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ABSTRACT 

Complement is an essential component of innate immunity and a major trigger 

of inflammatory responses. A critical step in complement activation is the formation of 

the C3-convertase of the alternative pathway (AP), a labile bimolecular complex formed 

by activated fragments of the C3 and factor B components that is fundamental to 

provide exponential amplification of the initial complement trigger. Regulation of the AP 

C3-convertase is essential to maintain complement homeostasis in plasma and to 

protect host cells and tissues from damage by complement. During the last decade, 

several studies have associated genetic variations in components and regulators of the 

AP C3 convertase with a number of chronic inflammatory diseases and susceptibility to 

infection. The functional characterization of these protein variants has helped to 

decipher the critical pathogenic mechanisms involved in some of these complement 

related disorders. In addition, these functional data together with recent 3D structures 

of the AP C3-convertase have provided fundamental insights into the assembly, 

activation and regulation of the AP C3 convertase. 
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1. THE COMPLEMENT SYSTEM 

Overview 

Complement is a major component of innate immunity with crucial roles in 

microbial killing, apoptotic cell clearance, immune complex handling and modulation of 

adaptive immune responses [1, 2]. The complement cascade is triggered by three 

activation pathways, the classical pathway (CP), the lectin pathway (LP) and the 

alternative pathway (AP), which converge in the central and most important step of 

complement activation: the cleavage of C3 to generate the activated fragment, C3b. 

The critical step in these activation pathways is the formation of unstable protease 

complexes, named C3-convertases (C3bBb in the AP; C4b2a in the CP/LP). When 

C3b is generated, a reactive thioester is exposed which is attacked by nucleophiles 

(such as amine groups) on adjacent surfaces, resulting in covalent binding of C3b to 

the surface, targeting it for destruction and initiating inflammation. The efficacy of the 

complement cascade depends on the AP C3 convertase amplification loop in which the 

C3b generated by the convertase forms more AP C3-convertase and provides 

exponential amplification to the initial activation (Figure 1) [3].  

In contrast to the CP and the LP, whose activation is triggered by immune 

complexes and bacterial mannose groups, respectively, the AP is intrinsically activated. 

Spontaneous activation of C3 in plasma occurs through the “tick-over” mechanism, 

which is initiated by the generation of a fluid phase C3b-like molecule, called C3i or 

C3(H2O), by aqueous hydrolysis of the internal C3 thioester [4]. Activation of C3 may 

also occur by continuous low rate cleavage of C3 to C3b by plasma proteases [5]. The 

balance between the rate at which the initial trigger is amplified and the degree to 

which C3b and the AP C3-convertases are inactivated, determines the progression of 

the complement cascade to cell damage and death. Foreign substances on microbial 

pathogens (alternative pathway; AP), antibodies (classical pathway; CP), or mannan 

(lectin pathway; LP), tip the balance in favor of amplification, causing target 

opsonisation. The complement system includes other proteins, such as properdin, 
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which stabilize the AP C3-convertase and serve as a focal point for promoting local 

amplification of complement [6]. The lytic pathway fires when the AP C3-convertase 

incorporates one additional C3b molecule, which creates the C5-convertase and 

switches substrate specificity from C3 to C5, a C3 homologue. C5 cleavage triggers 

inflammation through production of C5a, leukocyte recruitment and initiation of 

membrane attack complex (MAC) formation. The MAC contains C5b plus the 

complement components C6, C7, C8 and C9, and lyses cells by punching holes 

through the membrane [7]. 

 

Complement and disease  

In health, activation of C3 in the blood is kept at a low level and deposition of 

C3b and further activation of complement is limited to the surface of pathogens. 

Dysregulated complement activation in inflammatory diseases can damage self-cells 

and contribute to pathology. Complement is implicated in a long list of diseases [8], 

including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), 

glomerulonephritis, multiple sclerosis (MS), ischaemia/reperfusion injury and 

transplantation, in each of these diseases complement acts to sustain the 'vicious 

cycle' of inflammation and perpetuate tissue damage. In recent years, several reports 

have established that dense deposit disease (DDD) [9-12], hemolytic uremic syndrome 

(HUS) [13-22] and age-related macular degeneration (AMD) [23-32], are each 

associated with mutations or polymorphisms in the components and regulators of the 

AP C3 convertase (Table 1). These disorders are considered prototypic diseases 

caused by complement dysregulation. 

 

Hemolytic uremic syndrome. HUS is a rare disease characterized by renal 

endothelial cell injury and thrombosis (thrombotic microangiopathy), resulting in 

hemolytic anaemia, thrombocytopenia and renal failure. Typically, HUS follows 

infections by enterohemorragic E coli (EHEC) and has a relatively good prognosis. In 
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contrast, atypical forms of HUS (aHUS), not associated with EHEC, affecting both 

adults and very young children, have a very poor long-term prognosis with more than 

90% of the cases ending in end stage renal disease (ESRD) [33]. Recurrence of aHUS 

in the grafted kidneys is common with a mortality rate which approaches 30%. 

Mutations or polymorphisms in complement genes are the main genetic risk factors 

contributing to aHUS. In fact, analysis of the genes encoding the complement AP 

proteins factor H (fH), factor I (fI), membrane cofactor protein (MCP), C3 and factor B 

(fB) reveals a genetic defect in at least one of these in approximately 50% of the aHUS 

patients [34]. Functional characterization of many of these mutations has established 

that they cause complement dysregulation which affects primarily the protection of 

cellular surfaces from complement activation. When complement activation is triggered 

in carriers of these aHUS-associated complement mutations, deposition and 

amplification of C3b on the cellular surfaces in the microvasculature cannot be 

controlled, resulting in tissue damage and destruction. Importantly, complement 

dysregulation may result from either a defect in the regulatory proteins (i.e., loss-of-

function or expression mutations in fH, fI or MCP) or the AP complement components 

(i.e., gain-of-function in C3 or fB). In addition to rare mutations, common 

polymorphisms in fH and MCP are also associated with aHUS and contribute to the 

genetic predisposition, either by increasing risk or conferring protection [35, 36].  

