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The main purpose of this paper deals with the orientation estimation problem of a rigid-body motion in space. We present an algorithm for attitude estimation, expressed in quaternion representation, using low-cost sensors as 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope. The algorithm is based on a complementary nonlinear observer coupled with a Levenberg Marquardt Algorithm (LMA). Moreover, the proposed solution exploits kinematic equation model and includes the estimation of rate gyros biases to compensate angular velocity measurements. This algorithm is developed in order to address the well-known problem of the weak dynamics of the attitude sensors (accelerometer and magnetometer). The efficiency of the proposed observer is illustrated by an attitude estimation example in presence of realistic measurements provided by low-cost sensors. Some preliminary experimental results are provided also to prove the performance of the proposed method. The developed approach will be applied in future works in Bio-logging area which interests to study the animal behavior and its energy expenditure by determining its movement patterns (3D motion or orientation).

Introduction

The rigid-body attitude estimation problem has been widely studied in literature (Walking Robots [START_REF] Singh | Attitude estimation for dynamic legged locomotion using range and inertial sensors[END_REF], Micro Air Vehicles [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF], rehabilitation and biomedical engineering [START_REF] Sabatini | Quaternion-based Extended Kalman Filter for determining orientation by inertial and magnetic sensing[END_REF],…). The quality of this information is a fundamental requirement in many purposes as control, stabilization or patient's movements study. The efficiency of these purposes depends on the availability and reliability of attitude measurements. This paper is organized as follows: Section 2 presents the problem statement. Section 3 describes the rigid-body attitude parameterization, the sensor-based framework and the kinematic model. Section 4 details the structure of the complementary nonlinear attitude observer and its stability conditions. Section 5 recalls some notions of attitude determination from vector observations (LMA). The efficiency of the proposed approach is illustrated in section 6 and 7 based on some numerical simulations and preliminary experiments. Finally, section 8 summarizes the main conclusions of the paper.

Problem statement

The concept of Bio-logging refers to the use of autonomous electronic devices to monitor something related to free-ranging animal itself and then to study its behaviour, physiology and ecology. This scientific field is essential to manage and conserve endangered species and their habitats and to mitigate human impacts. There are many examples of Bio-logging researches that illustrate the usefulness of this technique. The king penguin is one of the major model of diving birds studied in Strasbourg University thanks to the Bio-logging technology [START_REF] Bost | Change in dive profiles as an indicator of feeding success in king and Adelie penguins[END_REF]. Then, knowing in details its foraging activities and understanding its energetic strategy need the development of new Bio-loggers. This generation of logger contains 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, ambient temperature, luminosity and barometric pressure sensors. The king penguin will be equipped with this kinematical logger (see Fig. 1). The prototype will then collect and store the sensor's data until the animal returns to a place where the tag can be recovered. After that all calculations are performed offline by extracting the measurements recorded on the memory card using a PC and without any satellite or RF transmission. Note that it is easy to locate the tag since each animal used in the tests is marked. Before deploying this new logger, the goal in this paper is to be able to convert this complex set of row data (acceleration, angular rate and earth's magnetic field) in relevant information as 3D motion (attitude) and how it is possible to improve body motions estimation results in free-ranging animal. Thanks to the knowledge of the attitude in quaternion form, this information is exploited to calculate the Dynamic Body Acceleration (DBA) and then it is possible, even when measured without a high accuracy, to reconstitute the daily diary of the animal model and its energy expenditure [START_REF] Wilson | Prying into the intimate details of animal lives: use of a daily diary on animals[END_REF]. The algorithm that will exploit the measurements from 3-axis accelerometer, 3-axis magnetometer and 3-axis gyroscope are the main concerns of this work.

