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Abstract—Since 1985, the IEEE 754 standard defines for-
mats, rounding modes and basic operations for floating-point
arithmetic. In 2008 the standard has been extended, and rec-
ommendations have been added about the rounding of some
elementary functions such as trigonometric functions (cosine,
sine, tangent and their inverses), exponentials, and logarithms.
However to guarantee the exact rounding of these functions one
has to approximate them with a sufficient precision. Finding
this precision is known as the Table Maker’s Dilemma. To
determine this precision, it is necessary to find the hardest-to-
round argument of these functions. Lefèvre et al. proposed in 1998
an algorithm which improves the exhaustive search by computing
a lower bound on the distance between a line segment and a grid.
We present in this paper an analysis of this algorithm in order
to deploy it efficiently on GPU. We manage to obtain a speedup
of 15.4 on a NVIDIA Fermi GPU over one single high-end CPU
core.

I. INTRODUCTION

The IEEE 754 standard specifies the implementation of
floating-point operations in order to have portable and pre-
dictable numerical softwares. It defines formats (half, sin-
gle, double and quadruple precision), rounding modes (to
the nearest and toward 0, −∞ and +∞) and operations
(+,−,×, /,√ ).

In 2008 this standard has been revised, recommending
correct rounding of some transcendental functions, like log,
exp and the trigonometric functions. One way to compute effi-
ciently these functions is to approximate them by polynomials.
However, it is hard to decide which precision is required to
guarantee a correctly rounded result – the rounded evaluation
of the approximation polynomial must be equal to the rounded
evaluation of the function with infinite precision. This problem
is known as the Table Maker’s Dilemma or TMD. A common
way to solve the TMD is to find the floating-point arguments
of these functions which require high precision for correct
rounding. These hard-to-round floating-point numbers are
also named HR-cases. Knowing the hardest-to-round floating-
point number, one can determine the precision required to
approximate the targeted function and to ensure the correct
rounding of all returned evaluations.

For general functions, the first improvement over the pro-
hibitive exhaustive search of HR-cases was proposed by
Lefèvre in [1]. The main idea of his algorithm is to split
the domain into several intervals and to “isolate” HR-cases.

This isolation is efficiently performed using local affine ap-
proximations of the targeted function. Stehlé, Lefèvre and
Zimmermann extended this method in 2003 [2], [3] (SLZ
algorithm) for higher degree approximations, using the Cop-
persmith method for finding small roots of univariate modular
equation1.

Both algorithms are very computationally intensive (several
months for double precision on a single CPU), as well as
highly parallel since the HR-case searches on each interval
are independent, and since the number of such intervals is
huge. The purpose of this work is therefore to accelerate
these computations on Graphical Processing Units (GPUs),
which theoretically perform one order of magnitude better
than CPUs thanks to their massively parallel architecture. We
focus here on Lefèvre’s algorithm, which is simpler than the
SLZ algorithm and efficient for double precision rounding. We
consider its deployment on latest NVIDIA Fermi GPUs which
offer improved computation performance for 64-bit integers.
There has been some recent work on solving the TMD on
FPGA [4], but to our knowledge, this is the first deployment
of Lefèvre’s algorithm on GPU.

In this paper, we will present Lefèvre’s algorithm in Section
II after a brief recall on rounding transcendental functions.
Then in Section III, we will detail how we have partially
deployed this algorithm (namely, the HR-case search) on one
NVIDIA Fermi GPU by minimizing the number of inactive
threads and the divergence. Finally, in Section IV we will
present and analyze our performance results, and we will
compare performance results on multiple GPUs and on multi-
core CPUs.

II. PRESENTATION OF LEFÈVRE’S ALGORITHM FOR
SEARCHING HR-CASES

A. Background on correctly rounding transcendental functions

We first present the scheme of transcendental function
evaluation: more details can be found in [5, Chap. 11]. Let f
be such a transcendental function defined over a set D, and ◦p
a given rounding mode with p bits of precision. The function
f being transcendental, we cannot compute f(x) with infinite
precision. Hence, one way to compute f(x) is to approximate
it by a polynomial P . This is done in two steps.

1http://www.loria.fr/equipes/spaces/slz.en.html
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Figure 1. Hard-to-round case for rounding to nearest, where the rounding
breakpoints are the midpoints of floating-point numbers.

• Find an interval I such that, for all x ∈ D there exists
y ∈ I for which f(x) can be “deduced” from f(y).

