than the present concentration (see
for example Fig. 18).

Even rapid fluctuation of the concentration can be han-
dled with this “labelling” of the factor content. Indeed,
it is not limited to the case of a clearly defined level of
concentration, but can equally well be used to model fre-
quency dependence as in intracellular signalling where dif-
ferent signals are transmitted using the same chemical
substance, but where the frequency of the concentration
changes carry the information.

We note that quantization is a drawback in models
where a continuous time coordinate is used, or for example
when analyzing stability of stationary points in a dynamic
GRN. It has been shown that Boolean (or discrete-level)
models are less suitable for that kind of analysis (e.g., in



b)
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Figure 19: A sigmoid function, normally used in a DRGN to limit
the gene expression to the region between 0 (not expressed) and 1
(fully expressed). a) The sigmoid function used here is the commonly
chosen “logistic curve” o(z) = 1/(1+exp(—z)). b) The same sigmoid
function, scaled and shifted. This function is almost y = x between
0 and 1 (dotted line) and limited between 0 and 1. c¢) The same
sigmoid function with a larger portion of the z-axis visible.

Plahte et al., 1994, but see also Smolen et al., 2000), but
in the case of analyzing the structure of a lineage tree
the changes in factor content is the important feature.
Therefore, the present model can be used for this purpose
without loss of generality, allowing for simple modelling of
generic cell lineage trees, including the described reduction
of used factors by using identification of subtrees, synergy
effects and external influence.

5.2. Synergy in a Dynamic Recurrent Gene Network

Another question is if the explicitly introduced syn-
ergy effects in the presented model prevents comparison
with the usual linear framework in some GRN modelling
attempts. In a general GRN, there are usually a number
of synergic influences, but many models for a GRN seem
to prohibit this kind of effects because of the linearity of
mathematical functions used. For example, a Dynamic
Recurrent Gene Network (DRGN) as that used in Geard
and Wiles (2005) and Lohaus et al. (2007) uses a linear
map from one time step to the next. However, there is
a nonlinear function that limits the activity of the genes
in each time step see Fig. 19. We will briefly show here
that this nonlinearity makes synergy effects possible, and
in fact enables full Boolean logic within the model.

To see this, we first need some notation: within the
DRGN, we label the expression of the ith gene at time ¢ by
2;(t) (similarly as in Geard and Wiles, 2005). The level of
expression for gene ¢ at a time ¢ is given by a linear function
of the level of expression of all genes at the previous time
step x1(t — 1), zo(t — 1), ..., limited between 0 and 1
by a sigmoid function. As an example, the expression of
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gene 2 can be influenced by the expression of gene 1 in the
previous time step via

x2(t) = U(4x1(t -1) - 2).

This would yield a value of z5(t) that is almost equal to
z1(t — 1) in the interval zero to one (i.e., almost linear),
but is limited between 0 and 1, see Fig. 19b.

Now, the sigmoid function constitutes an explicit non-
linearity in the model. While this function sometimes is
described as merely restricting the gene expression to the
interval between 0 (not expressed) and 1 (fully expressed),
it was observed already in Walter et al. (1967) that a sig-
moid limitation like this would enable on-off switching, one
basic trait of binary logic. This is evident if we look at a
larger interval of the z-axis, see Fig. 19c.

Using this observation, it is simple to model on-off
switching, for example via

3(t) = 0<20$1(t 1) - 10),

because this means that gene 3 is expressed if gene 1 was
expressed in the previous time step. Furthermore, the OR
of Boolean logic can be represented here via

2a(t) = 0(20951(75 — 1) + 20a5(t — 1) — 10),

where gene 4 is expressed if gene 1 or gene 2 (or both)
were expressed in the previous time step. This might not
be surprising since OR is just a Boolean representation
of addition (XOR is addition modulo 2, OR is upper-
bounded addition). However, the AND of Boolean logic,
corresponding to multiplication (modulo 2), can also be
represented via

5(t) = 0(20951(75 1)+ 20aa(t — 1) — 30).