Attitude and kinematics

Rigid-body attitude description

Generally, in the navigation field, the attitude estimation problem requires the transformation of measured and computed quantities between various frames. The attitude of a rigid-body is based on measurements from sensors attached to this latter. Indeed, inertial sensors (accelerometer, gyroscope,…) are attached to the bodyplatform and provide inertial measurements expressed relative to the instrument axes. In most systems, the instrument axes are nominally aligned with the body-platform axes. Since the measurements are performed in the body frame we describe in Fig. 2 the orientation of the body-fixed frame ( ) , ,
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B X Y Z with respect to the Earth-fixed frame which is tangent on the Earth's surface (Local Tangent Plane, LTP). This local coordinate is particularly useful to express the attitude of a moving rigid-body on the surface of the earth. The
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N X -axis points to true north. The N Zaxis points toward the interior of the Earth, perpendicular to the reference ellipsoid. The -axis completes the right-handed coordinate system, pointing east (NED: North, East, Down) [START_REF] Grewal | Global positioning systems, inertial navigation, and integration[END_REF]. 

Fig. 2. Definition of the reference frames

There is one major question to be considered when designing an algorithm for rigid-body rotations that is what representation to use? Rigid-body kinematics has a somewhat delicate structure as the rotations are most naturally described as elements of the manifold [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF]. It is common practice to consider some parameterization of such as various versions of Euler angles or quaternion. In this study we will use quaternion representation. Thus, the problem of singularity found, for example, in Euler angles is avoided using the quaternion form. A unit quaternion is a hyper complex number. It is composed of a unit vector ( )

3 SO ( ) 3 SO
u , and a rotation angle φ around this axis. It can be defined by [START_REF] Kuipers | Quaternion and Rotation Sequences[END_REF]:
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with , , , and are real numbers and , , and are the components of the vector u . Q can be defined as:

0 q 1 q 2 q 3 q i j k { } 1 1 3 1 0 1 2 3 / 1 , , T T Q q q q q q q q q × × = = ∈ℜ = ∈ℜ ⎡ ⎤ ⎣ ⎦ (2) 
Let us define some quaternion's proprieties that will be used later in the proposed approach. The multiplication of two quaternions 0 T T a a a q q q ⎡ ⎤ = ⎣ ⎦ and is expressed as:
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The unit quaternion satisfies the following constraint:
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Using quaternion representation, there are two means to express a vector rotation in space. Let q x and q y be two quaternions associated with the vectors and expressed in and , respectively:
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x and q y are bounded by the following relation:
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x q y q = ⊗ ⊗ [START_REF] Johnson | A digital acoustic recording tag for measuring the response of wild marine mammals to sound[END_REF] where q represents the complementary quaternion that can be expressed as:
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2) The operation using equation ( 7) is equivalent to a multiplication by a rotation matrix:
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where the rotation matrix ( )
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M q is expressed in terms of quaternion by the following formula [START_REF] Shuster | A survey of attitude representations[END_REF]:
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where is given by (4) with replacing by .
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Finally, one obtains:
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Sensor-based framework

The sensors configuration consists of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer containing MEMS technologies. A detailed study of these sensors is given in [START_REF] Beeby | MEMS Mechanical Sensors[END_REF]. Their outputs are expressed in the frame , respectively, by:
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where

3 1 T x y z ω ω ω ω × ⎡ ⎤ = ⎣ ⎦ ∈ ℜ represents the real angular velocity vector measured in . B [ ] 3 1 0 0 9.81 T g × = ∈ ℜ and 3 1 T x y z a a a a × ⎡ ⎤ = ∈ ℜ ⎣ ⎦ represent
the gravity vector and the body acceleration, respectively. and a g are expressed in . N ( ) ( )
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The theoretical model of the magnetic field nearest to reality considers a magnetic field vector with an inclination angle N 60 θ = ° and a norm vector

0.5 m =
Gauss [START_REF] Astrosurf | [END_REF].