 

Dense deposit disease. DDD is a rare form of glomerulonephritis which affects both 

children and young adults and frequently results in ESRD [37]. The morphologic 

hallmark of DDD is the presence of dense deposits within the glomerular basement 

membrane (GBM), as resolved by electron microscopy. The chemical composition of 

the dense deposits is largely unknown. Notably IgG is absent from them and other 

regions of the glomerulus, which excludes a role for immune complexes in dense 

deposit formation. DDD is associated with complement abnormalities which lead to 

intense deposition of C3 in GBM and persistent reduction of C3 serum levels. Familial 
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cases of DDD are exceptional but extremely informative. They have revealed mutations 

in fH and C3 associated with DDD which demonstrated that control of complement 

activation is impaired in DDD patients. As with aHUS, dysregulation of the complement 

system may result from loss of activity of the complement regulatory protein fH or may 

also be a consequence of mutations that increase the activity of the AP C3 convertase. 

The functional characterization of human DDD-associated fH and C3 mutations [11, 38] 

and previous studies in animal models [39-41] have provided conclusive evidence that 

fluid phase complement dysregulation, resulting in the continuous generation of C3b in 

plasma, plays a major role in DDD pathogenesis. 

 

Age-related macular degeneration. AMD is the most common causes of visual 

disability in the elderly in developed countries. The hallmark of early-stage disease is 

the development of drusen, lipoproteinaceous deposits localized between the retinal 

pigment epithelium (RPE) and Bruch´s membrane. Later, an extensive atrophy of the 

RPE and overlaying photoreceptor cells (geographic atrophy, GA) or aberrant choroidal 

angiogenesis is observed. This choroidal neovascularization (CNV) under the macular 

area is the leading cause for blindness. Although the pathogenesis of AMD is still 

unclear, it has been proposed that the inflammatory response plays an important role in 

its development [42]. The contribution of genetics to the development of AMD is 

considerable, representing as much as of 70% of the total predisposing factors. Two 

major AMD susceptibility loci (1q31, CFH, and 10q26, LOC387715/HTRA1) which 

independently contribute to AMD disease risk have been identified by candidate region 

linkage studies and whole genome association analyses [23, 26, 27, 29, 43]. The first 

of these susceptibility loci is in the coding region of the fluid phase complement control 

protein, fH, implicating complement in disease etiology.  Indeed, these initial findings 

have been followed by a number of reports establishing additional genetic associations 

between a number of common polymorphisms in other complement genes and AMD 

[24, 25, 28, 30-32]. Interestingly, many of these complement polymorphisms are also 
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associated with aHUS and DDD, demonstrating that complement dysregulation is a 

common link between these pathologies. However, in contrast to aHUS and DDD, the 

precise functional alterations in complement which lead to AMD remain unclear. 

In the following sections, we will describe how the functional characterization of 

the complement genetic variations associated with disease has provided insights into 

the underlying pathogenic mechanisms of disease. Importantly, these data also provide 

important insights into structural aspects of assembly and regulation of the AP C3 

convertase. 

 

2. THE AP C3 CONVERTASE  

The components of the AP C3 convertase 

The generation of the AP C3-convertase begins in vivo with the interaction 

between C3b (or the C3b-like molecule C3(H2O)) and fB, in a Mg2+-dependent manner, 

to form the pro-convertase C3bB (or C3(H2O)B). In the presence of factor D (fD), fB is 

cleaved and the N-terminal Ba fragment is released from the C3bB complex, resulting 

in the active AP C3-convertase, C3bBb (or C3(H2O)Bb).  

C3 is a large protein of 190 kDa composed of two polypeptides chains of 115 

and 75 kDa, respectively. The crystal structure of native C3 has been resolved at 

atomic resolution using X-ray crystallography [44], and reveals an intricate 

arrangement of 13 domains, including an anaphylatoxin domain (ANA; C3a), a small 

link (LNK) domain, a core of eight homologous macroglobulin domains (MG1-8) 

forming a ring (MG-ring), a CUB domain connecting this ring with a TED domain that 

contains the reactive thioester, and the C345C domain (Figure 2). As indicated above, 

the reactive thioester is shielded in native C3 so that it is not accessible. Activation of 

C3 into C3b (or C3(H2O)) induces a huge conformational displacement of the TED 

domain exposing the reactive group to nucleophilic reagents such as hydroxyl or amine 

groups [45-47]. Release of C3a (ANA domain) from the alpha chain of C3 generates a 

novel C3 domain termed α′NT.  
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The α′NT and C345C domains in C3b include binding sites for fB required for 

the AP C3 convertase formation [48-50]. These domains are located in a part of the C3 

molecule which undergoes large rearrangement upon activation of C3 into C3b [45],

which explains why C3 does not interact with fB.  Similarly, structural analyses have 

suggested that formation of the AP C3-convertase probably depends on the structure 

and orientation of the CUB domain of C3b and that the interaction between C3b and fB 

is independent of the TED domain [51].

fB (90 kDa) circulates as an inactive pro-enzyme in plasma. It is composed of 

five structural domains. Three short consensus repeats (SCRs) at the N-terminus 

comprise the Ba fragment, whereas the large Bb fragment at the C-terminus is 

comprised of a von Willebrand type A (VWA) domain followed by a serine-protease (SP)

domain (Figure 2). Mutagenesis analyses of fB have revealed a number of residues 

near the Mg2+-dependent metal ion-dependent adhesion site (MIDAS) and in the 1

helix in the VWA domain of the Bb fragment which mediate the initial recognition of 

C3b by fB [52-54]. This initial interaction also involves contacts between C3b and the 

SCR1-3 domain (Ba propeptide segment) [55-58]. 

