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Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control fully exploiting known relaxation parameters against time-optimal control (the alternative for unknown relaxation parameters) is explored and exemplied in numerical and in algebraic terms: for instance, relaxation-based optimal control is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising ideal decoherence-free subspaces to more realistic scenarios, opengrape-derived controls realise a cnot with delities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benet their control elds are orders of magnitude lower in power than bang-bang decouplings.

INTRODUCTION

Using experimentally controllable quantum systems to perform computational tasks or to simulate other quantum systems [1,[START_REF] Feynman | Feynman Lectures on Computation[END_REF] is promising: by exploiting quantum coherences, the complexity of a problem may reduce when changing the setting from classical to quantum. Protecting quantum systems against relaxation is therefore tantamount to using coherent superpositions as a resource. To this end, decoherence-free subspaces have been applied [START_REF] Zanardi | [END_REF], bang-bang controls [4] have been used for decoupling the system from dissipative interaction with the environment, while a quantum Zeno approach [5] may be taken to projectively keep the system within the desired subspace [6]. Controlling relaxation is both important and demanding [7,[START_REF] Lidar | Decoherence-Free Subspaces and Subsystems[END_REF]9,10,[START_REF] Viola | Quantum Communication, Computing, and Measurement 2[END_REF], also in view of fault-tolerant quantum computing [START_REF] Kempe | [END_REF] or dynamic error correction [13,14,15]. Implementing quantum gates or quantum modules experimentally is in fact a challenge: one has to ght relaxation while simultaneously steering the quantum system with all its basis states into a linear image of maximal overlap with the target gate. We also showed how near time-optimal control by grape [16] take pioneering realisations from their delity-limit to the decoherence-limit [17].

While decoupling techniques typically protect against certain types of relaxation for a broad array of scenarios whose specic parameters need not be known (or are unknown anyway), optimal control exploits the knowledge of the dynamic system parameters for low-cost protection against relaxation dressed to the specics of the experimental system given. For instance, in spectroscopy, optimal control has proven to keep the state in slowly relaxing modes of the Liouville space [START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF][START_REF] Xu | [END_REF]20]. In quantum computing, however, the entire basis has to be trans- * Electronic address: tosh@ch.tum.de formed. For generic relaxation scenarios, this precludes simple adaptation to the entire Liouville space: the gain of going along protected dimensions is outweighed by losses in the orthocomplement. Yet embedding logical qubits as decoherence-protected subsystem into a larger Liouville space of the encoding physical system raises questions: is the target module reachable within the protected subspace by admissible controls?

In this category of setting, the extended gradient algorithm opengrape turns out to be particularly powerful to give best approximations to unitary target gates in relaxative quantum systems thus extending the toolbox of quantum control, see e.g. [16,21,22,23,24,25,[START_REF] Ganesan | Proc. 44th. IEEE CDC-ECC[END_REF][START_REF] Sklarz | [END_REF]28,[START_REF]Introduction to Quantum Control and Dynamics[END_REF][START_REF] Machnes | [END_REF]. Moreover, building upon Ref. [START_REF] Schulte-Herbrüggen | [END_REF], it has been shown in [START_REF] Rebentrost | [END_REF] that non-Markovian relaxation models can be treated likewise, provided there is a nite-dimensional embedding such that the embedded system itself ultimately interacts with the environment in a Markovian way. Time dependent Γ(t) have recently also been treated in the Markovian [33,34] and non-Markovian regime [35].

Here we study model systems that are fully controllable [36,37,38,39], i.e. those in whichneglecting relaxation for the momentto any initial density operator ρ, the entire unitary orbit U(ρ) := {U ρ U -1 | U unitary} can be reached [37] by evolutions under the system Hamiltonian (drift) and the experimentally admissible controls. Yet, certain tasks can be performed within a subspace, e.g., a subspace protected totally or partially against relaxation.

II. THEORY

Unitary modules for quantum computation require synthesising a simultaneous linear image of all the basis states spanning the Hilbert space or subspace on which the gates shall act. Thus gate synthesis generalises the (rank-1) spectroscopic task of transferring the state of a system from a given initial one into maximal overlap with a desired target state to a full-rank unitary image.

A. Preliminaries

Yet in either case, the underlying control problem of maximising an overlap subject to the dynamics being governed by an equation of motion may readily be addressed by our algorithm grape [16]. 