• Compute a polynomial approximation P of f such that
◦p(f(y)) = ◦p(P (y)) with y ∈ I .

The first step, named range reduction, aims at reducing the
domain of the function in order to have a better polynomial
approximation. In fact, this step introduces some problems
for functions which are hard to approximate by a polynomial
for some arguments. In particular, this is the reason why we
cannot find efficiently all the HR-cases for sin, cos and tan
for large arguments yet. The second step guarantees that the
evaluation of the polynomial P gives the correctly rounded
evaluation of the function f . More formally, P is computed
such that |f(x)− P (x)| < ε for all x ∈ I . This means, when
we compute P (x) we do not obtain the value f(x) but the
center of an interval of length 2ε, containing f(x).

Now let us call rounding breakpoints the values where ◦p
changes and hard-to-round case an x such that the interval
centered on P (x) of length 2ε contains such a breakpoint. For
these hard-to-round cases, we cannot round correctly as we do
not know on which side of the breakpoint f(x) is located (see
Fig. 1). This problem is known as the Table Maker’s Dilemma
and is defined more formally in problem 1.

Problem 1 (Table Maker’s Dilemma). For a given rounding
mode ◦p and a function f defined over I , find an ε, if it exists,
such that ◦p(f(x) − ε) = ◦p(f(x) + ε) for all x ∈ I . The
greater ε satisfying the TMD is called the hardness-to-round
of f .

However, such an ε may not exist if there exists x such
that f(x) equals a rounding breakpoint. Fortunately, for the
mathematical elementary functions, these points are easily
determined and can be treated separately. Furthermore, we can
have a probabilistic estimation of the hardness-to-round for
these functions. Let us consider f defined over [a, b] with a
and b two consecutive powers of 2 and a target precision p. As
shown in [5, Chap. 12], if the output bits after the pth digit
are uniformly distributed, the expected hardness-to-round is
around 2−2p (which is a good estimation in practice).

Knowing such an ε, we can approximate f by P such that
P satisfies |f(x) − P (x)| < ε with ε greater than ε plus the
error of the polynomial evaluation. Though, as ε increases, the
degree and the size of the coefficients of P decrease. Since

the complexity of the evaluation of a degree n polynomial
directly depends on these two parameters (O(n) arithmetic
operations with Horner method), finding the hardness-to-round
of f enables us to minimize the degree and the size of the
coefficients of P , and hence to have an efficient evaluation
of P . This is why we search the hardness-to-round of these
functions.

B. Description of the algorithm

A common way to find the hardness-to-round of an el-
ementary function is to search for HR-cases for a given
sufficiently small ε and to find among them the hardest-to-
round. If the considered function takes precision-p floating-
point numbers as arguments, we will use an approximation
error of 2−(p+p′), where p′ is the extension of precision. As
the expected hardness-to-round is around 2−2p, we choose p′

between 0 and p. A small p′ implies a fast HR-case search
but outputs many HR-cases. A p′ close to p implies fewer
HR-cases at output but a more costly HR-case search.

A naive algorithm to find the HR-cases is the exhaustive
search. If we want to exhaustively test an unary function with
precision-p floating-point numbers, we will have to evaluate a
univariate polynomial 2p times. The most efficient algorithm to
evaluate a polynomial for arguments in arithmetic progression
is the difference table method [4]. The bit complexity of such
an algorithm would be O(2p·n·A(p+p′)) with n the degree of
the approximation and A(p+p′) the cost of an addition of two
numbers of p+p′ bits. The computation time of this algorithm
is therefore prohibitive for binary64 format, and intractable for
binary128.

V. Lefèvre presented in [6] an improved algorithm to find
the HR-cases of an elementary function. The main idea of
his algorithm is to build local affine approximations in order
to use several “filtering” phases on sub-intervals to “isolate”
HR-cases. These filters compute a lower bound on the dis-
tance between a regular grid and a line. This way, we can
exhaustively search the HR-cases in few small intervals. We
will now describe the two major steps of this algorithm. To
simplify notations, we consider ε a variable encompassing all
computation and approximation errors.