Activation of the AP C3 convertase

The crystal structure of human fB, recently resolved at 2.3Å resolution, 

demonstrated that the Ba domain is not extended but folded back onto the Bb domain 

(Figure 2) [59]. These structural data also indicated that the first SCR likely hinders 

access of the ligand C3b to the MIDAS of the VWA domain and that the triad of SCR 

domains is probably only weakly associated with the VWA and SP domains. Most 

interestingly, comparison of the fB pro-enzyme [59] and the Bb fragment [60]

structures, led to the suggestion that fB must undergo conformational changes upon 

binding to C3b, so that the long linker domain between SCR3 and the VWA domains of 

fB, which contains the scissile bond, becomes accessible to fD [59, 60].
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Very recently, better insight into the mechanisms leading to C3-convertase 

assembly and activation have been obtained thanks to the combination of high 

resolution studies by X-ray crystallography and medium resolution electron microscopy 

(EM) studies [59, 61-64]. These analyses have shown that fB binds to C3b in the 

closed conformation of the pro-enzyme through interactions involving both the VWA

and the SCR domains (Figure 3). The VWA domain binds C345C whereas residues 

located in the SCR1-3 domain contact the ‟ NT region, MG2, MG3, MG7 and CUB 

domains. The SP domain does not contact C3b. After this initial loading, a large 

conformational change occurs in fB, opening its structure and generating an “activated” 

conformation where the scissile site is likely accessible to fD (Figure 3). Upon cleavage 

by fD and release of the Ba fragment, the active AP C3-convertase C3bBb is 

maintained by interactions between the C345C and VWA domains of C3b and Bb, 

respectively. The Bb fragment projects outwards from the complex so that the SP 

domain is far from contacting C3b [59, 61, 63]. Additionally, the EM structure of the C3 

convertase suggests that some conformational flexibility of the C345C-VWA-SP 

arrangement permits the accommodation of the C3 convertase to the substrate so that 

the SP domain can reach and cleave C3 [63] (Figure 5B). 

Disease-associated mutations and polymorphisms in the AP C3 convertase 

components

Factor B mutations are characteristic of a subgroup of aHUS patients showing 

persistent activation of the AP [16, 65]. Four of these mutations, D279G, F286L, K323E 

and K350N (all amino acids are numbered from the initial Met), have been functionally 

characterized and are gain-of-function mutations that result in enhanced formation of 

the C3bBb convertase or increased resistance to inactivation by complement 

regulators [16, 65] (Figure 4). Proconvertase (C3bB) formation by mutant fB-286L is 

much enhanced, producing more active enzyme in vivo than the normal fB-286F allele. 

In contrast, generation and natural decay of the AP C3 convertase formed by fB-323E 
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is normal; however, it is more resistant to accelerated decay by the complement 

regulators DAF and fH, which also results in enzyme dysregulation and increased C3-

cleaving activity in vivo. fB-279G and fB-350N increase enormously the affinity 

between fB and C3b, which results in both enhanced enzyme formation and the 

generation of a AP C3 covertase which is very stable [16, 65] and resistant to 

accelerated decay by the complement regulators DAF and fH [16](Figure 4).

The location of the D279G, F286L and K350N mutations in the VWA domain of 

the Bb fragment, close to the MIDAS site at the VWA-C345C interface provides a 

simple explanation for the functional consequences of these gain-of-function mutations 

[16, 65]. In contrast, the K323E mutation is more difficult to explain. It is located in the 

VWA domain, on the opposite side to the 1 helix and far away from the MIDAS site 

which mediates the initial recognition of C3b by fB, this explains why this mutation does 

not affect formation and spontaneous decay of the AP C3 convertase. A recent 

description of another aHUS associated fB mutation, also altering the 323K amino acid 

residue (K323Q) [66], further supports that this residue of fB defines a critical site for 

the accelerated decay of the AP convertase by DAF and fH (Figure 4).  Point 

mutagenesis studies of fB confirm that this region of Bb, distal to the MIDAS site, 

influences binding of DAF lending support to the hypothesis that this region is critical 

for efficient accelerated decay [67]. 

From a pathogenic point of view it is also intriguing that these fB gain-of-

function mutations, causing profound complement dysregulation in plasma, exclusively 

associate with aHUS and not with DDD or AMD. Perhaps this apparent aHUS 

specificity, and the incomplete penetrance of the disease that is also observed among 

fB mutation carriers, illustrate the need of a second hit to manifest the potential 

pathogenecity of the fB mutations. For example, increased complement activation 

caused by gain-of-function mutations in fB or by infection, may also require impaired 

surface protection to trigger aHUS. In this respect, it is interesting that all aHUS 

patients with fB mutations in our cohort were also carriers of a common polymorphism 
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in the MCP gene (the MCPggaac allele) associated with decreased expression and 

increased risk of developing aHUS [16, 36]. 

