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SUMMARY

Discrete-time Volterra models are widely used in various application areas. Their usefulness is mainly
because of their ability to approximate to an arbitrary precision any fading memory nonlinear system
and to their property of linearity with respect to parameters, the kernels coefficients. The main drawback
of these models is their parametric complexity implying the need to estimate a huge number of parame-
ters. Considering Volterra kernels of order higher than two as symmetric tensors, we use a parallel factor
(PARAFAC) decomposition of the kernels to derive Volterra-PARAFAC models that induce a substantial
parametric complexity reduction. We show that these models are equivalent to a set of Wiener models
in parallel. We also show that Volterra kernel expansions onto orthonormal basis functions (OBF) can be
viewed as Tucker models that we shall call Volterra-OBF-Tucker models. Finally, we propose three adap-
tive algorithms for identifying Volterra-PARAFAC models when input–output signals are complex-valued:
the extended complex Kalman filter, the complex least mean square (CLMS) algorithm and the normalized
CLMS algorithm. Some simulation results illustrate the effectiveness of the proposed identification methods.
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1. INTRODUCTION

Empirical modeling from measured input–output data is a key issue for many applications. Such a

modeling consists in first selecting an appropriate model structure and then estimating the model

parameters by processing the input–output signals with an identification method. Most real-life

systems are nonlinear in nature so that nonlinear models are often preferable for well represent-

ing the system under study. Finite-dimensional discrete-time Volterra models, also called truncated

Volterra series expansions or nonrecursive polynomial models, are now widely used in various fields

of applications like speech modeling [1], loudspeaker linearization [2,3], nonlinear control of chem-

ical processes [4–6], active noise control [7], nonlinear acoustic echo cancellation [8], modeling of

biological and physiological systems [9, 10], nonlinear communication channel identification and

equalization [11–16], and many others.

The usefulness of Volterra models is mainly because of their ability to approximate to an arbi-

trary accuracy any fading memory nonlinear system [17] and also their property of linearity with

respect to parameters, the kernels coefficients. Moreover, they represent a nonlinear extension of the
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NONLINEAR SYSTEM MODELING AND IDENTIFICATION 31

very popular finite impulse response (FIR) linear model, with guaranteed stability in the bounded-

input bounded-output sense. They are interpretable in terms of multidimensional convolutions which

makes easy the derivation of their z-transform and Fourier transform representations, and there-

fore their frequency-domain interpretation [18]. The main drawback of these models concerns their

parametric complexity implying the need to estimate a huge number of parameters. This number

increases rapidly with the system nonlinearity order and memory.

There are two main approaches for reducing the number of free parameters in Volterra models.

One approach consists in considering block-oriented nonlinear models constituted by a cascade of

linear dynamic subsystems and memoryless (static) nonlinearities. The order of the blocks defines

the model subclass: Wiener models (L-N: liear-nonlinear) are composed of a linear dynamic subsys-

tem followed by a nonlinear static one, Hammerstein models (N-L: nonlinear-linear) are obtained

by reversing the order of these blocks, Wiener-Hammerstein models (L-N-L: linear-nonlinear-

linear) are constituted by a static nonlinearity in sandwich between two linear subsystems, whereas

Hammerstein-Wiener models (N-L-N: nonlinear-linear-nonlinear) comprise two static nonlineari-

ties sandwiching a linear subsystem. Compared with Volterra models, the block-oriented ones are

characterized by a smaller number of parameters but their output is nonlinear with respect to the

parameters, which leads to a nonlinear estimation problem. Moreover, this kind of models allows

taking some specific nonlinearities into account, as for instance actuator’s and sensor’s nonlinearities

in control applications. Because of their wide relevance, there exist a lot of methods for identifying

block-oriented systems. We refer the reader to [4, 19, 20] and references therein for a description of

block-oriented model applications and identification methods. Another approach, first suggested in

[21], consists in expanding the Volterra kernels onto orthonormal basis functions (OBFs). Such ker-

nel expansions can lead to parsimonious modeling when the basis functions are adequately chosen.

The Laguerre and Kautz functions, characterized respectively by a single real-valued parameter,

the Laguerre pole, and a pair of complex conjugate poles, have been used for approximating stable

linear systems in [22–25]. Such OBFs are well suited to model systems with first-order or second-

order dominant dynamics. For more complex dynamics, more general rational basis functions, called

generalized OBFs (GOBFs), have been developed in the context of linear system identification

[26, 27]. Laguerre expansions of Volterra kernels have been used for identifying biological sys-

tems [28] and for nonlinear adaptive control [29]. More recently, Volterra models using OBFs have

been proposed for modeling radio frequency power amplifiers [30,31]. Optimization of the poles of

Laguerre–Volterra, Kautz–Volterra, and GOBF–Volterra models has been addressed in [32–37].

Two other alternatives for reducing the Volterra model complexity consist in using either a tensor

product basis approximation method [38], or a parallel-cascade realization resulting from the singu-

lar value decomposition (SVD) of a matrix representation of the kernel of a homogeneous Volterra

system [39, 40].

In the present paper, considering higher-order Volterra kernels as symmetric tensors, we use a par-

allel factor (PARAFAC) decomposition [41] of these kernels for deriving the Volterra-PARAFAC

model. This approach was introduced for the first time in [42] without using the symmetry property

of the kernels. Part of the results presented hereafter has been recently addressed in [43] and [44].

Then, three adaptive algorithms are proposed for estimating the parameters of such a model: the

extended complex Kalman filter (ECKF), the complex least mean square (CLMS) algorithm, and

the normalized CLMS (NCLMS) algorithm.

The rest of this paper is organized as follows. Section 2 introduces notations and basic matrix

operations, whereas Section 3 reviews the required mathematical background on tensor operations

and models, more particularly on the Tucker and PARAFAC decompositions. In Section 4, after a

brief presentation of the Volterra model and its symmetrization, we apply the PARAFAC decompo-

sition to symmetric Volterra kernels to derive the Volterra-PARAFAC model. We show that such

a model can be viewed as a parallel cascade model constituted of simplified Wiener paths. In

Section 5, we state that Volterra models using kernel expansions onto the GOBFs can be interpreted

as Tucker models that we shall call Volterra-GOB-Tucker models. Then, in Section 6, we propose

three adaptive methods for identifying Volterra-PARAFAC models: the ECKF, CLMS, and NCLMS

algorithms. Some simulation results are presented in Section 7, to illustrate the effectiveness of

Volterra-PARAFAC models for reducing the parametric complexity and then the performance
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32 G. FAVIER, A. Y. KIBANGOU AND T. BOUILLOC

of the proposed adaptive parameter estimation algorithms. Finally, the conclusions are drawn

in Section 8.