That this corresponds to logical AND can be verified vi-
sually in Fig. 19¢; gene 5 will be expressed if both gene 1
and gene 2 were expressed in the previous time step, but
not if only one or none of them were. For completeness,
repression (logical NOT) has a natural representation, for
example

zo(t) = a( — 20z (t— 1) + 10),

will give expression of gene 6 if gene 1 was not expressed
in the previous time step.

Some care needs to be taken, for example when combin-
ing an activator and a repressor in an AND expression, but
these are simple to handle. There is, however, one specific
complication that needs to be noted here: the combination
of two ANDs via an OR. This complication is simplest to
illustrate via example, so suppose that we want a gene
to be expressed if (gene 1 AND gene 2) OR (gene 3 AND
gene 4) were expressed in the previous time step. The first
AND is already given above, controlling the expression of
gene 5, and the second AND would be given by

zr(t) = 0(20333(75 — 1)+ 20z4(t — 1) — 30).



But we cannot write
ws(t) = 0(20371(15 — 1)+ 202(t — 1)
+ 2025 (t — 1) + 2024 (t — 1) — 30)7

because that would correspond to expression of gene 8 if
any two of gene 1, 2, 3, and 4 were expressed in the previ-
ous time step. In fact, since the inner expression is linear
in the x;s, we can represent an OR expression or an AND
expression, but not a combination of the two. To handle
this, we need to allow both gene 5 and gene 7 to corre-
spond to the same biological gene. This means that it is
still possible to represent this kind of synergy effect in a
DRGN, but there is a price to pay as an increased number
of gene indices . Indeed, several synergies that activate
the same gene would be possible to model in a DRGN but
this requires the same meta-language (meta-factors) to be
used as in our meta-Boolean model, in this case, several
model genes that correspond to the same biological gene.
In special situations (e.g., when z; and x5 are zero when-
ever 3 and x4 are nonzero), this can be handled without
an increase in model-gene number, but a detailed list of
these situations is out of the scope of the present paper.

A last remark here is that the deviation from the ideal
0 and 1 in these expressions is less than 5 x 107®, so it
would take many time steps (in our case, cell divisions) to
produce a sizable deviation. We also note that the devia-
tion decreases exponentially with the size of the factors 10
and 20 used above.

5.8. Creating a DRGN from a lineage tree

Using these expressions, it is possible to directly create
a DRGN that gives a lineage tree with the correct struc-
ture and terminal cell content. The procedure is simply
to create a Boolean model of the lineage tree using node-
specific factors as in Section 2.4 and translate that into
the DRGN formalism using the maps just mentioned.

As regards asymmetric cell division, for example in
Geard and Wiles (2005), the representation is slightly dif-
ferent than here; instead of our factors a and b, asymmet-
ric cell division is handled by a “relative position” input
I(t) that is 1 when producing the right-hand daughter and
0 when producing the left-hand daughter. Translating to
our notation, the relative position I acts as an activator
on the right and a repressor on the left, so that, for ex-
ample g(C|F,b) corresponds to an AND expression where
the relative position [ is an activator for the factor C,

zo(t) = a(?OI(t 1) 4+ 20zp(t — 1) — 30)

(where the numeric indices of the factors C and F should be
substituted). Similarly ¢g(B|F,a) corresponds to an AND
expression where the relative position input I is a repressor
for the factor B,

en(t) = a( — 20I(t— 1)+ 20ap(t — 1) — 10).
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We note that the node-specific assignment will give a
DRGN that generates the correct tree in terms of structure
and differentiation, and that this procedure does not need
iterative search techniques like the one used in Geard and
Wiles (2005). Unfortunately, the produced DRGN will
contain many node-specific factors that will hide the bi-
ological factor content, and this is not desired. It seems
much more fruitful to use the reduced representation from
Section 2.6 representing discrete concentration levels of the
factors, and from that derive the map to use in a DRGN to
get from one time-step to the next. This map is less imme-
diate to produce, but the proposed formalism is promising.

6. Conclusions

We have presented an extension of the classical Boolean
model, the “meta-Boolean model”, aimed at handling cell
lineages. The additions are primarily related to mecha-
nisms that control factor levels, cell differentiation and cell
division. We have further discussed how the complexity of
the model in terms of number of factors and regulators is
influenced by different assumptions such as the use of re-
pressors, AND-OR cis-regulatory logic, multiple levels, the
additional mechanism for factor level changes and external
factors.