ρ = -i [H, ρ] . (2) 
In quantum computation, however, the above have to be lifted to the corresponding operator equations, which is facilitated using the notations Ad U (

•) := U (•)U † and ad H (•) := [H, (•)] obeying e -it ad H (•) = Ad U (•) with U := e -itH (3) 
and using `•' for the composition of maps in

U = -iH U (4) 
d dt Ad U = -i ad H • Ad U . (5) 
These operator equations of motion occur in two scenarios for realising quantum gates or modules U (T ) with maximum trace delities: Let g := 1 N tr{U † target U (T )} denote the normalised overlap (setting N := 2 n for an n-qubit system henceforth). Then the quality function

f := 1 N Re tr{U † target U (T )} = Re g (6) 
covers the case where overall global phases shall be respected, whereas if a global phase is immaterial [25] (while the xed phase relation between the matrix columns is kept), the quality function

f := 1 N 2 Re tr{Ad † Utarget Ad U (T ) } = g 2 (7) 
applies. The latter identity is most easily seen [25] in the so-called vec-representation [START_REF] Horn | Topics in Matrix Analysis[END_REF] of ρ, where vec(ρ) is the column vector stacking all colums of the matrix ρ.

In this representation, Ad U takes the form of the conjugation superoperator Ad U = Ū ⊗ U (with Ū denoting the complex conjugate) and ad H takes the form of the commutator superoperator ad H = 1l ⊗ H -H ⊗ 1l.

B.

Open grape

Likewise, under relaxation introduced by the operator Γ (which may, e.g., take GKS-Lindblad form), the respective master equations for state transfer [36] and its ρ0 = ρSE(0) ⊗ ρB(0)

Ad W (t) ---------→ (unitary) ρ(t) = W (t)ρ0W † (t) Π SE ? ? y tr B Π SE ? ? y tr B ρSE(0) F SE (t) ---------→ (Markovian) ρSE(t) Π S ? ? y tr E Π S ? ? y tr E ρS(0) F S (t) -----------→ (non-Markovian) ρS(t)
Figure 1: Time-evolution of a quantum system (S) embedded in some environment (E) and coupled to a bath (B). If the universal system evolves under the global unitary W (t), opengrape provides optimal controls for the category of scenarios for which there is a nite-dimensional embedding such that the embedded system (SE) follows a time evolution under a Markovian quantum map FSE(t), while the reduced system of concern (S) may evolve in a non-Markovian way by a generic quantum map FS(t). In the simplest of cases, ρSE(0) is of tensor product form with FS(t) being Markovian itself.

lift for gate synthesis read

ρ = -(i ad H + Γ) ρ (8) Ḟ = -(i ad H + Γ) • F . (9) 
Again with N := 2 n in n-qubit systems, F denotes a quantum map in GL(N 2 ) as linear image over all basis states of the Liouville space representing the open system. The Lie-semigroup properties of F (t) have recently been elucidated in detail [START_REF] Dirr | [END_REF]: it is important to note that only in the special (and highly unusual) case of

[ad H , Γ ] = 0 the map F (t) boils down to a mere contraction of the unitary conjugation Ad U . In general, however, one is faced with an intricate interplay of the respective coherent (i ad H ) and incoherent (Γ) part of the time evolution: it explores a much richer set of quantum maps than contractions of Ad U , as expressed in [START_REF] Dirr | [END_REF] in terms of a k, p-decomposition of the generators in gl(N 2 , C) of quantum maps. It is this interplay that ultimately entails the need for relaxation-optimised control based on the full knowledge of the master Eqn. (9), while in the special case of mere contractions of Ad U , tracking maximum qualities against xed nal times (`top curves', vide infra, e.g. Fig. 3 (a) upper panel) obtained for Γ = 0 plus an estimate on the eigenvalues of Γ suce to come up with good guesses of controls. Now for a Markovian master equation to make sense in terms of physics, it is important that the quantum subsystem of concern is itself coupled to its environment in a way justifying to neglect any memory eects. This means the characteristic time scales under which the environment correlation functions decay have to be suciently smaller than the time scale for the quantum evolution of the subsystem (see, e.g., [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]). More precisely, as exemplied in Fig. 1, we will assume that either the quantum system itself (S) or a nite-dimensional embedding of the system (SE) can be separated from the environmental bath (B) such that (at least) one of the quantum maps of the reduced system F S (t) or F SE (t) is Markovian and allows for a description by a completely positive semigroup [START_REF] Gorini | [END_REF]44,[START_REF] Davies | Quantum Theory of Open Systems[END_REF], if the time evolution for the universal composite of (embedded) system plus bath is unitary. Examples where F S (t) is Markovian have been given in [START_REF] Schulte-Herbrüggen | [END_REF], while a concrete setting of a qubit (S) coupled on a non-Markovian scale to a two-level uctuator (E), which in turn interacts in a Markovian way with a bosonic bath (B) has been described in detail in [START_REF] Rebentrost | [END_REF].

Henceforth, we will drop the subscript to the quantum map F (t) and tacitly assume we refer to the smallest embedding such that the map is Markovian and governed by Eqn. (9).