Two common polymorphisms in the N-terminal region of fB, L9H and R32Q, 

strongly associate with protection to AMD [25]. L9H is located in the signal peptide and 

was suggested to modulate secretion of fB. The R32Q variation reduces the haemolytic 

activity of fB by decreasing the interaction between the Ba fragment and C3b [68]. 

These data provide an explanation for the association; the observed protection in each 

case was ascribed to a reduced activity of the complement alternative pathway. In 

addition these analyses illustrate that the 8-aa long unstructured fragment at the amino 

terminus of the Ba fragment plays an important role in the initial interaction between fB 

and C3b. Similarly it has been reported that the C3 polymorphism, R102G, increases 

risk to AMD [32]. Our preliminary data suggest that this association is a consequence 

of increased AP activity of the C3-102G variant compared to the C3-102R (our 

unpublished results). 

Mutations in C3 are associated with aHUS [15, 66, 69] and DDD [38]. Different 

experimental approaches have shown that these mutations alter the sensitivity of C3b 

to inactivation by fH and MCP, and change the resistance of the AP C3 convertase to 

accelerated decay by fH and DAF [15, 38, 65], our unpublished results]. Importantly, 

these C3 mutations seem to affect differentially the sensitivity to regulation by fH and 

the membrane-associated regulators DAF and MCP. Thus, whilst the C3 mutation 

associated with DDD affects only regulation by fH [38], the aHUS-associated C3 

mutations affect primarily the cell surface regulation [38, 65], our unpublished results], 

further supporting the hypothesis that the site of complement dysregulation (surface vs 

fluid phase) is critical in the pathogenesis of aHUS and DDD. The differential effects of 

the C3 mutations on fH, DAF and MCP regulatory activities illustrate the complexity of 

the interactions between C3b and the complement regulators. We discuss below the 

data generated from the functional characterization of these disease-associated C3 
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mutations which also suggest that regulation by fH, DAF or MCP has distinct structural 

requirements in C3b. 

 

Substrate recognition by the AP C3 convertase 

Understanding how the AP C3 convertase recognizes its substrate has been a 

challenge for many years. Both novel structural data and disease associated C3 

mutations are now providing important insights into the regions of C3 and C3b relevant 

to substrate recognition by the AP C3 convertase [38, 65, 70]. 

Dimeric complexes of the AP C3 convertase (C3bBb) were observed in the 

crystals stabilized with the staphylococcal inhibitor, SCIN, strongly suggesting that the 

interface between the two C3b monomers in the crystal represented the natural binding 

interface between C3 and C3b molecules during C3 substrate recognition by the AP C3 

convertase [61]. This binding interface is a large surface that involves an area of C3 (or 

C3b) including the domains MG3, MG4-5 and MG6−8 (Figure 5). The contribution of 

these C3 regions to substrate recognition is further supported by the fact that the 

binding sites for the inhibitors compstatin [71], CRIg [47] and antibody S77 [72], all of 

which block substrate binding to the AP C3 convertase, map within this area. 

Very recently, a remarkable C3 mutation associated with DDD has been shown 

to render C3 resistant to cleavage by the AP C3 convertase [38]. The mutation is a 

deletion of two amino acids (Asp923, Gly924; 923delDG) in the MG7 domain of C3 that 

does not alter the normal expression and overall structure of C3 (Figure 5A).  A 

deletion of two amino acids, however, will displace amino acid residues on either side 

from their positions in the wild-type protein structure. N-terminal of the deletion is a 

surface-exposed loop (residues Val916 to Ser922) located within the postulated region 

of interaction between C3 and C3b molecules during C3 substrate recognition by the 

AP C3 convertase (Figure 5). Based on these structural data and the functional data 

generated from the 923delDG C3 mutant we suggest that this particular loop N-

terminal of the 923delDG mutation is an important interaction site between C3 and 
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C3b. The mutation data indeed suggest that C3 and C3b contact at this region and that 

it is the presence of the SCIN inhibitor that separates them in the crystal structure 

(Figure 5C). This region in the surface of the MG7 domain may represent a novel and 

important therapeutic target for inhibition of C3 activation.  

 

3. REGULATION OF THE AP C3-CONVERTASE 

The regulators of the AP C3 convertase 

Following cleavage of C3 to nascent C3b, nucleophilic attack on the internal 

thioester bond results in covalent binding of C3b to the activating surface, thus focusing 

further activation on the target cell (Figure 1). Complement is a double-edged sword 

because nascent C3b can bind not only to pathogens, but also to “innocent” adjacent 

host cells, initiating inappropriate foci of complement activation. To prevent damage to 

self and to avoid wasteful consumption of components, complement is under the 

control of multiple regulatory proteins which limit complement activation, either by 

inactivating C3b or by dissociating the AP C3/C5 convertases (Figure 1, Figure 6). 

Foreign surfaces, such as those of pathogens, are usually devoid of membrane 

regulatory proteins, which inactivate the AP C3 convertase. This lack of regulation thus 

leads to amplification of complement.  

 fH (155 kDa) is a single polypeptide composed of 20 SCRs arranged in a 

contiguous fashion. fH is the prototypic AP regulator, essential in order to maintain 

complement homeostasis and to restrict the action of complement to 

activating/pathogen surfaces. fH binds to C3b, competing with fB for binding to C3b in 

proconvertase formation and accelerating the decay of the AP C3/C5-convertase 

enzymes. It also acts as a cofactor for the factor I-mediated proteolytic inactivation of 

C3b. fH regulates complement both in the fluid phase and on cellular surfaces. 

