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1. INTRODUCTION 

The rigid body attitude and orientation estimation problems are highly motivated from various 

applications. For example, in rehabilitation and biomedical engineering [1], the attitude is used in 

stroke rehabilitation exercises to record patient’s movements in order to provide adequate 

feedback for the therapist. In human motion tracking and biomechanics [2], the attitude serves as 

a tool for physicians to perform long-term monitoring of the patients and to study human 

movements during everyday activities. Moreover, the attitude estimation is extensively used in 

tracking of handheld microsurgical instrument [3]. In aerial and marine vehicles [4], the attitude 

is used to achieve a stable controller. 

Recently, the problem of attitude and orientation tracking has been treated in another scientific 

field: The Bio-logging. This latter stands in the intersection of animal behavior and 

bioengineering and aims at obtaining new information from the natural world and providing new 

insights into the hidden lives of animal’s species [5], [6]. Bio-logging generally involves a free-

ranging animal-attached electronic device (called also bio-logger) that records aspects of the 

animal’s biology (behavior, movement, physiology) [7], [8] and its environment. Thirty years 

ago, several tagging technologies such as satellite tracking (the Argos system) [9] and Time-

Depth-Recorders (TDRs) [10] have been used to provide a basic knowledge on the function of 

free-ranging organisms. The recent advances in electronic miniaturization, sensors and digital 

information processing allowed researchers studying animal’s biology with a high level of detail 

and across the full range of ecological scales.  

Many marine and terrestrial animals are studied during their daily activities. The posture and 

orientation tracking of these free-ranging animals represents one of the recent biology aspects 

studied in Bio-logging. Indeed, some scientific researches started to focus on this topic using 

low-cost sensors based on Micro Electro-Mechanical System (MEMS) technology as a 3-axis 

accelerometer and a 3-axis magnetometer. The obvious advantage of this new approach is the 

gain access to the third dimension space, which is the key to a good understanding of the diving 

strategies observed in these predators [11]. The main question to answer is how it is possible to 

extract the gravity components of the body animal [12-14]? This information is exploited after to 

deduce the corresponding posture (attitude) and consequently the Dynamic Body Acceleration. 

In this chapter, we propose the addition of 3-axis gyroscope measurements to the sensors already 

used (3-axis accelerometer and 3-axis magnetometer) in Bio-logging. The use of gyroscope with 
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accelerometer and magnetometer, mounted in triad configuration, in Bio-logging has never been 

done before in our knowledge. In our opinion, it can improve the estimation precision of the 

attitude especially during dynamic situation of the animal motion [4], [15], [16]. The main idea 

of the algorithm is to use a complementary filter coupled with a Levenberg Marquardt Algorithm 

(LMA) to process the measurements from a 3-axis gyroscope, a 3-axis magnetometer and a 3-

axis accelerometer. The proposed approach combines a strap-down system, based on the time 

integral of the angular velocity, with the LMA that uses the Earth’s magnetic field and the 

gravity vector to compensate the attitude predicted by the gyroscope. It is important to note that 

the resulting structure is complementary: high bandwidth rate gyro measurements are combined 

with low bandwidth vector observations (gravity and Earth’s magnetic field) to provide an 

accurate attitude estimate. Thanks to the knowledge of the estimated attitude, it is now possible 

to reconstitute the Dynamic Body Acceleration of the animal in order to evaluate its daily diary 

[14] (sleeping, walking/flying, running, and hunting) and provide important insights into some of 

the stresses faced by free-ranging animals especially the king penguin and badger. 

In the second part of the chapter, the problem of 3D position estimation in the case of pedestrian 

locomotion is addressed. The final goal would be to apply this work in Bio-logging to 

reconstruct the trajectory of animal. Previous works in this domain have focused only on marine 

animals using a 3-axis accelerometer and speed sensor to estimate the 3D position [14]. In this 

chapter, we are interested to the case of terrestrial animal. Based only on measurements provided 

by a 3-axis accelerometer, a 3-axis magnetometer and a 3-axis gyroscope (Inertial Measurement 

Unit, a position estimation approach is proposed. A dead reckoning approach is used where the 

Dynamic Body Acceleration is integrated to estimate at first the linear velocity and then the 

position. A complementary filter approach is used to estimate the body attitude that is necessary 

to reconstruct the Dynamic Body Acceleration. An experimental evaluation of the proposed 

approach is carried out in the case of human locomotion and where an Inertial Measurement Unit 

is attached to the foot of the subject.  