Moreover, if the Hamiltonian is composed of the drift term H d and control terms H j with piecewise constant control amplitudes u j (t k

) for t k ∈ [0, T ] H(t k ) := H d + j u j (t k )H j with u j (t k ) ∈ U ⊆ R (10)
then Eqn. ( 9) denes a bilinear control system.

With these stipulations, the grape algorithm can be lifted to the superoperator level in order to cope with open systems by numerically optimising the trace delity

f tr := 1 N 2 Re tr{Ad † Utarget F (T )} (11) 
for xed nal time T . For simplicity, we henceforth assume equal time spacing ∆t :

= t k -t k-1 for all time slots k = 1, 2, . . . , M , so T = M • ∆t. Therefore F (T ) = F M • F M -1 • • • F k • • • F 2 • F 1 with every map tak- ing the form F k = exp{-(i ad H(t k ) +Γ(t k ))∆t} leads to
the following approximated derivatives

∂ftr ∂uj (t k ) -1 N 2 Re tr Ad † U •F M • F M -1 • • • F k+1 × × i ad Hj + ∂Γ(uj (t k )) ∂uj (t k ) F k ∆t × F k-1 • • • F 2 • F 1 , (12) 
which hold for suciently small time intervals obeying ∆t 1/||i ad H + Γ|| 2 . Otherwise one may employ, e.g., nite dierences, since with ad H and Γ not commuting, the generators -(i ad H +Γ) are generically non-normal and thus the eigendecomposition looses its numerical benets. In the simplest case, the gradients can be used for a recursive gradient-ascent scheme (with appropriate

step size α r > 0), which gives in each time slot t k u (r+1) j (t k ) = u (r) j (t k ) + α r ∂ftr ∂uj (t k ) (13)
as update from iteration r to r + 1 of the control amplitude u j to control H j . When needed for speeding up the algorithm at higher delities, one may readily resort to standard quasi-Newton methods [START_REF] Nocedal | Numerical Optimization[END_REF] (like limitedmemory Broyden-Fletcher-Goldfarb) as shown recently [START_REF] Machnes | [END_REF].

Numerical Setting

Numerical opengrape typically started from some 50 initial conditions to each xed nal time then taking the 2-3 fastest increasing runs through some r = 10-30×10 3 iterations (see Eqn. (13)) to arrive at one point in the top curve shown as upper trace in Fig. 3.

In contrast, for nding time-optimised controls in the closed reference system, we used grape for tracking top curves: this is done by performing optimisations with xed nal time, which is then successively decreased so as to give a top curve g(T ) of quality against duration of control, a standard procedure used in, e.g., Ref. [25].

Here, in closed systems, nding controls for each xed nal time started out from some 20 random initial control sequences. Convergence to one of the points in time (where Fig. 3 shows mean and extremes for a familiy of 15 dierent such optimised control sequences) required some r = 1000 recursive iterations each. Numerical experiments were carried out on single workstations with 512 MHz to 1.2 GHz tact rates and 512 MB RAM.

Conclusions with regard to algorithmic concepts for optimising high-delity quantum maps of open systems would be premature on the grounds of this study and thus will be given elsewhere as for reliable statistics, smaller (i.e. faster to-come-by) systems will have to be addressed. and `bang-bang decoupling', we choose two model systems that can partially be tracted by algebraic means in the sense that Lie closures can readily be evaluated (vide infra ). This allows for establishing controllability [37,38,39,[START_REF] Schulte-Herbrüggen | Aspects and Prospects of High-Resolution NMR[END_REF][START_REF] Schirmer | [END_REF]49] in the subspace of low decoherence thus ensuring the existence of solutions be they by paper-and-pen or numerical. Thus comparing numerical results with analytical ones will elucidate the pros of numerical optimal control over previous approaches.

In order to avoid misunderstandings, however, we should emphasize our algorithmic approach to controlling open systems (opengrape) is by no means limited to operating within such predesigned subspaces of weak decoherence: e.g., in Ref. [START_REF] Rebentrost | [END_REF] we have worked in the full Liouville space of a non-Markovian target system. Yet, not only are subspaces of weak decoherence practically important, they also lend themselves to demonstrate the advantages of relaxation-optimised control in the case of Markovian systems (here with time in dependent relaxation operator Γ).

