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1. Introduction

Nuclear Magnetic Resonance (NMR) is one of the most promising fields of applications

of quantum control [1, 2, 3]. In this domain, optimal control techniques can be used

to design magnetic fields to control the dynamics of spin systems with applications

extending from quantum computing to spectroscopy [4, 5]. In this framework,

numerical optimization procedures such as the GRAPE algorithm (Gradient Ascent

Pulse Engineering Algorithm) have been developed [6, 7, 8]. Recently, methods of

geometric optimal control theory have also been applied with success [9, 10, 11, 12, 13].

This approach which is based on strong mathematical tools coming from differential

geometry and Hamiltonian dynamics has a rapid development permitting to attack

problems of increasing difficulty [14, 15, 16]. In this context, we have derived in Refs.

[17, 18] the complete solution of the optimal control of two-level dissipative quantum

systems whose dynamics is governed by the Lindblad equation [19, 20]. We have applied

this analysis in Ref. [10] to the time-optimal control of a spin 1/2 particle in a dissipative

environment. We have recently extended this work to the energy minimization control

problem of a spin [22] and to the control of a spin in presence of both relaxation and

radiation damping effects [23]. It is these different results that we propose to review

in this paper. In particular, we will show the essential role of singular extremals in

the optimal control law. Note that the existence of such singular solutions has been

essentially ignored so far in the quantum control literature, and only few results exist

[12, 21]. Some parts of the material of this work overlap with Refs. [10, 22, 23], although

the presentation is different. We will extend some of these results by constructing the

optimal synthesis (i.e. the set of all the optimal solutions starting from the same initial

point and reaching any point of the accessible set) and by analyzing the robustness

properties of the optimal sequence with respect to variations of the amplitude of the

control and of the dissipative parameters. Finally, we refer the reader to the works [17]

for a more detailed background on geometric control and proofs of the results.

In this article, we consider the control of a spin 1/2 particle whose dynamics

is governed by the Bloch equations with both longitudinal and transverse relaxation

terms. As an example, we analyze the saturation problem in minimum time which

consists in bringing the magnetization vector from the north pole of the Bloch sphere

to the center of the Bloch ball. By its simplicity, this problem can be viewed as a

standard textbook problem in quantum control. It is also one of the simplest but non

trivial system where all the powerful machinery of geometric control techniques can

be applied. The resolution of this control problem will be used to explain some basic

tools of geometric optimal control theory. This will help the reader to enter into more

specialized mathematical books of optimal control [14, 15, 16].

The paper is organized as follows. We introduce in Sec. 2 the model system used

in the computation. Section 3 focuses on the Pontryagin Maximum Principle (PMP)

[14, 15, 16] which is the main tool used to solve the control problem. We present some

geometric techniques to construct the optimal solution. To simplify the discussion, we
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only consider the control of a spin 1/2 particle by one control field. The geometric

optimal solutions for the saturation problem are presented in Sec. 4. Both the bounded

and the unbounded cases are analyzed. An example of experimental implementation

using techniques of Nuclear Magnetic Resonance (NMR) is proposed in Sec. 5. A

conclusion and prospective views are given in a final section.

2. The model system

We consider a homogeneous ensemble of uncoupled spins 1/2 which are irradiated on

resonance by a magnetic field. Homogeneous means here that the resonance offset (or

detuning) of each spin is the same. In the rotating frame, the equation of motion can

be written as follows [5]:



Ṁx

Ṁy

Ṁz


 =




−Mx/T2

−My/T2

(M0 − Mz)/T1


+




ωyMz

−ωxMz

ωxMy − ωyMx


 , (1)

where the vector of components (Mx, My, Mz) is the magnetization vector and M0 the

equilibrium point of the dynamics along the z- axis. The dynamics depends on two

different terms: A drift term due to the longitudinal and transversal relaxation rates

T−1
1 and T−1

2 and a second term representing the effect of the control amplitudes ωx and

ωy. We assume that the control field ~ω = (ωx, ωy, 0) satisfies the constraint |~ω| ≤ ωmax.

