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Introduction

Presently available products of nanotechnologies show very promising potential in rather different branches of human activities, such as e.g. in medicine, biochemistry, applied chemistry (sorption, separation, catalysis), electrotechnique [1], and simple gas storage [2,3]. At present the nanoproducts are the result of preparative work performed in several world laboratories; among these products graphite nanotubes seem to be the most important.

In theory, the basic information stem from the simulations of different simple inhomogeneous systems [4][5][6]; these simulations mimic the behavior of molecules (their simple models) near a planar wall (adsorption), in pores or tubes. These data have been also used to verify purely theoretical results. Theoretical approaches represent extensions of physical methods used for the description of the homogeneous systems -e.g. solutions of the integrodifferential equations, i.e. BBGY [7] or Ornstein-Zernicke integral equation [START_REF] Mcquarrie | Statistical Mechanics[END_REF]; most often the density functional theory (DFT) [START_REF] Rosenfeld | [END_REF]10] has been considered. These approaches are often very successful, however, some input data are necessary at the beginning and the calculations are up to now performed for simple models of molecules -spheres and dumbbells. Recently, we have proposed a simple analytical method, which allows to determine the background correlation function on the basis of the residual chemical potentials of a pair of interacting hard spheres (and other hard bodies) and that of the so called combined body (resulting from overlapping of the pair of molecules). The residual chemical potentials, derived from the expressions for the residual Helmholtz energy (or the equation of state) of considered systems are a function of the bulk density (packing fraction) and geometric quantities (volume, surface area, mean radius), characterizing the geometry of the individual hard models inclusive the combined body. In the case of inhomogeneous systems, the self-consistent expressions for the chemical potential and/or equation of state is adequate to use, because of conditions similar to the colloidal limit. Such expressions were used in the previous applications of the mentioned "geometric" method to get the density profiles of the hard molecules in the different inhomogeneous systems via the background correlation function (cavity function), Y , defined as Y (x) = exp[u(x)/kT ]g(x) (where u and g stand for the pair potential and radial distribution function and x is the reduced distance). In the hard sphere system, Y = g hs for x ≥ 1; for x < 1 Y is related to the direct correlation In the case of molecular models with soft-sphere repulsions, the (reference) radial distribution function results from multiplying the definition expression of Y by exp[-u(x)/kT ], similarly as was used in the case of homogeneous systems by Barker and Henderson [START_REF] Mcquarrie | Statistical Mechanics[END_REF] and Weeks, Chandler and Andersen(WCA) [11]. The residual chemical potentials might be evaluated on the basis of geometric characteristics -a volume, V, surface area, S, mean radius, R (more precisely the mean curvature integral, divided by 4π) and by quantity Q, defined by inequalities S/4π ≤ Q ≤ R 2 . In treatments of the hard body virial coefficients, Q has been approximated by the arithmetic or geometric mean (GM) from S/4π and R 2 . In this paper we employ the harmonic mean. This rule proved to fit our recent quantum mechanical calculations of intermolecular interactions [12] of N 2 and CO (it is known e.g. from the kinetic theory of gases [START_REF] Mcquarrie | Statistical Mechanics[END_REF] as a rule to get the mean molecular mass m). The paper is organized as follows: In the first part, the new rule for Q is considered. We employed the third cross virial coefficient and the corresponding simulation data to verify the validity of the rule at low densities; density profiles of several inhomogeneous systems were evaluated and compared with simulation data in order to verify the rule (in comparison with GM) at higher densities. Next, we evaluate density profile of hydrogen in the cylindrical pore -graphite nanotube. In this study we assume that the distribution function is governed by the repulsive part of the interaction potential.