The starting point is the usual encoding of one logical qubit in Bell states of two physical ones

|0 L := 1 √ 2 {|01 + |10 } = |ψ + |1 L := 1 √ 2 {|01 -|10 } = |ψ - (14)
Four elements then span a Hermitian operator subspace

B := span R {|ψ ± ψ ± |} , (15) 
whose protection against T 2 -type relaxation can readily be seen, since for any ρ ∈ B

Γ 0 (ρ) := [zz, [zz, ρ]] = 0 , ( 16 
)
where henceforth we use the short-hand zz := σ z ⊗ σ z /2 and likewise xx as well as 1lµν1l : 16) as perfect protection against T 2 -type decoherence is in line with the slow-tumbling limit of the Bloch-Redeld relaxation by the spin tensor A 2,(0,0

= 1 2 1l 2 ⊗ σ µ ⊗ σ ν ⊗ 1l 2 for µ, ν ∈ {x, y, z, 1l}. Interpreting Eqn. (
) := 1 √ 6 ( 3 2 zz -I 1 I 2 ) [50] Γ T2 (ρ) := [A † 2,(0,0) , [A 2,(0,0) , ρ]] = 9 24 [zz, [zz, ρ]] = 0 . ( 17 
)
For the sake of being more realistic, the model relaxation superoperator mimicking dipole-dipole relaxation within the two spin pairs in the sense of Bloch-Redeld theory is extended from covering solely T 2 -type decoherence to mildly including T 1 dissipation by taking (for each basis state ρ) the sum [START_REF] Ernst | Principles of Nuclear Magnetic Resonance in One and Two Dimensions[END_REF] Γ(ρ) :=

1 m1,m2=-1 A † 2,(m1,m2) , A 2,(m1,m2) , ρ , (18) 
in which the zeroth-order tensor A 2,(0,0) ∼ zz is then scaled 100 times stronger than the new terms. So the resulting model relaxation rate constants nally become

T -1 2 : T -1 1 = 4
.027 s -1 : 0.024 s -1 170 : 1.

A. Controllability Combined with Protectability against Relaxation

In practical applications to a given system, a central problem boils down to simultaneously solving two questions: (i) is the (sub)system fully controllable and (ii) can the (sub)system be decoupled from fast relaxing modes while being steered to the target.

It is for answering these questions in algebraic terms that we have chosen the following coupling interactions:

if the two physical qubits are coupled by a Heisenberg-XX interaction and the controls take the form of z-pulses acting jointly on the two qubits with opposite sign, one obtains the usual fully controllable logical single qubit over B, because

i(z1l -1lz), i(xx + yy) Lie rep = su(2) , (19) 
where • Lie denotes the Lie closure under commutation, which here gives i(yx -xy) as third generator to su(2). In System II the Hamiltonian adH D1+D2 comprises o-diagonal blocks (empty boxes) that make the protected modes exchange with the fast decaying ones. [NB: for pure T2-relaxation (Eqn. 17), the relaxation-rate eigenvalues would further degenerate to 0 s -1 (`decoherence-free'), 4 s -1 (medium) and 8 s -1 (fast) while maintaining the same block structure].

Model System I By coupling two of the above qubit pairs with an Ising-ZZ interaction as in Refs. [START_REF] Lidar | [END_REF]52,53] one gets the standard logical two-spin system serving as our reference System I: it is dened by the drift Hamiltonian H D1 and the control Hamiltonians H C1 , H C2 +J xyz 1lxx1l + 1lyy1l + 1lzz1l (22) and it takes the system out of the decoherence-protected subspace due to the o-diagonal blocks in Fig. 2; so the dynamics nds its Lie closure in a much larger algebra isomorphic to so [START_REF] Kempe | [END_REF], dim (iH D1+D2 ), iH C1 , iH C2 Lie = 66 , (23) to which su(4) is but a subalgebra.

H D1 :=J xx (xx1l1l + 1l1lxx + yy1l1l + 1l1lyy) + J zz 1lzz1l H C1 :=z1l1l1l -1lz1l1l H C2 :=1l1lz1l -1l1l1lz ,
Note that e -iπH Cν (H D1+D2 )e iπH Cν = H D1-D2 for either ν = 1, 2. So invoking Trotter's formula lim n→∞ e -i(H D1+D2 )/(2n) e -i(H D1-D2 )/(2n) n = e -iH D1 (24) it is easy to see that the dynamics of System II may reduce to the subspace of System I in the limit of innitely many switchings of controls H C1 or H C2 and free evolution under H D1+D2 . It is in this decoupling limit that System II encodes a fully controllable logical two-qubit system over the then dynamically protectable basis states of B ⊗ B.

In the following paragraph we may now compare the numerical results of decoherence-protection by optimal control with alternative pulse sequences derived by paper and pen exploiting the Trotter limit. As an example we choose the CNOT gate in a logical two-qubit system encoded in the protected four-qubit physical basis B ⊗ B.

B.