2. NOTATIONS

R and C denote the fields of real and complex numbers, respectively. Scalars, vectors, matrices, and

higher-order tensors are written as lower-case .a, b, : : :/, bold lower-case .a, b, : : :/, bold upper-

case .A, B, : : :/, and blackboard .A, B � � � / letters, respectively. AT , AH , A�, and A� stand for

transpose, transconjugate (Hermitian transpose), complex conjugate, and Moore–Penrose pseudo-

inverse of A, respectively. The vector Ai . (resp. A.j ) represents the i th row (resp. j th column) of

A. The scalars ai , ai ,j , and ai1,��� ,iN denote, respectively, the i th element of a, the .i , j /th element

of A and the .i1, � � � , iN /th element of A. IN is the identity matrix of order N , and k.kF is the

Frobenius norm. The operator vec../ forms a vector by stacking the columns of its matrix argument.

The outer, Kronecker and Khatri–Rao (column-wise Kronecker) products are denoted by ı, ˝, and

ˇ, respectively.

- For A 2 CI�R and B 2 CJ �R:

A ˇ B D .A.1 ˝ B.1 � � � A.R ˝ B.R/ 2 C
IJ �R (1)

- For A.n/ 2 CIn�Rn , n D 1, 2, � � � N :

N
˝

nD1
A.n/ D A.1/ ˝ A.2/ ˝ � � � ˝ A.N / 2 C

I1���IN �R1���RN

N
ˇ

nD1
A.n/ D A.1/ ˇ A.2/ ˇ � � � ˇ A.N / 2 C

I1���IN �R

when Rn D R, 8 n D 1, 2, � � � N .

- For u.n/ 2 CIn�1, n D 1, 2, � � � N :

Nı
nD1

u.n/ D u.1/ ı u.2/ ı � � � ı u.N / 2 C
I1�����IN

with

�
Nı

nD1
u.n/

�

i1,��� ,iN

D
N
Y

nD1

u
.n/
in

(2)

In particular, for u 2 CI�1, v 2 CJ �1, and w 2 CK�1, u ı v ı w is a rank-one third-order tensor

such as:

u ı v ı w 2 C
I�J �K , .u ı v ı w/i ,j ,k D uivj wk .

3. TENSOR PREREQUISITES

3.1. Some definitions

For an N th-order tensor H 2 CI1�����IN , also called an N -way array, of dimensions I1 � � � � � IN ,

with entries hi1,��� ,iN 2 C (in D 1, 2, � � � , In, for n D 1, 2, � � � , N ), each index in is associated
with a way, also called a mode, and In is the mode-n dimension. The tensor H is characterized by
QN

nD1 In scalar coefficients hi1,��� ,iN . A vector is a first-order tensor, whereas a matrix is a second-

order one. Tensors of order greater than two are called higher-order tensors. The Frobenius norm of

H is given by:

kHkF D

v
u
u
t

I1X

i1D1

� � �
INX

iN D1

ˇ
ˇhi1,��� ,in

ˇ
ˇ
2

(3)
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NONLINEAR SYSTEM MODELING AND IDENTIFICATION 33

The tensor H is said to be hypercubic if its N dimensions In are equal; that is, I1 D � � � D IN D I .

A hypercubic tensor is said to be symmetric if its elements hi1,��� ,iN do not change under any per-

mutation of their indices. It is diagonal if hi1,��� ,iN ¤ 0 only for i1 D i2 D � � � D iN . The identity

tensor of order N, denoted by IN or simply I, is a diagonal hypercubic tensor with all the elements

of its main diagonal equal to 1:

hi1,��� ,iN D ıi1,��� ,iN , in D 1, � � � , I for n D 1, � � � , N

where ı is the generalized Kronecker symbol:

ıi1,��� ,iN D
�

1 if i1 D i2 D � � � D iN

0 otherwise

By slicing the tensor along its mode-n, that is, by fixing the index in, we get a tensor of order N � 1

and dimensions I1 � � � � � In�1 � InC1 � � � � � IN , called the i th
n mode-n slice of H and denoted by

H��� ,in,���. The mode-n vectors are the In dimensional vectors obtained from H by varying the index

in, while keeping the other indices fixed.

Different matricizations, also called matrix unfoldings, of H 2 CI1�����IN can be obtained.

For instance, we define the horizontal mode-n matrix unfolding, denoted by Hn, as the In �
InC1 � � � IN I1 � � � In�1 matrix whose columns are the mode-n vectors. The dimension of the mode-n

vector space spanned by the mode-n vectors is called the mode-n rank of H.

In the case of a third-order tensor H 2 CI�J �K , we have three types of matrix slices denoted by

Hi .., H.j ., and H..k of respective dimensions K � J , I � K, and J � I .

By column-wise stacking the matrix slices of the same type, we get the three following horizontal

matrix unfoldings:

H1 D ŒH.1. � � � H.J .� 2 C
I�JK (4)

H2 D ŒH..1 � � � H..K � 2 C
J �KI (5)

H3 D ŒH1.. � � � HI ..� 2 C
K�IJ (6)

which implies

hi ,j ,k D .H1/i ,.j �1/KCk D .H2/j ,.k�1/ICi D .H3/k,.i�1/J Cj

Other matrix unfoldings are possible. However, it is to be noticed that all the unfolded matrix repre-

sentations of a given tensor are different from the point of view of tensor elements arrangement but

are equivalent in terms of contained information because each one contains all the tensor elements.

The mode-n product of a tensor H 2 CI1�����IN of order N with a matrix A 2 CJn�In , denoted

by V D H �n A, gives a tensor of order N and dimensions I1 � � � � � In�1 � Jn � InC1 � � � � � IN

such as:

vi1,��� ,in�1,jn,inC1,��� ,iN D
InX

inD1

hi1,��� ,in�1,in,inC1,��� ,iN ajn,in (7)

This mode-n product can be expressed in terms of horizontal mode-n matrix unfoldings of tensors

V and H as:

Vn D AHn (8)

For H 2 CI1�����IN , A 2 CJm�Im , and B 2 CJn�In , with m ¤ n, we have the following property:

.H �m A/ �n B D .H �n B/ �m A D H �m A �n B (9)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:30–53

DOI: 10.1002/acs



34 G. FAVIER, A. Y. KIBANGOU AND T. BOUILLOC

3.2. Tucker and PARAFAC models

For a tensor H 2 CI1�����IN , the Tucker model is defined as follows [45]:

hi1,��� ,iN D
R1X

r1D1

� � �
RNX

rN D1

gr1,��� ,rN

N
Y

nD1

a
.n/
in,rn

(10)

with in D 1, � � � , In for n D 1, � � � , N , where gr1,��� ,rN
is an element of the core tensor G 2

CR1�����RN and a
.n/
in,rn

is an element of the matrix factor A.n/ 2 CIn�Rn .

Taking the relation (2) into account, the Tucker model can be written in terms of outer products

of the columns of its matrix factors:

H D
R1X

r1D1

� � �
RNX

rN D1

gr1,��� ,rN

Nı
nD1

A.n/
.rn

(11)

showing that H is decomposed into a weighted sum of
QN

nD1 Rn outer products.