Theory Basic considerations

The expression which forms a basis of the determination OF 

kT ln Y ij (x * ) = ∆µ i + ∆µ j -∆µ CB (x * ) (1) 
where ∆µ i stands for the residual chemical potential of a molecule of type i, index CB denotes the combined body, k -Boltzmann constant and Ttemperature. The relation for ∆µ i can be derived from the expression for the residual Helmholtz energy of the hard body mixtures, ∆A s . In the case of inhomogeneous systems it is desirable to use a self-consistent equation (c.f. Refs. [15][16][17]), such as

∆A s /N kT = -ln(1 -η) + 3αη (1 -η) + βη 2 (3/2 -2η/5) (1 -η) 2 (2) 
Here η denotes the packing fraction η = ρ bulk .V HB and α and β two nonsphericity parameters 

α = r s s s /3v s , β = q s s 2 s /9v 2 s (with r s = ρ x k R k , s s = ρ x k S k , v s = ρ x k V k , q s = ρ x k Q k ; S, V,
Z = 1 (1 -η) + 3αη (1 -η) 2 + βη 2 (3 -6η/5 + 2η 2 /5) (1 -η) 3 (3) 
(For pure hard spheres the calculated compressibility factor Z = 13, in agreement with the generally accepted value). The corresponding expression for the residual chemical potential reads as 

∆µ i /kT = -ln(1 -η) + η (1 -η) [3α(R * + S * ) + V * ]+ 5 
+ η 2 (1 -η) 2 [β(Q * + 2S * )(3/2 -η/3) + 3αV * ] + η 3 (1 -η) 3 [12/5 -2η/5]βV * (4) For pure HS system R * = 2R/σ, S * = S/πσ 2 , V * = V /(πσ 3 /6) and Q * = 4Q/σ 2 ; for mixtures 2R * i = R i /(x i σ i + x j σ j ) etc. If we define ∆X = X * i + X * j -X CB * (5) 
where X = R, S, V, Q we can write for pure HS fluid (for which α = 1, β = 1)

kT ln Y ij = -ln(1 -η) + η (1 -η) [3(∆R * + ∆S * ) + ∆V * ]+ η 2 (1 -η) 2 [(∆Q * +2∆S * )(3/2-η/3)+3∆V * ]+ η 3 (1 -η) 3 [12/5-2η/5]∆V * (6) EXPRESSING Y IN TERMS OF DIFFERENCES OF GEOMETRIC QUAN- TITIES INSTEAD OF INDIVIDUAL CONTRIBUTIONS TO ∆µ i SIM- PLIFIES NOTABLY THE FURTHER CONSIDERATIONS. THUS, FOR PURE HARD SPHERE SYSTEMS AND θ = arcsin(x * /2) ≤ π/3 WE OB- TAINED ∆R * = 1 -sin θ + θ cos θ ∆S * = 1 -2θ cos θ ∆V * = 1 -2 sin θ -4 cos 2 θ sin θ + 3θ cos θ ∆Q * N L = ∆S * -(1/2)(x * 2 /4)

Geometric quantities

In this paper we study the behavior of hard or soft sphere near a hard wall or in a pore. In the former case the pair of interacting bodies is composed of a hard sphere and hard disc (eventually a thin hard cylinder); in the case of a pore we have HS and a spherical cup; see Fig. 1. FOR PURE HS FLUIDS, the geometric characteristics of HS possess simple values:

R * i = S * i = V * i = Q * i = 1. Similar characteristics of the disc (a cylinder of the reduced height l * = 0) are R * w = (π/2) cos θ, S * w = 2 cos 2 θ
, and V * w = 0. The reduced value of Q * w for the wall, taken as an infinitely thin disc is (see further discussion)

Q * w = 4π 2 cos 2 θ/(8 + π 2
). The combined body is composed of a part of the sphere (with radius r = σ/2, saddle part, given by the probe sphere with radius r p , WHICH FOR PURE HS IS EQUAL TO r. COMBINED BODY is closed by the disc (of radius r w = σ cos θ). IF we denote GENERALLY the ratio 2r i /σ = p, 2r p /σ = q and employ the method of Connolly [18], we can express R CB * , S CB * , V CB * as follows

R CB * = R * i - 1 2 (p -q) + 1 2 (p + q) sin θ - 1 4 (p + q)( π 2 + θ -2φ) cos θ+ + 1 2 (p + q)( π 2 + l * ) cos θ -q sin φ (7) 
Similarly