Results on Performing Target Operations under

Simultaneous Decoupling

The model systems are completely parameterised by their respective master equations, i.e. by putting together the Hamiltonian parts of Eqns. (20) for System I or Eqn. (22) for System II and the relaxative part expressed in Eqn. [START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF]. We will thus compare dierent scenarios of approximating the logical CNOT target gate (Ad UCNOT ) by the respective quantum map F (T ) while at the same time, the logical two-qubit subsystem has to be decoupled from the fast decaying modes in order to remain within a weakly relaxing subspace. This is what makes it a demanding simultaneous optimisation task. The numerical and analytical results are summarised in Fig. 3; they come about as follows.

1.

Comparison of Relaxation-Optimised and Near

Time-Optimal Controls

With decoherence-avoiding numerically optimised controls one obtains a delity beyond 95%, while near timeoptimal controls show a broad scattering as soon as relaxation is taken into account: among the family of 15 sequences generated, serendipity may help some of them to reach a quality of 85 to 90%, while others perform as bad as giving 65%. With opengrape performing about two standard deviations better than the mean obtained without taking relaxation into account, only 2.5%

of near time-optimal control sequences would roughly be expected to reach a delity beyond 95% just by chance.

Since relaxative losses enter the quality function [START_REF] Viola | Quantum Communication, Computing, and Measurement 2[END_REF], the algorithm intrinsically nds controls entailing decoherence avoiding evolutions: Fig. 4 elucidates that the new decoherence avoiding controls keep the system almost perfectly within the slowly-relaxing subspace, whereas conventional near time-optimal controls partly sweep the system through the fast-relaxing subspace thus leading to inferior quality.

Comparison to Paper-and-Pen Solutions

Algebraic alternatives to numerical methods of optimal control exploit Trotter's formula for remaining within the slowly-relaxing subspace when realising the target, see, e.g. [START_REF] Storcz | [END_REF]. Though straightforward, they soon become unhandy as shown in Fig. 5. Assuming for the moment that to any evolution under a drift H d the inverse evolution under -H d is directly available, the corresponding naive expansions take almost 3 times the length of the numerical results, yet requiring much stronger control elds (1 -17 kHz instead of 50 Hz) as shown in Fig. 3.

In practice, however, the inverse is often not immediately reachable, but will require waiting for periodicity.

For instance, in the Trotter decomposition of Fig. 5 (c), the Ising term H ZZ := 1lzz1l as part of the drift Hamiltonian H D1+D2 is also needed with negative sign so that all terms governed by J xyz in Eqn. (22) cancel and only the Heisenberg-XX terms governed by J XX survive. But H ZZ cannot be sign-reversed directly by the z-controls in the sense 1lzz1l → -1lzz1l since it clearly commutes with the z-controls. Thus one will have to choose evolution times (τ 2 in Fig. 5) long enough to exploit (quasi) periodicity. However, H D1+D2 shows eigenvalues lacking periodicity within practical ranges altogether. Moreover, the non-zero eigenvalues of H D1+D2 do not even occur in pairs of opposite sign, hence there is no unitary transform U : H → -H = U AU † to reverse them, and a forteriori there is no local control that could do so either [56].

Yet, when shifting the coupling to J xx = 2.23 Hz to introduce a favourable quasi-periodicity, one obtains almost perfect projection (f tr ≥ 1-10 -10 ) onto the inverse drift evolution of System II, to wit U -1 := e +i π 4 H D 1 +D 2 after 3.98 sec and onto -U -1 after 1.99 sec. Thus the identity Ad (-U -1 ) = Ad (U -1 ) may be exploited to cut the duration for implementing Ad U -1 to 1.99 sec. Yet, even with these facilitations, the total length required for a realistic Trotter decomposition (with an overall trace delity of f tr ≥ 94.1 % in the absence of decoherence) amounts to some 28.5 sec as shown in Fig. 3. Moreover, as soon as one includes very mild T 1 -type processes, the (see text). For reference, the top panel of (a) shows the top curve g0(T ) consisting of maximum obtainable delities against xed nal time T in the absence of relaxation; mean and rmsd are shown for families of 15 independent control sequences generated for each T . The lower panel of (a) shows their performance vastly scattering in the presence of relaxation (•) with the intervals giving mean ± rmsd for all the 15 control sequences tested (dots for best and worst values), while numerical optimal control under explicit relaxation (•) is far superior. In (b) these results are compared to (•) representing `naive' Trotter calculations assuming to every interaction the inverse is directly obtainable and to (•) depicting a realistic Trotter approach, where the inverse has to be explicitly generated. The numbers in brackets (n1, n2, p) give the expansion coecients n1, n2 of Fig. 5 and the max. control power p (counted as number of 2π-rotations per second). Note that numerical optimal control requires some four orders of magnitude less power than the bang-bang type decoupling from fast relaxing modes used in the Trotter expansions. The upper quality limit is imposed by slow T1-type relaxation (see Eqn. [START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF] in the text). Without relaxation, all the Trotter sequences would achieve delities between 93 and 99 %, except ( ) the ones limited to control elds of powers p ≤ 50 Hz: they would fall below 5%. relaxation rate constants in the decoherence-protected subspace are no longer strictly zero (as for pure T 2 -type relaxation), but cover the interval [0 s -1 , 0.060 s -1 ]. Under these realistic conditions, a Trotter expansion gives no more than 15% delity, while the new numerical methods allow for realisations beyond 95% delity in the same setting (even with the original parameter J xx = 2.0 Hz). I.