However, while fH binds and inactivates C3b promptly in the fluid phase, the 

inactivation of surface-bound C3b by fH is dependent on the chemical composition of 

the surface to which C3b is bound. The fH molecule includes different interaction sites 
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for C3b and polyanions, which delineate distinct functional domains at the N and C-

termini. The C3b binding site in SCR1-4 is the only site essential for the decay and 

factor I cofactor activities of fH. Similarly, the C3b/polyanion-binding site located within 

SCR19-20 is the most important site for preventing alternative pathway activation on 

host cells. In the presence of polyanions, such as sialic acids, glycosaminoglycans or 

sulphated polysaccharides (heparins), the affinity of fH for surface-bound C3b 

increases as a consequence of the simultaneous recognition of both polyanionic 

molecules and surface-bound C3b by the same fH molecule (Figure 6; Figure 7) [73]. 

On cell membranes the complement regulators MCP and DAF inhibit the C3/C5 

convertase enzymes. DAF accelerates decay of the convertases, whereas MCP binds 

to C3b on the surface and acts as a cofactor for its irreversible proteolytic inactivation 

by the plasma protease factor I. Both DAF and MCP are composed of four SCR at the 

amino terminus followed by a short „stalk‟ which is heavily glycosylated and either a 

glycosyl phosphatidyl inositol (GPI) anchor (DAF) or a transmembrane domain and 

cytoplasmic tail with signaling properties (MCP) (Figure 6) [74]. 

 

AP C3-convertase decay by fH and DAF 

The crystal structure of the complex between C3b and a truncated form of fH 

has shown that the first four SCRs of fH, responsible for its decay accelerating and 

factor-I cofactor activities, bind C3b in an extended configuration [70]. This results in an 

elongated contact interface with multiple domains of C3b, which partially overlaps that 

involved in the interaction with fB in the initial steps of the AP convertase assembly. 

These structural data support previous mutagenesis experiments and functional 

analyses of disease-associated mutations which indicate that fH competes with fB in 

the formation of the C3bB pro-convertase and may interfere with the positioning of the 

Bb fragment, destabilizing the active AP C3 convertase (C3bBb) [70]. Accordingly, it 

has been suggested that binding of fH SCR1-2 to C3b is sufficient for fH to displace Bb 

and account for the decay accelerating activity of this regulator [70]. Although binding 
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of fH to Bb is postulated not necessary for the decay accelerating activity of fH, some 

degree of interaction between fH and Bb may help to explain why the aHUS-associated 

mutation altering the K323 residue in the VWA specifically alters the decay accelerating 

activity of fH and not the formation or the spontaneous decay of the AP C3 convertase 

[16].  

Based on the conserved location of functional residues in the homologous 

SCRs domains of fH and DAF, it has been suggested that similar displacement effects 

also play a role in the case of the decay accelerating activity of DAF [70]. However, it 

has been previously shown that whilst DAF-SCR2 interacts with Bb, DAF-SCR4 

interacts with C3b in the C3bBb complex and alone can mediate accelerated decay 

[75]. Furthermore, mutagenesis data indicate that DAF and fH have non-identical 

structural requirements for their decay activity [67], supporting two different 

mechanisms for the dissociation of the AP convertase. This is also supported by the 

DDD-associated C3 923delDG mutation described below [38], where deletion of two 

amino acids in the MG7 domain of C3b alters decay by fH, but not by DAF. 

 

Cofactor activity of fH and MCP for the fI-mediated inactivation of C3b 

fH and MCP are necessary cofactors for factor I, enabling cleavage of C3b in 

the CUB domain, yielding the inactive iC3b species. The crystal structure of the C3b-fH 

SCR1-4 complex revealed that fH SCR2-3 bound to C3b adjacent to the CUB domain 

where the fI cleavage sites are located [70]. fH SCR1-3 exhibits several conserved and 

charged patches on its surface which may be involved in the binding of fI. These and 

other data suggest that fI binds the C3b:fH complex at the area formed by SCR1-3 of 

fH, and C345C and CUB of C3b. The current model states that besides providing a 

platform for fI binding, fH may have a second role in cofactor activity, maintaining the 

position of TED while the connecting CUB domain undergoes cleavage. This 

suggested function is supported by disease-related mutations in either fH or TED of 

C3b, which indicate an important interaction of complement regulators with TED [15, 
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65, 69]. As with fH and DAF, which have different structural requirements for decay 

accelerating activity, analysis of the DDD-associated 923delDG C3 mutant suggests 

that fH and MCP, despite their common evolutionary origins, also have different 

structural requirements for their cofactor activity in the fI-mediated inactivation of C3b 

[38].  MCP can act as a cofactor for fI inactivation of 923delDG in the fluid phase, but 

fH cannot. 

 

Disease associated mutations and polymorphisms in complement regulatory 

proteins  

Mis-sense mutations in the C-terminal region of fH are the most prevalent 

genetic alterations amongst aHUS patients. In contrast to fH mutations associated with 

DDD, fH mutations associated with aHUS rarely result in hypocomplementemia or 

decreased fH plasma levels. Most aHUS-associated fH mutant proteins express 

normally and have normal cofactor activity for the factor I-mediated proteolytic 

inactivation of C3b in plasma [19, 76]. As indicated, aHUS-associated fH mutations 

cluster in the C-terminus of the protein, a region that is critical for control of 

complement activation on cell surfaces by binding both polyanions and deposited C3b 

(Figure 7). aHUS carriers of carboxy-terminal fH mutations express fH which has 

normal regulatory activity in plasma, but a limited capacity to protect cells from 

complement lysis due to a lack of binding avidity [76-78]. These findings fit well with the 

identification of aHUS-associated loss-of-function mutations in MCP and fI; mutations 

in both these proteins also lead to decreased protection of host cells from complement 

lysis without significantly affecting complement homeostasis in plasma [79] (Figure 6). 

