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Optimal control methods for implementing quantum modules with least amount of relaxative
loss are devised to give best approximations to unitary gates under relaxation. The potential gain
by optimal control fully exploiting known relaxation parameters against time-optimal control (the
alternative for unknown relaxation parameters) is explored and exempli�ed in numerical and in
algebraic terms: for instance, relaxation-based optimal control is the method of choice to govern
quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would other-
wise drive the system through fast decaying modes. In a standard model system generalising ideal
decoherence-free subspaces to more realistic scenarios, opengrape-derived controls realise a cnot
with �delities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional
bene�t their control �elds are orders of magnitude lower in power than bang-bang decouplings.

PACS numbers: 03.67.-a, 03.67.Lx, 03.65.Yz, 03.67.Pp; 82.56.Jn

I. INTRODUCTION

Using experimentally controllable quantum systems to
perform computational tasks or to simulate other quan-
tum systems [1, 2] is promising: by exploiting quan-
tum coherences, the complexity of a problem may re-
duce when changing the setting from classical to quan-
tum. Protecting quantum systems against relaxation is
therefore tantamount to using coherent superpositions as
a resource. To this end, decoherence-free subspaces have
been applied [3], bang-bang controls [4] have been used
for decoupling the system from dissipative interaction
with the environment, while a quantum Zeno approach
[5] may be taken to projectively keep the system within
the desired subspace [6]. Controlling relaxation is both
important and demanding [7, 8, 9, 10, 11], also in view of
fault-tolerant quantum computing [12] or dynamic error
correction [13, 14, 15]. Implementing quantum gates or
quantum modules experimentally is in fact a challenge:
one has to �ght relaxation while simultaneously steering
the quantum system with all its basis states into a lin-
ear image of maximal overlap with the target gate. We
also showed how near time-optimal control by grape [16]
take pioneering realisations from their �delity-limit to the
decoherence-limit [17].

While decoupling techniques typically protect against
certain types of relaxation for a broad array of scenarios
whose speci�c parameters need not be known (or are un-
known anyway), optimal control exploits the knowledge
of the dynamic system parameters for low-cost protection
against relaxation dressed to the speci�cs of the experi-
mental system given. For instance, in spectroscopy, opti-
mal control has proven to keep the state in slowly relax-
ing modes of the Liouville space [18, 19, 20]. In quantum
computing, however, the entire basis has to be trans-
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formed. For generic relaxation scenarios, this precludes
simple adaptation to the entire Liouville space: the gain
of going along protected dimensions is outweighed by
losses in the orthocomplement. Yet embedding logical
qubits as decoherence-protected subsystem into a larger
Liouville space of the encoding physical system raises
questions: is the target module reachable within the pro-
tected subspace by admissible controls?
In this category of setting, the extended gradient al-

gorithm opengrape turns out to be particularly power-
ful to give best approximations to unitary target gates
in relaxative quantum systems thus extending the tool-
box of quantum control, see e.g. [16, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30]. Moreover, building upon Ref. [31],
it has been shown in [32] that non-Markovian relax-
ation models can be treated likewise, provided there is
a �nite-dimensional embedding such that the embedded
system itself ultimately interacts with the environment
in a Markovian way. Time dependent Γ(t) have recently
also been treated in the Markovian [33, 34] and non-
Markovian regime [35].
Here we study model systems that are fully controllable

[36, 37, 38, 39], i.e. those in which�neglecting relaxation
for the moment�to any initial density operator ρ, the
entire unitary orbit U(ρ) := {UρU−1 |U unitary} can be
reached [37] by evolutions under the system Hamiltonian
(drift) and the experimentally admissible controls. Yet,
certain tasks can be performed within a subspace, e.g., a
subspace protected totally or partially against relaxation.

II. THEORY

Unitary modules for quantum computation require
synthesising a simultaneous linear image of all the basis
states spanning the Hilbert space or subspace on which
the gates shall act. Thus gate synthesis generalises the
(rank-1) spectroscopic task of transferring the state of a
system from a given initial one into maximal overlap with
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a desired target state to a full-rank unitary image.