The first step of his algorithm is the generation of affine
approximations. Computing accurate affine approximations is
not possible for large intervals as the degree of the approxi-
mation grows with the size of the interval. To build accurate
affine approximations, we have to split the targeted interval I
into smaller intervals J , containing |J | floating-point numbers.
Then, for each of these “sufficiently” small intervals J , we
compute an affine approximation polynomial PJ . This can be
achieved efficiently by first generating the Taylor expansion
of the function f for a given precision over I . By this mean,
we obtain a polynomial P such as |f(x)− P (x)| < ε for all
x ∈ I . Then by using a hierarchical algorithm based on the
difference table method [1], we can generate PJ from P such
that |f(x)−PJ(x)| < ε for all x ∈ J and such that the degree
of PJ is less than the degree of P .



Figure 2. Distances between a curve and the breakpoint grid. The solid line
is the curve P (x) and the dashed ones are the curves P (x)+ε and P (x)−ε.

The second step is the HR-case search in each of the J
intervals. Before presenting this step, it has to be noticed that
the TMD can be described as computing the distances between
the regular grid of breakpoints and a curve defined by PJ(x)
as presented in Fig. 2. The grid is defined by points (x, y) such
that x is a floating-point number in J and y a breakpoint. In
order to have the grid regular in ordinate, we consider d the
smallest distance between two breakpoints in the codomain of
the polynomial PJ and add points accordingly. Finding the
HR-cases in J then becomes similar to find all x ∈ J and
y ∈ Z satisfying

|PJ(x)− dy| < ε.

One straightforward method to find these x is the exhaustive
search. If we write |J | the number of floating-points in J ,
the exhaustive search can be performed in O(|J |) arithmetic
operations, which is prohibitive as |J | grows exponentially
with the targeted precision.

To minimize this exhaustive search, Lefèvre [6] uses a test to
isolate HR-cases by computing a lower bound on the distance
between the curve defined by PJ(x) and the grid. If the degree
of PJ is one, computing a lower bound can indeed be done
efficiently in O(log |J |) arithmetic operations [7]. If the lower
bound is greater than ε, there is no HR-case in J . Else, as the
lower bound can be reached, there may exist an HR-case in
J .

Based on this test, Lefèvre specified a filtering strategy to
minimize the exhaustive search. For each given J we use the
three following phases.
• Phase 1: we compute a first lower bound in J in
O(log |J |) operations.

• Phase 2: if the lower bound computed on J is less than ε,
we refine the affine approximation and split J into eight
intervals Ki. Then, for each of these Ki, we compute a
refined lower bound in O(log |Ki|) operations.

• Phase 3: for each Ki whose refined lower bound is less
than ε, we search exhaustively for HR-cases in O(|Ki|)
operations.

C. Computing a lower bound on the distance between a line
segment and a regular grid

Algorithm 1: Lower bound computation and test algorithm
with subtractive division.

input : P (x) = ax+ b, ε, N

1 initialisation: x← a; y ← 1; d← b;
u← 1; v ← 1;

2 if d < ε then return Failure;
3 while True do
4 if d < x then
5 while x < y do
6 if u+ v ≥ N then return Success;
7 y ← y − x; u← u+ v;

8 if u+ v ≥ N then return Success;
9 x← x− y; v ← v + u;

10 else
11 d← d− x;
12 if d < ε then return Failure;
13 while y < x do
14 if u+ v ≥ N then return Success;
15 x← x− y; v ← u+ v;

16 if u+ v ≥ N then return Success;
17 y ← y − x; u← u+ v;

Now, we present in algorithm 1 the lower bound computa-
tion and test algorithm presented by Lefèvre in [8] and im-
proved in [7]. Let ax+b be an approximation of P of precision
ε on an interval [0, N −1] containing N floating-points. If we
consider the floating-points {k·a mod d | 0 ≤ k < N} on a
line segment of length d, these points partition the line segment
into N intervals. For any 0 ≤ k < N , these intervals have
at most three different lengths, which is known as the three-
distance theorem [9]. There exists some configurations where
the intervals have two lengths x and y. Lefèvre algorithm is
based on computing these configurations with two possible
lengths. The main idea of the algorithm is then, to go through
these configurations and locate b to the closest point. If the
interval containing b is split, we change the value of d which
represent the distance between b and the closest point. Else,
we continue splitting the segment. The variable u (respectively
v) counts the number of intervals of size x (resp. y): we stop
when u+ v > N .

Being similar to the Euclidean greatest common divisor
algorithm, we have to compute remainders (while loops at
lines 5 and 13) at each iteration. In practice, we can make
use of different division implementations to compute these
remainders. We can apply a subtractive division, a division
instruction, or combine both in an hybrid approach as pre-
sented in [7].