Before going into them in more detail, recall (from the section on numerical setting) that the top curve g 0 (T ) shall denote the maximum delity against nal times T as obtained for the analogous closed quantum system (i.e. setting Γ = 0) by way of numerical optimal control. Moreover, dene T * as the smallest time such that g 0 (T * ) = 1 -ε, where ε denotes some error-correction threshold.

First (I), consider the simple case of a Markovian quantum system with no encoding between logical and physical qubits, and assume g 0 (T ) has already been deter- These pulses can be seen as bang-bang type controls; due to the high repetition rates (n1 = 2 but n2 = 64) the Trotter expansions accumulate eld strengths of p 500 kHz, while the pulse shapes from optimal control require p ≤ 50 Hz. Expanding the interior Hamiltonian in (b) is even more complicated (not shown here but documented in [START_REF] Spörl | Numerische und analytische Lösungen für quanteninformatisch relevante Probleme[END_REF]).

pick the set of controls leading to g 0 (T * ) calculated in the absence of relaxation for tracking g 0 (T ). In the simplest setting, they would already be `optimal' without ever having resorted to optimising an explicitly open system. More roughly, the time-optimal controls at T = T * already provide a good approximation to ghting relaxation if T * -T * ≥ 0 is small, i.e. if γ > 0 is small. Next consider a Markovian system without coding, where Γ = γ1l is not fully degenerate (I.b). Let {γ j } denote the set of (the real parts of the) eigenvalues of Γ. Then, by convexity of {e -γt | t, γ > 0}, the following rough [62] yet useful limits to the delity f (T ) obtainable in the open system expressed by g 0 (T ) and Γ apply

g 0 (T )•exp{- T N 2 N 2 j=1 γ j } f (T ) g 0 (T )• 1 N 2 N 2 j=1
e -γj T .

(

) 25 
Hence the optimisation task in the open system amounts to approximating the target unitary gate (Ad Utarget ) by the quantum map F (T ) resulting from evolution under the controls subject to the condition that modes of different decay rate constants γ j = γ k are interchanged to the least possible amount during the entire duration 0 ≤ t ≤ T of the controls. An application of this strategy known in NMR spectroscopy as TROSY [START_REF] Pervushin | Proc. Natl. Acad. Sci[END_REF] makes use of dierential line broadening [START_REF] Griey | [END_REF] and partial cancellation of relaxative contributions. Clearly, unless the eigenvalues γ j do not signicantly disperse, the advantage by optimal control under explicit relaxation will be modest, since the potential gain in this scenario relates to the variance σ 2 ({γ j }). Yet also in the case of entirely unknown relaxation characteristics, where, e.g., model building and system identication of the relaxative part is precluded or too costly, we have demonstrated that guesses of timeoptimal control sequences as obtained from the analogous closed system mayby trial and errorcope with relaxation, though mostly in a suboptimal way. This comes at the cost of making sure a suciently large family of time-optimal controls is ultimately tested in the actual experiment for selecting among many such candidates.

Clearly, this `poor man's approach' is most cumbersome thus making a strong case for taking the eort to identify a The problem actually roots in nding a viable protected subspace rather than drawing prot from it.

or at least estimate the (pertinent) system parameters.

In the non-Markovian case, however, it becomes in general very dicult to nd a common weakly relaxing subspace for encoding (II.b): there is no master equation of GKS-Lindblad form, the Γ(t) of which could serve as a guideline to nding protected subspaces. Rather, one would have to analyse the corresponding non-Markovian Kraus maps for weakly contracted subspaces allowing for encodings. However, in non-Markovian scenarios, the pros of relaxation-optimised control already become signicant without encoding as demonstrated in [START_REF] Rebentrost | [END_REF].

Simultaneous Transfer in Spectroscopy

Finally, note that the presented algorithm also solves (as a by-product) the problem of simultaneous state-tostate transfer that may be of interest in coherent spectroscopy [59]. While Eqns. ( 9) and [START_REF] Viola | Quantum Communication, Computing, and Measurement 2[END_REF] In the limit of Π being a rank-1 projector it reproduces the scenario of Eqn. [START_REF] Lidar | Decoherence-Free Subspaces and Subsystems[END_REF]. While such rank-1 problems under relaxation were explored in [START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF], the algorithmic setting of opengrape put forward here allows for projectors of arbitrary rank, e.g., 1 ≤ rk Π ≤ N for n spin-1 2 qubits

with N := 2 n . Thus the rank can readily be chosen such as to equal the number of orthogonal state-to-state optimisation problems to be solved simultaneously by the same controls.