We introduce the normalized coordinates ~x = (x, y, z) = ~M/M0, which implies that at

thermal equilibrium the z component of the scaled vector ~x is by definition +1. The

normalized control field which satisfies |u| ≤ 2π is defined as u = (ux, uy, 0) = 2π~ω/ωmax,

while the normalized time τ is given by τ = (ωmax/2π)t. Dividing the previous system

by ωmaxM0/(2π), one deduces that the dynamics of the normalized coordinates is ruled

by the following system of differential equations:



ẋ

ẏ

ż


 =




−Γx

−Γy

γ − γz


+




uyz

−uxz

uxy − uyx


 ,

where Γ = 2π/(ωmaxT2) and γ = 2π/(ωmaxT1).

We analyze a control problem where the initial point of the dynamics is the

equilibrium point, i.e. the north pole of the Bloch sphere. The goal of the control

will be to reach any point of the corresponding accessible set and in particular the

center of the Bloch ball. In the setting of NMR spectroscopy and imaging, this latter

question corresponds to saturating the signal, e.g., for solvent suppression or contrast

enhancement, respectively [24, 25]. Since the initial point is on the z- axis, the control

problem admits a symmetry of revolution around this axis. Without loss of generality,

it can be shown that one of the components of the control field can be taken to zero, e.g.

here ωy [17]. In the reduced coordinates, this leads to uy = 0. We are thus considering
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a single input problem in a plane of the form:
(

ẏ

ż

)
=

(
−Γy

γ − γz

)
+ u

(
−z

y

)
,

where the subscript x has been omitted for the control parameter.

This differential system can be written in a more compact form as follows:

~̇X = ~F ( ~X) + u~G( ~X), (2)

where the coordinates of the state ~X of the system are (y, z) and ~F and ~G are two

vector fields of components (−Γy, γ − γz) and (−z, y).

3. The Pontryagin Maximum Principle

We use the PMP to solve the optimal control problem with the constraint of minimizing

the control duration [16]. In addition, the field has to satisfy the relation |u| ≤ 2π. The

PMP is formulated from the pseudo-Hamiltonian H which is given in our case by:

H = ~P · (~F ( ~X) + u~G( ~X)), (3)

where we have introduced the adjoint state ~P of components (py, pz). The PMP tells us

that the optimal solutions are a subset of the set of extremals which are Hamiltonian

trajectories of H with

~̇X =
∂H
∂ ~P

, ~̇P = −∂H
∂ ~X

. (4)

The optimal control law is given by the maximization condition

H( ~X, ~P , v) = max
|u|≤2π

H( ~X, ~P , u), (5)

where v is the control field maximizing H and ~P a nonzero vector. In addition, since

the Hamiltonian H does not depend on time, one deduces that it is a constant of the

motion which is positive by construction of a maximum principle, H being negative in

the time-maximum case and zero in the abnormal one [16]. The Hamiltonian equations

can be explicitly written in the case of Eq. (2) as ~̇X = ~F ( ~X) + u~G( ~X) and

~̇P = −~P · ( ∂ ~F

∂ ~X
+ u

∂ ~G

∂ ~X
), (6)

where ∂/∂ ~X denotes the gradient. ∂ ~F/∂ ~X is a 2 × 2- matrix whose element of the i-

line and j- column is equal to ∂Fi/∂Xj .

The construction of the optimal solution requires the introduction of two set of

points, the singular and the collinear sets which are respectively denoted by S and C.

The set C is defined by the points ~X where the two vectors ~F and ~G are collinear. This

condition is satisfied if the determinant denoted by det(·, ·) of the two vectors is zero.