3 1 T x y z b b b b × ⎡ ⎤ = ⎣ ⎦ ∈ ℜ is a function varying slowly in time
and representing an unknown gyro-bias modeled by a Gauss-Markov process [START_REF] Brown | Introduction to Random Signal and Applied Kalman Filtering[END_REF]. It is described by:
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where

3 3 T I τ × = is a diagonal matrix of the time constant τ . 3 1 G δ × ∈ℜ , and 
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are assumed uncorrelated white Gaussian measurements noises with null mean and covariance matrix. Since a normalized unit quaternion is used, then g is also normalized to a unit vector such as:
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In the same way as for the accelerometer, is normalized to a unit vector such as: m
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Rigid-body kinematic model

The kinematic equation, expressed using the unit quaternion, describes the relation between the variation of the rigid-body attitude in time and the angular velocity. It is given by [START_REF] Shuster | A survey of attitude representations[END_REF]:
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where represents the real angular velocity rate vector of a rigidbody measured by gyroscope in the frame .
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Design of the complementary nonlinear observer approach for the rigid-body attitude estimation

In this paper, the objective is to design a rigid-body attitude estimation algorithm based on inertial and magnetic MEMS sensors (low-cost and low-power sensors). The proposed approach will be subsequently used to estimate the orientation, under several motions, of the studied animal's specie: the king penguin. Amongst various navigation systems, strap-down system based on the integral of the angular velocity from gyroscope leads to a good attitude estimates (in dynamic situations) for short time but suffers from gyro-bias which causes the orientation estimates to drift away from the true orientation rapidly. Accelerometer and magnetometer are good sensors in attitude estimation for static and quasi-static motion but with poor dynamic performance [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF].

We propose an observer approach to take advantages from accelerometers, magnetometers and gyroscopes in order to estimate the most accurate attitude. Moreover, the proposed solution includes the estimation of rate gyros biases to compensate angular velocity measurements. It important to stress that the resulting approach structure is complementary: high bandwidth rate gyro measurements are combined with low bandwidth vector observations to provide an accurate estimates of the attitude [START_REF] Brown | Introduction to Random Signal and Applied Kalman Filtering[END_REF]. In our knowledge, the proposed approach using this triad of sensors is the first work applied in Bio-logging area [START_REF] Fourati | Rigid body motions estimation using inertial sensors: Bio-logging application[END_REF].

Firstly, one considers that the real angular velocity vector ω is written as:

G b G ω ω = --δ (19) 
To achieve our goal, let us consider the following nonlinear system described in [START_REF] Khalil | Nonlinear Systems[END_REF] and obtained from ( 18), ( 15) and ( 19):
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where

4 1 q × ∈ ℜ
is the quaternion and

3 1 b × ∈ ℜ
is the bias (system's states).

is an identity matrix.
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is the system output that is determined based on optimal fusion of accelerometer and magnetometer measurements. The method that allows to calculate is presented in the next section. ' q In order to estimate the attitude, the following complementary nonlinear attitude observer is proposed:
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q and represent the estimated states. The observer gains , b
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represents the vector part of the error quaternion .
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Based on [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF], [START_REF] Salcudean | A globally convergent angular velocity observer for rigid body motion[END_REF], a detailed mathematical analysis of the observer convergence and the global stability are derived. Suppose that 0 G δ = and '

q q ≈ .
Theorem 1: Consider the kinematic equation ( 18) for a time-varying ( ) q t and with measurements given by and ' q G ω . Let Proof: Let us consider the two error equations given by: 0 1 2 3

ˆ'
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Suppose that and using the definition of quaternion product ' q q ≈ ⊗ given in (3), equation ( 23) can be written as:
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Now, differentiating ( 24) and ( 25), then one obtains:
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Finally, the observation error dynamic's is written as follows:
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It is easily verified that:
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Let us define two candidate Lyapunov functions and . These functions are continuous, positive definite, bounded and belong to the class as:
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In our case, the motion can change randomly, and then can take positive or negative value according to the value of 0 e q φ . If we choose the case , then we consider the Lyapunov function in (31). Equation (31) can be written also as: 

Finally, one obtains:

1 2 1 T T e e e e V k k q q b T b - = - - (35) 
Since , then:
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When the gains , are positive constants, we can write:

1 k 2 k 0 V ≤
(37) It is clear that V is negative semi-definite and for equilibrium states (28) and (29), the condition
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e e e e

V q b V q b = 0 = is satisfied. Thus, ( ) , e e q b → 0 and consequently (the norm of is always equal 1 [START_REF] Kuipers | Quaternion and Rotation Sequences[END_REF]).