Let write Cdiv (resp. Csub) the cost of the division instruc-
tion (resp. the subtraction instruction). The subtractive division
cost is q·Csub with q the computed quotient. The cost of the
division instruction is constant and equals Cdiv . Then, if the
computed quotient is less than Cdiv

Csub
, subtractive division is

more efficient than division instruction, else division instruc-
tion is more efficient than subtractive division.

Lefèvre’s hybrid division consists in choosing the best
division implementation each time we compute a quotient.
As we cannot use the quotient itself as a criteria, it uses the
expected size of the quotient. If we divide a by b, the size
of the expected quotient can be estimated by the difference
of size between a and b. Let k be a threshold on the size
of the expected quotient. If a > 2kb (namely, a is rather big
compared to b) we use the division instruction, else we use
the subtractive division. Setting the threshold k to a relevant
value directly depends on the architecture and is determined
by extensive testings.

Finally, it has to be noticed that in practice Lefèvre adds
specific computations for special instances where early partial
quotients are large. We have omitted them here for clarity but
they are present in our implementations on GPU.

III. DEPLOYMENT ON GPU

Graphical Processing Units (GPUs) are many-core devices
originally intended to graphical computation. However, they
recently became general purpose devices especially with
CUDA [10] and OpenCL [11]. We use here NVIDIA GPUs
along with CUDA version 4.0 [10] and target NVIDIA Fermi
GPUs with improved 64-bit integer arithmetic performance
and cache support.

From a hardware point of view, a GPU is composed of
several multi-processors, each being a SIMD unit. These multi-
processors execute threads by groups of 32, which are called
warps in CUDA. From a software point of view, the threads
are organized by block, and a group of blocks forms a grid.
At execution time, all the threads of a given grid run the same
program, namely a kernel. The threads are assigned to a multi-
processor by block, and are executed by warps.

In this paper, we only deploy on GPU the HR-case search
step for double precision in each interval I (containing 240

floating-point numbers divided in 225 independent J intervals
of 215 arguments in practice). The generation of affine approx-
imations has not been deployed as multi-precision arithmetic
is needed. To our knowledge, no efficient multi-precision
arithmetic library is indeed available on GPU at the time of
writing this paper. Hence, we compute affine approximations
on the host CPU, we transfer the required coefficients to
the GPU device via the PCI bus, and we search HR-cases
on GPU. In the following, we will thus focus only on the
computation time of the HR-case search on GPU. Indeed
we plan to implement in the future the generation of affine
approximations on GPU: the data volume transferred on the
PCI bus will then be very low and the transfer time negligible.

A. HR-case search on GPU

The exhaustive search algorithm perfectly takes advantage
of the GPU massive parallelism and of its (partial) SIMD
execution. However, Lefèvre’s algorithm is faster than the
exhaustive search by several orders of magnitude in practice on
CPU. We have therefore decided to deploy Lefèvre’s algorithm
on GPU, and we present here two possible deployments. For
each deployment, we changed the data layout to a “structure
of arrays” in order to have coalesced memory accesses [12,
Sect. 3.2.1]. We also avoided as much as possible consecutive
dependent instructions in order to increase the instruction-level
parallelism within each thread.

A first straightforward way to deploy Lefèvre’s algorithm
on GPU is to build one kernel where each thread computes the
three phases for one interval J (one kernel deployment). This
kernel is executed over a grid of 225 threads. As these phases
are filtering phases, we will have few threads executing phase
2, and fewer executing phase 3. Table I shows the number of
intervals involved in each phase for an interval I containing
240 floating-point numbers. As we can see, very few intervals
lead to the exhaustive search step. Consequently, depending
on the distribution of the intervals involved in phases 2 and 3,
we can have very few active threads within each warp.

Phase Number of intervals Per thousand
1 225 ≈ 33.55 · 106 1000‰
2 109048 3.25‰
3 2182 0.07‰

HR-cases 243 0.007‰

Table I
DETAILS OF INTERVAL FILTERING THROUGH LEFÈVRE’S ALGORITHM,

FOR exp IN [1, 1 + 2−13].