We recall that

det(~F , ~G) = F1G2 − G1F2, (7)
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where the Fi and the Gi are the components of ~F and ~G. Here this leads to

−Γy2 +γ(z−z2) = 0. The set C is therefore the union of two parabolas if γ, Γ 6= 0. The

definition of the set S is more involved since it is given by the relation det( ~G, [~F , ~G]) = 0,

[~F , ~G] being the commutator of two vector fields which can be computed as follows in

the coordinates xi:

[~F , ~G]j =
∑

i

(
∂Gj

∂xi
Fi −

∂Fj

∂xi
Gi).

In our example, one arrives at

2Γyz + γ(y − 2yz) = 0.

One deduces that S corresponds to the union of the vertical line y = 0 and of the

horizontal one z = z0 given by

z0 = − γ

2(Γ − γ)
= − T2

2(T1 − T2)

if Γ 6= γ (or equivalently if T1 6= T2). In the case Γ ≤ 3
2
γ then only the vertical line

exists. The two sets S and C are displayed in Fig. 1 for a given set of parameters.

Returning back to the PMP, one sees that the maximization condition can be solved

by introducing the switching function Φ = ~P · ~G = −pyz + pzy [16]. Using Eq. (5) and

the fact that the drift term ~P · ~F of H cannot be controlled, one immediately deduces

that the control field u is given by

u = 2π × sign[Φ(t)]

if Φ(t) 6= 0. Such a point is said to be regular. The corresponding control of constant

amplitude is called bang. A time such that the control changes sign is a switching time.

Such a case occurs when Φ vanishes in an isolated point t = t0. This is associated to

a bang-bang control sequence. The singular situation corresponds to the case where

Φ is equal to zero on an interval [t0, t1]. At this point, a crucial remark is the fact

that the singular trajectories lie in the set S. This can be shown by using the relation

Φ(t) = Φ̇(t) = 0 on the interval [t0, t1]. The first derivative of Φ can de determined as

follows. We have:

Φ̇ = ~̇P · ~G + ~P · ~̇G.

Using Eq. (4) and ~̇G = ∂ ~G
∂ ~X

· ~̇X, one gets that:

Φ̇ = ~P · [~F , ~G].

The system Φ(t) = Φ̇(t) = 0 admits a non zero ~P solution if the vectors [~F , ~G] and ~G are

parallel, i.e. if det( ~G, [~F , ~G]) = 0. This first computation does not give the explicit form

of the singular control us, which is obtained from the second derivative of Φ. Indeed, a

similar computation to the one for Φ̇ leads to:

Φ̈ = ~P · [[ ~G, ~F ], ~F ] + u~P · [[ ~G, ~F ], ~G],
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and we get that

us = −
~P · [[ ~G, ~F ], ~F ]

~P · [[ ~G, ~F ], ~G]

if ~P · [[ ~G, ~F ], ~G] 6= 0. If this latter relation is not satisfied, derivatives of higher orders

have to be computed to determine us.

In our case, one arrives at:

us(y, z) =
−yγ(Γ − 2γ) − 2yz(γ2 − Γ2)

2(Γ − γ)(y2 − z2) − γz
, (8)

which simplifies into us = 0 for the vertical singular line and into

us =
γ(γ − 2Γ)

2(Γ − γ)y

for the horizontal one where z = z0. It can also be checked that the denominator is

different from zero on the set S, except at the intersection of the two singular lines.

Another important point is the admissibility of the singular control since by definition

of the control problem we must have |us| ≤ 2π. Using Eq. (8), one deduces that the

singular control is admissible on the horizontal line if |y| ≥ |γ(γ − 2Γ)|/[2π(2Γ − 2γ)].

For smaller values of y, the system cannot follow the horizontal singular arc and must

leave this line by using a bang pulse. A consequence of this phenomenon, which is

called a saturation of the control field, is the creation of a switching curve starting from

the point where the field losses its admissibility [16]. A switching line is a line such

that the optimal control changes sign when crossing it. This curve can be constructed

numerically as explained in Sec. 4.