Using definition (7) and property (9) of the mode-n product, the model (10) can also be written as:

H D G �1 A.1/ �2 A.2/ �3 � � � �N A.N / (12)

which will be concisely noted as

H D G �N
nD1 A.n/ (13)

For the horizontal mode-n matrix unfolding of the Tucker model of H 2 CI1�����IN , we have:

Hn D A.n/Gn

h

A.nC1/ ˝ � � � ˝ A.N / ˝ A.1/ ˝ � � � ˝ A.n�1/
iT

(14)

where Gn is the horizontal mode-n matrix unfolding of the core tensor G.

When each matrix factor A.n/, for n D 1, � � � , N with N > 3, is unitary and calculated as the left

matrix of the SVD of the horizontal unfolded matrix Hn, the Tucker model can be viewed as an

extension of the matrix SVD to the N th-order. It is then called higher-order SVD [46].

The PARAFAC model, introduced in [41], corresponds to the particular case of a Tucker model

with an identity core tensor .G D IR D I/, which implies Rn D R, 8 n D 1, 2, � � � , N .

Equations (10)–(13) then become:

hi1,��� ,iN D
R
X

rD1

N
Y

nD1

a
.n/
in,r (15)

H D
R
X

rD1

�
Nı

nD1
A.n/

.r

�

(16)

and

H D IR �N
nD1 A.n/ (17)

with the matrix factors A.n/ 2 CIn�R, n D 1, � � � , N .

The horizontal unfolded matrix forms associated with the PARAFAC model of H are given by:

Hn D A.n/
h

A.nC1/ ˇ � � � ˇ A.N / ˇ A.1/ ˇ � � � ˇ A.n�1/
iT

(18)

For a third-order tensor H 2 CI�J �K , with matrix factors .A, B, C/, the horizontal unfolded matrix

forms corresponding to (18) are:

H1 D A .B ˇ C/T (19)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:30–53
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NONLINEAR SYSTEM MODELING AND IDENTIFICATION 35

H2 D B .C ˇ A/T (20)

H3 D C .A ˇ B/T (21)

Equation (16) shows that PARAFAC corresponds to the decomposition of the N th-order tensor H

into a sum of R rank-one tensors; that is, a sum of R outer products of N vectors. The minimum

number R of rank-one tensors which are needed to generate H is called the rank of H, denoted by

rank.H/, as first introduced in [47] and then in [48].

So, an N th-order rank-one tensor H is a tensor that is expressible as the outer product of

N vectors:

hi1,��� ,iN D
N
Y

nD1

a
.n/
in

, in D 1, � � � , In (22)

where a
.n/
in

is an entry of the vector factor a.n/ 2 CIn�1.

Theorem 1 ([49])

Any symmetric N th-order tensor H 2 CI�����I can always be decomposed as the sum of symmetric

outer products of vectors:

H D
RSX

rD1

A.r ı � � � ı A.r
„ ƒ‚ …

N copies

(23)

or, equivalently, in scalar form:

hi1,��� ,iN D
RSX

rD1

N
Y

nD1

ain,r , in D 1, � � � , I (24)

Unlike (15)–(17), such symmetric decomposition needs a unique matrix factor A 2 CI�RS . This

decomposition will be called a symmetric PARAFAC model.

The symmetric rank of H, noted rankS .H/, is defined as the minimum number RS of symmetric

outer products needed to generate H by means of (23) or (24).

So, any symmetric tensor can always be decomposed as in (15) or (24) with the following

inequality between its rank and its symmetric rank [49]:

rank .H/ 6 rankS .H/ (25)

For an Nth-order rank-one symmetric tensor H 2 CI�����I , its symmetric PARAFAC model can

be written in terms of a unique vector factor a 2 CI�1:

H D a ı � � � ı a
„ ƒ‚ …

N copies

(26)

Under certain conditions, initially established by Harshman [50] and Kruskal [48, 51] for third-

order real-valued tensors, then extended to complex-valued tensors in [52] and to N th-order tensors

in [53], the PARAFAC model is essentially unique, that is, its matrix factors are unique up to column

permutation and scaling.

3.3. Estimation of PARAFAC parameters

Identifying the PARAFAC model of a tensor H consists in estimating its matrix factors A.n/ from

its matrix representations Hn. This parameter estimation problem is generally solved in applying

the alternating least squares (ALS) algorithm, originally proposed in [41] and [50].

The ALS algorithm, deduced from Equations (19)–(21), is summarized in Table I for a third-order

PARAFAC model, where QHn, n D 1, 2, 3, is the noisy version of Hn ( QHn D Hn C En, where En

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:30–53
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Table I. Alternating least squares algorithm for a third-order PARAFAC model.

1. Randomly initialize B0 and C0 and set t D 0.
2. Increment t and compute:

(a) At D QH1

h

.Bt�1 ˇ Ct�1/T
i�

(b) Bt D QH2

h

.Ct�1 ˇ At /
T
i�

(c) Ct D QH3

h

.At ˇ Bt /
T
i�

3. Return to step (2) until convergence.

Table II. Conditional least squares algorithm for a symmetric third-order PARAFAC model.

1. Randomly initialize A0 and set t D 0.
2. Increment t and compute:

At D QH1

h

.At�1 ˇ At�1/T
i�

3. Return to step (2) until convergence.

is the horizontal mode-n matrix unfolding of the additive noise tensor E having the same dimensions

as H).

In the case of a symmetric third-order tensor H 2 CI�I�I , Equations (19)–(21) become:

H1 D H2 D H3 D A .A ˇ A/T 2 C
I�I 2

(27)

and the matrix factor A can be estimated at iteration t in minimizing the following conditional least

squares (CLS) cost function:

min
A






 QH1 � A .At�1 ˇ At�1/T








2

F
(28)

Assuming that the matrix factor is full column rank, we get the CLS algorithm summarized in

Table II [54].

The convergence test consists in detecting if an estimated parameter variation between two

consecutive iterations or the model fit error calculated in using the tensor reconstructed with the

estimated parameters, becomes smaller than a predefined threshold. In practice, to improve the con-

vergence, the CLS algorithm that enforces the symmetry to the solution is applied after a transient

period during which the classical ALS described in Table I is used for estimating the three matrix

factors without enforcing the symmetry. More efficient algorithms like the enhanced line search

(ELS) [55] or the Levenberg–Marquardt one [56] can also be used.

