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1. Introduction

The almost perfect energy transfer (APET) in biologically relevant molecular systems

attracts attention of physicists in the recent years [1]. Similar phenomena should

be observed also in the engineered systems relevant for information processing like

arrays of quantum dots or Josephson junctions [2]. Most of the theoretical analysis

is performed using tight-binding Hamiltonian for an interacting N-body system in

the single excitation regime. The influence of environment is usually modeled by

Markovian master equations with phenomenological decay parameters. The numerical

computations show the interplay between quantum propagation, quantum localization,

decoherence and dissipation [4, 3, 5]. The aim of this paper is to present a simple,

essentially exactly solvable model which describes a generic class of such phenomena and

allows to derive analytical bounds on the efficiency of energy transfer processes. The

motivation for the applied formalism comes from the particular model of two identical

atoms placed in the focuses of two parabolic mirrors separated by a distance ℓ, see Fig.1.

We assume that the dipole moments of both atoms are parallel to the symmetry axis of

the system. If initially the first atom is excited and the second is in the ground state

Figure 1. The APET for two atoms places in the focuses of two parabolic mirrors.

Radiating dipoles are parallel to the axis.

we expect that roughly after time t ≃ ℓ/c + O(τ), where τ is a mean life-time of the

excited state, the energy quantum carried by a photon is almost perfectly transfered to

the second atom. Obviously APET demands fine-tuning conditions: the atoms should

be identical, placed exactly at the focuses of perfectly aligned mirrors and the dipoles

should be parallel to the symmetry axis.

The simple description of such a system can be given in terms of the Wigner-

Weisskopf (W-W) Hamiltonian (compare the case of a single mirror and a single atom

[7]). The conditions which allows for APET are encoded entirely in the structure of the

Hamiltonian which is determined by the details of the model. Treating W-W model as a

generic one of a large class of energy transfer phenomena between two localized centers

one can try to find a general bound for the efficiency of such process and determine the

sufficient conditions for APET.
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2. Wigner-Weisskopf model

In order to introduce a 2-state W-W model we consider a quantum system of two 2-level

atoms interacting with an electromagnetic field which can be described by the standard

Hamiltonian in the rotating wave approximation

H =
ω1

2
σz
1 +

ω2

2
σz
2 +

∫

d3kω(k) a†(k)a(k)

+ σ+
1 a(g1) + σ−

1 a
†(g1) + σ+

2 a(g2) + σ−
2 a

†(g2). (1)

The operators a(g) and a†(g) are smeared annihilation and creation operators for the

electromagnetic field given by a†(g) =
∫

d3k g(k)a†(k), gj(k), j = 1, 2, are suitable

formfactors, and the quantum fields satisfy [a(k), a†(k′)] = δ(k − k′) (we omit for

simplicity the polarization degrees of freedom). The standard 2× 2 Pauli matrices σ±,z
1,2

refer to 2-level atoms. In the case of identical atoms with relative position described by

the vector r the formfactors differ by the relative phase L(k) = k · r

g2(k) = e−iL(k)g1(k). (2)

The crucial property of the Hamiltonian (1) is the commutation with the excitation

number operator defined as

Nex =

∫

d3k a†(k)a(k) + (σz
1 + 1/2) + (σz

2 + 1/2). (3)

The total Hilbert space of the system possesses a tensor product structure

Htot = C
2 ⊗Fph ⊗ C

2 (4)

with the bosonic Fock space Fph describing an electromagnetic field. As a consequence

of the commutation [H,Nex] = 0 the subspace corresponding to the eigenvalue 1 of Nex,

which can be called single exciton Hilbert space is invariant under the evolution. It

possesses a direct orthogonal sum structure, i.e., is spanned by the following vectors

|1〉 ≡ | ↑; 1〉 ⊗ |vac〉 ⊗ | ↓; 2〉,

|2〉 ≡ | ↓; 1〉 ⊗ |vac〉 ⊗ | ↑; 2〉,

|f〉 ≡ | ↓; 1〉 ⊗ a†(f)|vac〉 ⊗ | ↓; 2〉 for any wave− packet f. (5)

Here, | ↑; j〉 and | ↓; j〉 denote excited and ground state of the j-th atom, respectively,

and |vac〉 is the vacuum state of an electromagnetic field. This mathematical

construction, which has been used frequently in quantum optics [6], will be called the

2-state W-W model.