From this first analysis, we know that the extremal trajectories will be the

concatenation of bang arcs of maximum or minimum amplitude and of singular arcs

on the set S. However, this study tells us nothing about the optimality status of the

extremals. This optimality can be in some cases determined from the clock form.

The clock form

We derive in this paragraph the expression of the clock form denoted α [15]. By

definition, the clock form is a 1-form, i.e. a linear functional on the space of vector

fields, which fulfills the following conditions
{

α(~F ) = 1

α( ~G) = 0
.

A solution of this system exists except on the set C where ~F and ~G are collinear. Indeed,

assuming that ~F = β ~G where β is a scalar function, one then deduces that

1 = α(~F ) = βα( ~G) = 0

which gives a contradiction. We write α as α = αydy + αzdz where dy and dz are the

differentials of the coordinates y and z. We recall that dy is a mapping which associates
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to any vector field its y- coordinate. Simple algebra shows that αy and αz are solutions

of the system
{

αy(−Γy) + αz(γ − γz) = 1

αyz = αzy
.

We obtain that



αy = −y
Γy2−γz+γz2

αz = −z
Γy2−γz+γz2

.

From the 1-form α, we can define the 2-form dα which is given by

dα = (
∂αz

∂y
− ∂αy

∂z
)dy ∧ dz,

and reads after some calculations

dα =
2Γyz + γy − 2γyz

[Γy2 − γz + γz2]2
dy ∧ dz.

If we write dα as dα = g(y, z)dy ∧ dz then one sees that g(y, z) = 0 on S and that g is

infinite on C. It is then straightforward to deduce that the function g has a constant

sign in the regions delimited by the lines of S. This point is represented on Fig. 1 for

a given set of parameters. Four quadrants with different signs of g are displayed. As

Figure 1. (Color Online) Sign of the function g in the plane (y, z). The dashed and
dotted lines indicate respectively the positions of the collinear locus and the horizontal
singular line (see the text). Two paths γ1 and γ2 are plotted in blue (dark) and red
(dark gray) to illustrate the use of the clock form.

suggested by its name, the clock form is a form which allows one to determine the time

taken to travel a path and to compare the extremals. Let γ be a path in the plane (y, z)

which does not cross C and T the time of travel along γ. We have
∫

γ
α =

∫ T

0
α( ~̇X)dt =

∫ T

0
α(~F )dt = T.

We consider now two paths γ1 and γ2 starting and ending at the same points and

respectively associated to the durations T1 and T2 (see Fig. 1 for an illustrative example).

One shows by using the Stokes theorem that

T1 − T2 =
∫

γ1

α −
∫

γ2

α =
∫

D
dα,
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where D is the surface delimited by γ1 ∪ −γ2. For paths γ1 and γ2 which lie in one of

the four quadrants defined by S, we can straightforwardly determine the time-optimal

trajectory. For instance on the Fig. 1, the time to travel the path γ1 is lower than the

one to travel γ2 since the two paths belong to a region with g < 0.

Using such arguments, we can also analyze the optimality of singular lines. The

proof uses a singular path and a path starting and ending on the singular line but

associated to a bang-bang control. Note that this result is only a local optimality result

in the sense that the singular trajectory is optimal for any neighboring initial and final

points on this axis. The difference between local and global optimality will be detailed

in Sec. 4. In the example of Sec. 4, it can be shown that the horizontal singular line is

optimal and that the vertical one is optimal only if z > z0.

4. Time-optimal control of spin 1/2 particles

We apply in this section the tools of Sec. 3 to the control of spin 1/2 particles.

We begin our study by considering the control problems defined by the relaxation

parameters γ−1 and Γ−1 (expressed in the normalized time unit defined above) of 23.9

and 1.94, respectively and M0 ≈ 2.15× 10−5. Such values of the parameters correspond

to a realistic experimental situation in NMR where T1 = 740 ms, T2 = 60 ms and

ωmax/(2π) = 32.3 Hz [10].