A. Preliminaries

Yet in either case, the underlying control problem of
maximising an overlap subject to the dynamics being
governed by an equation of motion may readily be ad-
dressed by our algorithm grape [16]. For state-to-state
transfer in spectroscopy, one simply refers to the Hamil-
tonian equations of motion known as Schrödinger's equa-
tion (for pure states of closed systems represented in
Hilbert space) or to Liouville's equation (for density op-
erators in Liouville space)

˙|ψ〉 = −iH |ψ〉 (1)

ρ̇ = −i [H, ρ] . (2)

In quantum computation, however, the above have to
be lifted to the corresponding operator equations, which
is facilitated using the notations AdU (·) := U(·)U† and
adH (·) := [H, (·)] obeying

e−it adH (·) = AdU (·) with U := e−itH (3)

and using `◦' for the composition of maps in

U̇ = −iH U (4)
d
dt AdU = −i adH ◦ AdU . (5)

These operator equations of motion occur in two scenar-
ios for realising quantum gates or modules U(T ) with

maximum trace �delities: Let g′ := 1
N tr{U†targetU(T )}

denote the normalised overlap (setting N := 2n for an
n-qubit system henceforth). Then the quality function

f ′ := 1
N Re tr{U†targetU(T )} = Re g′ (6)

covers the case where overall global phases shall be re-
spected, whereas if a global phase is immaterial [25]
(while the �xed phase relation between the matrix
columns is kept), the quality function

f := 1
N2 Re tr{Ad†Utarget

AdU(T )} =
∣∣g′∣∣2 (7)

applies. The latter identity is most easily seen [25] in
the so-called vec-representation [40] of ρ, where vec(ρ) is
the column vector stacking all colums of the matrix ρ.
In this representation, AdU takes the form of the con-
jugation superoperator AdU = Ū ⊗ U (with Ū denoting
the complex conjugate) and adH takes the form of the
commutator superoperator adH = 1l⊗H −H> ⊗ 1l.

B. Open grape

Likewise, under relaxation introduced by the operator
Γ (which may, e.g., take GKS-Lindblad form), the re-
spective master equations for state transfer [36] and its

ρ0 = ρSE(0)⊗ ρB(0)
AdW (t)−−−−−−−−−→
(unitary)

ρ(t) = W (t)ρ0W
†(t)

ΠSE

??ytrB ΠSE

??ytrB

ρSE(0)
FSE(t)−−−−−−−−−→

(Markovian)
ρSE(t)

ΠS

??ytrE ΠS

??ytrE

ρS(0)
FS(t)−−−−−−−−−−−→

(non−Markovian)
ρS(t)

Figure 1: Time-evolution of a quantum system (S) embed-
ded in some environment (E) and coupled to a bath (B). If
the universal system evolves under the global unitary W (t),
opengrape provides optimal controls for the category of sce-
narios for which there is a �nite-dimensional embedding such
that the embedded system (SE) follows a time evolution un-
der a Markovian quantum map FSE(t), while the reduced sys-
tem of concern (S) may evolve in a non-Markovian way by a
generic quantum map FS(t). In the simplest of cases, ρSE(0)
is of tensor product form with FS(t) being Markovian itself.

lift for gate synthesis read

ρ̇ = −(i adH +Γ) ρ (8)

Ḟ = −(i adH +Γ) ◦ F . (9)

Again with N := 2n in n-qubit systems, F denotes a
quantum map in GL(N2) as linear image over all ba-
sis states of the Liouville space representing the open
system. The Lie-semigroup properties of F (t) have re-
cently been elucidated in detail [41]: it is important to
note that only in the special (and highly unusual) case of
[adH , Γ ] = 0 the map F (t) boils down to a mere contrac-
tion of the unitary conjugation AdU . In general, however,
one is faced with an intricate interplay of the respective
coherent (i adH) and incoherent (Γ) part of the time evo-
lution: it explores a much richer set of quantum maps
than contractions of AdU , as expressed in [41] in terms
of a k, p-decomposition of the generators in gl(N2,C) of
quantum maps. It is this interplay that ultimately en-
tails the need for relaxation-optimised control based on
the full knowledge of the master Eqn. (9), while in the
special case of mere contractions of AdU , tracking maxi-
mum qualities against �xed �nal times (`top curves', vide
infra, e.g. Fig. 3 (a) upper panel) obtained for Γ = 0 plus
an estimate on the eigenvalues of Γ su�ce to come up
with good guesses of controls.
Now for a Markovian master equation to make sense in

terms of physics, it is important that the quantum sub-
system of concern is itself coupled to its environment in a
way justifying to neglect any memory e�ects. This means
the characteristic time scales under which the environ-
ment correlation functions decay have to be su�ciently
smaller than the time scale for the quantum evolution
of the subsystem (see, e.g., [42]). � More precisely, as
exempli�ed in Fig. 1, we will assume that either the quan-
tum system itself (S) or a �nite-dimensional embedding
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of the system (SE) can be separated from the environ-
mental bath (B) such that (at least) one of the quantum
maps of the reduced system FS(t) or FSE(t) is Marko-
vian and allows for a description by a completely posi-
tive semigroup [43, 44, 45], if the time evolution for the
universal composite of (embedded) system plus bath is
unitary. Examples where FS(t) is Markovian have been
given in [31], while a concrete setting of a qubit (S) cou-
pled on a non-Markovian scale to a two-level �uctuator
(E), which in turn interacts in a Markovian way with a
bosonic bath (B) has been described in detail in [32].
Henceforth, we will drop the subscript to the quantum