0 1 e q → ± e q In the same way, for the case 0 0 e q < , the associated Lyapunov function (32) leads to the same result given by (35).

Let

. Therefore, the only solution that can stay identically in

( ) ( ) { , / ,
e e e e q b D V q b ϒ = ∈ = } 0 ϒ is the trivial solutions in (28) and (29). Now, applying Krasovskii-LaSalle's principle [START_REF] Khalil | Nonlinear Systems[END_REF], one can conclude that the equilibrium states (28) and (29) are globally asymptotically stable, which ends the proof.

Optimal determination of from vector observations ' q

In this section, one presents an optimal method to determine the attitude that is used as measurements for the nonlinear observer in [START_REF] Wahba | A least squares estimate of spacecraft attitude[END_REF]. The problem of optimal attitude determination algorithm using two sensor's measurements (vector observations) is known as the Wahba's problem [START_REF] Wahba | A least squares estimate of spacecraft attitude[END_REF]. In this paper, we consider the earth's magnetic field defined in [START_REF] Brown | Introduction to Random Signal and Applied Kalman Filtering[END_REF] and the gravity vector expressed in ( 16) as vector observations. These quantities are locally constant in the Earth-fixed frame .
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To solve this problem, let us define firstly the modelling error:

( ) ( )

ˆq y y δ = - ( 38 
)
where represents the theoretical values of gravity and earth's magnetic fields:

y T x y z x y z y g g g m m m ⎡ ⎤ = ⎣ ⎦ ( 39 
)
ŷ depicts the estimated values of g and m :
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)
Note that these estimated values are obtained from the followings two equations:

ˆˆˆˆ0 T q x y z q ĝ g g g q f q ⎡ ⎤ = = ⎣ ⎦ ⊗ ⊗ (41) ˆˆˆˆ0 T q x y z q m m m m q h ⎡ ⎤ = = ⎣ ⎦ q ⊗ ⊗ ( 42 
)
where q f represents the quaternion form associated to the acceleration vector as and the quaternion form associated to the earth's magnetic field vector as

0 T q x y z f f f f ⎡ = ⎣ ⎤ ⎦ q h 0 T q x y z h h h h ⎡ ⎤ = ⎣ ⎦ .
depicts the estimated attitude form the nonlinear observer in [START_REF] Wahba | A least squares estimate of spacecraft attitude[END_REF].

q To minimize the error , an iterative method is used to locate the minimum of the scalar squared error criterion function:

( ) q δ ( ) ( ) ( ) ˆˆT Ĵ q q δ δ = q (43)
Several approaches have proved to be effective as standard technique for nonlinear least-squares problems. In this paper, Levenberg Marquardt Algorithm (LMA) is used to minimise the nonlinear function ( ) Ĵ q . It outperforms the Gauss-Newton Algorithm (GNA) and the method of gradient descent. The LMA is more robust than GNA in the region of local minimum [START_REF] Dennis | Numerical methods for unconstrained optimization and nonlinear equations[END_REF]. Then the unique minimum can be written in the following form [START_REF] Fourati | A rigid body attitude estimation for Bio-logging application: A quaternion-based nonlinear filter approach[END_REF]:

( ) ( )

1 3 3 ˆT q c H H I H q ζ λ - × ⎡ ⎤ = + ⎣ ⎦ T δ ( 4 4 ) 
where λ is a constant that adjusts the convergence rate of the algorithm and guarantees that the inverted term will be non-singular. c is a smoothing parameter chosen between 0 and 1 [START_REF] Elkaim | Marine Mammal Marker (MAMMARK) dead reckoning sensor for In-Situ environmental monitoring[END_REF].