The combination of an active complement system in plasma and defective protection of 

cellular membranes illustrates that aHUS is a disease caused by uncontrolled 

activation of complement on cell surfaces and damage to self. The same consequence 

is brought about by mutations which decrease concentrations of fH or fI in plasma, or 

MCP density on cell surfaces.  In these cases, deposition and amplification of C3b on 
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cells in the microvasculature cannot be controlled and tissue damage and destruction 

ensues. This is clearly distinct from insufficient control of complement in plasma, which 

leads to complete C3 consumption and severe hypocomplementemia characteristic of 

DDD patients carrying either fH deficiencies [37] or fH missense mutations which 

knock-out the fI-cofactor and decay accelerating activities (fH-del224K mutation) [11]. It 

is most revealing that this distinction between surface and fluid phase regulation, 

illustrated by mutations in fH which cause different kinds of pathology, is also a 

characteristic of mutations in C3. Functional characterization of the C3 923delDG 

mutation associated with DDD reveals that the convertase is resistant to the decay and 

cofactor activities of fH in the fluid phase, but can be regulated by the membrane 

associated regulators DAF and MCP [38]. In this case, insufficient control in plasma, in 

the face of adequate control on cell surfaces, leads to DDD.  In contrast, C3 mutant 

proteins associated with aHUS were resistant to inactivation by both fH and MCP [15], 

our unpublished results]. 

Association of mutations in complement proteins with pathology is 

understandable. It is more surprising that common polymorphisms in complement 

proteins are also linked to disease.  The most studied polymorphism at the CFH locus 

is rs1061170 which causes a Tyr402His amino acid substitution in fH. Several 

independent studies have shown that the allele 402His confers a significantly increased 

risk to AMD in many different populations, with an odds ratio (OR) between 2.1 and 7.4 

[23, 26, 27, 29]. Interestingly, the frequency of the 402His allele varies greatly between 

populations, which may contribute to the observed differences in the incidence of AMD 

among different ethnic groups [80].  

The Tyr402His polymorphism lies in SCR7 of fH, within the cluster of positively 

charged amino acids implicated in the binding of heparin, and C3b (Figure 7). The 

substitution occurs towards the centre of this module and structural analyses of short, 

recombinant constructs containing this region indicate that whilst the presence of either 

402His or 402Tyr has little effect on overall conformation, the substitution may affect 
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binding to polyanions [81]. In vitro functional studies with fH recombinant fragments 

confirm that the substitution of Tyr for His at position 402 alters the binding specificity of 

SCR7 for different glycosaminoglycans [82, 83] and decreases its binding to retinal 

pigment epithelial cells [84], although the physiological relevance of these observations 

is still unclear. It has also been reported that the Tyr402His polymorphism influences 

the binding of fH to C-reactive protein [84-86], but the difficulties in replicating these 

data cast doubt on their significance [87]. 

The common fH polymorphism Val62Ile has been associated with lower risk for 

aHUS, AMD and DDD [26, 88]. Val62Ile lies within the N-terminal region that is 

essential for fH regulatory activities. Consistent with the role of complement 

dysregulation in these pathologies, it has been shown that the substitution of Val for Ile 

at position 62 increases the complement regulatory function of fH, thereby reducing AP 

activation [89]. This is the result of an increase in the affinity for fH Ile62 for C3b, 

leading to more effective competition with fB for C3b binding in proconvertase 

formation and enhanced cofactor activity for the factor-I mediated inactivation of C3b. 

Importantly, the Val62Ile substitution affects binding to C3b but not decay accelerating 

activity suggesting that different regions in fH are involved in binding C3b/cofactor 

activity and in decay accelerating activity [89].  

fH Ile62 most likely protects from disease caused by complement dysregulation 

because it performs better as a complement regulator than fH Val62. One important 

conclusion from the functional characterization of the fH Val62Ile polymorphism, and 

also from the fB Arg32Gln polymorphism described earlier, is that whilst the functional 

alterations caused by these amino acid substitutions are subtle, the very nature of the 

complement system will amplify these small effects. Most importantly, these subtle 

effects are additive. Indeed, it has been shown that particular combinations of these fH 

and fB polymorphisms result in very different AP characteristics, markedly affecting 

formation and regulation of the AP C3 convertase in plasma and on cell surfaces [89]. 

We anticipate that identification of individuals carrying combinations of polymorphisms 
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(„complotypes‟) in complement components and regulators, which result in high or low 

AP activity, will be of great importance for prediction of disease risk and may also help 

in diagnosis and choice of treatment for diseases involving complement dysregulation. 

 

4. CONCLUDING REMARKS 

We have summarized our current understanding of the formation, activation and 

regulation of the AP C3-convertase and have reviewed how the analysis of genetic 

variants associated with different diseases has helped to determine the molecular 

events which are critical in the pathogenesis of various disorders. A clear conclusion 

from these analyses is that, despite a common link involving complement dysregulation, 

there are distinct functional alterations caused by these small changes in complement 

proteins which are essential in disease pathogenesis. It is now well established that 

mutations or polymorphisms altering the C3b/polyanion-binding site located at the C–

terminal region of factor H, or that decrease the levels of fI or MCP, are strongly 

associated with aHUS because they specifically impair the capacity to protect host cell 

membranes from complement activation. Consistent with this idea that aHUS results 

from insufficient protection of the host cellular surfaces, aHUS-associated C3 mutants 

generate activated C3b molecules and AP C3 convertase enzymes which are more 

resistant to inactivation by surface-associated regulators. Gain-of-function fB mutations 

collaborate with additional risk factors in MCP, focusing damage by enhanced 

complement activity on to cell surfaces. On the other hand, mutations which disrupt 

regulatory activities in plasma cause failure of fluid phase complement control, resulting 

in massive activation of C3 which causes DDD.  