The 2-state W-W model is suitable for the following generic physical situation.

We restrict ourselves to physical systems which can be described in terms of the single-

exciton Hilbert spaceHex. In this Hilbert space we choose two orthogonal vectors |1〉, |2〉

which are determined by the initial state preparation and the measurement procedures.

Namely, the initial state (”donor”) of the system at time t0 = 0 is denoted by |1〉, while

the measurement at time t > 0 after preparation is a von Neumann projection on the

state |2〉 (”acceptor”).
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The Hilbert space of the model system is decomposed into a direct sum (compare

with (5))

Hex = C⊕ L2(Ω)⊕ C (6)

where the one-dimensional subspaces C are generated by the states |1〉, |2〉 and the

Hilbert space L2(Ω) is their orthogonal supplement. For the convenience we represent

this Hilbert space as the space of wave packets f(k), g(k), k ∈ Ω denoted by |f〉, |g〉 with

the scalar product

〈f |g〉 =

∫

Ω

f(k)g(k) dk . (7)

One should stress that the notation of above is used for convenience only. One can

always replace the continuous variable k by a joint set of continuous variables ω and

discrete quantum numbers m such that |k〉 is replaced by |ω,m〉 and

〈ω,m|ω′,m′〉 = δ(ω − ω′)δmm′ , and

∫

Ω

dk 7→
∑

m

∫

dω. (8)

The 2-state W-W Hamiltonian, which can be seen as the restriction of (1) to the single-

exciton space, reads

H = H0 + V,

H0 = ω1|1〉〈1|+ ω2|2〉〈2|+

∫

Ω

dk ω(k)|k〉〈k|,

V = (|1〉〈g1|+ |g1〉〈1|) + (|2〉〈g2|+ |g2〉〈2|) (9)

where g1,2 ∈ L2(Ω). All details of the model are hidden in the form of formfactors g1,2 and

the spectral resolution of the part of the Hamiltonian denoted here by
∫

Ω
dk ω(k)|k〉〈k|.

Remarks The presented model should be treated as an open quantum system

where the system consists of donor and acceptor and the continuous modes form

a reservoir. Notice that strictly speaking for the 2-atom model presented in the

Introduction the cavity formed by the mirrors is finite and hence the modes are discrete.

Therefore the W-W Hamiltonian applies to the case of a large enough cavity such that

the Heisenberg time tH = 1/δω (~δω - characteristic energy level splitting of modes) is

much longer than any relevant time scale. Alternatively, the continuous spectrum can

be used if the modes themselves are unstable, due to environmental effects, and have

finite life-times comparable to tH .

3. Efficiency of energy transfer

The system begins its evolution in the excited state |1〉 and after time t can be found

in the state |2〉 with the probability

P12(t) = |A12(t)|
2 , A12 = 〈2|e−iHt|1〉. (10)

The APET holds if ω1 ≃ ω2 and for a certain time t0 the transfer probability P12(t0) ≃ 1.

To find the sufficient conditions for APET in terms of the Hamiltonian (9) notice that
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the (complex) probability amplitude A12(t) is a scalar product of two states, e−iHt/2|1〉

and eiHt/2|2〉 which evolve forward and backward in time, respectively. For t ≫ τ where

τ is the life-time of the excited states one expects that the following approximation

holds

e−iHt/2|1〉 ≃ e−iH0t/2|f1〉 , eiHt/2|2〉 ≃ eiH0t/2|f2〉 (11)

where f1(k), f2(k) are certain wave packets from the Hilbert space component L2(Ω)

describing intermediate excitonic states. The estimation (11) is equivalent to the

existence of wave operators defined as

W+ = lim
t→+∞

eiH0te−iHt , W− = lim
t→+∞

e−iH0teiHt (12)

which holds under mild conditions on the formfactors g1,2 and exciton’s dispersion

relation ω(k), at least in the weak sense of convergence of matrix elements. Combining