6 3 H × ∈ ℜ
is the Jacobian matrix defined as [START_REF] Fourati | Nonlinear attitude estimation based on fusion of inertial and magnetic sensors: Bio-logging application[END_REF]:

ˆ2 T H g m × × ⎡ ⎡ ⎤ ⎡ ⎤ = - ⎣ ⎦ ⎣ ⎦ ⎣ ⎤ ⎦ ( 45 
)
where ĝ × ⎡ ⎤ ⎣ ⎦ and are defined in (4) with replacing by m × ⎡ ⎤ ⎣ ⎦ a q ĝ and . ĥ

Then, from (45), one obtains the following matrix:
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ˆˆˆ0 0 ˆˆ2 0 0 ˆˆˆ0 0 T z y z y z x z y x y x g g m m H g g m m g g m m - - ⎡ ⎤ ⎢ ⎥ = - - - ⎢ ⎢ ⎥ - - ⎣ ⎦ x ⎥ (46) 
Note that represents the vector part of the error quaternion of the LMA.

Then one takes . Finally, to obtain the quaternion , that is used after in [START_REF] Dennis | Numerical methods for unconstrained optimization and nonlinear equations[END_REF], one uses the following equation:

( ) 3 1 q ζ × ∈ ℜ ( ) ˆerror q q ζ = ' q ( ) ( ) ' 1 ' 1 T error q k q k q + = ⊗⎡ ⎤ ⎣ ⎦ (47) 
For [ ]

1.. k n =
( n is the final integration step), one chooses to use always the condition ( ) ˆ( )

' q k = ⎤ ⎦ q k
to obtain faster convergence of the LMA. Note that the scalar part of the error quaternion is very close to unit since the incremental quaternion corresponds to a small angle rotation and then the only dynamics of the system will be contained in the vector part of the perturbation quaternion.

1

T error q ⎡ ⎣
Note that this algorithm is limited to the lowest frequencies of the natural panel of movements [START_REF] Mahony | Nonlinear complementary filters on the special orthogonal group[END_REF] (the static or quasi-static situations) and the values of are strongly disturbed in dynamic situations.

is smoothed after by the proposed observer in (21). ' q ' q

Simulation results

This section aims at illustrating the performance and accuracy of the complementary nonlinear observer designed in [START_REF] Wahba | A least squares estimate of spacecraft attitude[END_REF]. Some numerical simulations were carried out under Matlab to estimate the rigid-body attitude based on the measurable inertial and magnetic measurements. To achieve these simulations, one starts by generating a theoretical example of attitude variation that was the subject of angular velocity data over 100 sec. The kinematic differential equation in ( 18) is used to obtain the continuous time motion in quaternion representation based on the considered angular velocity measurements. The obtained motion (quaternion term) is used in these simulations as reference and which will be estimated after by the proposed observer. To represent the sensor imperfections, an additive random zeromean white Gaussian noise was considered for all measurements (see Table 1).

The sampling and calculation rate was chosen as 100Hz for all measurements (0.01sec). The angular velocity measurements are also assumed to be corrupted by a theoretical bias. This latter is generated based on equation [START_REF] Beeby | MEMS Mechanical Sensors[END_REF]. Notice that the bias is very common and undesirable characteristic of low-cost rate gyros. The observer gains and that guarantee convergent estimates, are set according to the considered sensor noise levels and sampling rate as: Sensors-based data fusion solution -H. Fourati et al. 1025 of the observer with different random values. These conditions are summarized in Table 2. Notice that this choice allows illustrating the convergence of the observer although it was initialized far from the actual states.