To tackle this problem, we propose another deployment
where we use three CUDA kernels, one for each phase (three
kernel deployment). This allows us to re-build the grid of
threads between each phase, and to run the exact number of
threads required by each phase. However, this implies two
additional costs. First, we have to write failing intervals2 of
phase 1 and 2 in consecutive memory locations as we prepare
coalesced reads for the next phase. As we have very few
HR-cases, this is done with atomic operations on the GPU
global memory and not with parallel prefix sum [13]. Second,
between two phases, we have to transfer back to CPU the
number of failing intervals to compute on CPU the optimal
grid size for the next phase. This optimal grid size enables to
minimize the number of useless threads running in the next
phase.

Moreover, for these two possible deployments, we have
very fine grain computations. We have therefore introduced
the possibility of having each thread computing more than
one interval J to increase the computation grain. We have also
considered a double buffering technique in order to overlap the
memory accesses with computations between two consecutive
J intervals.

2Intervals for which the computed lower bound is less than ε.
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Figure 3. Normalized mean deviation to the maximum of the number of
main loop iterations per warp of 32 threads for the exp function in the interval
[1; 1 + 2−13].

B. Divergence minimization

GPU multi-processors are SIMD units. It is therefore more
efficient to have as much as possible all the threads of a warp
following the same execution path. When the threads of a warp
follow different execution paths, we have a divergent warp [12,
Sect. 6.1]. This happens when the threads within a warp do
not evaluate a conditional instruction to the same value. For
an if statement, then and else branches are in this case serially
executed. For a while loop, a thread exiting the loop has to
wait until all the threads of the warp exit the loop.

Contrary to the exhaustive search of phase 3 which is
perfectly SIMD, the lower bound test in phases 1 and 2
presents two sources of divergence that we will now detail.

1) Divergence on the main loop: The lower bound test (see
algorithm 1) presents an unconditional main loop which is
executed in parallel by many threads, each thread treating one
J or Ki interval. This introduces divergence as we can have
two (or more) threads running a different number of iterations
in the same warp. Figure 3 presents the normalized mean
deviation to the maximum number of iteration of this main
loop among the 32 threads of each warp, that is to say :

1−
∑32

i=1
ni

32

max
1≤i≤32

(ni)
,

where ni is the number of main loop iterations for the thread
number i. The divergence on the main loop varies thus greatly
from one warp to another and can be very important.

A way to minimize this divergence is to re-organize the data.
Unfortunately, we have no a priori information that would
enable us to estimate the number of loop iterations. However,
when considering one thread computing several intervals, we
can make each thread load the next interval coefficients and
continue looping, instead of exiting and waiting for the other
threads of its warp to finish their current interval.

But there are two side effects to this method. First, the
reads in GPU global memory are no more coalesced. Indeed,

all the threads do not read concurrently their next interval J
coefficients as they do not finish at the same time treating
their current interval J . However, as Fermi GPUs have one
L1 cache, global memory reads results in the load of the
full 128-byte cache line. This way, the extra cost of the non-
coalesced accesses may be offset by the L1 cache. Second,
we add divergence within the loop as we replace a loop exit
instruction by load instructions for the next interval J .

2) Divergence within the main loop: The second source
of divergence is on the main conditional statement on the
value d (see line 4 in algorithm 1). We aim at reducing the
number of instructions controlled by the branch condition, and,
if reduced enough, benefit from the GPU branch predication
[12, Sect. 6.2].

By looking carefully at the content of each branch, we can
notice that they contain the same instructions, except that the
variables x (respectively u) and y (resp. v) are interchanged,
and that x is subtracted to b. We therefore swap the two values
x and y (resp. u and v) to remove the common instructions
from the conditional scope as described in algorithm 2. The
swap implies a small extra cost but we thus reduce the
portion of divergent code, and hence the number of divergent
instructions.

Algorithm 2: Lefèvre’s algorithm with swap.
input : P (x) = ax+ b, ε, N

1 initialisation:
x← a; y ← 1; d← b;
u← 1; v ← 1; are swapped← false;

2 if d < ε then return Failure;
3 if (d ≥ x) then
4 SWAP(x, y); SWAP(u, v);
5 are swapped← true;

6 while True do
7 if are swapped then
8 d← d− x;
9 if d < ε then return Failure;

10 while x < y do
11 if u+ v ≥ N then return Success;
12 y ← y − x; u← u+ v;

13 if u+ v ≥ N then return Success;
14 x← x− y; v ← v + u;
15 if are swapped xor (d ≥ x) then
16 SWAP(x, y); SWAP(u, v);
17 are swapped← not(are swapped);

To minimize the extra cost of the swap, we swap the values
only when this is required, that is to say we swap the values
only if the evaluation of the condition d < x changes at line
15 of algorithm 2. This enables us to minimize the number of
swap operations. In practice, each swap is performed thanks
to an auxiliary variable.