(11) with (12) one obtains

f1(k) = 〈k|W+|1〉 , f2(k) = 〈k|W−|2〉 (13)

and finally

A12(t) =

∫

k∈Ω

dk e−iω(k)t〈k|W+|1〉〈k|W−|2〉. (14)

The advantage of the Wigner-Weisskopf model is the fact that the matrix elements

〈1|W−|k〉 and 〈2|W+|k〉 can be exactly computed using Laplace transforms (see the

next Section).

4. The computation of matrix elements

The basic tools used for the computation of the probability amplitude (14) are:

the identity

e−iHt = e−iH0t − i

∫ t

0

ds [e−iω1(t−s)|1〉〈g1|+ |g1(t− s)〉〈1|

+ e−iω2(t−s)|2〉〈g2|+ |g2(t− s)〉〈2|]e−iHs (15)

where |gj(t)〉 ≡ e−iH0t|gj〉, and the Laplace transform

f̃(z) =

∫ ∞

0

e−ztf(t) dt. (16)

Introducing the notation (j, j′ = 1, 2):

Sjj′(t) = 〈j|e−iHt|j′〉

Fjj′(t) = 〈gj|e
−iHt|j′〉

Gjj′(t) = 〈gj|e
−iH0t|gj′〉. (17)

and using the identity (15), the definition of the wave operators (12), the notation (17)

and the Laplace transform we have

f1(k) = 〈k|W+|1〉 = − i
[

g1(k)S̃11 (−iω(k)) + g2(k)S̃21 (−iω(k))
]

f2(k) = 〈k|W−|2〉 = i
[

g1(k)S̃21 (−iω(k)) + g2(k)S̃22 (−iω(k))
]

. (18)
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Combining the identity (15) with the definitions (17) we obtain a series of equations

S11(t) = e−iω1t − i

∫ t

0

e−iω1(t−s)F11(s) ds,

S22(t) = e−iω2t − i

∫ t

0

e−iω2(t−s)F22(s) ds,

S12(t) = − i

∫ t

0

e−iω1(t−s)F12(s) ds,

F11(t) = − i

∫ t

0

G11(t− s)S11(s) ds− i

∫ t

0

G12(t− s)S21(s) ds,

F22(t) = − i

∫ t

0

G22(t− s)S22(s) ds− i

∫ t

0

G21(t− s)S12(s) ds,

F12(t) = − i

∫ t

0

[G11(t− s)S12(s) +G12(t− s)S22(s)] ds, (19)

which can be converted into equations for Laplace transforms

S̃11(z) =
1

z + iω1

[1− iF̃11(z)],

S̃22(z) =
1

z + iω2

[1− iF̃22(z)],

S̃12(z) =
−i

z + iω1

F̃12(z),

S̃21(z) =
−i

z + iω2

F̃21(z),

F̃11(z) = − iG̃11(z)S̃11(z)− iG̃12(z)S̃21(z),

F̃22(z) = − iG̃22(z)S̃22(z)− iG̃21(z)S̃12(z),

F̃12(z) = − i[G̃11(z)S̃12(z) + G̃12(z)S̃22(z)]

F̃21(z) = − i[G̃21(z)S̃11(z) + G̃22(z)S̃21(z)]. (20)

The system of equations (20) can be solved yielding the relevant Laplace transforms

S̃11(z) =
1

z + iω1 + G̃11(z)

[

1 +
G̃12(z)G̃21(z)

W (z)

]

S̃12(z) =
−G̃12(z)

W (z)

S̃21(z) =
−G̃21(z)

W (z)

S̃22(z) =
1

z + iω2 + G̃22(z)

[

1 +
G̃12(z)G̃21(z)

W (z)

]

(21)

where

W (z) = (z + iω1 + G̃11(z))(z + iω2 + G̃22(z))− G̃12(z)G̃21(z). (22)

Combining (21 ) with (18) and (14) one can obtain the exact final formula for the

transition amplitude which can be used for numerical calculations. The formulas
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can be essentially simplified if one neglects all terms containing G̃12(z), G̃21(z). This

approximation means that the interaction between donor and acceptor mediated by the

reservoir is neglected as well as the collective contribution to their relaxation processes.