4. VOLTERRA-PARAFAC MODELS

A P th-order Volterra model for a causal, stable, finite memory, time-invariant, SISO system is

described by the following input–output relationship:

yk D h0 C
P
X

pD1

MpX

m1D1

� � �
MpX

mpD1

h.p/
m1,��� ,mp

p
Y

iD1

uk�mi

D h0 C
P
X

pD1

y
.p/

k
(29)

where h0 is the offset, uk and yk denote respectively the input and output signals, P is the nonlin-

earity degree of the Volterra model, Mp is the memory of the pth-order homogeneous term y
.p/

k
,

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:30–53
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and h
.p/
m1,��� ,mp

is a coefficient of the pth-order kernel. This coefficient being characterized by p
indices, it can be viewed as an element of a tensor H

.p/ 2 KMp�����Mp , of order p, with K D R

or C, depending on whether the kernel coefficients are real-valued or complex-valued. The pth-

order kernel is characterized by M
p
p coefficients. As each permutation of the indices m1, � � � , mp

corresponds to the same product
Qp

iD1 uk�mi
of delayed inputs, we can sum all the coefficients

associated with these permutations to get a symmetric kernel calculated as:

h.p,sym/
m1,��� ,mp

D 1

p Š

X

�../

h.p/
m�.1/,��� ,m�.p/

(30)

where .�.1/, � � � , �.p// denotes a permutation of .1, � � � , p/. So, in the sequel, without loss of

generality, the Volterra kernels of order p > 2 will be considered in symmetric form. The number

of independent coefficients contained in the symmetric pth-order kernel is equal to C
MpCp�1
p D

.MpCp�1/Š

pŠ.Mp�1/Š
(see [18]).

The pth-order kernel is said to be separable if it can be expressed as the product of p first-

order kernels:

h.p/
m1,��� ,mp

D ˘
p
iD1h.i/

mi
(31)

where h
.i/
mi

represents the mth
i element of the first-order kernel h.i/. If the separable kernel is

symmetric, then the p first-order kernels h.i/ are identical and (31) becomes:

h.p/
m1,��� ,mp

D ˘
p
iD1hmi

(32)

By comparing (31) with (22), we can conclude that a separable kernel is a rank-one tensor.

From the above discussion, any pth-order Volterra kernel can be considered as a symmetric

pth-order tensor, which leads to the following corollary of Theorem 1:

Corollary 1

Any pth-order Volterra kernel h
.p/
m1,��� ,mp

, with p > 2, can be decomposed using the symmetric

PARAFAC model (24), with symmetric rank rp and matrix factor A.p/ 2 CMp�rp :

h.p/
m1,��� ,mp

D
rpX

rD1

p
Y

iD1

a.p/
mi ,r , mi D 1, � � � , Mp i D 1, � � � , p (33)

That allows us rewriting the pth-order homogeneous term y
.p/

k
as follows:

y
.p/

k
D

MpX

m1D1

� � �
MpX

mpD1

h.p/
m1,��� ,mp

p
Y

iD1

uk�mi

D
MpX

m1D1

� � �
MpX

mpD1

 
rpX

rD1

p
Y

iD1

a.p/
mi ,r

!
p
Y

iD1

uk�mi
(34)

Re-arranging the order of summation gives:

y
.p/

k
D

rpX

rD1

p
Y

iD1

MpX

mi D1

a.p/
mi ,ruk�mi

Defining the linear input regression vector u
.p/

k
D
�

uk�1, � � � , uk�Mp

�T
, this expression becomes:

y
.p/

k
D

rpX

rD1

�

u
.p/T

k
A.p/

.r

�p

(35)
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Figure 1. Realization of a cubic Volterra-PARAFAC model as Wiener models in parallel.

The pth-order homogeneous term can therefore be carried out in parallelizing rp Wiener models,

each one being associated with a column A
.p/
.r 2 CMp�1 of the matrix factor A.p/ of the pth-order

kernel PARAFAC decomposition. Consequently, the Volterra model output (29) is obtained as the

sum of the offset term h0, and the outputs of
PP

pD1 rp Wiener models in parallel, as illustrated in

Figure 1 for a cubic Volterra-PARAFAC model, where A
.1/
.1 D

h

h
.1/
1 , � � � , h

.1/
M1

iT

and r1 D 1.

It is interesting to notice that such a Volterra-PARAFAC model provides a very attractive modular

and parallel architecture for approximating nonlinear systems with a low computational complex-

ity. This parallel Volterra-PARAFAC model is to be compared with the parallel cascade model

constituted of Wiener paths and described by the following input–output relationship:

yk D
N
X

nD1

N
.n/

 
M
X

mD1

h.n/
m uk�m

!

(36)

where h.n/ and N .n/../ are respectively the FIR linear block and the static nonlinearity of the nth

path, n D 1, � � � , N . Korenberg showed that such a parallel cascade Wiener (PCW) model, with a

finite number N of paths, allows to approximate to an arbitrary accuracy any discrete-time, finite-

memory nonlinear system [57]. The Volterra-PARAFAC model is a PCW model for which the FIR

linear filters h.n/ are given by the columns of the matrix factors of the kernels PARAFAC decompo-

sitions, and the static nonlinearities N .n/../ are simple powers ../n. It is to be noticed that a method

based on a joint diagonalization of third-order Volterra kernel slices has been recently proposed for

identifying PCW systems [58].

5. VOLTERRA-GOB-TUCKER MODELS

Assuming that the pth-order Volterra kernel H
.p/ is absolutely summable on Œ1, 1/, it can be

expanded on GOB as:

h.p/
m1,��� ,mp

D
1
X

r1D1

� � �
1
X

rpD1

g.p/
r1,��� ,rp

p
Y

nD1

'.p,n/
rn

.mn/ (37)
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where '
.p,n/
r ../ is the r th GOBF used for expanding the pth-order kernel along its nth mode, and

g
.p/
r1,��� ,rp

are the expansion coefficients, also called Fourier coefficients, that are calculated as:

g.p/
r1,��� ,rp

D
1
X

m1D1

� � �
1
X

mpD1

h.p/
m1,��� ,mp

p
Y

nD1

'.p,n/
rn

.mn/ (38)

The GOBF '
.p,n/
r ../, in the time domain, is given by the inverse ´-transform of the following transfer

function [27]:

˚ .p,n/
r .´/ D Z

h

'.p,n/
r .m/

i

D

r

1 �
ˇ
ˇ
ˇ�

.p,n/
r

ˇ
ˇ
ˇ

2

´ � �
.p,n/
r

r�1
Y

iD1

1 � �
.p,n/�

i ´

´ � �
.p,n/
i

, r D 2, 3, � � �

and

˚
.p,n/
1 .´/ D Z

h

'
.p,n/
1 .m/

i

D

r

1 �
ˇ
ˇ
ˇ�

.p,n/
1

ˇ
ˇ
ˇ

2

´ � �
.p,n/
1

The GOBs satisfy the following orthonormality property:

D

'.p,n/
q , '.p,n/

r

E

D
1
X

mD0

'.p,n/
q .m/'.p,n/

r .m/ D ıq,r

where ıq,r is the Kronecker delta.

Comparing (37) with (10), we conclude that the series expansion (37) of the kernel H
.p/ can be

interpreted as an infinite-dimensional Tucker model, with the core tensor G
.p/ 2 C1�����1 con-

taining the Fourier coefficients, and with matrix factors A.p,n/ whose coefficients are a
.p,n/
mn,rn

D
'

.p,n/
rn

.mn/ and the columns are orthonormal.