IV. PERFORMANCE RESULTS

We now present performance results obtained on a server
composed of two high-end hex-core Intel Xeon X5650 proces-
sors (twelve cores in total) running at 2.67 GHz, two high-end
NVIDIA Fermi C2070 GPUs and 48 GB of DDR3 memory.

Implementations have been compiled with gcc-4.4.5 for
CPU code and nvcc (CUDA 4.0) for GPU code. The reference
CPU code is the one provided by V. Lefèvre.

All the results given in this section are issued from the
HR-case search on the exp function for double precision.
The extension of precision used is p′ = 32. Some tests are
performed over the I interval I0 = [1; 1 + 2−13] and some
over the 1024 I intervals I0..1023 = [1; 1 + 2−3].

A. HR-case search on GPU

We first want to find which division version is the fastest one
on GPU among the subtractive division, the hybrid division or
the division instruction presented in Section II-C. We varied
the parameter k, refering to the threshold on the size of
the quotient, from 0 (division instruction) to 64 (subtractive
division as we use 64-bit integers). Since all of the computed
quotients except the first one have very small values (most of
the time 0, 1 or 2), we expect to compute a lot of subtractive
divisions.
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Figure 4. Execution time of HR-case search in the interval I0 according to
k threshold on a C2070 GPU.

As shown in Fig. 4, on a C2070 GPU with the three kernel
deployment, the optimal k is 3. This result is similar to the
one observed by Lefèvre [7], which had an optimal k of 3 on
CPU. We also run the same test on our X5650 CPU and obtain
an optimal k of 3. This means that the ratio Cdiv

Csub
mentioned

in Section II-C is the same on CPU and on GPU. We therefore
use the hybrid division with k = 3 in all the following testings.

After finding the best fitted way to compute remainders on
GPU, we focus on deploying the three phases strategy of the
HR-case search step.

Version Registers Time (s)

Exhaustive CPU (1 core) - 1079.41
GPU 21 33.23

L
ef

èv
re

’s
al

go
ri

th
m

CPU (1 core) - 4.52
One kernel 31 0.348

T
hr

ee
ke

rn
el

s Phase 1 30 0.258
Phase 2 37 0.006
Phase 3 20 0.001

Total - 0.265

Table II
TIMES AND REGISTER CONSUMPTIONS PER THREAD FOR SEARCHING

HR-CASES IN THE INTERVAL I0

In Table II, we present the register consumptions and tim-
ings for different CPU implementations and GPU deployments
for I0. As expected, the exhaustive search is more efficiently
performed on GPU, and we obtain a speedup of 32.5 over
one CPU core. However, Lefèvre’s algorithm on CPU remains
more efficient than exhaustive search on GPU, which justifies
its deployment on GPU. With the one kernel deployment we
obtain a speedup of 13.0 over one CPU core for the HR-
case search, whereas the three kernel deployment offers a
speedup of 17.1 . To measure the overhead implied by the
use of atomic operations, we replaced atomic operations by
non-atomic operations : this did not decrease the computation
time mainly because the atomic operations are infrequent in
this computation. The extra cost introduced by the atomic
operations is thus negligible, as well as those introduced by
the additional CPU-GPU transfers, the computation on CPU of
the next grid size, and the launching of a new kernel. Besides,
trying to modify Lefèvre’s strategy in order to balance the
computation time of the three phases (for example by changing
the number of Ki intervals or by increasing the exhaustive
search part) did not improved the performance. We therefore
use the three kernel deployment in our following tests.
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Moreover, we observe in Table II that each phase of the
three kernel deployment does not have the same register
consumption. This difference implies that each kernel may
have a different optimal number of threads per block. Figure
5 shows for each phase the overhead induced by non-optimal
block sizes. We observe that the three kernels have different
optimal block sizes. With the three kernel deployment we
can therefore optimize the block size of each phase, which
explains, along with the higher number of active threads
per warp, why this deployment outperforms the one kernel
deployment.

We also tried to increase the number of J intervals per
thread. The best number of J intervals per thread is 6 for
phase 1, but the performance gain is only 0.38% since we
have a good occupancy (higher than 50%, see [12, Sect. 4.1]).
Likewise, the double-buffering technique did not improved
the performance, since the memory accesses are already over-
lapped with computation thanks to the good occupancy.