map F (t) and tacitly assume we refer to the smallest
embedding such that the map is Markovian and governed
by Eqn. (9).
Moreover, if the Hamiltonian is composed of the drift

term Hd and control terms Hj with piecewise constant
control amplitudes uj(tk) for tk ∈ [0, T ]

H(tk) := Hd +
∑

j

uj(tk)Hj with uj(tk) ∈ U ⊆ R (10)

then Eqn. (9) de�nes a bilinear control system.
With these stipulations, the grape algorithm can be

lifted to the superoperator level in order to cope with
open systems by numerically optimising the trace �delity

ftr := 1
N2 Re tr{Ad†Utarget

F (T )} (11)

for �xed �nal time T . For simplicity, we henceforth as-
sume equal time spacing ∆t := tk − tk−1 for all time
slots k = 1, 2, . . . ,M , so T = M · ∆t. Therefore
F (T ) = FM · FM−1 · · ·Fk · · ·F2 · F1 with every map tak-
ing the form Fk = exp{−(i adH(tk) +Γ(tk))∆t} leads to
the following approximated derivatives

∂ftr
∂uj(tk) ' − 1

N2 Re tr
{

Ad†U ·FM · FM−1 · · ·Fk+1 ×

×
(
i adHj + ∂Γ(uj(tk))

∂uj(tk)

)
Fk∆t× Fk−1 · · ·F2 · F1

}
,

(12)

which hold for su�ciently small time intervals obeying
∆t � 1/||i adH + Γ||2. Otherwise one may employ, e.g.,
�nite di�erences, since with adH and Γ not commuting,
the generators −(i adH +Γ) are generically non-normal
and thus the eigendecomposition looses its numerical
bene�ts. In the simplest case, the gradients can be used
for a recursive gradient-ascent scheme (with appropriate
step size αr > 0), which gives in each time slot tk

u
(r+1)
j (tk) = u

(r)
j (tk) + αr

∂ftr
∂uj(tk) (13)

as update from iteration r to r + 1 of the control am-
plitude uj to control Hj . When needed for speeding up
the algorithm at higher �delities, one may readily re-
sort to standard quasi-Newton methods [46] (like limited-
memory Broyden-Fletcher-Goldfarb) as shown re-
cently [30].

Numerical Setting

Numerical opengrape typically started from some 50
initial conditions to each �xed �nal time then taking the
2-3 fastest increasing runs through some r = 10−30×103

iterations (see Eqn. (13)) to arrive at one point in the top
curve shown as upper trace in Fig. 3.
In contrast, for �nding time-optimised controls in the

closed reference system, we used grape for tracking top
curves: this is done by performing optimisations with
�xed �nal time, which is then successively decreased so
as to give a top curve g(T ) of quality against duration
of control, a standard procedure used in, e.g., Ref. [25].
Here, in closed systems, �nding controls for each �xed
�nal time started out from some 20 random initial con-
trol sequences. Convergence to one of the points in time
(where Fig. 3 shows mean and extremes for a familiy of
15 di�erent such optimised control sequences) required
some r = 1000 recursive iterations each. � Numerical
experiments were carried out on single workstations with
512 MHz to 1.2 GHz tact rates and 512 MB RAM.
Conclusions with regard to algorithmic concepts for

optimising high-�delity quantum maps of open systems
would be premature on the grounds of this study and thus
will be given elsewhere as for reliable statistics, smaller
(i.e. faster to-come-by) systems will have to be addressed.

III. EXPLORING APPLICATIONS BY MODEL

SYSTEMS

It is the purpose of this section is to use illustrative
examples to demonstrate the power of optimal control of
open quantum systems as a realistic means for protect-
ing systems from relaxation based on the knowledge of