S CB * = S * i - 1 2 (p 2 + q 2 ) + 1 2 (p 2 -q 2 ) sin θ + 1 2 q(p + q)( π 2 + θ -2φ) cos θ +[(p + q) cos θ/2] 2 (1 + 4l * ) + q 2 sin φ (8) 
and

V CB * = V * i - 1 2 (p 3 -q 3 ) + 1 2 (p 3 + q 3 )(sin θ + cos 2 θ sin θ/2)+ + 3 4 q(p + q) cos 2 θ[p(1 + sin θ) + q] - 3 4 q 2 (p + q)( π 2 + θ -2φ) cos θ- -q 3 sin φ - 1 2 q(p + q) 2 cos 2 θ sin φ + 6(p + q) 2 cos 2 θ/4 * l (9) 
The above expressions are valid for inhomogeneous systems of hard bodies (hard sphere, hard dumbbell perpendicular to the wall, etc.) near a hard wall, with R * i , S * i , V * i standing for the geometric quantities of the fluid molecules. For θ, which is defined for THE HARD WALL on the basis of the distance HS center -wall, z * = z/σ θ = arcsin(z * ); if θ < π/3 φ = 0, for larger θ it holds true cos φ = (p + q) cos θ/q. In the case of hard sphere in a spherical pore, the geometric quantities of the wall and CBs depend on the reduced pore radius R * r = R r /σ. For detailed calculation, angle γ was introduced; it determines the size of the contact area, see Fig 1 . For the single wall pore (l=0), the following equations for the respective geometric functionals were used: 

R CB * = R * i - 1 2 (p -q cos γ) + 1 2 (p + q) sin θ - 1 4 (p + q)( π 2 + θ + γ -2φ) cos θ -q sin φ + π 2 R * r sin γ (10 
S CB * = S * i - 1 2 (p 2 +q 2 cos γ)+ 1 2 (p 2 -q 2 ) sin θ + 1 2 q(p+q)( π 2 +θ +γ -2φ) cos θ +q 2 sin φ + 2R 2 r (1 -cos γ) (11) 
V CB * = V * i - 1 2 (p 3 -q 3 ) + 1 2 (p 3 + q 3 )(sin θ + cos 2 θ sin θ/2) + 3 4 q(p + q) cos 2 θ[p(1 + sin θ) + q] - 3 4 q 2 (p + q)( π 2 + θ -2φ) cos θ -q 3 sin φ - 1 2 q(p + q) 2 cos 2 θ sin φ + 2R 3 r (2 + cos γ)(1 -cosγ) 2 (12) 
These two sets of the reduced geometric quantities find their use in evaluation of the residual chemical potentials either in the case of a hard body (HB) near a hard wall or HB in a spherical pore. In the case of cylindrical pore the probe sphere creates on the inner surface of the cylinder a 3D ellipses.

We approximated its geometric quantities as a mean of values for planar and spherical pore walls. The geometric quantity Q, which is of the dimension [l 2 ], is defined by the inequality S/(4π)

≤ Q ≤ R 2 (13) 
Naumann and Leland [19] (NL) approximated Q by the arithmetic mean of the utmost quantities, i.e. Q * = (R * 2 + S * )/2 S * + (1/2)(x * 2 /4). We originally considered [20] the geometric mean(GM), i.e. Q * = R * √ S * . Later on, the modified GM of the form has been used in several papers [21]. Here we introduce a harmonic mean (HM), which we found recently to describe fairly well quantum mechanical results found for interactions of simple molecules [12] 2

Q * = R * 2 ( √ S * /R * ) 1/2 (14 
/Q * = 1/R * 2 + 1/S * (15) 
Simulation data on the third cross virial coefficients of a pair of hard spheres plus a hard dumbbell(HD) yield the indirect information on the dependence of Q * on the site-site distance in a dumbbell. Such data are available from the study of Labik et al [14]. In Fig. 2. we plotted C 112 as a function of the reduced HD site-site distance, x, for the harmonic mean (dashed line) and corrected geometric mean (full line) approximations. From the comparison better performance of the presently proposed method is obvious. Thus, harmonic mean approximation is used in the following part.