AMD strongly and specifically associates with a common extended CFH 

haplotype carrying the 402His polymorphism, but the molecular bases of this 

association are controversial and still unclear. However, functional characterization of 

other common polymorphisms in components and regulators of the AP pathway has 

been more rewarding, demonstrating important differences in complement activities for 
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some combinations, which may have a significant role in determining individual 

predisposition to a number of common disorders. In particular, understanding how 

subtle alterations, which specifically associate with lower risk to disease, such as those 

in fB and fH, may guide future developments in complement therapeutics.  

Recent advances in structure-function analyses of complement proteins by 

crystallography, electron microscopy and surface plasmon resonance have permitted a 

deeper understanding of the mechanistic basis of disease-associated genetic 

variations. In turn, the functional analysis of these genetic variations has aided our 

understanding of the significance of the structures and interactions solved. We 

anticipate that a multidisciplinary approach involving genetics, functional analyses and 

structural determination will be instrumental in achieving a complete understanding of 

the assembly, activation and regulation of the AP C3 convertase. This knowledge will 

have important implications in therapeutic developments. 
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FIGURE LEGENDS 

 

Figure 1. 

Complement activation and regulation. 

 

 

Figure 2.  

Three-dimensional structure and domain organization of fB, C3 and C3b.  

Left panels outline the domain organization of fB and C3 in their primary 

structure whereas right panels show different views of the three-dimensional structures 

of fB, C3 and C3b. In all panels each domain has been colored differently. The 

structure of fB was obtained from Milder et al. [59] (PDB ID 2OK5), C3 was obtained 

from Janssen et al. [44] (PDB ID 2A73) and C3b was obtained from Janssen et al. [45] 

(PDB ID  2I07). The difference in domain composition between C3 and C3b is the ANA 

domain that is cleaved when C3 is activated to C3b. For representation, atomic 

structures of fB, C3 and C3b were low-pass filtered to a resolution of 2.5 nm to 

highlight the overall “low-resolution” structural organization of the molecules and the 

large-scale conformational changes taken place during C3 activation. fB is composed 

of the Bb fragment comprising the serine-protease (SP) and von Willebrand factor type 

A domain (VWA), packed against the Ba segment containing SCR1, SCR2 and SCR3. 

C3 is composed of a ring comprising 8 macroglobulin domains (MG-ring), crowned by 

the C345C domain, as well as CUB and TED domains that undergo a large 

displacement after the ANA domain is released during C3 activation. 

 
 
Figure 3.  

Assembly and activation of the AP C3 convertase.  

The figure describes the sequence of events that take place during the 

assembly and activation of the AP C3 convertase as described in the text. C3 is an 
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inactive protein not capable of interacting with fB. Activation of C3 to C3b induces a 

large conformational change including a large displacement of the TED domain and the 

exposure of new surfaces that are now competent for fB recognition. fB initially binds to 

C3b in a closed conformation. Subsequently, fB undergoes a large conformational 

change that leads to an open conformation of fB likely exposing the factor D (fD) 

cleavage site between the SCR1-3 (Ba propeptide segment) and VWA domains. 

Cleavage by fD removes the Ba fragment to generate an active AP C3 convertase with 

the serine-protease (SP) domain projecting outwards. 

Models for C3, C3b, the closed conformation of the AP C3 proconvertase and 

the AP C3 convertase have been obtained after low-pass filtering of the atomic 

coordinates of C3 (obtained from Janssen et al. [44]; PDB ID 2A73), C3b (Janssen et 

al.[45]; PDB ID 2I07), the C3 convertase (Rooijakkers et al. [61]; PDB ID2WIN), and 

the conformation of the C3 proconvertase described by Janssen et al. [64]; PDB ID 

3HRZ, Torreira et al., [62] and Torreira et al., [63]. The model for the open 

conformation of the AP C3 proconvertase shows the experimental 3D reconstruction at 

medium resolution obtained using electron microscopy (EMD ID EMD-1583, Torreira et 

al., [62]). The density corresponding to C3b is coloured in orange and that of fB in gray. 

A hypothetical model for the open conformation of fB bound to C3b has been proposed 

based on the fitting of atomic structures into the medium-resolution EM density [62], 

However, the precise location of the fB domains in the open conformation of the AP C3 

proconvertase waits for an experimental structure at high-resolution.  

 

Figure 4.  

Disease-associated mutations in fB.  

A) For simplicity only two representative aHUS-associated fB mutations, D279G and 

K323E  are identified within the three-dimensional structure of the C3 convertase 

(Rooijakkers et al. [61]; PDB ID 2WIN). The magnesium ion in the MIDAS site of the 

VWA domain has been represented as a yellow dot.  The D279G mutation (red) is at 
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the interface between the VWA and the C345C domains, whereas the K323E fB 

mutation (orange) is located on top of the VWA domain of Bb, away from the MIDAS 

site and the site of interaction between the Bb and C3b. 