In the case of two atoms in a large cavity it means that the dipole-dipole interaction

and the ”superradiance/subradiance” effects [10] are neglected.

5. Markovian approximation

In order to continue analytical analysis of the problem we consider the case of weak

coupling or Markovian approximation and neglect the collective effects as discussed

above. The further approximation concerns Laplace transforms G̃jj(z). The real

part of G̃jj(−iω), taken at the physical frequency is the standard Fermi Golden Rule

approximation for the decay rate of the state |j〉 (j = 1, 2) given by

γj = π

∫

Ω

dk |gj(k)|
2δ(ω(k)− ωren

j ), (23)

while the imaginary part is a ”radiative correction” to the bare frequencies ωj yielding

a physical renormalized frequency

ωren
j = ωj −

∫

Ω

dk |gj(k)|
2P

( 1

ω(k)− ωren
j

)

. (24)

Notice, that the equation (24) has a self-consistent character because ωren
j appears on

both sides of it. It is due to the fact that we cannot expect that the ”radiative correction”

is small and hence it is not justified to put the bare value ωj on the RHS of (24) and

(23).

Summarizing, the Markovian approximation means that

S̃21(−iω(k)) ≃ 0 , S̃jj(−iω(k)) ≃ [i(ωren
j − ω(k)) + γj]

−1 , γj ≪ ωj. (25)

Therefore using Eqs. 18) and (25) one obtains

f1(k) =
g1(k)

ω(k)− ωren
1 + iγ1

, f2(k) =
g2(k)

ω(k)− ωren
2 − iγ2

(26)

and

A12(t) =

∫

k∈Ω

dk e−iω(k)t g1(k)g2(k)

(ω(k)− ωren
1 + iγ1)(ω(k)− ωren

2 + iγ2)
(27)

One can estimate the upper bound for P12(t) using (27) to get

P12(t) = |A12(t)|
2 ≤ ‖f2‖

2‖f1‖
2. (28)

The equality
∫∞

−∞
γ[x2 + γ2]−1dx = π implies for example

‖f1‖
2 =

∫

Ω

|f1(k)|
2 dk =

∫

Ω

dk
|g1(k)|

2

(ωren
1 − ω(k))2 + γ2

1

≃
1

π

∫ ∞

0

γ1
(ωren

1 − ω)2 + γ2
1

≃ 1−
γ1
πω1

(29)
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what finally gives the bound (compare with [8])

P12(t) ≤
(

1−
γ1

πωren
1

)(

1−
γ2

πωren
2

)

< 1. (30)

In the weak coupling regime the upper bound is close to one.

6. Conditions for APET

In order to approach the bound (30) and achieve APET certain matching conditions

implied directly by the formula (27) must be satisfied. To present them in a transparent

form we introduce certain additional assumptions in a convenient parametrization.

There are satisfied by the two-mirror system discussed in the Introduction.