In practice, a truncated expansion is used, which amounts to consider only a finite number of

GOBF:

h.p/
m1,��� ,mp

D
RpX

r1D1

� � �
RpX

rpD1

g.p/
r1,��� ,rp

p
Y

nD1

'.p,n/
rn

.mn/ (39)

This truncated series expansion is equivalent to a Tucker model with a core tensor G
.p/2 CRp�����Rp ,

Rp being the truncation order, and the r th column of the matrix factor A.p,n/ 2 CMp�Rp , is con-

stituted with the first Mp points of the impulse response of the filter having ˚
.p,n/
r .´/ as transfer

function. It is to be noticed that the truncation order Rp is strongly dependent on the choice of the

poles �
.p,n/
r , r D 1, � � � , Rp , of the GOBF '

.p,n/
r , n D 1, � � � , p.

Substituting (39) into (34) gives the following input–output relationship for the pth-order

homogeneous Volterra-GOB-model that we shall call Volterra-GOB-Tucker model:

y
.p/

k
D

RpX

r1D1

� � �
RpX

rpD1

g.p/
r1,��� ,rp

p
Y

nD1

0

@

MpX

mnD1

'.p,n/
rn

.mn/uk�mn

1

A

D
RpX

r1D1

� � �
RpX

rpD1

g.p/
r1,��� ,rp

p
Y

nD1

� .p,n/
rn

.k/ (40)
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where:

� .p,n/
rn

.k/ D
MpX

mnD1

'.p,n/
rn

.mn/uk�mn

is the response of the GOBF '
.p,n/
rn

, viewed as an FIR linear filter with memory Mp , to the input

signal uk .

A triangular form of the Volterra-GOB-Tucker model (40) is characterized by C
RpCp�1
p free

parameters. This model is to be compared with the Volterra-PARAFAC model (35). When the GOB

poles are fixed, the Volterra-GOB-Tucker model is linear in its parameters, the Fourier coefficients,

that can be estimated by means of the standard least squares (LS) algorithm, whereas the Volterra-

PARAFAC model is nonlinear in its parameters, the PARAFAC coefficients, that can be estimated

using a nonlinear optimization method like a gradient-based algorithm, or an extended Kalman fil-

ter, as described in the next section. However, the selection of the GOB poles is a difficult task, the

result of which significantly influences the choice of the truncation order Rp , that is, the parametric

complexity of the model. For this reason, the Volterra-PARAFAC model appears more attractive,

the choice of the kernels ranks rp being easy to make as it will be illustrated by means of simulation

results in Section 7.

6. ADAPTIVE PARAMETER ESTIMATION METHODS FOR

VOLTERRA-PARAFAC MODELS

Let us assume that the output of the system to be identified is modeled by means of the following

Volterra-PARAFAC model deduced from Equations (29) and (35):

yk D h0 C
P
X

pD1

rpX

rD1

�

u
.p/T

k
A.p/

.r

�p

(41)

where u
.p/

k
D
�

uk�1, � � � , uk�Mp

�T
, A.p/ is the matrix factor of the PARAFAC decomposition of

the pth-order kernel, for p > 2, and r1 D 1.

In the sequel, we assume that the Volterra kernels are real valued, with known symmetric rank rp

and memory Mp , and we consider complex valued input–output signals to be more general. Indeed,

signals take complex values in various fields of application like array processing or mobile com-

munications for which the symbols to transmit are most often PSK (phase shift keying) or QAM

(quadrature amplitude modulation) modulated. Three adaptive algorithms are proposed for estimat-

ing the parameters of the P th-order Volterra-PARAFAC model (41). We first present the ECKF

algorithm. Then, we develop the adaptive steepest descent algorithm, also called stochastic gradient

algorithm or CLMS algorithm, and finally, we derive its normalized version, the so-called NCLMS

algorithm.

6.1. The extended complex Kalman filter algorithm

Defining the parameter vector:

�T D
h

h0 �
.1/T � � ��.P /T

i

(42)

with

�.1/ D A
.1/
.1 D

h

h
.1/
1 , � � � , h

.1/
M1

iT

2 C
M1�1 (43)

�.p/ D vec
�

A.p/
�

2 C
Mprp�1, for p D 2, � � � , P , (44)

The input–output relation (41) can be rewritten as:

yk D f .k,�/ (45)
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The idea behind the ECKF algorithm is to apply the Kalman filter at time k, after a linearization of

f .k,�/ around the last estimate O�k�1 calculated at time k � 1:

yk � f .k, O�k�1/ C OgT
k

�

� � O�k�1

�

(46)

where

Ogk D g
�

k, O�k�1

�

D @f .k,�/

@�

ˇ
ˇ
ˇ
ˇ
�D O�k�1

The gradient of the nonlinear function f .k,�/ with respect to the parameter vector � can be

calculated analytically by means of the following formulae:

Ogk D
h

O'.0/

k
O'.1/T

k
O'.2/T

k
� � � O'.P /T

k

iT

(47)

with

O'.0/

k
D 1, O'.1/

k
D u

.1/

k
(48)

and for p D 2, � � � , P :

O'.p/

k
D @f .k,�/

@�.p/

ˇ
ˇ
ˇ
ˇ
�D O�k�1

D p Ov.p/

k
˝ u

.p/

k
(49)

with

Ov.p/

k
D
�
�

Ǫ .p,1/

k

�p�1,

, � � � ,
�

Ǫ .p,rp/

k

�p�1
�T

(50)

and

Ǫ .p,r/

k
D u

.p/T

k
OA.p/

.r .k � 1/, for r D 1, � � � , rp (51)

OA.p/
.r .k � 1/ being extracted from the estimated parameter vector O�k�1.

Noting that we have:

f
�

k, O�k�1

�

D O T

k
O�k�1 (52)

with

O T

k D
�

O'.0/

k
O'.1/T

k

1

2
O'.2/T

k
� � � 1

P
O'.P /T

k

�

(53)

the innovation process associated with the linearized model equation is given by:

Oek D sk �
h

f
�

k, O�k�1

�

C OgT
k

�

O�k�1 � O�k�1

�i

(54)

D sk � O T

k
O�k�1 (55)

where sk is the measured output of the system to be identified.

The application of the complex Kalman filter leads to the ECKF algorithm summarized in

Table III, where � is a forgetting factor.

Remarks

(i) When the PARAFAC parameters are slowly time-varying, we can assume that they satisfy a

random walk model defined as:

�k D �k�1 C wk (61)
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Table III. The extended complex Kalman filter algorithm.