This chapter is organized as follows: section 2 describes the problem statement and our 

motivations for motion estimation in the case of the attitude and position in Bio-logging. Section 

3 details the attitude parameterization and the sensor measurement models used in this work. 

Section 4 details the structure of the proposed complementary filter for the attitude estimation. 

Section 5 is devoted to experimental results to illustrate the effectiveness of the proposed 
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algorithm. Section 6 introduces some concepts about 3D position estimation approach in the case 

of pedestrian locomotion with our first experimental results. Finally, section 7 summarizes the 

main conclusions of the chapter. 

2. MOTIVATIONS AND PROBLEM FORMULATION 

Recent technological advances have revolutionized the approach of the animals in their 

environment, and have enabled researchers in biology and eco-physiology to leave their 

laboratories to study these adaptations on the animal models living freely in their natural 

environment. Bio-logging has been introduced as the science that studies the behavior, 

physiology, ecology and environment properties of free-living animals (bioclimatic, global 

change, etc…) that are often beyond the border of our visibility or experience. Bio-logging has 

found its origin in the marine environment [10] and has diversified into the study of flying and 

terrestrial species. This scientific area refers often to the study of free-ranging animals in their 

natural environment through miniaturized electronic devices (called also bio-loggers [17]) 

usually attached to their bodies. These systems measure and record biological parameters or 

physico-chemical properties related to the individual and / or its environment using various types 

of sensors (luminosity, pressure, velocity, etc…). The loggers provide time tracking of physical 

and biological parameters over periods ranging from several hours to several months or 

sometimes a year and at sampling rates ranging from minutes to several times per second. The 

King penguin and badger are the major biological models studied in Strasbourg University 

thanks to the Bio-logging technology. Biologists are recently interested to reconstruct the 

motions of these animals (3D attitude and position) under several acceleration profiles, to be able 

to study their behaviour during long periods. 

In this chapter, we are interested to: 

• Firstly, propose a robust alternative approach to estimate the movement patterns (attitude or 

orientation) of rigid body, which represents the animal body, to be applied after in  the case of 

penguin (see Fig. 1). To achieve this goal, we use a wearable inertial and magnetic MEMS 

sensors assembly based on a 3-axis accelerometer, a 3-axis magnetometer and a 3-axis 

gyroscope (Inertial Measurement Unit). Furthermore, the estimated attitude is used to 

calculate three components of Dynamic Body Acceleration (DBA) of the animal, which 

provides for biologists important information about the energy budgets of free-living animals. 
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• Secondly, we address the problem of 3D position estimation in the case of human pedestrian 

locomotion, based on attitude and DBA estimations. The goal is to obtain results that remain 

promising to reconstruct the animal position for an application in Bio-logging. 

3. MATERIALS AND METHODS 

3.1. RIGID BODY ATTITUDE AND COORDINATE SYSTEMS 

A rigid body is considered as a solid formed from a finite set of material points with deformable 

volume [18]. Generally, the rigid body attitude represents the direction of its principal axes 

relative to a reference coordinate system and its dynamics expresses the change of object 

orientation. In the navigation field, the attitude estimation problem requires the transformation of 

measured and computed quantities between various frames. The rigid body attitude is based on 

measurements gained from sensors attached to this latter. Indeed, inertial sensors (accelerometer, 

gyroscope, etc…) are attached to the body-platform and provide inertial measurements expressed 

relative to the instrument axes. In most systems, the instrument axes are nominally aligned with 

the body-platform axes. Since the measurements are performed in the body frame, we describe in 

Fig. 2 the orientation of the body-fixed frame ( ), ,B B BB X Y Z  with respect to the Earth-fixed 

frame ( ), ,N N NN X Y Z , which is tangent to the Earth’s surface (Local Tangent Plane, LTP). This 

local coordinate is particularly useful to express the attitude of a moving rigid body on the 

surface of the Earth [19]. The NX -axis points true north. The NZ -axis points towards the interior 

of the Earth, perpendicular to the reference ellipsoid. The NY -axis completes the right-handed 

coordinate system, pointing east (NED: North, East, Down). 