B. Divergence minimization

We tried to reduce the divergence on the main loop of
the lower bound test as described in Section III-B1. The
HR-case search then requires 1.504 seconds for I0, which
is only 3.2 times faster than CPU. This loss in performance
may be explained by two reasons. First, the C2070 cache
seems to be too small to offset the non-coalesced memory
accesses. Second, the overhead of loading the next interval
coefficients in the loop is greater than the benefit of reducing
the divergence on the main loop.

As explained in Section III-B2, we also tried to decrease the
number of divergent instructions executed within the main loop
by swapping values. This way, the HR-case search requires
0.249 seconds for I0, which represents a speedup of 18.2 over
one CPU core (corresponding to a 6.2% improvement). It has
to be noticed that over I0..1023 the swap offers a maximum gain
of 9.8% and an average gain of 6.0%. Such varying gains are
directly due to the number of required swaps in each interval.
We also tried storing variables in arrays and swapping the
indexes or swapping pointers instead of the variables. Even
if they save instructions, they did not improved performance
since indirections which cannot be statically determined by
the compiler are inefficient on GPU.

C. Comparison with multi-core CPU

We now compare our best GPU version (three kernels with
swap) on multiple GPUs and on multi-core CPUs for the 1024
I intervals I0..1023. We use the MPI standard with OpenMPI
version 1.4.3 . For the tests with multiple CPU cores, we
distribute equally the 1024 intervals among the available CPU
cores thanks to a cyclic decomposition which offers a better
load balancing than a block decomposition. We do not bind
processes with MPI, nor to core, neither to socket, since these
bindings do not improve performance. For the tests with two
GPUs, we use the same cyclic decomposition as for two cores.
Figure 6 shows the performance results of these tests. The
code scales very good on the multi-core CPUs. We obtain for
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Figure 6. Comparison of multi-core CPUs and multiples GPUs.

example a speedup of 11.3 on 12 cores. We do not obtain
a perfect speedup for this embarrassingly parallel application
due to internal memory bandwidth limitations for these multi-
core processors: the efficiency starts to decrease with more
than two processes on the same socket. Moreover it can be
noticed that when activating the two-way SMT (Simultaneous
multithreading, or Hyper-threading for Intel) capability of the
X5650 CPUs we can obtain a speedup of 13.7 with 24 threads.

With two GPUs, we obtain a perfect speedup of 2.0 over
one GPU since the computation load is the same on the two
GPUs. Finally, we obtain a speedup of 15.4 for one GPU over
one CPU core, a speedup of 2.7 for one GPU with respect to
one six-core CPU, and a speedup of 2.7 for two GPUs with
respect to two six-core CPUs (2.2 with two-way SMT). The
speedup is lower than with I0 for two reasons. First, some
intervals do not benefit from the swap as they involve the
specific computations mentioned in Section II-C. Second, the
divergence penalty can be stronger for some intervals which
lowers the computation gain.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a first step in deploying on
GPU an algorithm to solve the Table Maker’s Dilemma. This
made it possible to obtain a speedup of 15.4 compared to the
reference implementation on one CPU core, and a speedup of
2.7 over six CPU cores for finding HR-cases over the interval
[1; 1 + 2−3].

Nevertheless, only one half of the full algorithm has been
deployed on GPU. Indeed, the generation of the affine ap-
proximations of the function is still performed on the CPU
(in 9.3 seconds for the interval [1; 1 + 2−13]). Moreover the
transfer on the PCI bus of all coefficients of the 225 J intervals
requires 0.25 seconds which is greater than our HR-case search
on GPU. This deployment on GPU is therefore mandatory to
accelerate the generation of affine approximations and to avoid



such costful transfers on the PCI bus. This is planed as a future
work and is challenging since this requires an efficient multi-
precision library on GPU.

As also mentioned in the introduction, there exists another
algorithm named SLZ to search HR-cases. The algorithm
heavily relies on the use of the LLL algorithm. The deploy-
ment of this algorithm on GPU is far from trivial if one wants
to obtain good performances. The main advantage of the SLZ
algorithm is to have fewer intervals to analyse (but this requires
better approximations for the function) which may imply a
different deployment on GPU. Porting this algorithm on GPU
will be the next step of this work.
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[9] P. Alessandri and V. Berthé, “Three distance theorems and combinatorics
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