V.

CONCLUSIONS AND OUTLOOK

We have provided numerical optimal-control tools to systematically nd near optimal approximations to unitary target modules in open quantum systems. The pros of relaxation-optimised controls over time-optimised ones depend on the specic experimental scenario. We have elucidated strategies for ghting relaxation in Markovian (and non-Markovian [START_REF] Rebentrost | [END_REF]) settings with and without encoding logical qubits in protected subspaces. Numerical results have been complemented by algebraic analysis of controllability in protected subspaces under simultaneous decoupling from fast relaxing modes. The progress is quantitatively exemplied in a typical Markovian model system of four physical qubits encoding two logical ones: when the master equation is known, the new method is systematic and signicantly superior to near time-optimal realisations, which in turn are but a guess when the relaxation process cannot be quantitatively characterised. In this case, testing a set of 10 -20 such near time-optimal control sequences empirically is required for getting acceptable results with more condence, yet on the basis of trial and error. Hence determining the pertinent relaxation parameters by compressedsensing assisted process tomography will be of increasing inportance.

Complementing analytical approaches in special cases [15], optimal control tools like opengrape are therefore the method of choice in generic systems with known relaxation parameters. They accomplish decoupling from fast relaxing modes with several orders of magnitude less decoupling power than by typical bang-bang controls. In order to fully exploit the power of optimal control of open systems the challenge is shifted to (i) thoroughly understanding the relaxation mechanisms pertinent to a concrete quantum hardware architecture and (ii) being able to determine its pertinent relaxation parameters to sucient accuracy. In spite of the diculty of the latter [60],

by the recent advances in quantum state and process tomography due to techniques of comressed sensing (see, e.g., [61]), we anticipate the optimal control strategies presented here will nd wide application.

  III. EXPLORING APPLICATIONS BY MODEL SYSTEMS It is the purpose of this section is to use illustrative examples to demonstrate the power of optimal control of open quantum systems as a realistic means for protecting systems from relaxation based on the knowledge of the full master equation. In order to compare the results with idealised scenarios of `decoherence-free subspaces'

  Figure 2:(Colour) In a physical four-qubit system for encoding two logical qubits, the Hamiltonians (in their superoperator representations of adH ) take the form of 256 × 256 matrices. In the eigenbasis of Γ (Eqn. 18), the drift Hamiltonian adH D1 of System I block diagonalises into slowly relaxing modes (blue) with relaxation rate constants in the interval [0 s -1 , 0.060 s -1 ], moderately relaxing modes (hatched) with [4.01 s -1 , 4.06 s -1 ], and fast relaxing modes (red) with [8.02 s -1 , 8.06 s-1 ]. In System II the Hamiltonian adH D1+D2 comprises o-diagonal blocks (empty boxes) that make the protected modes exchange with the fast decaying ones. [NB: for pure T2-relaxation (Eqn. 17), the relaxation-rate eigenvalues would further degenerate to 0 s -1 (`decoherence-free'), 4 s -1 (medium) and 8 s -1 (fast) while maintaining the same block structure].

( 20 )

 20 where the coupling constants are set to J xx = 2 Hz and J zz = 1 Hz. Hence, over the T 2 -decoherence protected subspace spanned by the four-qubit Bell basis B ⊗ B one obtains a fully controllable logical two-qubit system iH D1 , iH C1 , iH C2 Lie B⊗B rep = su(4) .

( 21 )

 21 As illustrated in Fig.2, in the eigenbasis of Γ of Eqn.[START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF] the Hamiltonian superoperators ad H take block diagonal form, where the rst block acts on the Liouville subspace B ⊗ B spanning the states protected against T 2 - type relaxation. Thus in more abstract terms and recalling Eqn. (3), the Hamiltonians of System I restricted to the T 2 -protected block, {i ad H D1 , i ad H D1 , i ad H D1 } B⊗B , generate Ad SU (4) as group of inner automorphisms over the protected states. Model System II Now, by extending the Ising-ZZ coupling between the two qubit pairs to an isotropic Heisenberg-XXX interaction, one gets what we dene as System II. Its drift term with the coupling constants being set to J xx = 2 Hz and J xyz = 1 Hz (= J zz of Eqn.(20)) reads H D1+D2 := J xx xx1l1l + 1l1lxx + yy1l1l + 1l1lyy

Figure 3 :