4.1. Optimal synthesis

This paragraph is rather technical and describes the way to construct the optimal

synthesis, which is the set of all the optimal sequences starting from the north pole

of the dynamics and reaching any point of the corresponding accessible set A. Since

the control field cannot fully compensate the effect of dissipation [26, 27], the system

is not controllable and all the points of the Bloch ball cannot be reached. In this case,

the reachable set can be determined by the explicit construction of all the trajectories

satisfying the constraint |u| ≤ 2π (see Fig. 2 for an example). More precisely, we first

search for the boundary of this set, i.e. the trajectories with u = ±2π originating from

the north pole. Then we show that all the points inside the boundary are attainable by

the explicit construction of the optimal control laws as displayed in Fig. 2.

The application of the PMP gives only the local behavior of the extremals. In

particular, we know that the optimal solutions are the concatenations of bang arcs of

amplitude ±2π and of singular optimal arcs. Different extremal solutions which are

locally optimal can be used to reach the same target state. The last step of the optimal

synthesis consists of choosing among these extremals the time-minimizing one, which

corresponds to the optimal one. This choice can be done by using the clock form and

numerical comparisons of extremals when the paths cross the singular or the collinear

loci. Note also that neighboring optimal trajectories have the same structure, except in

presence of particular lines, i.e. the switching curve and lines belonging to the sets S
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and C.

The corresponding optimal synthesis is represented in Fig. 2. In the numerical

examples, the switching curve has been determined numerically by considering a series

of trajectories with u = +2π originating from the horizontal singular set where Φ = 0.

The points of the switching curve correspond to the first point of each trajectory where

the switching function vanishes. In Fig. 2, we observe that the optimal trajectory can

have different structures extending from bang-bang arcs to bang-singular-bang-bang

and bang-singular-bang-singular arcs. A bang-singular-bang-bang control is, e.g., the

concatenation of a bang-bang arc followed by a singular and a bang arc.

y

z

-1

-1

1

1

0

0

Figure 2. (Color Online) Schematic representation of the optimal synthesis when the
initial point of the dynamics is the north pole. An arbitrary zoom has been used to
construct the figure. Regular curves are plotted in blue (dark) and red (dark gray) for
control fields equal to +2π and −2π, respectively. The optimal singular trajectories
are displayed in green (light gray). The dotted line is the switching curve, while the
dashed one is the non-admissible part of the horizontal singular line. The small arrows
indicate the way the curves are traveled.

4.2. The saturation control problem

In this paragraph, we analyze the saturation control problem which consists in bringing

the initial state vector to the center of the Bloch ball in minimum time. We compare the

optimal control law with an intuitive one used in NMR, the inversion recovery sequence

[24, 25]. The intuitive solution is composed of a bang pulse to reach the opposite point of

the initial state along the z- axis followed by a zero control where we let the dissipation

act up to the center of the Bloch ball. The optimal and the intuitive solutions are

plotted in Fig. 3. Using results of the previous section, one deduces that the optimal

control is the concatenation of a bang pulse, followed successively by a singular control

along the horizontal singular line, another bang pulse and a zero singular control along
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−44.2

−43.6

Figure 3. (Color online) Plot of the optimal trajectories (blue or dark gray) and
of the Inversion Recovery sequence (green of light gray) in the plane (y, z). The
corresponding control laws are represented in the lower panel. In the upper panel, the
small insert represents a zoom of the optimal trajectory near the origin. The black line
is the switching curve originating from the horizontal singular line. The cross indicates
the position of the admissibility point. The vertical line corresponds to the intuitive
solution. The blue (or dark gray) curve is the optimal trajectory near the origin.

the vertical singular line. The dynamics leaves the horizontal line before the limit of

admissibility at a point of coordinates (y0, z0). The coordinate y0 can de determined

numerically as follows. We consider the bang arc starting from (y0, z0) and we compute

Φ and Φ̇ along this trajectory. y0 is then characterized by the fact that Φ = Φ̇ = 0 at

the intersection point of the extremal with the vertical singular line. Figure 3 displays

also the switching curve. We have checked that the second bang pulse of the optimal

sequence does not cross the switching curve up to the vertical singular axis. In this

example, the center of the Bloch ball is reached with an accuracy better than 10−15.