Interaction potentials of simple fluid-wall system

In this study we assume that hydrogen, carbon monoxide and carbon molecules of the wall interact originally via Lennard-Jones 12-6 potential. However, for the graphite wall a smeared potential has been considered. For single planar wall the potential possesses a form [START_REF] Lee | Molecular Thermodynamics of Nonideal Fluids[END_REF] u 10-4 (z) = 2πε gs /σ 

where subscript gs and ss denote gas-solid and solid-solid interaction parameters. Similar form with an additional term was used to describe interaction of fluid molecules with several layers of the solid wall. For interaction of a LJ molecule with CARBON ATOMS OF a graphite cylindrical pore, a different potential form was proposed [START_REF] Stan | [END_REF]24]

u 10-4 (r, R r ) = 3πε gs Φσ 2 gs 21 32 ( σ gs R r ) 10 M 11 (x) -( σ gs R r ) 4 M 5 (x) (17) 
where Φ denotes surface number density and M n an integral

M n (x) = π 0 dφ (1 + x 2 -2x cos φ) n/2 (18) 
The M n integrals are determined numerically for the single reduced distances, x. The course of this potential is relatively sensitive to value of In Fig. 3. the reduced potential u/ε is plotted against x for H 2 -single walled pore of the reduced radius R * r = R r /σ H2 =3.5. The part of the potential curve on the left from the minimum, enlarged by |u min |), is taken in the Weeks-Chandler-Andersen variant [11] of the perturbation theory as expression characterizing repulsive forces and exp[-(u + u min )/kT ]Y (r) is assumed to determine the structure of the soft-sphere system. This approach is applied here, for inhomogeneous systems, too.

Results and Discussion

Hard sphere inhomogeneous systems Determination of the density profile of hydrogen and its mixture starts with evaluation of the background correlation function, Y . Thus, we studied firstly the behavior of hard sphere -hard wall (PLANAR, SPHERICAL, CYLIN-DRICAL) systems at conditions similar to those at which hydrogen (and its mixture with CO) in the pore are considered.

To this end we determined the density profile (given as a product of the background correlation function, Y , and bulk density ρ b ) of HS in a spherical pore of the reduced radius R * r = 2.1 and ρ b = 0.5. The calculated density ρ * (x * ) is compared with data of Gonzáles et al [25] in Fig. 4. One can find very good agreement with the simulation data in the whole interval r * ∈ (0.4, 1.4). (A slight improvement in comparison with results obtained from an approach with the corrected geometric mean was found). Next, we determined the HS-density profile in the hard sphere-cylindrical pore of R * r = 4 and the bulk density ρ * b = 0.6. Fig. 5. reveals again a good agreement with pseudo-experimental data [26]. In the next figure, Fig. 6. we compare theoretical and experimental [25] results for HS in a cylindrical pore of R * r =1.9 and ρ * b = 0.55; fair agreement is found. Finally, we considered the hard sphere mixture [27] (with HS-diameters σ 2 /σ 1 =2, mole fraction of component 2 x 2 = 0.2 and bulk density ρ * b = 0.3209) near a hard wall (r p = x i r 2 i / x i r i ). From Fig. 7. a fair agreement is apparent. Theoretical results plotted in all four figures were calculated by means of the same procedure which was formulated for a cylindrical pore, where Y is determined from differences in all the geometric quantities obtained as an arithmetic mean of values for the spherical pore (of the radius equal to that of a cylinder) and that of the planar wall.