1. Randomly initialize O�0, set P0 D ˛I, where ˛ is a scalar, and k D 0.

2. Increment k and compute Ogk and O k using (47)–(51) and (53), respectively.

Oek D sk � O T
k

O�k�1 (56)

O�k D O�k�1 C Gk Oek (57)

˙k D OgT
k Pk�1 Og�

k C �2
e (58)

Gk D Pk�1 Og�
k˙�1

k (59)

Pk D ��1
�

Pk�1 � Gk˙kGH
k

�

(60)

3. Return to Step 2 until k D K, where K is the number of input–output data to be processed.

where fwkg is a white noise sequence with covariance �2
wI. This model is also called a

discrete-time Brownian motion. With this state-space model for the parameter variations,

the only modification to make in the ECKF algorithm concerns Equation (60) that becomes:

Pk D Pk�1 � Gk˙kGH
k C �2

wI (62)

(ii) The ECKF algorithm described in Table III can be viewed as an extension of the stan-

dard recursive least squares algorithm to the case of the nonlinear measurement equation

(45), extension that results from the linearization (46) of this equation. As well known, the

extended Kalman filter exhibits good performance in terms of speed of convergence. The

main drawback of this algorithm is its computation burden because of the Riccati equa-

tion defined by Equations (58)–(60). A simpler adaptive method is obtained in applying the

steepest-descent algorithm described in the next section that leads to the CLMS algorithm.

6.2. The complex least mean square algorithm

Let us consider the CLMS algorithm that minimizes the following instantaneous cost function:

J.k/ D 1

2
jekj2 D 1

2

�

e2
k,R C e2

k,I




with ek D ek,R C jek,I

where ek,R D sk,R � fR.k,�/ and ek,I D sk,I � fI .k,�/ are respectively the real and imaginary

parts of the complex valued output error ek , f .k,�/ D fR .k,�/ C jfI .k,�/, and j 2 D �1.

The derivation of the cost function J.k/ with respect to the parameter vector �.p/ gives for

p D 0, 1, � � � , P :

@J.k/

@�.p/
D �ek,R

@fR.k,�/

@�.p/
� ek,I

@fI .k,�/

@�.p/
(63)

Applying the steepest-descent algorithm gives the following update equations for the estimated

parameters:

O�.p/

k D O�.p/

k�1 � �p

2

@
ˇ
ˇe2

k

ˇ
ˇ

@�.p/

ˇ
ˇ
ˇ
ˇ
ˇ
�D O�k�1

D O�.p/

k�1 C �p

�

ek,R

@fR.k,�/

@�.p/
C ek,I

@fI .k,�/

@�.p/

�ˇ
ˇ
ˇ
ˇ
�D O�k�1

where �p is a small, positive, step size that controls the convergence speed and the steady-state

properties of the algorithm.

Using the definition (49) of the gradient, we obtain:

O�.p/

k D O�.p/

k�1 C �pR

�

O'.p/

k
Oe�
k

�

(64)
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Table IV. The complex least mean square algorithm.

1. Randomly initialize O�0 and set k D 0.

2. Increment k and compute O'.p/
k

for p D 0, 1, � � � , P , and O k using (48)–(51) and (53), respectively.

Oek D sk � O T
k

O�k�1

For p D 0, 1, � � � , P :

O�.p/

k D O�.p/

k�1 C �pR

�

O'.p/
k

Oe�
k

�

(65)

3. Return to Step 2 until k D K, where K is the number of input–output data to be processed.

where R

�

O'.p/

k
Oe�
k

�

denotes the real part of O'.p/

k
Oe�
k

, with O'.p/

k
defined in (48) for p D 0, 1, and in

(49)–(51) for p D 2, � � � , P , and Oek is calculated as in (56).

The equations of the CLMS algorithm are summarized in Table IV.

Remarks

When the input–output signals are real valued, the update equation (64) becomes:

O�.p/

k D O�.p/

k�1 C �p O'.p/

k
Oek (66)

6.3. The NCLMS algorithm

From Equation (49), we have for p D 2, � � � , P :






 O'.p/

k








2

2
D O'.p/H

k
O'.p/

k
D p2






Ov.p/

k








2

2






u

.p/

k








2

2
(67)

The estimated parameter update equations of the NCLMS algorithm are then directly deduced from

Equation (64) as:

O�.1/

k D O�.1/

k�1 C �1

c1 C





u

.1/

k








2

2

R

�

u
.1/

k
Oe�
k

�

(68)

and

O�.p/

k D O�.p/

k�1 C �p

cp C p2






Ov.p/

k








2

2






u

.p/

k








2

2

R

�

O'.p/

k
Oe�
k

�

for p D 2, � � � , P , (69)

where cp is a small positive constant introduced for avoiding numerical problems when






 O'.p/

k








2
becomes close to zero as it is the case for a low-value input sequence.

It is important to notice that for the CLMS and NCLMS algorithms, the computation of the

estimated PARAFAC parameters of each kernel can be parallelized.

7. SIMULATION RESULTS

In this section, we present some simulation results to illustrate the effectiveness of PARAFAC for

approximating Volterra models. Two aspects are evaluated: the parametric complexity reduction and

the accuracy of the Volterra-PARAFAC model. To draw conclusions not too dependent on the simu-

lated Volterra models and observation conditions, the performance were evaluated by averaging the

results over different models and noise sequences.

First, in subsection 7.1, given a noisy third order Volterra kernel, we evaluate the complexity

reduction rate and the accuracy of the approximated model obtained using PARAFAC.

Secondly, in subsection 7.2, given noisy input–output measurements, we evaluate the adaptive

parameter estimation schemes derived in Section 6.
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In both subsections 7.1 and 7.2, the simulated Volterra kernels exhibit a PARAFAC algebraic

structure.

Finally, in subsection 7.3, we compare the Volterra-PARAFAC and Volterra-GOB-Tucker models

with the standard Volterra model for representing a simulated polymerization reactor.

7.1. Approximation of Volterra kernels using PARAFAC

Let us consider M D 100 different third-order homogeneous Volterra models, with memory M3 D
10. The entries of the mth kernel H

.3/
m , of dimensions 10 � 10 � 10, are generated as h

.m/
m1,m2,m3

D
r3P

rD1

3Q

iD1

a
.m/
mi ,r , mi D 1, � � � , 10, m D 1, � � � , 100, the parameters a

.m/
mi ,r being randomly drawn from a

Gaussian distribution with zero-mean and unit variance and the rank r3 2 f3, 4g. Given noisy kernels

H
.3/

m,l
D H

.3/
m C Nl , l D 1, � � � , L, L D 10, we evaluate the effectiveness of PARAFAC for approx-

imating the Volterra model by means of the CLS and ALS algorithms. Herein, the entries of Nl

were randomly and independently drawn from a Gaussian distribution with zero-mean and a vari-

ance adjusted in such a way that the signal to noise ratio (SNR) D 10 log10

�




H

.3/
m








2

F
= kNlk2

F

�

be set to a given value. Let us denote by OH.3/

m,l
the reconstructed Volterra kernel for the mth model

and the l th noise sequence. The accuracy of the PARAFAC approximation is evaluated by means
of the kernel normalized mean square error (NMSE) calculated in decibel as an average over the

Mc D
MP

mD1

Lm simulations that converged at the most in 150 iterations, Lm 6 L being the number

of runs that converged for the mth model:

K-NMSE D 10 log10

0

B
@

1

Mc

M
X

mD1

LmX

lmD1






H

.3/
m � OH.3/

m,lm








2

F





H

.3/
m








2

F

1

C
A (70)

The complexity reduction rate (CRR) is computed in % as:

CRR D 100
NVS � NVP

NVS

(71)

where NVS and NVP that represent the parameter numbers in a symmetrized Volterra kernel and in

its symmetric rank-R PARAFAC approximation, respectively, are given by:

NVS D C
MpCp�1
p , NVP D MpR

For instance, for a third-order Volterra kernel (p D 3), with memory M3 D 10, we have NVS D 220,

NVP D 30 for R D 3, which gives CRR D 86.4 %. In Figure 2, the CRR is plotted for R 2
f1, � � � , 10g, when M3 D 10.