The durations of the two sequences are 202 ms for the optimal solution and 478 ms for

the IR one. One therefore sees that a gain of 58% is obtained for the optimal solution

over the intuitive one.

This result also highlights the role of singular extremals. The two solutions

considered use singular controls, along the horizontal and the vertical lines for the

optimal sequence and along the vertical axis for the IR solution. The difference between

the two trajectories comes from the fact that the singular controls are optimal for the

optimal law, while it is not the case for the IR one.

The ratio between the two control durations can be analytically computed in the
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unbounded case where there is no bound on the control. More precisely, this means that

we consider the limit ωmax → +∞. In this case, the optimal solution is only composed

of a bang arc followed by singular controls along the horizontal and the vertical lines

since there is no admissibility condition on the control (see also the discussion of Sec.

4.3). We first compute the duration of the IR sequence. In the limit of an infinite

bound on the control, the first bang allows to reach instantaneously the south pole of

the Bloch sphere. The second part of the control uses the longitudinal dissipation with

a zero control field to go to the center of the sphere. The dynamics is governed by:

ż =
1

T1
(1 − z). (9)

In this computation, note that the parameters Γ and γ and the reduced time τ

cannot be used since they depend on the bound ωmax. The solution of Eq. (9) is

z(t) = (z(0) − 1)e
− t

T1 + 1 with z(0) = −1. We next determine the time t1 such that

z(t1) = 0. Inverting this equation, we find the time t1 = T1 ln(1 − z(0)) = T1 ln 2.

For the optimal solution, the first step is to use a bang pulse to reach instantaneously

the horizontal singular line in a point of coordinates (y, z0) (with z0 = T2

2(T2−T1)
and

y2 + z2
0 = 1). The second step consists of following this line. We know that the

dynamics and the singular control satisfy:



ẏ = − 1
T2

y − usz0

us = − 1
2T1

2T1−T2

T1−T2

1
y

. (10)

The dynamics reduces to:

ẏ = − 1

T2

y − 2T1 − T2

4(T1 − T2)2

T2

T1

1

y
, (11)

and if we consider the change of variable Y = y2, we get:

Ẏ = −2Y/T2 − α, (12)

where α = 2T1−T2

4(T1−T2)2
T2

T1
. The solution of this equation is

Y (t) = (
αT2

2
+ Y (0))e

−2 t
T2 − αT2

2
.

Starting from the coordinate Y (0) = 1−z2
0 and following the singular line up to Y (t) = 0,

we find the duration t2 = T2

2
ln
(
1 + 2Y (0)

αT2

)
. The last part of the optimal solution uses

the vertical singular line with u = 0. The same expression as for the I.R. solution leads

with z(0) = z0 to t3 = T1 ln(1 − z0). Finally, one arrives at:




Topt = T2

2
ln
(
1 +

2(1−z2
0)

αT2

)
+ T1 ln(1 − z0)

TIR = T1 ln 2
(13)

where Topt = t2 + t3 and TIR = t1. As can be expected, the two times only depend

on the two relaxation parameters T1 and T2. The optimal solution uses actively the

transverse relaxation to reach in minimum time the target state. In our example, the

ratio of the two durations is equal to 0.383. A complete numerical study shows that

this ratio decreases as ωmax increases and tends asymptotically towards the value of the

unbounded case [10].
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4.3. Robustness of the optimal solution

We analyze in this section the robustness of the structure of the optimal solution with

respect to variations of dissipative parameters and of the bound on the control.