Hydrogen and its mixture with CO in the graphite tube To determine the density profile of hydrogen in a tube we applied the perturbation theory, in which it was assumed that the fluid structure depended mainly on the repulsive forces; for soft sphere repulsions the distribution function might be, within WCA approximation [11], evaluated as the product of exp[-β(u + |ε|)]Y . Hydrogen in the single wall graphite nanotube was studied theoretically by Gu, Gao and Yu [24] who applied density functional theory (DFT) and compared their results with simulation data; the authors determined also density profiles for hydrogen and carbon monoxide (as compounds with simple, roughly spherical molecules); an equimolar mixture at 300 K was considered in armchair tubes (18,18), (30,30) and (35,35) at several bulk densities. The used characteristic potential parameters were σ H2 = 0.296 nm, ε H2 /k = 36.7 K, σ CO = 0.3763 nm, ε CO /k =100.2 K and σ C = 0.335 nm, ε C /k = 28.2 K. The Lorenz-Berthelot combining rules were used to determine values of parameters of H 2 -C-atom (of the tube wall). Gu, Gao and Yu in their paper presented the course of the interaction potentials of H 2 and CO in the mentioned tubes. We fitted their data for r * ≤ r * min , add |ε| and determined u ref . Similarly as Gu,Gao and Yu, we assumed σ ref 1 = σ C-H2 (and

σ ref 2 = σ C-CO ).
In our calculations, we considered the bulk density ρ b = 0.5, and the reduced radius of the tube (with respect to σ H 2 ) R * r =2 and 3.5. The courses of the representative pair potentials corresponding to the repulsive forces (left from the minimum) were obtained by fitting the results of Gu et al, see Fig. 8. With mentioned simplifications (concerning determination of the representative HSs) we obtained density profiles plotted in Fig. 9. One can see a fair agreement with simulation data [24] obtained for pure hydrogen (in the graphite pore) at similar conditions. Finally, we attempted to determine density profiles of a binary mixture of hydrogen and carbon oxide in a tube of radius R * r = 3.5. In our calculations we assumed, similarly as Gu et al, the representative diameters to be equal to the σ C-H2 and σ C-CO . The ratio of σ 2 /σ 1 = 1.271, bulk density ρ * b =0.5 and mole fraction x 2 =0.5 were considered. We first determined Y C-H2 and Y C-CO in the equimolar mixture of hard spheres, assuming single walled tube; the obtained background functions, Y i , were then multiplied by exp[-β(u rep )]. The resulting profiles are plotted in Fig. 10. For sake of comparison we include results presented by Gu at al for the same mixture and armchair (30,30) graphite nanotube. It is obvious that the agreement is fair in the region around z * =1, but only 

Conclusion

In this work we dealt firstly with the approximation for the geometric quantity Q which is included in the non-sphericity parameter β s and consequently in the expression for the residual chemical potential. The comparison of the third cross virial coefficient C 112 (of two HS and one HD), calculated with help of the harmonic mean, in comparison with that for the geometric mean, has shown slightly better prediction of C 112 ; this finding gives evidence in favor of the new version of the Q-determination in the low-density systems. The general improvement is verified by applying the rule to variety of inhomogeneous systems, considered in figures 4-6.

In the last paragraph we attempted to determine the density profile of realistic molecule in a tube. To this end, hydrogen was considered as a Lennard-Jones spherical molecule, whereas interactions of carbon atoms of graphite wall were approximated by carbon atoms uniformly distributed within the wall surface. For planar wall the (10-4) potential is often used. Contrary to these systems, the interaction of LJ-particle with the cylindrical wall is more demanding. Different ways of determining molecular interactions with planar and pore surfaces COMPOSED FROM SEVERAL LAYERS cause a problem when applying our method (in which we describe behavior of an atom in a cylindrical pore as a combination of results for planar wall and a spherical pore). Because of this fact we haven't solved the interaction potential in details and employed data in Ref. [24] to get the dependence of the repulsive part of the potential on the atom-wall distance. In conclusion it can be said that our analytical method and consecutive computer program, formulated on the basis of expressions ( 6)-( 12) is quite general: with only minimum changes one can determine Y for planar wall, spherical or cylindrical pore. The procedure can also be easily modified for the case of HS outside the pore. In comparison with the physical (density functional) theory the discussed method is rather simpler and yields results immediately. With the expansion of nanotechnologies a quick information on the structure of the system might be quite important.
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