3.2. MATHEMATICAL MODEL OF ATTITUDE REPRESENTATION 

In this chapter, we use the quaternion algebra to describe the rigid body attitude. The unit 

quaternion, denoted by q , is expressed as: 

     0 0 1 2 31vectq q q q q i q j q k H= + = + + + ∈     (1) 

where 1 2 3vectq q i q j q k= + +  represents the imaginary vector, 0q  is the scalar element and H  can 

be written such as: 

   [ ]{ }3 1
0 0 1 2 3/ 1,  ,  ,  

T TT T
vect vectH q q q q q q q q q q q × = = = ∈ℜ = ∈ℜ    (2) 
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The rotation matrix in term of quaternion can be written as: 

      ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 0 1 2 3

2 2
0 2 1 3 2 3 0 1 0 3

2 1 2 2

2 2 1 2

2 2 2 1

B
N

q q q q q q q q q q

M q q q q q q q q q q q

q q q q q q q q q q

 + − + −
 
 = − + − +
 
 + − + − 

   (3) 

We invite the reader to refer to [20] for a more details about quaternion algebra. 

3.3. 3-AXIS INERTIAL/MAGNETIC SENSORS PACKAGE MEASUREMENT 

MODELS 

The sensors configuration consists of a 3-axis accelerometer, a 3-axis magnetometer and a 3-axis 

gyroscope containing MEMS technologies. A detailed study of these sensors is given in [21]. 

3.3.1. 3-axis accelerometer 

An accelerometer measures the acceleration of the object that it supports. If three accelerometers 

are mounted in orthogonal triad in a rigid body, such that their sensitive axes coincide with the 

principal axes of inertia of the moving body. The output of a 3-axis accelerometer in the body-

fixed frame ( )B  is given by the following measurement vector [22]: 

     ( ) ( )B
N ff M q a G δ= − +       (4) 

where [ ]0 0
T

G g=  and 
T

x y za a a a =    represent, respectively, the gravity vector and the 

Dynamic Body Acceleration (DBA) of the rigid body, given in the Earth-fixed frame ( )N . 

3
fδ ∈ℜ  is a noise vector assumed to be independent, white and Gaussian. ( )B

NM q  is the rotation 

matrix defined in (3) and reflecting the transition between the frames ( )N  and ( )B . 

3.3.2. 3-axis magnetometer 

A magnetometer, sometimes called magnetic compass is a device for measuring the direction and 

intensity of a magnetic field and especially the Earth's magnetic field. The output of a 3-axis 

magnetometer in the body-fixed frame ( )B  is given by the following measurement vector [22]: 

          ( )B
N hh M q m δ= +    (5) 
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where m  is the magnetic field expressed in the Earth-fixed frame ( )N  by: 

       [ ] ( ) ( )0 cos 0 sin
TT

x zm m m m I m I= =       (6) 

hδ  is a white Gaussian noise and ( )B
NM q  is the rotation matrix expressed in (3). Currently, the 

parameters of the theoretical model of the geomagnetic field m closest to reality can be deduced 

from [23]. 

3.3.3. 3-axis gyroscope 

A gyroscope is an inertial sensor that measures the angular velocity of reference attached to the 

sensor compared to an absolute reference frame along one or more axes [24]. The output of a 3-

axis gyroscope in the body-fixed frame ( )B  is given by the measurement vector [22]: 

G Gω ω b δ= + +   (7) 

where 3ω∈ℜ  is the real angular velocity, 3b∈ℜ  is a slowly time varying function [21] called 

also bias and Gδ  is a white Gaussian noise. 

4. DESIGN APPROACH FOR ATTITUDE ESTIMATION: COMPLEMENTARY 

FILTER 

In this chapter, the objective is to design an attitude estimation algorithm based on inertial and 

magnetic MEMS sensors. The application in mind is related to a free-ranging animal case in Bio-

logging [25]. By considering the rigid body kinematic model, a complementary filter is proposed 

in order to take advantage from the good short-term precision given by rate gyros integration and 

the reliable long-term accuracy provided by accelerometer and magnetometer measurements. 

This leads to better attitude estimates [4]. It is important to note that the resulting approach 

structure is complementary: high bandwidth rate gyro measurements are combined with low 

bandwidth vector observations to provide an accurate attitude estimate [26]. 