We first consider that the bound of the control field is varied. In this paragraph,

we assume that the control field satisfies |u| ≤ 2π × u0 where u0 can be changed at

will and we fix the dissipative parameters. In this case, three different structures can

be found as shown in Fig. 5. When u0 is sufficiently small, the first bang arc does not

intersect the horizontal singular line and the optimal solution is the concatenation of

a bang arc followed by a vertical singular arc. When u0 ' 1, we recover the standard

situation described in Sec. 4.2 where the system leaves the horizontal singular line just

before the limit of admissibility. It can be shown that this situation is generic in the

sense that the intersection point of the initial bang arc with the horizontal singular line

belongs to the admissible part of this line. The proof goes as follows. We know that the

limit of admissibility is defined by:

y0 =
γ(γ − 2Γ)

4πu0(Γ − γ)
,

z0 = − γ

2(Γ − γ)
.

We then determine the limiting case where the bang arc intersects the singular line.

This corresponds to the tangency of the two curves, which is schematically represented

in Fig. 4. The tangency occurs when ż = 0 and z = z0, which leads to the relations

γ(1 − z0) + 2πu0y = 0

and

y = −γ(1 − z0)

2πu0
= y0.

We can conclude that the bang arc is tangent to the singular line when their intersection

z

y y

Figure 4. (Color Online) Schematic evolution of a bang arc in green (light gray)
starting from the equilibrium point of the dynamics when the maximum bound on the
control is decreased (from left to right). The horizontal dashed line is the horizontal
singular line, while the red (black) cross represents the limit of admissibility.

point is the point of coordinates (y0, z0).
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In the limit u0 → +∞, the first bang arc belongs to the Bloch sphere and the limit

point of admissibility tends to the vertical axis. This explains the change of structure in

the unbounded case where the control is the succession of a bang, a horizontal singular

arc and a vertical one.

Figure 6 displays the evolution of the optimal trajectories when the dissipative

parameter T2 varies, T1 being fixed. Numerical values are taken to be 444, 386, 295,

138 and 60 ms from bottom to top, which correspond in the reduced coordinates to

a parameter Γ equal to 0.0697, 0.0803, 0.1048, 0.2241 and 0.5160. If we denote by

z = a the position of the horizontal singular extremal then we have T2 = 2aT1/(2a− 1).

Figure 6 shows that the different extremals present the same qualitative structure with a

pulse sequence composed of a bang, a horizontal singular, a bang and a vertical singular

extremal to reach the origin. The optimal trajectories only differ in the durations of the

bang and singular arcs. Two limiting cases can be considered. The first one corresponds

to a = 0, which can be associated in a practical situation to the relation T2 � T1 or

γ � Γ, i.e. the longitudinal relaxation is negligible with respect to the transverse one.

The optimal solution is then composed of a bang arc followed by a horizontal singular

arc with z = 0 up to the center of the Bloch ball. Along this arc, we have us = 0 since

γ = 0. The other limiting case is a = −1, i.e. T2 = 2T1/3, for which the IR sequence is

the optimal solution. This conclusion is also true for a < −1.

y

z

-1

-1

1

0

10

Figure 5. (Color Online) Plot of the optimal trajectories for different bounds on the
control field. The green (light gray) extremal curve does not intersect the horizontal
singular line. The blue (dark) trajectory has the generic structure described in Sec. 3,
while the red (dark gray) one corresponds to the unbounded case.
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Figure 6. (Color Online) (top) Evolution of the magnetization vector along the
optimal trajectory for different dissipative parameters (bottom) The corresponding
control fields u.