The time history of the seven states to be estimated (quaternion and bias components) and observer estimates are shown in Figs. 3 and4. Despite the nonlinear observer and the theoretical model of the quaternion and bias were initialized with different initial conditions, one can note that the estimated quaternion and bias converge rapidly towards its theoretical values. Notice that one has tried to change the initial conditions and the same performance was obtained. It is clear that the domain of attraction seems to be large enough since the states are initialized far from their true values and the observer converges quite fast. Notice that the nonlinear observer copes well with the rate gyro bias. Moreover the noises of the accelerometer and magnetometer are rejected. In order to evaluate the overall attitude estimation performance, one chooses to plot the time history evolution of the estimation errors on the quaternion and bias. Figs. 5 and6 depict the convergence of these errors towards zero during the motion. These obtained results show the effectiveness of the complementary nonlinear observer to the attitude estimation during the considered rigid-body motion. 

Experimental results

In order to evaluate the efficiency of the proposed approach in real word applications, an experimental setup was developed resorting to an inertial and magnetic sensor module. In this study, an Inertial Measurement Units (IMU) was employed: the MTi from Xsens Technologies [START_REF]Xsens Technologies[END_REF], which outputs data at a rate of 100Hz. This MEMS device is a miniature, light weight, 3D digital output sensor (it outputs 3D acceleration (from accelerometer), 3D angular rate (from gyroscope), and 3D magnetic field data (from magnetometer)) with built-in bias, sensitivity, and temperature compensation. In the set of experiments, the calibrated data from MTi are used as inputs to the proposed nonlinear observer. In addition, this device is designed to track the body 3-D attitude output in Euler angles, quaternion or rotation matrix representations. The attitude from MTi is computed using an internal algorithm based on Xsens Kalman Filter (XKF) [START_REF]Xsens Technologies[END_REF]. Note that MTi serves as tools for evaluation of the efficiency of the proposed attitude estimation algorithm. based process model is built to avoid the problem of singularities as in Euler angle representations. The observer exploits the complementary aspect of measurements given by the attitude sensors (3-axis accelerometer and 3-axis magnetometer) and 3axis gyroscope. The proposed approach combines a strap-down system, based on the integral of the angular velocity, with a Levenberg Marquardt Algorithm (LMA) that uses Earth's magnetic field and gravity vector to calculate attitude measurements. Moreover, this algorithm includes the estimation of rate gyros biases to compensate angular velocity measurements. The efficiency of the proposed approach has been shown from a set of numerical simulations and some experimental results. The first prototype, dedicated to this animal application, will be logged in future works on some animals (dog and horse) for preliminary tests.
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In this paper, we choose to start our preliminary experiments by a simple motion in space with the MTi to validate the proposed approach. Those on king penguin will be made when the developed algorithm is implemented on the designed embedded prototype. The experiments were realized as follow: the MTi is posed on the ground without any motion for few moments. After that we take the MTi and we make it undergo a motion in all directions. Finally we return back to the static position on the ground. During this experiment, the MTi records inertial and magnetic measurements and the 3D-orientation as a quaternion, and transmits these readings to a PC via USB port. After that, the calibrated data are used to generate the estimated attitude using the proposed nonlinear observer in [START_REF] Wahba | A least squares estimate of spacecraft attitude[END_REF]. Figure 7 illustrates the calculated attitude, in quaternion term, by the MTi and the estimated one obtained by the nonlinear observer. This figure contains also the corresponding estimation error on each quaternion component. Notice that the convergence rate is very fast and the mismatch is always small. This figure illustrates the efficiency of the proposed approach to estimate the attitude of the MTi during the motion. 

Conclusion and future work

An approach based on complementary nonlinear observer algorithm has been proposed to estimate the attitude (orientation) in order to improve the quality of measures obtained by using low-cost sensors. The goal of this work, dedicated to Biologging area, is to produce an animal posture tracking over wide motion range. The algorithm was developed based on the rigid-body kinematic equation. A quaternion-