4.1. RIGID BODY KINEMATIC MOTION EQUATION 

The rigid body motion can be described by the attitude kinematic differential equation [27], 

which represents the time rate of attitude variation, expressed in a quaternion term q , as a result 

of the rigid body angular rates measured by the gyroscope:  
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3 3 0

1

2

T
vect

G

vect

q
q ω

I q q×
×

 −
=  

 +   

ɺ    (8) 

where 

• 0

TT
vectq q q =    is the unit quaternion that denotes the mathematical representation of the 

rigid body attitude between two frames: body-fixed frame ( )B  and Earth-fixed frame ( )N . 

Note that [ ]1 2 3

T

vectq q q q=  represents the vector part of q . It is customary to use 

quaternions instead of Euler angles since they provide a global parameterization of the body 

orientation, and are well-suited for calculations and computer simulations. 

• Gω  represents the angular velocity vector expressed in ( )B  and 3 3I ×  is the identity matrix of 

dimension 3. 

• vectq×    represents the standard vector cross-product (the skew-symmetric matrix) which is 

defined such as: 

         
1 3 2

2 3 1

3 2 1

0

0

0
vect

q q q

q q q q

q q q

×

×

−   
     = = −     
   −   

    (9) 

4.2. THE DESIGN STATE MODEL 

Let us consider the following system model ( )1S  composed of (8) with the output y  that 

represents the linear measurement model. The output 6y∈ℜ  of this system is built by stacking 

the accelerometer and magnetometer measurements. 

 ( )

1 2 30

0 3 21

3 0 12 3 3 01

1 2 03

1 1

2 2:

Gx Gy Gz
T
vect Gx Gy Gz

G
Gx Gy Gzvect

Gy Gx Gz

T

x y z x y z

qω q ω q ωq
q q ω q ω q ωq

ω
q ω q ω qωq I q qS
qω q ω q ωq

y f f f h h h

×
×

 − − −  
     − − +    = =   + −   +        − +     

  =  

ɺ

ɺ

ɺ

ɺ

     (10) 

By considering the rigid body kinematic equation and the linear measurement model y , the 
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proposed system ( )1S  can take advantage from the good short term precision given by the rate 

gyros integration and the reliable long term accuracy provided by accelerometers and 

magnetometers measurements fusion [26], [28], which leads to improve the quaternion 

estimation. 

4.3. ATTITUDE COMPLEMENTARY FILTER 

The aim of this approach is to ensure a compromise between the accuracy provided by short-

term integration of the gyroscope data and the long-term measurements precision obtained by the 

accelerometer and the magnetometer. To compensate for the drifts on the estimated quaternion 

that are observed during the integration of the differential equation (8), a correction term T  is 

introduced in this equation based on a quaternion product ⊗ . We propose the following 

complementary filter: 

                         ( )

0 1 2 3

0 3 21

3 0 12

1 2 0
3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ 1
:

ˆ ˆ ˆ2ˆ
ˆ ˆ ˆˆ

x y z

x y z

x y z

y x z

q qω q ω q ω

q ω q ω q ωq
F T

q ω q ω qωq
qω q ω q ωq

  − − − 
   − +   = ⊗   + −
   − +     

ɺ

ɺ

ɺ

ɺ

           (11) 

where [ ] 4
0 1 2 3ˆ ˆ ˆ ˆ ˆ T

q q q q q= ∈ℜ  represents the estimated quaternion. The correction term T  is 

calculated from a fusion approach of accelerometer and magnetometer data. The quaternion 

product introduced in (11) allows to merge the magnetic and inertial measurements. 

Let us present the method for calculating the correction term T . We consider the modeling error 

( ) ( )ˆ ˆδ q y y= − . The estimated output is given by ŷ : 

ˆ ˆ ˆ ˆ ˆ ˆˆ
T

x y z x y zy f f f h h h =      (12) 

Measurements of the estimated accelerations x̂f , ˆ
yf  and ẑf  can be calculated by assuming that 

the Dynamic Body Acceleration a  is low ( )2 2
a G≪  [29]. Thus we obtain: 

       
1ˆ ˆ ˆ ˆ ˆ ˆ0

T

x y z qf f f f q G q− = = ⊗ ⊗      (13) 

where 
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[ ]0 0 0 9.8
T

qG = : Quaternion representation of the gravity vector [ ]0 0 9.81
T

G = . 

Measurements of the estimated Earth’s magnetic field ˆ
xh , ˆ

yh  and ˆzh  can be calculated such as: 

        
1ˆ ˆ ˆ ˆ ˆ ˆ0

T

x y z qh h h h q m q− = = ⊗ ⊗      (14) 

where 

[ ]0 0
T

q x zm m m= : Quaternion representation of the Earth’s magnetic field 

[ ]0
T

x zm m m= . 