Assume that the intermediate Hilbert space L2(Ω) is spanned by the basis |ω,m〉

and the corresponding part of the Hamiltonian reads

H1 =
∑

m

∫

dω ω |ω,m〉〈ω,m|. (31)

The formfactors possess the following structure

|g1〉 =

∫

dω g(ω)|ω,m0〉 , |g2〉 =

∫

dω e−iL(ω)g(ω)|ω,m0〉. (32)

where g(ω) is a smooth enough formfactor and L(ω) accounts for the spatial separation

of donor and acceptor similarly to (2). Now the mechanism leading to APET can be

illustrated. We have to put the resonance condition

ωren
1 = ωren

2 ≡ ω0, (33)

which by (23) implies also the equality of decay rates

γ1 = γ2 ≡ γ. (34)

Then we have the approximative expression

A12(t) ≃
1

π

∫

dω
γ

(ω − ω0)2 + γ2

(ω − ω0 − iγ

ω − ω0 + iγ

)

ei(L(ω)−ωt). (35)

Further approximations valid for |ω − ω0| ≤ γ
(ω − ω0 − iγ

ω − ω0 + iγ

)

≃ −ei2(ω−ω0)/γ , L(ω) ≃ L(ω0) + L′(ω0)(ω − ω0) (36)

lead to

|A12(t)| ≃
1

π
|

∫

dω
γ

(ω − ω0)2 + γ2
exp{i[L′(ω0) + 2τ − t](ω − ω0)}| (37)

where τ = 1/γ. The transition probability is maximal and close to one if the oscillating

factor in the integral of above vanishes what happens for the time

t0 = L′(ω0) + 2τ (38)

which can be called the optimal transfer time.
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7. Transport in quantum networks

The standard tight-binding model of energy transport in quantum networks which is

applicable both to molecular systems and engineered ones consist of N 2-level ”atoms”

described by the Hilbert space C
2N and the Hamiltonian written in terms of Pauli

matrices

HN =
N
∑

k=1

ωk σ
z
k +

N
∑

k<l=2

(hkl σ
+
k σ

−
l + h.c.) (39)

where {ωk} are energies of the sites and {hkl; k < l} are hopping amplitudes. Similarly

to the example in the Section 2 the exciton number operator

Nex =
N
∑

k=1

(σz
k + 1/2) (40)

commutes with HN .

Again a single exciton N -dimensional Hilbert space CN is invariant with respect to

the dynamics and the corresponding restriction of the Hamiltonian HN is given by the

N ×N hermitian matrix [hkl] with the diagonal elements hkk = ωk. We attribute to the

donor site an index ”1” and to the acceptor site an index ”2”. The famous example of

such a model is the standard description of the exciton transfer in the Fenna-Matthews-

Olson (FMO) complex which involves N = 7 centers and the experimentally determined

7 × 7 single-exciton Hamiltonian [11, 12]. To describe the influence of environment

different schemes have been proposed mainly based on the Markovian master equations

for the reduced density matrix of the exciton system [3, 4, 5, 9]. Here we propose a

different approach based on the W-W model where only donor and acceptor form an

open system while the other sites are included into a bath.

We assume that the direct hopping 1 ↔ 2 is negligible, i.e. h12 = h21 = 0. We have

to add also the site N + 1 with the energy ǫN+1 which represents a sink coupled only

to the acceptor by the matrix element h2(N+1). Under these conditions the extended

Hamiltonian can be recast into the discrete version of the W-W Hamiltonian

H(d) = ω1|e1〉〈e1|+ ω2|e2〉〈e2|+ (|e1〉〈g1|+ |e2〉〈g2|+ h.c.) +H
(d)
1 . (41)

Here |e1〉 = [1, 0, ..., 0], |e2〉 = [0, 1, ..., 0] , |g1〉 = [0, 0, h13, ...h1N , 0] ,|g2〉 =

[0, 0, h23, ...h2N , h2(N+1)] andH
(d)
1 is a submatrix ofH(d) with indices k, l = 3, 4, ..., N,N+

1. H
(d)
1 can be written in its spectral decomposition form

H
(d)
1 =

N+1
∑

α=3

ǫα|α〉〈α| (42)

where |N + 1〉 = [0, ...0, 1]. The energies ǫα are chosen in a decreasing order what is

consistent with the intuition that the energy of a sink ǫN+1 should be the lowest one.

Notice that (41),(42) can be treated as a discrete version of the continuous spectrum

Hamiltonian (9). In the next step we embed the discrete model into a continuous one.