To illustrate the notion of rank of a Volterra kernel, we consider the case of a PCW system mod-

eled by means of Equation (36), with N paths. In [58], it was shown that the kernels of the Volterra

model associated with such a PCW system admit a natural symmetric PARAFAC decomposition of

rank N , whose matrix factor, of dimensions M �N , contains the parameters of the linear subsystem

of each path, where M is the greatest memory of all the paths.

The performance of the Volterra-PARAFAC model is evaluated in terms of K-NMSE for dif-

ferent values of the approximation rank R. We observed that when the rank is overestimated, the

CLS algorithm does not converge. In this case, we used the standard ALS algorithm described in

Table I for estimating a nonsymmetric PARAFAC model. When the rank is underestimated and for

the approximation rank equal to the true rank, we used a combination of ALS and CLS denoted

ALS/CLS; that is, CLS is preceded by 60 ALS iterations.

For four different values of the approximation rank R 2 f2, 3, 4, 5g, the K-NMSE versus SNR

is plotted on Figures 3 and 4, for rank-3 and rank-4 Volterra kernels, respectively. From these

simulation results, we can conclude that the approximation of a Volterra kernel using a symmetric
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Figure 2. Complexity reduction rate for different approximation rank values when M3 D 10.
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Figure 3. K-NMSE versus SNR obtained with the alternating least squares and alternating least
squares/conditional least squares algorithms, for rank-3 kernels and different approximation ranks.
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Figure 4. K-NMSE versus SNR obtained with the alternating least squares and alternating least
squares/conditional least squares algorithms, for rank-4 kernels and different approximation ranks.

PARAFAC model can be carried out in applying combined ALS and CLS algorithms, in parallel,

for different values of the approximation rank R. The final estimated value of R can be chosen in

such a way that a trade-off between parametric complexity and approximation accuracy be satisfied.
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From these results, we can conclude that:

(i) the Volterra-PARAFAC model allows a drastic complexity reduction that is all greater as the

kernel rank is smaller (see Figure 2);

(ii) good fit of the PARAFAC model is reached when the approximation rank is greater than or

equal to the true rank (see Figures 3 and 4);

(iii) as expected, for an approximation rank greater than or equal to the true rank, the K-NMSE

decreases when the SNR increases (see Figures 3 and 4);

7.2. Adaptive parameter estimation using the ECKF, CLMS, and NCLMS algorithms

In this subsection, we simulated the output of a third-order Volterra system, with a 16-PSK input

signal, whose values were uniformly drawn from the alphabet fej 2� m
16 j m D 0, � � � , 15g. We con-

sider M D 15 Volterra models and L D 10 additive complex white Gaussian noises for each model

(m D 1, � � � , 15):

yk,m D h
.m/
0 C

3
X

pD1

MpX

m1,��� ,mpD1

h.p,m/
m1,��� ,mp

p
Y

iD1

uk�mi
D f

�

k,�.m/
�

The Volterra kernels were generated as in the previous subsection.

We define the output NMSE at time k as follows:

O-NMSEk D 10 log10

0

@
1

Mc

M
X

mD1

LmX

lmD1




yk,m � Oyk,m,lm






2

2

kyk,mk2
2

1

A (72)

where yk,m D
�

yk��C1,m, � � � , yk,m

�T
denotes the output vector associated with the mth simu-

lated model, whereas Oyk,m,lm
denotes the corresponding vector of reconstructed outputs Oyi ,m,lm

D
f .i , O���k,m,lm

/, i D k�� C1, � � � , k, of the estimated Volterra-PARAFAC model for the l th
m converged

experiment. The length of the sliding window was set to � D 2000.

In this subsection, we assume that the convergence occured when the O-NMSE reaches its min-

imum value added to 5 dB. The simulation results given in the sequel were averaged over the

experiments that converged within 50,000 iterations.

We evaluate the performance of the adaptive algorithms according to output SNR defined, in dB,

as SNR=10 log10.kyKk2
2 = kbKk2

2/, yK and bK containing, respectively, the noiseless output data

and the additive noise.

The adaptation step sizes of the CLMS and NCLMS algorithms are given in Table V. For

NCLMS, we set cp D 0.001, p D 1, 2, 3.

Figures 5 and 6 show the cumulative density function of the number of iterations for convergence

of the three adaptive algorithms, with SNR D 40 dB, for rank-3 and rank-4 kernels, respectively.

Similar results were obtained for other SNR values.

Figures 7 and 8 show the O-NMSE versus the iterations for the three adaptive algorithms,

SNRD 40 dB, in the cases of rank-3 and rank-4 kernels, respectively.

From these simulation results, we can conclude that ECKF converges more fastly than NCLMS

that itself converges much more rapidly than CLMS.

Figures 9 and 10 show the O-NMSE versus SNR with the approximation ranks equal to the true

ranks, for the three proposed adaptive estimation methods. As expected, the O-NMSE decreases

Table V. Adaptation step sizes.

p 1 2 3

�p 1 � 10�3 1.5 � 10�4 8 � 10�5

�p 5 � 10�2 2 � 10�1 2 � 10�1
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Figure 5. Cumulative density function for the convergence of the three methods, rank-3 kernels,
SNR D 40 dB.
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Figure 6. Cumulative density function for the convergence of the three methods, rank-4 kernels,
SNR D 40 dB.
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Figure 7. O-NMSE versus iterations for rank-3 kernels, SNRD 40 dB.

when the SNR increases, whatever the method and model we consider. Moreover, it can be

observed that the CLMS algorithm gives more precise estimation than NCLMS and ECKF. For

instance, in the case of a SNR = 40 dB and for rank-3 kernels, the O-NMSE obtained with
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Figure 8. O-NMSE versus iterations for rank-4 kernels, SNRD 40 dB.
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Figure 9. O-NMSE versus SNR for the three adaptive methods, rank-3 kernels.
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Figure 10. O-NMSE versus SNR for the three adaptive methods, rank-4 kernels.

CLMS is around �47.9 dB, whereas it is around �40.7 dB and �44.5 dB with ECKF and

NCLMS, respectively.