The minimization of the modeling error ( )ˆδ q  is performed from a regression method that 

minimizes the scalar squared error criterion function ( )ˆξ q  related to ( )ˆδ q : 

           ( ) ( ) ( )ˆ ˆ ˆT
ξ q δ q δ q=      (15) 

In this chapter, the Levenberg Marquardt Algorithm is used to minimize the non-linear function 

( )ˆξ q . This choice reflects the robustness demonstrated by this algorithm compared to other 

methods such as Gauss-Newton or gradient [30].  

The unique solution to this problem can be written in the following form [31]: 

( ) ( )ˆ ˆη q Kδ q=   (16) 

where 
1

3 3
T TK k X X λI X

−

× = +   is the gain of the filter used to minimize the error ( )ˆδ q . 

6 3X ×∈ℜ  is the Jacobian matrix defined by: 

  

0 0

2 2 0 0

0 0

T

z y z y
T

z x z x

y x y x

f f h h

X f h f f h h

f f h h

× ×

 − −
     = − = − − −     
 − − 

       (17) 

The constant λ  is chosen to ensure the non-singularity of the minimization problem. The 

constant k  determines the crossover frequency of the latter. It is used to tune the balance 

between measurement noises suppression and response time of the filter. Generally, it combines 

low bandwidth accelerometer/magnetometer readings with high bandwidth gyroscope 

measurements. Notice that, the complementary filter has a better convergence when k  is chosen 
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somewhere between 0.1 and 1 [4]. ( )ˆη q  represents a part of the correction term T . To achieve 

the quaternion product in (11), the term T  must be of dimension 4. So, T  is constructed as 

follows: 

           ( )

1 0 0 0 0 0 0

10

ˆ0

0

T
δ qK

 
    =     
 
 

     (18) 

The scalar part of quaternion error is chosen to 1 to force the error quaternion to represent small 

angles of rotation [32]. Finally, the complementary filter can be written as follows: 

    ( )

( )
( )
( )
( )

( )

1 2 3
0

0 3 21

2 3 0 1

3 1 2 0

ˆ ˆ ˆˆ 1 0 0 0 0 0 0
ˆ ˆ ˆˆ 101

:
ˆ02ˆ ˆ ˆ ˆ

0ˆ ˆ ˆ ˆ

x y z

x y z

x y z

y x z

qω q ω q ωq

q ω q ω q ωq
F

δ qKq q ω q ω qω

q qω q ω q ω

 − + +        − +      = ⊗      + −            − + 

ɺ

ɺ

ɺ

ɺ

   (19) 

5. EXPERIMENTAL VALIDATION 

5.1. EXPERIMENTAL TOOLS FOR ATTITUDE ESTIMATION: INERTIAL 

MEASUREMENT UNIT (MTI-G) 

In order to evaluate the efficiency of the proposed complementary filter in real world 

applications, an experimental setup was developed resorting to an inertial and magnetic sensor 

assembly. The goal is to obtain an estimation of the quaternion that represents the orientation of 

a rigid body and to investigate its accuracy under various conditions. For the experiments, an 

Inertial Measurement Unit (IMU) was employed. The MTi-G from Xsens Motion Technologies 

[33] is used. This MEMS device is a miniature, lightweight, 3D calibrated digital output sensor 

(3D acceleration from accelerometer, 3D angular rate from gyroscope, and 3D magnetic field 

data from magnetometer), a GPS enhanced Attitude and Heading Reference System with built-in 

bias, sensitivity, and temperature compensation. The MTi-G outputs data at a rate of 100Hz and 

records them on a computer (see Fig. 3). In addition, this device is designed to track the body 3D 

attitude output in quaternion representation using an embedded Kalman filter algorithm. The 

calibration procedure to obtain the gain, offsets and non-orthogonality of the sensors was 
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performed by the manufacturer of the sensor module.  

It is important to note that the MTi-G device serves as tool for the evaluation of the 

complementary filter efficiency and cannot be suitable for use in Bio-logging field due to its 

dependence on an energy source as well as its heavy weight. In the following set of experiment, 

the calibrated data from the MTi-G are used as input to the complementary filter. 