 3 Figure 3: (Colour) Fidelity of a CNOT gate encoded in an open system of four physical qubits in dierent scenarios of System II(see text). For reference, the top panel of (a) shows the top curve g0(T ) consisting of maximum obtainable delities against xed nal time T in the absence of relaxation; mean and rmsd are shown for families of 15 independent control sequences generated for each T . The lower panel of (a) shows their performance vastly scattering in the presence of relaxation (•) with the intervals giving mean ± rmsd for all the 15 control sequences tested (dots for best and worst values), while numerical optimal control under explicit relaxation (•) is far superior. In (b) these results are compared to (•) representing `naive' Trotter calculations assuming to every interaction the inverse is directly obtainable and to (•) depicting a realistic Trotter approach, where the inverse has to be explicitly generated. The numbers in brackets (n1, n2, p) give the expansion coecients n1, n2 of Fig.5and the max. control power p (counted as number of 2π-rotations per second). Note that numerical optimal control requires some four orders of magnitude less power than the bang-bang type decoupling from fast relaxing modes used in the Trotter expansions. The upper quality limit is imposed by slow T1-type relaxation (see Eqn.[START_REF] Khaneja | Proc. Natl. Acad. Sci. USA[END_REF] in the text). Without relaxation, all the Trotter sequences would achieve delities between 93 and 99 %, except ( ) the ones limited to control elds of powers p ≤ 50 Hz: they would fall below 5%.

Figure 4 :

 4 Figure 4: (Colour) (a) Time evolution of all the protected basis states under a typical time-optimised control of Fig.3. Projections into the slowly-relaxing and fast-relaxing parts of the Liouville space are shown. (b) Same for the new decoherenceavoiding controls. System II (see text) then stays almost entirely within the T2-protected subspace.

  extract strategies of how to ght relaxation by means of optimal control, we classify open quantum systems (i) by their dynamics being Markovian or non-Markovian and (ii) by the (Liouville) state space directly representing logical qubits either directly without encoding or indirectly with one logical qubit being encoded by several physical ones. So the subsequent discussion will lead to assigning dierent potential gains to dierent scenarios as summarised in Table

  mined. If as a trivial instance (I.a) one had a uniform decay rate constant γ so Γ = γ1l, then the delity in the presence of relaxation would simply boil down to f (T ) = g 0 (T ) • e -T •γ . Dene T * := argmax{f (T )} and

Figure 5 :

 5 Figure 5: Impractical academic alternative to numerical control: the algebraic derivation of controls for a CNOT in the slowlyrelaxing subspace proceeds from (a) the logical two-qubit system via (b) the encoded schematic physical four-qubit system to the physical realisations in the settings of (c) System I and (d) System II as dened in the text. Note that by the denition of the encoding Bell states (Eqn. (14)) all angles halve upon going from (a) to (b). Eective Hamiltonians τ H are represented by large frames; n1, n2 indicate repetitions for the respective Trotter expansions. Black bars are local π2 -pulses with phases given as subscript unless other rotation angles given on top; empty bars denote local z-rotations by ip angle π. These pulses can be seen as bang-bang type controls; due to the high repetition rates (n1 = 2 but n2 = 64) the Trotter expansions accumulate eld strengths of p 500 kHz, while the pulse shapes from optimal control require p ≤ 50 Hz. Expanding the interior Hamiltonian in (b) is even more complicated (not shown here but documented in[START_REF] Spörl | Numerische und analytische Lösungen für quanteninformatisch relevante Probleme[END_REF]).

  The situation becomes signicantly more rewarding when moving to the category (II) of optimisations restricted to a weakly relaxing (physical) subspace used to encode logical qubits. A focus of this work has been on showing that for Markovian systems encoding logical qubits, the knowledge of the relaxation parameters translates into signicant advantages of relaxation-optimised controls over time-optimised ones. This is due to a dual eect: opengrape readily decouples the encoding subsystem from fast relaxing modes while simultaneously generating a quantum map of (close to) best match to the target unitary. Clearly, the more the decay of the subspace diers from its embedding, the larger the advantage of relaxation-optimised control becomes. Moreover, as soon as the relaxation-rate constants of the protected subsystem also disperse among themselves, modes of dierent decay should again only be interchanged to the least amount necessarythus elucidating the very intricate interplay of simultaneous optimisation tasks that makes them prone for numerical strategies.

  refer to the fullrank linear image F , one may readily project onto the states of concern by the appropriate projector Π to obtain the respective dynamics and quality factors of the subsystem Π Ḟ = -Π (i ad H + Γ) • F Re tr{Π F † target Π F (T ) } . (27)

Table I :

 I Gain Potential for Relaxation-Optimised Controls versus Time-Optimised Controls

	Category	Markovian	non-Markovian
	encoding: protected subspace	big	(dicult a )
	no encoding:		
	full Liouville space	smallmedium mediumbig [32]
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