We have to notice that the performances of the CLMS and NCLMS algorithms are strongly

dependent on the choice of the step sizes.
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7.3. Simulated polymerization reactor

In this subsection, we consider the identification of a simulated polymerization reactor [59] whose

state-space representation is given by:

Px1 D 60 � 10x1 � 2.45684x1

p
x2

Px2 D 80u � 10.1022x2

Px3 D 0.0024121x1

p
x2 C 0.112184x2 � 10x3

Px4 D 245.979x1

p
x2 � 10x4

y D x4

x3

This model is composed of coupled nonlinear differential equations. The reaction system involves

the isothermal free radical polymerization of methyl-methacrylate using azo-bis-isobutyronitrile as

an initiator and toluene as a solvent. The output y is the number average molecular weight (NAMW)

of the polymer and is a measure of the quality of the final product. The NAMW is controlled by

manipulating the inlet initiator flow rate which serves as the input u. The state variables are the

monomer concentration x1, the initiator concentration x2, and the zeroth and first order moments

(x3,x4) of the polymer molecular weight distribution. For our simulations, we have made use of the

equivalent discrete-time state-space representation given in [60].

The input signal was stepwise constant with a random magnitude uniformly distributed within

Œ�1, 1�, kept constant during 10 consecutive samples, the sampling period being Te D 0.06h. The

length of the input sequence used for identification was K D 15000. For validation purpose, we

made use of five input sequences with different length. The validation results shown below are aver-

aged values obtained with these different input sequences (see Table VII). The adopted Volterra

model was a third-order one.

In the sequel, we compare three models: Volterra, Volterra-GOB-Tucker and Volterra-PARAFAC,

in terms of parametric complexity and O-NMSE evaluated as follows:

O-NMSE D 10 log10

ky � Oyk2
2

kyk2
2

(73)

where y and Oy denote respectively the output vector of the simulated polymerization reactor and that

of the estimated model.

The parameters of Volterra and Volterra-GOB-Tucker models were estimated using an NLMS

algorithm, whereas an extended Kalman filter was used for estimating those of the Volterra-

PARAFAC model.

The selected GOBs, given in Table VI, were obtained after numerous trials, with a memory

M D 20.

Unlike Volterra-Laguerre and Volterra-Kautz models [32]–[34], to the best of the authors’ knowl-

edge, there exists no method for computing optimal poles of Volterra-GOB models. Only suboptimal

methods have been proposed in the literature (see for example [35]–[36]).

For the Volterra-PARAFAC model, Figure 11 depicts the O-NMSE versus the model memory,

for three values of the approximation rank R chosen identical for the quadratic and cubic kernels.

From this figure, we can conclude that the best trade-off between parametric complexity and model

precision is obtained with R D 1 and M D 20.

Table VI. Selected generalized orthonormal basis

Kernel order Truncation order Poles

1 5 0.53, 0.53, 0.53, 0.53, 0.53
2 3 0.5, 0.5, 0.5
3 5 0.5, 0.5, 0.5, �0.3, 0.5

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2012; 26:30–53

DOI: 10.1002/acs



50 G. FAVIER, A. Y. KIBANGOU AND T. BOUILLOC

5 10 15 20 25 30
−70

−60

−50

−40

−30

−20

−10

0

Memory M

O
−

N
M

S
E

 (
d

B
)

R = 1
R = 2
R = 3

Figure 11. O-NMSE versus model memory for three values of the approximation rank.

In Figure 12, the performance of the three models is compared in terms of O-NMSE for different

values of the memory M . For the Volterra model, by increasing M , the O-NMSE decreases for

M < 15 and then increases. The minimal O-NMSE is obtained for M D 15 that corresponds to

816 parameters. The degradation of the performance for M > 15 is because of the increase of the

number of parameters to be estimated. Therefore, more data are needed to reach convergence. On

the other hand, we can note that increasing the memory M allows improving the O-NMSE of the

Volterra-GOB-Tucker model while keeping constant the number of parameters of the model. For

the Volterra-PARAFAC model, increasing M above M D 15 keeps the O-NMSE quasi constant.

In Table VII, we compare the best configurations of the three considered models in terms of

parametric complexity and O-NMSE for both identification and validation phases. From these
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Figure 12. O-NMSE versus model memory for the different models: Volterra, Volterra-GOB-Tucker and
Volterra-PARAFAC (R D 1).

Table VII. Performance comparison between Volterra, Volterra-GOB-Tucker and Volterra-PARAFAC
models.

Volterra Volterra-GOB Volterra-PARAFAC

M D 15 M D 20 M D 15 M D 20

Number of parameters 816 47 46 61
O-NMSE identification (dB) �50.42 �59.75 �55.10 �57.24
O-NMSE validation (dB) �49.55 �60.90 �51.61 �56.02
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simulation results, we can conclude that both the Volterra-GOB-Tucker and Volterra-PARAFAC

models provide a significant parametric complexity reduction. For a similar parametric complexity,

the performance obtained with the Volterra-GOB-Tucker model is slightly better than that obtained

with the Volterra-PARAFAC one. Therefore, we can conclude that both reduced complexity Volterra

models are efficient for representing the simulated polymerization reactor with few parame-

ters compared with the standard Volterra model. However, the advantage of using the Volterra-

PARAFAC model resides in its simplicity, all the design parameters being estimated by means of

an extended Kalman filter without a priori knowledge on the system to be identified, whereas the

task of determining the GOB poles is much more complex and needs a priori knowledge on the

system dynamics.

8. CONCLUSION

In this paper, a new formulation of the Volterra model has been derived using a PARAFAC decompo-

sition of its kernels considered as symmetric tensors. The obtained Volterra-PARAFAC model that

can be viewed as a simplified PCW model, allows to significantly reduce the parametric complexity

when the rank of the kernels is small with respect to their memory. Three adaptive methods have

been proposed for estimating the PARAFAC parameters: the ECKF, the CLMS, and the normalized

CLMS. The performance of these algorithms has been compared by means of computer simulations.

As expected, the ECKF gives the best results in terms of speed of convergence. Moreover, it is pos-

sible to run several ECKFs in parallel, each filter being associated with a different choice of kernel

rank, for a joint structure and parameter estimation. On the other hand, the CLMS and NCLMS

algorithms allow a parallelization of the computation of the PARAFAC parameters of each kernel.

The proposed Volterra-PARAFAC model has been validated with a simulated polymerization reactor

and its performance has been compared with that of a Volterra-GOB-Tucker model. Both Volterra

models allow a similar parametric complexity reduction but with a much simpler utilization of the

Volterra-PARAFAC model.

The theoretical convergence analysis of the proposed adaptive parameter estimation algorithms,

in terms of steady state misadjustment and speed of convergence, is a topic for future research.

A perspective of this work also consists in developing adaptive estimation algorithms with selec-

tive partial updates of the PARAFAC parameters, as it was proposed for FIR linear filters [61, 62].

Another perspective concerns an extension of the Volterra-PARAFAC model for modeling non-

linear communication systems, for which there is not even order homogeneous terms and the

homogeneous term of order .2p C 1/ contains .p C 1/ nonconjugated inputs and p conjugated

inputs [12, 13], which induces a double symmetry in the PARAFAC decomposition of the odd

order kernels.
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