5.2. EVALUATION TEST AND ANALYSIS IN FREE MOVEMENT OF ANIMAL 

In this set of experiments, the accuracy of the complementary filter is evaluated during the free 

motion of a domestic animal (a dog). The MTi-G is attached to the back of the animal with its xyz 

axes aligned with those of the dog. The path followed by the animal was carried out in a football 

stadium as shown in Fig. 4. Inertial/magnetic measurements and attitude (in quaternion 

representation) are recorded using the MTi-G during the motion of the dog (see Fig. 5) and 

transmitted to a computer via USB port. It should be noted that, based upon measurements 

recorded by the accelerometer, we note that the animal motion consists of two acceleration 

profiles, one corresponding to the low frequencies of motion (during walk) and the other rather 

to the high frequencies (during trot and canter). The acceleration profile varies between [-15, 15 

m/s2] for xf  and yf  and [-5, +25 m/s2] for zf . The increase in the acceleration level between the 

natural gaits is due to the Dynamic Body Acceleration a  of the dog that is more important 

during the trot and the canter. 

The recorded inertial and magnetic measurements from the MTi-G are used to estimate the 

attitude using the proposed complementary filter. The calculated attitude from the MTi-G is 

considered as reference of the dog’s motion. Fig. 6 plots the evolution of the difference between 

the calculated quaternion using the MTi-G and the one estimated by the proposed approach. 

Although some parts of the motion are with high dynamics, we can remark that the errors on 

quaternion’s components don’t exceed 0.03 on 0q , 1q , 2q  and 0.05 on 3q . For more clarity to the 

reader, we also represent the attitude estimation results of the same movement using the Euler 

angles (roll, pitch and yaw). Fig. 7 shows the evolution of the difference between the Euler 

angles estimated by the complementary filter and the MTI-G. 

It is clear that this mismatch between the estimated attitude by our approach and the MTi-G is 

small. Then, one can conclude about the performance of the complementary filter in attitude 

estimation of the animal body even in dynamic situations. Although our approach didn’t exploit 
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a GPS data as done in MTi-G, it is able to reconstruct the orientation of the dog given by the 

MTi-G with a small error. 

6. TOWARD THE 3D POSITION ESTIMATION IN PEDESTRIAN LOCOMOTION 

In this chapter, we focus on the problem of 3D position estimation of a mobile with pedestrian 

locomotion (human walking) using a dead reckoning approach. Our motivation is to go toward 

the estimation of the animal’s 3D position in Bio-logging. In this context, a position estimation 

approach is proposed based only on proprioceptive measurements provided by a 3-axis 

accelerometer, a 3-axis magnetometer and a 3-axis gyroscope, where the Dynamic Body 

Acceleration is integrated to estimate at first the linear velocity and then the position. The 

complementary filter approach, presented in the previous section, is used to estimate the body 

attitude that is necessary to reconstruct the Dynamic Body Acceleration. The obtained results are 

satisfactory and remain promising for terrestrial animal in Bio-logging application. 

6.1. 3D POSITION ESTIMATION APPROACH USING A DEAD RECKONING 

TECHNIQUE 

The proposed approach is based on the dead reckoning technique [34]. It consists in deducing the 

position of a mobile from its last known position. Therefore, we used the physical relationship 

existing between the estimated Dynamic Body Acceleration of the mobile ̂a  and its estimated 

position p̂ . It can be written using the following two equations: 

   ( ) ( )
2

1

ˆ ˆ .
T

T

v t a t dt= ∫      (20) 

 ( ) ( )
2

1

ˆ ˆ .
T

T

p t v t dt= ∫   (21) 

where ̂v  represents the estimated linear velocity of the mobile and [ ]1 2 ;  T T  denotes the 

sampling period. 

The Dynamic Body Acceleration of the mobile â  can be deduced from the equation (4): 

        ( )( )ˆ ˆB
Na inv M q f G= −    (22) 

where ( )ˆB
NM q  is the rotation matrix defined in (3). It is expressed in terms of the estimated 
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quaternion from the complementary filter. 3G∈ℜ  is the gravity vector and 3f ∈ℜ  is the 

accelerometer measurements. 