the full master equation. In order to compare the results
with idealised scenarios of `decoherence-free subspaces'
and `bang-bang decoupling', we choose two model sys-
tems that can partially be tracted by algebraic means
in the sense that Lie closures can readily be evaluated
(vide infra). This allows for establishing controllability
[37, 38, 39, 47, 48, 49] in the subspace of low decoher-
ence thus ensuring the existence of solutions be they by
paper-and-pen or numerical. Thus comparing numeri-
cal results with analytical ones will elucidate the pros of
numerical optimal control over previous approaches. �
In order to avoid misunderstandings, however, we should
emphasize our algorithmic approach to controlling open
systems (opengrape) is by no means limited to operat-
ing within such predesigned subspaces of weak decoher-
ence: e.g., in Ref. [32] we have worked in the full Liouville
space of a non-Markovian target system. Yet, not only
are subspaces of weak decoherence practically important,
they also lend themselves to demonstrate the advantages
of relaxation-optimised control in the case of Markovian
systems (here with time independent relaxation opera-
tor Γ).
The starting point is the usual encoding of one logical
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qubit in Bell states of two physical ones

|0〉L := 1√
2
{|01〉+ |10〉} = |ψ+〉

|1〉L := 1√
2
{|01〉 − |10〉} = |ψ−〉

(14)

Four elements then span a Hermitian operator subspace

B := spanR {|ψ±〉〈ψ±|} , (15)

whose protection against T2-type relaxation can readily
be seen, since for any ρ ∈ B

Γ0(ρ) := [zz, [zz, ρ]] = 0 , (16)

where henceforth we use the short-hand zz := σz ⊗ σz/2
and likewise xx as well as 1lµν1l := 1

21l2 ⊗ σµ ⊗ σν ⊗ 1l2
for µ, ν ∈ {x, y, z, 1l}. Interpreting Eqn. (16) as perfect
protection against T2-type decoherence is in line with the
slow-tumbling limit of the Bloch-Red�eld relaxation by
the spin tensor A2,(0,0) := 1√

6
( 3
2 zz − I1I2) [50]

ΓT2(ρ) := [A†2,(0,0), [A2,(0,0), ρ]] = 9
24 [zz, [zz, ρ]] = 0 .

(17)
For the sake of being more realistic, the model relax-

ation superoperator mimicking dipole-dipole relaxation
within the two spin pairs in the sense of Bloch-Red�eld
theory is extended from covering solely T2-type decoher-
ence to mildly including T1 dissipation by taking (for each
basis state ρ) the sum [50]

Γ(ρ) :=
1∑

m1,m2=−1

[
A†2,(m1,m2)

,
[
A2,(m1,m2)

, ρ
]]
, (18)

in which the zeroth-order tensor A2,(0,0) ∼ zz is then
scaled 100 times stronger than the new terms. So the
resulting model relaxation rate constants �nally become
T−1

2 : T−1
1 = 4.027 s−1 : 0.024 s−1 ' 170 : 1.

A. Controllability Combined with Protectability

against Relaxation

In practical applications to a given system, a central
problem boils down to simultaneously solving two ques-
tions: (i) is the (sub)system fully controllable and (ii) can
the (sub)system be decoupled from fast relaxing modes
while being steered to the target.
It is for answering these questions in algebraic terms

that we have chosen the following coupling interactions:
if the two physical qubits are coupled by a Heisenberg-XX
interaction and the controls take the form of z-pulses
acting jointly on the two qubits with opposite sign, one
obtains the usual fully controllable logical single qubit
over B, because

〈i(z1l− 1lz), i(xx+ yy)〉Lie

rep
= su(2) , (19)

where 〈·〉Lie denotes the Lie closure under commutation,
which here gives i(yx− xy) as third generator to su(2).

D2

D2

256 x 256

64

64

128ìììì ìì ìì

adH 7→
`
adH

´
Γ

Figure 2: (Colour) In a physical four-qubit system for
encoding two logical qubits, the Hamiltonians (in their
superoperator representations of adH) take the form of
256 × 256 matrices. In the eigenbasis of Γ (Eqn. 18), the
drift Hamiltonian adHD1 of System I block diagonalises into
slowly relaxing modes (blue) with relaxation rate constants
in the interval [0 s−1, 0.060 s−1], moderately relaxing modes
(hatched) with [4.01 s−1, 4.06 s−1], and fast relaxing modes
(red) with [8.02 s−1, 8.06 s−1]. In System II the Hamiltonian
adHD1+D2 comprises o�-diagonal blocks (empty boxes)
that make the protected modes exchange with the fast
decaying ones. [NB: for pure T2-relaxation (Eqn. 17), the
relaxation-rate eigenvalues would further degenerate to 0 s−1

(`decoherence-free'), 4 s−1 (medium) and 8 s−1 (fast) while
maintaining the same block structure].