Physically, it means that the interaction with other (environmental) degrees of freedom
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is taken into account. This interaction transforms the eigenstates |α〉 into resonances

with finite spectral widths. The Hilbert space spanned by {|α〉} is replaced by L2(R) and

the Hamiltonian (42) by the multiplication operator by ω which can be formally written

as H1 =
∫

dω ω |ω〉〈ω|. Consider the correlation functions characterizing the interaction

of the donor-acceptor system with the bath consisting of other sites including a sink site

G
(d)
jj (t) = 〈gj|e

−iH1t|gj〉 =
N+1
∑

α=3

|〈α|gj〉|
2e−iǫαt , j = 1, 2. (43)

In order to include the interaction with the other degrees of freedom, e.g. vibrational

modes for molecular systems like FMO, we assume that the discrete modes |α〉 are

unstable and the correlations decay with the decoherence rates Γα. The modified

correlation functions corresponding to the continuous model read

Gjj(t) =
N+1
∑

α=3

|〈α|gj〉|
2e−iǫαte−Γα|t| , j = 1, 2. (44)

One can replace the discrete formactors 〈α|gj〉 by the suitable wave functions gj(ω) from

L2(R) satisfying

Re
(

∫ ∞

0

eiωtGjj(t) dt
)

=
N+1
∑

α=3

|〈α|gj〉|
2 Γα

(ω − ǫα)2 + Γ2
α

= π|gj(ω)|
2. (45)

The condition (45) determines only the modulus of gj(ω). The relative phase L(ω)

should be constructed as an interpolation between discrete relative phases for 〈α|g1〉

and 〈α|g2〉 defined at the points {ω = ǫα}.

8. Energy transfer controlled by decoherence

The search for the condition which should be satisfied to achieve APET in quantum

networks can be treated as a control problem for quantum open systems. One of the

possible settings is to treat the tight-binding Hamiltonian (39) as given and optimize

the choice of decoherence rates {Γα}, acceptor-sink coupling h2(N+1) and the sink energy

ǫN+1 to maximize the transition probability P12(t0). The advantage of the presented

model is a deeper insight into the mechanism of APET based on the discussion in the

Section 6 where analytical formulas are used.

The first condition for APET is a fine-tuning one, namely the resonance condition

(33). It can be discussed using the following formula for the renormalized frequencies

obtained by putting (44) into (24)

ωren
j = ωj −

N+1
∑

α=3

|〈α|gj〉|
2

ǫα − ω
(ren)
j

(ωren
j − ǫα)2 + Γ2

α

. (46)

Another condition follows from (34) which implies that |g1(ω)| and |g2(ω)| should

essentially coincide in the neighborhood of ω0 of the width γ ≃ π|g1(ω0)|
2 ≃ π|g2(ω0)|

2.

One can expect that this condition can be satisfied generically for the widths of the

resonances comparable to the typical nearest neighbor energy spacing.
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The optimal transfer time estimated from the formula (38) reads

t0 ≃
π

ǫα0
− ǫα0+1

+
2

π|g1,2(ω0)|2
(47)

where ǫα0
≥ ω0 ≥ ǫα0+1.

9. Concluding remarks

The 2-state Wigner-Weisskopf model provides a versatile mathematical tool to study,

within the single exciton approach, the transport properties in complex molecular

systems or engineered networks relevant for quantum information processing, both in

the weak coupling (Markovian) and strong coupling (non-Markovian) regimes. The

preliminary results for the FMO model (work in progress) show that the presented

here APET conditions can be achieved under realistic assumptions concerning the

decoherence rates and sink parameters. The necessity of fine-tuning to achieve APET

in disordered molecular networks has been already noticed in [9] where sampling over

many molecular configurations has been performed. However, the presented here

formalism allows to design the optimal parameters and shows the details of the physical

mechanisms leading to APET. In the case of engineered networks the fine-tuning

conditions imply a careful design while for biologically relevant systems one can imagine

that the natural selection mechanism plays a crucial role.
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