Based solely on equations (20) and (21), a significant and fast drift appears at the position 

estimation. This drift was predictable; it is mainly due to measurement noise in the accelerometer 

signal f  and their numerical integration in (20) and (21). To overcome this problem, one 

introduces a correction step usually proposed for pedestrian navigation [35], [36] in the case of 

human and terrestrial animal locomotions (see Fig. 8). The idea is to use an Inertial Measurement 

Unit attached to the human’s foot. The accelerometer measurements f  allow us to detect the 

moments when the acceleration norm 
2

f  equals gravity. At these moments, theoretically the 

Dynamic Body Acceleration ̂a  and the linear velocity ̂v  vanish since the foot reaches the ground 

(see Fig. 9). But in reality, they stay slightly different from zero at these moments. Therefore, a 

correction step is applied to reset the linear velocity to zero at these moments.   

First, we calculate the squared norm of the measured acceleration 
2

2
f  by using the following 

formula: 

        
2 2 2 2

2 x y zχ f f f f= = + +     (23) 

one then calculate the means mo of χ  over a range of samples e: 

    
χ

mo
e

=  (24) 

Then, the variance of this squared norm is computed on a sliding window by using the following 

equation [37]: 

   ( ) ( )
2

1

1

1

i j

e i j
i j e

V j χ mo
e

=

= − +

= −
− ∑    (25) 

where iχ  is the squared norm of the measured acceleration f  and jmo  is the means of iχ  over a 

chosen range of samples e. The variance of the squared norm is used to detect significant 

moments of movement of the subject such as where the foot touches the ground (Dynamic Body 

Acceleration theoretically equal to zero). The samples interval e must be carefully chosen so 
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that the test of the variance is sufficiently sensitive to slow and rapid changes of the 

accelerometer signal. 

To detect the moments when the estimated Dynamic Body Acceleration ̂a  vanishes, the 

following condition is imposed: 

     eV L<  (26) 

When condition (26) is performed, it is necessary to reset the components of velocity vector v̂  to 

zero before using the equations (20) and (21). Otherwise, the integration procedure using these 

two equations is normally done without resetting the velocity. 

6.2. EXPERIMENTAL RESULTS IN THE CASE OF HUMAN PEDESTRIAN 

LOCOMOTION 

To examine the accuracy of the position estimation by the proposed approach above, we perform 

experimental trials in the case of human walking. The Inertial Measurement Unit MTi [33] was 

used to collect magnetic and inertial measurements that are used firstly to estimate the attitude by 

the complementary filter. This device has the same characteristics as the Mti-G. The MTi is 

attached to the end of the human’s foot as shown in Fig. 10 and used after to record data during 

an episode of walking during a few minutes. In this case, it is possible to obtain the norm of the 

Dynamic Body Acceleration ̂a  near to zero each time the foot touches the ground. To get an 

accurate reference of 3D walking trajectory, we chose to perform a known one along the 

corridors of our laboratory CReSTIC in Reims as shown in Figure 11. This trajectory takes the 

form of a rectangle with a size ≈  2*(22 meters*19 meters). 

To estimate the attitude of the human’s foot during the 3D walking trajectory, we used the 

complementary filter approach proposed in the previous section. The estimated attitude q̂  is then 

used to calculate the Dynamic Body Acceleration from (22). Then we calculated the values of 

the squared norm of the measured acceleration iχ  by using (23). The means jmo  for this 

acceleration is then calculated through (24) with the range of samples 8e= . Finally, the values 

of variance eV  are derived using (25). 

Fig. 12 includes the squared norm of the measured acceleration iχ , the means jmo , the variance 

( )eV j  and the moments where the foot touches the ground. Finally, we have applied equations 

(20) and (21) to extract the estimated position of the person along his trajectory. At each 
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integration step, the condition (26) is verified and when it is checked the velocity vector v̂  is 

initialized to zero. The limit L  in this condition is experimentally set (depending on the nature of 

human walking) in order to adequately detect and differentiate the phases of walking and rest 

(the foot touches the ground). Figure 12 shows the validity of the proposed approach to locate 

the phase where the foot reaches the ground. Indeed, the detector shown in this figure is set to 1 

when the foot touches the ground and changes to 0 during walk. The linear velocity estimation 

with and without the correction step is plotted in Fig. 13. The improvement provided by this step 

is obvious in all three axes (solid line versus dashed line). If this reset is not done, the observed 

differences are due to the integration of noise in the accelerometer measurements. We calculated 

in a first step the 3D position of the person using the usual integration procedure from equations 

(20) and (21) without correction step. Note that we have chosen to begin the estimation of 

position from the initial point ( )0,0,0 . We show in Fig. 14 the estimated 3D trajectory. A rapid 

and total divergence in estimation of position is observed in this figure. The error is about 300 

meters on the X, Y and Z-axis. Fig. 15 illustrates the improvement in the estimation of 3D 

position after adding the correction step of the velocity using the condition (26). This procedure 

allows obtaining an estimation of position with an absolute error ranging between 5 and 10 

meters on the X and Y-axes and 30 cm on the Z-axis. 