Model System I

By coupling two of the above qubit pairs with an Ising-
ZZ interaction as in Refs. [51, 52, 53] one gets the stan-
dard logical two-spin system serving as our reference Sys-
tem I: it is de�ned by the drift Hamiltonian HD1 and the
control Hamiltonians HC1,HC2

HD1 :=Jxx (xx1l1l + 1l1lxx+ yy1l1l + 1l1lyy) + Jzz 1lzz1l
HC1 :=z1l1l1l− 1lz1l1l
HC2 :=1l1lz1l− 1l1l1lz , (20)

where the coupling constants are set to Jxx = 2 Hz and
Jzz = 1 Hz. Hence, over the T2-decoherence protected
subspace spanned by the four-qubit Bell basis B⊗B one
obtains a fully controllable logical two-qubit system

〈iHD1, iHC1, iHC2〉Lie

∣∣
B⊗B

rep
= su(4) . (21)

As illustrated in Fig. 2, in the eigenbasis of Γ of Eqn. (18)
the Hamiltonian superoperators adH take block diagonal
form, where the �rst block acts on the Liouville sub-
space B ⊗ B spanning the states protected against T2-
type relaxation. Thus in more abstract terms and recall-
ing Eqn. (3), the Hamiltonians of System I restricted to
the T2-protected block, {i adHD1 , i adHD1 , i adHD1}

∣∣
B⊗B,

generate AdSU(4) as group of inner automorphisms over
the protected states.

Model System II

Now, by extending the Ising-ZZ coupling between the
two qubit pairs to an isotropic Heisenberg-XXX interac-
tion, one gets what we de�ne as System II. Its drift term
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with the coupling constants being set to Jxx = 2 Hz and
Jxyz = 1 Hz (= Jzz of Eqn.(20)) reads

HD1+D2 := Jxx

(
xx1l1l + 1l1lxx+ yy1l1l + 1l1lyy

)
+Jxyz

(
1lxx1l + 1lyy1l + 1lzz1l

) (22)

and it takes the system out of the decoherence-protected
subspace due to the o�-diagonal blocks in Fig. 2; so the
dynamics �nds its Lie closure in a much larger algebra
isomorphic to so(12),

dim 〈(iHD1+D2), iHC1, iHC2〉Lie = 66 , (23)

to which su(4) is but a subalgebra.

Note that e−iπHCν (HD1+D2)eiπHCν = HD1−D2 for ei-
ther ν = 1, 2. So invoking Trotter's formula

lim
n→∞

(
e−i(HD1+D2)/(2n)e−i(HD1−D2)/(2n)

)n = e−iHD1

(24)
it is easy to see that the dynamics of System II may re-
duce to the subspace of System I in the limit of in�nitely
many switchings of controls HC1 or HC2 and free evo-
lution under HD1+D2. It is in this decoupling limit that
System II encodes a fully controllable logical two-qubit
system over the then dynamically protectable basis states

of B ⊗ B.
In the following paragraph we may now compare the

numerical results of decoherence-protection by optimal
control with alternative pulse sequences derived by pa-
per and pen exploiting the Trotter limit. As an example
we choose the CNOT gate in a logical two-qubit system
encoded in the protected four-qubit physical basis B⊗B.

B. Results on Performing Target Operations under

Simultaneous Decoupling

The model systems are completely parameterised by
their respective master equations, i.e. by putting together
the Hamiltonian parts of Eqns. (20) for System I or
Eqn. (22) for System II and the relaxative part expressed
in Eqn. (18). We will thus compare di�erent scenarios of
approximating the logical CNOT target gate (AdUCNOT)
by the respective quantum map F (T ) while at the same
time, the logical two-qubit subsystem has to be decou-
pled from the fast decaying modes in order to remain
within a weakly relaxing subspace. This is what makes
it a demanding simultaneous optimisation task. � The
numerical and analytical results are summarised in Fig. 3;
they come about as follows.

1. Comparison of Relaxation-Optimised and Near
Time-Optimal Controls

With decoherence-avoiding numerically optimised con-
trols one obtains a �delity beyond 95%, while near time-
optimal controls show a broad scattering as soon as re-
laxation is taken into account: among the family of 15

sequences generated, serendipity may help some of them
to reach a quality of 85 to 90%, while others perform
as bad as giving 65%. With opengrape performing
about two standard deviations better than the mean ob-
tained without taking relaxation into account, only 2.5%
of near time-optimal control sequences would roughly be
expected to reach a �delity beyond 95% just by chance.
Since relaxative losses enter the quality function (11), the
algorithm intrinsically �nds controls entailing decoher-
ence avoiding evolutions: Fig. 4 elucidates that the new
decoherence avoiding controls keep the system almost
perfectly within the slowly-relaxing subspace, whereas
conventional near time-optimal controls partly sweep the
system through the fast-relaxing subspace thus leading
to inferior quality.