B) Surface plasmon resonance (Biacore) analysis of the D279G and K323EfB 

mutations.  The functional effects of the D279G and K323E mutations, located on 

opposing sides of the MIDAS site, were investigated by flowing recombinant (r) fB and  

native fD over a C3b-coated chip to form convertase.  Formation of C3bBb-323E 

convertase (orange line) was normal and the enzyme decayed with a half-life of ~319 

seconds, comparable to that formed by wild type rfB (black line). However, whereas the 

wild type convertase was rapidly and completely dissociated by soluble DAF, the fb-

323E mutant convertase demonstrated resistance to accelerated decay. The C3bBb-

279G convertase (red line) was formed at abnormally high levels, likely due to high 

affinity interaction, and was very stable.  Similarly to the fB-323E mutant convertase, 

the enzyme was highly resistant to accelerated decay. 

 

 
Figure 5. 

Model for the substrate C3 recognition by the AP C3 convertase.  

A) The medium resolution three-dimensional structure of the purified C3-923delDG  

mutant determined by electron microscopy (EM) illustrates that this C3 mutant, despite 

being resistant to cleavage by the AP C3 convertase, shows no major structural 

changes compared to normal C3 [38]. The structure is represented as a grey 

transparent density with the atomic structure of wild type C3 (Janssen et al. [44]; PDB 

ID 2A73) integrated within it. The position of the 923delDG C3 mutation is indicated 

with a circle. Note that upstream of the mutation there is a peptide loop exposed on the 

adjacent surface in the wild type MG7 domain of C3 (right panel) which will likely be 

modified by the 923delDG mutation.  
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B) The atomic structure of the C3 convertase stabilized with the bacterial inhibitor 

SCIN, revealed a dimeric interface between two C3b molecules contacting each other 

through the MG rings. This prompted Gros and collaborators to suggest that a similar 

interaction could take place during the recognition of the C3 substrate by the AP C3 

convertase. The figure shows a model of such a putative complex based on their 

atomic structures (Rooijakkers et al [61]; PDB ID 2WIN). In this model, the contact 

between the two MG rings is sustained by interactions at the bottom of the MG ring, 

locating the SP domain close to its target sequence in C3. The figure illustrates that the 

923delDG mutation is located at the top of the MG ring, which suggests that this region 

is also relevant for the formation of the complex between C3 and the AP C3 

convertase. Since the 923delDG mutation completely blocks cleavage by the 

convertase, we speculate that the present of the SCIN inhibitor in the crystal structure 

of the C3 convertase (Rooijakkers et al. [61]; PDB ID 2WIN) may prevent contact 

between the MG rings at the site of the 923delDG mutation which would otherwise be 

present in the active complex. The model also reveals that there is a substantial 

distance between the SP domain of the AP convertase and the C3 substrate. However, 

the structure of the AP C3 convertase in solution obtained by electron microscopy [62], 

revealed that the Bb fragment, which project outwards, displays considerable 

conformational flexibility, which is probably important for the SP domain to reach its 

target sequence. 

 

Figure 6 

Activation and regulation of the complement AP in plasma and on cellular 

surfaces. 

Cartoon illustrating the role of fH, fI, MCP and DAF in the regulation of the AP of 

complement in plasma and on the surface of endothelial cells or pathogens. This 

illustrates the crucial role of the interaction between the C-terminal region of fH and 

negatively-charged heparins or glycosaminoglycans (GAGs) on endothelial cells which 
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discriminates between self cells and pathogens, devoid of these negatively-charged 

components. When heparins and GAGs are present, the avidity of fH for C3b deposited 

on cell surfaces increases and fH efficiently controls amplification of the AP and 

damage to self-tissues, both by dissociating the AP C3 convertase and inactivating 

C3b. On surfaces lacking negatively charged molecules, like pathogens, there is no 

interaction throgh the C-terminal region of fH, which decreases binding avidity and 

allows amplification of C3b deposition, triggering opsonophagocytosis and cell lysis. 

Mutations that disrupt the function of the C-terminus of fH, like those associated with 

aHUS, interfere the capacity of fH to protect self components from complement-

mediated damage. Note the similarities in the functional activities between fH and the 

membrane associated regulators, MCP and DAF. These proteins work together with fI 

to prevent damage to self and to avoid wasteful consumption of complement 

components. 

 

Figure 7 

Disease-associated mutations in fH. 

Figure depicts the structure of fH indicating the distinct functional domains and 

sites of interaction with other molecules (Top). The bottom diagram illustrates the 

differential distribution of aHUS- and DDD-associated mutations found in factor H. 
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Figure 7 
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TABLE 1. Risk factors associated with aHUS, DDD and AMD 
 

 aHUS DDD AMD 
    
    

    
    

Genetic factors    
    
    

    - Rare mutations CFH 

MCP 

CFI 

CFB 

C3 

THBD 

CFH 

C3 

CFH 

 

 
   

 
   

   - Common 
polymorphisms 

CFH 

MCP 

CFHR1/CFHR3 

CFH 

CFHR1/CFHR3 

CFHR5 

CFH 

AMRS2 
(LOC387715) 

CFB 

C2 

C3 

CFHR1/CFHR3 

C1INH 
(SERPING1) 

TLR3 
 

   

 
   

Autoantibodies Factor H C3Nef, Factor H  
-  

   

 
   

Environmental 
factors 

Infection 

Immunosuppres. 
drugs 

Cancer therapies 

Oral 
contraceptives 

Pregnancy 

Childbirth, etc. 

Infection (?) Smoking 

Diet 

Exercise, etc. 
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- Complement dysregulation is a common link to several chronic and infection diseases. 

 

- Both gain-of-function and loss-of-function mutations associate with pathology. 

 

- Functional analyses of mutations revealed distinct pathogenic mechanisms. 

 

- Mutations aided understanding activation and regulation of complement. 

 