7. CONCLUSION 

This paper focused principally to the 3D motions estimation of rigid body. The application in 

mind concerns Bio-logging and aims to truck posture and orientation of free-ranging animals 

during their natural lives. 

Firstly, a quaternion-based complementary filter for the rigid body attitude estimation has been 

designed. The proposed state estimation algorithm adds to the data from a 3-axis accelerometer 

and a 3-axis magnetometer the one provided by a 3-axis gyroscope. The main idea is to combine 

a strap-down system, based on the time integral of angular velocity, with the Levenberg 

Marqurdt Algorithm. The efficiency of the proposed approach is highlighted with a set of 

experiments on a domestic animal through sensor measurements provided by an Inertial 

Measurement Unit (MTi-G).  

Secondly, the problem of 3D position estimation in the case of human pedestrian locomotion was 

addressed. The Dynamic Body Acceleration is integrated to estimate at first the linear velocity 
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and then the position. The complementary filter approach, presented in the previous section, is 

used to estimate the body attitude that is necessary to reconstruct the Dynamic Body 

Acceleration. The obtained results are satisfactory and remain promising for terrestrial animal in 

Bio-logging application.  
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FIGURE CAPTIONS 

Fig.1 Schematic diagram of how an Inertial Measurement Unit is attached to a penguin 

Fig. 2 The coordinate system ( )B  of a rigid body represented in the Earth- fixed frame ( )N  

Fig. 3 Inertial Measurement Unit MTi-G 

Fig. 4 The MTi-G attached to the back of the dog - Description of the dog motion 

Fig. 5 Inertial and magnetic measurements recorded from the MTi-G 

Fig. 6 Differences between quaternion’s components estimates produced by the complementary 

filter and the MTi-G during the motion of the dog 

Fig. 7 Differences between Euler angles estimates produced by the complementary filter and the 

MTi-G during the motion of the dog 

Fig. 8 Terrestrial animal with the Inertial Measurement Unit attached to the paw 

Fig. 9 Key phases in a stride. During ∆T , all velocity components of point A in the sole of the 

boot are zero 

Fig. 10 Inertial Measurement Unit MTi attached to the foot of a subject during displacement 

Fig. 11 3D trajectory of walking 

Fig. 12 The squared norm of the measured acceleration iχ , the average jmo , the variance ( )eV j  

and the moments of step detection (detector d) 

Fig. 13 Estimation of the linear velocity v̂  with and without correction step 

Fig. 14 Experimental result of 3D walking trajectory estimation without correction step 

Fig. 15 Experimental result of 3D walking trajectory estimation with correction step 
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Fig.1 Schematic diagram of how an Inertial Measurement Unit is attached to a penguin 

 

Fig. 2 The coordinate system ( )B  of a rigid body represented in the Earth- fixed frame ( )N  
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Fig. 3 Inertial Measurement Unit MTi-G 
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Fig. 4 The MTi-G attached to the back of the dog - Description of the dog motion 
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Fig. 5 Inertial and magnetic measurements recorded from the MTi-G 
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Fig. 6 Differences between quaternion’s components estimates produced by the complementary 
filter and the MTi-G during the motion of the dog 
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Fig. 7 Differences between Euler angles estimates produced by the complementary filter and the 
MTi-G during the motion of the dog 
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Fig. 8 Terrestrial animal with the Inertial Measurement Unit attached to the paw 

 

Fig. 9 Key phases in a stride. During ∆T , all velocity components of point A in the sole of the 
boot are zero 

 

Fig. 10 Inertial Measurement Unit MTi attached to the foot of a subject during displacement 
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Fig. 11 3D trajectory of walking 
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Fig. 12 The squared norm of the measured acceleration iχ , the average jmo , the variance ( )eV j  

and the moments of step detection (detector d) 
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Fig. 13 Estimation of the linear velocity v̂  with and without correction step 
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Fig. 14 Experimental result of 3D walking trajectory estimation without correction step 
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Fig. 15 Experimental result of 3D walking trajectory estimation with correction step 

 

 

 

 
  

 