2. Comparison to Paper-and-Pen Solutions

Algebraic alternatives to numerical methods of optimal
control exploit Trotter's formula for remaining within the
slowly-relaxing subspace when realising the target, see,
e.g. [55]. Though straightforward, they soon become
unhandy as shown in Fig. 5. Assuming for the moment
that to any evolution under a drift Hd the inverse evo-
lution under −Hd is directly available, the correspond-
ing �naive� expansions take almost 3 times the length of
the numerical results, yet requiring much stronger control
�elds (1 − 17 kHz instead of 50 Hz) as shown in Fig. 3.
In practice, however, the inverse is often not immedi-
ately reachable, but will require waiting for periodicity.
For instance, in the Trotter decomposition of Fig. 5 (c),
the Ising term HZZ := 1lzz1l as part of the drift Hamil-
tonian HD1+D2 is also needed with negative sign so that
all terms governed by Jxyz in Eqn. (22) cancel and only
the Heisenberg-XX terms governed by JXX survive. But
HZZ cannot be sign-reversed directly by the z-controls
in the sense 1lzz1l 7→ −1lzz1l since it clearly commutes
with the z-controls. Thus one will have to choose evolu-
tion times (τ2 in Fig. 5) long enough to exploit (quasi)
periodicity. However, HD1+D2 shows eigenvalues lacking
periodicity within practical ranges altogether. Moreover,
the non-zero eigenvalues of HD1+D2 do not even occur in
pairs of opposite sign, hence there is no unitary transform
U : H 7→ −H = UAU† to reverse them, and a forteriori

there is no local control that could do so either [56].
Yet, when shifting the coupling to Jxx = 2.23 Hz to

introduce a favourable quasi-periodicity, one obtains al-
most perfect projection (ftr ≥ 1−10−10) onto the inverse

drift evolution of System II, to wit U−1 := e+i
π
4 HD1+D2

after 3.98 sec and onto −U−1 after 1.99 sec. Thus the
identity Ad(−U−1) = Ad(U−1) may be exploited to cut
the duration for implementing AdU−1 to 1.99 sec. Yet,
even with these facilitations, the total length required for
a realistic Trotter decomposition (with an overall trace
�delity of ftr ≥ 94.1 % in the absence of decoherence)
amounts to some 28.5 sec as shown in Fig. 3. Moreover,
as soon as one includes very mild T1-type processes, the
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Figure 3: (Colour) Fidelity of a CNOT gate encoded in an open system of four physical qubits in di�erent scenarios of System II
(see text). For reference, the top panel of (a) shows the top curve g0(T ) consisting of maximum obtainable �delities against �xed
�nal time T in the absence of relaxation; mean and rmsd are shown for families of 15 independent control sequences generated
for each T . The lower panel of (a) shows their performance vastly scattering in the presence of relaxation (•) with the intervals
giving mean ± rmsd for all the 15 control sequences tested (dots for best and worst values), while numerical optimal control
under explicit relaxation (•) is far superior. In (b) these results are compared to (◦) representing `naive' Trotter calculations
assuming to every interaction the inverse is directly obtainable and to (•) depicting a realistic Trotter approach, where the
inverse has to be explicitly generated. The numbers in brackets (n1, n2, p) give the expansion coe�cients n1, n2 of Fig. 5 and the
max. control power p (counted as number of 2π-rotations per second). Note that numerical optimal control requires some four
orders of magnitude less power than the bang-bang type decoupling from fast relaxing modes used in the Trotter expansions.
The upper quality limit is imposed by slow T1-type relaxation (see Eqn. (18) in the text). Without relaxation, all the Trotter
sequences would achieve �delities between 93 and 99 %, except (?) the ones limited to control �elds of powers p ≤ 50 Hz: they
would fall below 5%.

relaxation rate constants in the decoherence-protected
subspace are no longer strictly zero (as for pure T2-type
relaxation), but cover the interval [0 s−1, 0.060 s−1]. Un-
der these realistic conditions, a Trotter expansion gives
no more than 15% �delity, while the new numerical meth-
ods allow for realisations beyond 95% �delity in the same
setting (even with the original parameter Jxx = 2.0 Hz).
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Figure 4: (Colour) (a) Time evolution of all the protected ba-
sis states under a typical time-optimised control of Fig.3. Pro-
jections into the slowly-relaxing and fast-relaxing parts of the
Liouville space are shown. (b) Same for the new decoherence-
avoiding controls. System II (see text) then stays almost en-
tirely within the T2-protected subspace.