A benefit of the model is that it is simple to handle and
that it allows direct description and generation of large cell
lineage trees. The model can easily incorporate external
influence from other cells or the environment. This will be
very beneficial when modelling more complicated processes
such as the competitive interaction between cells generated
along the mid-line of the C. elegans embryo (Geard and
Wiles, 2005; Sulston et al., 1983).

It is often stated that Boolean (or discrete-level) mod-
els have less expressive power than continuous-level mod-
els. This is true when discussing stability and features that
depend on low-level description of the biological processes,
but when used to study differentiation, the present model
is general in the sense that it it can be used to describe
any cell lineage tree.

The new model has been applied to the C. elegans cell
lineage tree. Explicit results concerns the trade-offs be-
tween the number of regulators and extrinsic factors, in the
C subtree. The model is also capable of giving indications
regarding co-variation of factors, number of involved genes
and where in the cell lineage tree that asymmetry might
be controlled by external influence. We would suggest that
the presented model will serve as a tool to find places in
cell lineage trees where this external influence is important
(e.g., in C. elegans), where the decrease in complexity of
the model is large. In combination with a spatio-temporal
description of cell positions, it can be used to predict (or
suggest) interesting regions of the embryo where cell-cell
signalling takes place. Adding knowledge on known modes
of external signaling would enable direct tests, for exam-
ple through laser ablation, RNA interference, or usage of
knock out phenotypes.



We have furthermore shown that the model is capable
to emulate linear differential/difference models capped by
a sigmoid function. Even though these latter models may
at first seem to be essentially linear, the use of a nonlinear
limiting function enables synergy within the models, at the
price of a possible increase in the number of model factors.
In our Boolean-based model, such synergy is directly in-
cluded rather than being an effect of a limiting function.
Having established a dependence (synergic or not) in the
present model, it is simple to translate into the language of
a difference-equation model. Thus, the model can also be
used as a tool to design more complex difference-equation
models.

The proposed model is quite general and more work
is needed to find biologically plausible constraints while
still retaining the generality. In particular, the factors and
regulators have only been addressed formally in this paper,
and some effort is still needed to match these theoretical
constructs to known biological counterparts.

In conclusion, we believe that the model and the asso-
ciated terminology presented here is a powerful tool and
can serve as a platform for more detailed mappings of the
biological factors that control cell lineage creation, synergy
and external influence.

Appendix: The model is general

Here we briefly give a mathematical theorem showing
that any cell lineage tree can be generated with our model.
A cell lineage tree with node-specific labeling is known as a,
“labeled ordered rooted complete binary tree” (the nodes
have unique labels, there is a natural left-right order of
the daughter nodes, the tree has a natural starting point,
all parent nodes have two daughters). We use the model
as described in Section 2.3 restricted to the regulator ex-
pressions of Fig. 4a-b. The following result can now be
obtained.

Theorem: Any labeled ordered rooted complete binary
tree can be generated from the root node by using an ap-
propriate list of regulator expressions.

Proof: We must first establish the list of regulator ex-
pressions. For each intermediate node in the tree, add
three regulator expressions:

g(a, blz), where z is the label (the node-specific fac-
tor) of the current intermediate node;

g(y|z,a), where y is the label of the left-hand daugh-
ter;

g(z|x,b), where z is the label of the right-hand daugh-
ter.

The procedure to generate the tree is now the following:

0. Start with the root node;

1. try to find g(a,b|x) in the list of regulator expres-
sions, where z is the label of the current node;

2. if successful,
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(a) then there are expressions ¢g(y|z,a) and g(z|x, b)
in the list; use these to generate the daughters
and their labels;

(b) perform steps 1 and 2 for the left-hand daugh-
ter;

(c) perform steps 1 and 2 for the right-hand daugh-
ter.

This procedure will recursively go through each intermedi-
ate node in the tree and expand it. Each branch will stop
only at a terminal node; the procedure will generate the
entire tree from the starting node. d
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