5. Experimental implementation

In this work, we consider NMR control experiments in liquid state. Such experiments

present some key advantages with respect to other domains of quantum control such

as, e.g., the control of atomic and molecular dynamics by laser fields. They can be

summarized as follows. The models used in NMR reproduce with great accuracy the

experimental conditions even for very complex molecular structures such as proteins in

presence of an interaction with an environment. The typical error between theory and

experiment is of the order of few percents. In addition, very complex control fields can be

shaped experimentally, which reinforces the interest of theoretical studies. To illustrate

these properties, we detail below the case of the saturation control problem. Figure 7

presents some experimental data for the time-optimal saturation control problem. The

parameters of Sec. 4 have been used in the experiments which were performed on the 1H

proton spins of H2O at room temperature (298 K) in a sample constituted of 10% H2O,

45% D2O, and 45% deuterated glycerol saturated with CuSO4. The experiments were

done on a Bruker Avance 600 MHz spectrometer with linearized amplifiers. As already

mentioned below, we observe in Fig. 7 the very good agreement between theoretical

curves and experimental points. This agreement confirms that such kind of optimal

trajectories can be implemented with modern NMR spectrometers.

6. Conclusion and prospective views

Our goal in the research reported in this paper has been to explore the time-optimal con-

trol of a spin 1/2 particle in presence of relaxation effects. Completing previous research
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Figure 7. (Color Online) Plot of the optimal trajectories (blue or dark gray curve)
and of the inversion recovery sequence (green or gray curve) in the plane (y, z) for
T1 = 740 ms, T2 = 60 ms and ωmax/(2π) = 32.3 Hz. Filled squares and open diamonds
correspond to the experimentally measured points. The lower panel displays the control
laws.

in this field, this work gives a general overview of the construction and of the determi-

nation of the optimal solution, which combines a geometric analysis and analytical and

numerical computations. However, it is clear that much remains to be accomplished in

the application of geometric optimal techniques to quantum control. Up to now, only

very simple quantum systems have been considered. A challenging task in a near future

will be to extend such works to more complicated systems. In this perspective, we have

applied this method to the optimal control of two uncoupled spin systems in Ref. [11]

and we are actually working on the control of three and fours spins. Such studies will be

interesting from both a fundamental perspective and for possible applications in NMR

spectroscopy and imaging in order to take into account experimental constraints such

as resonance offsets and control field inhomogeneities. However, some theoretical and

numerical limitations may exist. According to the Pontryagin Maximum Principle, the

optimal solutions are computed from a shooting equation, by determining the initial

adjoint vector, which selects the extremal trajectory reaching the target state. The

resolution of this equation is more and more difficult when the complexity of the system

increases or when the chaotic behavior of the associated classical dynamic becomes pre-

dominant. In this case, a possibility is to use a continuation method when the control

problem depends on a parameter (e.g. the relaxation rates). The continuation approach

is used to solve step by step the shooting equation, the solution of an initial problem

being known. In addition, even in a very complicated situation where purely numerical
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algorithms such as the GRAPE one has to be used, the geometric techniques can be

interesting. One can find the geometric solution of a simpler problem and then use this

control law as a trial solution of the numerical algorithm. This helps the convergence

of the algorithm and guides it towards a solution close to the geometric one. We have

shown the efficiency of this coupling between the two methods in [23] in order to solve

the saturation control problem of a large number of spins with different resonance offsets

due to experimental imperfections.
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[11] Assémat E., Lapert M., Zhang Y., Braun M., Glaser S. J. and Sugny D. 2010 Phys. Rev. A 82,

013415
[12] Boscain U. and Mason P. 2006 J. Math. Phys. 47, 062101
[13] Stefanatos D. 2009 Phys. Rev. A 80, 045401
[14] Jurdjevic V. 1996 Geometric control theory (Cambridge University Press, Cambridge)
[15] Bonnard B. and Chyba M. 2003 Singular trajectories and their role in control theory (Springer

SMAI, Vol. 40)



Towards the time-optimal control of dissipative spin 1/2 particules in Nuclear Magnetic Resonance17

[16] Boscain U. and Piccoli B. 2004 Optimal syntheses for control systems on 2-D manifolds
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