IV. DISCUSSION

In order to extract strategies of how to �ght relaxation
by means of optimal control, we classify open quantum
systems (i) by their dynamics being Markovian or non-
Markovian and (ii) by the (Liouville) state space directly
representing logical qubits either directly without encod-
ing or indirectly with one logical qubit being encoded by
several physical ones. So the subsequent discussion will
lead to assigning di�erent potential gains to di�erent sce-
narios as summarised in Table I.

Before going into them in more detail, recall (from the
section on numerical setting) that the top curve g0(T )
shall denote the maximum �delity against �nal times T
as obtained for the analogous closed quantum system
(i.e. setting Γ = 0) by way of numerical optimal con-
trol. Moreover, de�ne T∗ as the smallest time such that
g0(T∗) = 1 − ε, where ε denotes some error-correction
threshold.

First (I), consider the simple case of a Markovian quan-
tum system with no encoding between logical and phys-
ical qubits, and assume g0(T ) has already been deter-
mined. If as a trivial instance (I.a) one had a uniform
decay rate constant γ so Γ = γ1l, then the �delity in
the presence of relaxation would simply boil down to
f(T ) = g0(T ) · e−T ·γ . De�ne T ′∗ := argmax{f(T )} and
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Figure 5: Impractical academic alternative to numerical control: the algebraic derivation of controls for a CNOT in the slowly-
relaxing subspace proceeds from (a) the logical two-qubit system via (b) the encoded schematic physical four-qubit system to
the physical realisations in the settings of (c) System I and (d) System II as de�ned in the text. Note that by the de�nition of
the encoding Bell states (Eqn. (14)) all angles halve upon going from (a) to (b). E�ective Hamiltonians τH are represented by
large frames; n1, n2 indicate repetitions for the respective Trotter expansions. Black bars are local π

2
-pulses with phases given

as subscript unless other rotation angles given on top; empty bars denote local z-rotations by �ip angle π. These pulses can be
seen as bang-bang type controls; due to the high repetition rates (n1 = 2 but n2 = 64) the Trotter expansions accumulate �eld
strengths of p ' 500 kHz, while the pulse shapes from optimal control require p ≤ 50 Hz. Expanding the interior Hamiltonian
in (b) is even more complicated (not shown here but documented in [54]).

pick the set of controls leading to g0(T ′∗) calculated in
the absence of relaxation for tracking g0(T ). In the sim-
plest setting, they would already be `optimal' without
ever having resorted to optimising an explicitly open sys-
tem. More roughly, the time-optimal controls at T = T∗
already provide a good approximation to �ghting relax-
ation if T∗ − T ′∗ ≥ 0 is small, i.e. if γ > 0 is small.

Next consider a Markovian system without coding,
where Γ 6= γ1l is not fully degenerate (I.b). Let {γj}
denote the set of (the real parts of the) eigenvalues of
Γ. Then, by convexity of {e−γt | t, γ > 0}, the following
rough [62] yet useful limits to the �delity f(T ) obtainable
in the open system expressed by g0(T ) and Γ apply

g0(T ) ·exp{− T

N2

N2∑
j=1

γj} . f(T ) . g0(T ) · 1
N2

N2∑
j=1

e−γjT .

(25)
Hence the optimisation task in the open system amounts
to approximating the target unitary gate (AdUtarget) by
the quantum map F (T ) resulting from evolution under
the controls subject to the condition that modes of dif-
ferent decay rate constants γj 6= γk are interchanged
to the least possible amount during the entire duration
0 ≤ t ≤ T of the controls. An application of this strat-
egy known in NMR spectroscopy as TROSY [57] makes
use of di�erential line broadening [58] and partial can-
cellation of relaxative contributions. Clearly, unless the
eigenvalues γj do not signi�cantly disperse, the advan-
tage by optimal control under explicit relaxation will be
modest, since the potential gain in this scenario relates
to the variance σ2({γj}).

The situation becomes signi�cantly more rewarding
when moving to the category (II) of optimisations re-
stricted to a weakly relaxing (physical) subspace used
to encode logical qubits. A focus of this work has been
on showing that for Markovian systems encoding logical
qubits, the knowledge of the relaxation parameters trans-
lates into signi�cant advantages of relaxation-optimised
controls over time-optimised ones. This is due to a dual
e�ect: opengrape readily decouples the encoding sub-
system from fast relaxing modes while simultaneously
generating a quantum map of (close to) best match to
the target unitary. Clearly, the more the decay of the
subspace di�ers from its embedding, the larger the ad-
vantage of relaxation-optimised control becomes. More-
over, as soon as the relaxation-rate constants of the pro-
tected subsystem also disperse among themselves, modes
of di�erent decay should again only be interchanged to
the least amount necessary�thus elucidating the very in-
tricate interplay of simultaneous optimisation tasks that
makes them prone for numerical strategies.

Yet also in the case of entirely unknown relaxation
characteristics, where, e.g., model building and sys-
tem identi�cation of the relaxative part is precluded or
too costly, we have demonstrated that guesses of time-
optimal control sequences as obtained from the analogous
closed system may�by trial and error�cope with relax-
ation, though mostly in a suboptimal way. This comes
at the cost of making sure a su�ciently large family of
time-optimal controls is ultimately tested in the actual

experiment for selecting among many such candidates.
Clearly, this `poor man's approach' is most cumbersome
thus making a strong case for taking the e�ort to identify
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Table I: Gain Potential for Relaxation-Optimised Controls
versus Time-Optimised Controls

Category Markovian non-Markovian

encoding:
protected subspace big (di�culta)

no encoding:
full Liouville space small�medium medium�big [32]

aThe problem actually roots in �nding a viable protected subspace

rather than drawing pro�t from it.

or at least estimate the (pertinent) system parameters.
In the non-Markovian case, however, it becomes in gen-

eral very di�cult to �nd a common weakly relaxing sub-
space for encoding (II.b): there is no master equation
of GKS-Lindblad form, the Γ(t) of which could serve as
a guideline to �nding protected subspaces. Rather, one
would have to analyse the corresponding non-Markovian
Kraus maps for weakly contracted subspaces allowing for
encodings. However, in non-Markovian scenarios, the
pros of relaxation-optimised control already become sig-
ni�cant without encoding as demonstrated in [32].

Simultaneous Transfer in Spectroscopy

Finally, note that the presented algorithm also solves
(as a by-product) the problem of simultaneous state-to-
state transfer that may be of interest in coherent spec-
troscopy [59]. While Eqns. (9) and (11) refer to the full-
rank linear image F , one may readily project onto the
states of concern by the appropriate projector Π to ob-
tain the respective dynamics and quality factors of the
subsystem

Π Ḟ = −Π (i adH +Γ) ◦ F (26)

f
(Π)
tr = 1

rk Π Re tr{Π> F †targetΠ F (T ) } . (27)

In the limit of Π being a rank-1 projector it reproduces
the scenario of Eqn. (8). While such rank-1 problems un-
der relaxation were explored in [18], the algorithmic set-
ting of opengrape put forward here allows for projectors
of arbitrary rank, e.g., 1 ≤ rkΠ ≤ N for n spin- 12 qubits
with N := 2n. Thus the rank can readily be chosen such
as to equal the number of orthogonal state-to-state op-
timisation problems to be solved simultaneously by the
same controls.

V. CONCLUSIONS AND OUTLOOK

We have provided numerical optimal-control tools to
systematically �nd near optimal approximations to uni-
tary target modules in open quantum systems. The pros
of relaxation-optimised controls over time-optimised ones
depend on the speci�c experimental scenario. We have
elucidated strategies for �ghting relaxation in Markovian
(and non-Markovian [32]) settings with and without en-
coding logical qubits in protected subspaces. Numeri-
cal results have been complemented by algebraic anal-
ysis of controllability in protected subspaces under si-
multaneous decoupling from fast relaxing modes. The
progress is quantitatively exempli�ed in a typical Marko-
vian model system of four physical qubits encoding two
logical ones: when the master equation is known, the
new method is systematic and signi�cantly superior to
near time-optimal realisations, which in turn are but a
guess when the relaxation process cannot be quantita-
tively characterised. In this case, testing a set of 10− 20
such near time-optimal control sequences empirically is
required for getting acceptable results with more con�-
dence, yet on the basis of trial and error. Hence determin-
ing the pertinent relaxation parameters by compressed-
sensing assisted process tomography will be of increasing
inportance.

Complementing analytical approaches in special cases
[15], optimal control tools like opengrape are therefore
the method of choice in generic systems with known re-
laxation parameters. They accomplish decoupling from
fast relaxing modes with several orders of magnitude less
decoupling power than by typical bang-bang controls. In
order to fully exploit the power of optimal control of open
systems the challenge is shifted to (i) thoroughly under-
standing the relaxation mechanisms pertinent to a con-
crete quantum hardware architecture and (ii) being able
to determine its pertinent relaxation parameters to su�-
cient accuracy. In spite of the di�culty of the latter [60],
by the recent advances in quantum state and process to-
mography due to techniques of comressed sensing (see,
e.g., [61]), we anticipate the optimal control strategies
presented here will �nd wide application.
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