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Abstract

While the smart home domain has become a major field of ap-
plication of ICT to improve support and wellness of people in
loss of autonomy, speech technology in smart home has, com-
paratively to other ICTs, received limited attention. This pa-
per presents the SWEET-HOME project whose aim is to make it
possible for frail persons to control their domestic environment
through voice interfaces. Several state-of-the-art and novel
ASR techniques were evaluated on realistic data acquired in a
multiroom smart home. This distant speech French corpus was
recorded with 21 speakers playing scenarios including activities
of daily living in a smart home equipped with several micro-
phones. Techniques acting at the decoding stage and using a
priori knowledge such as DDA give better results (WER=8.8%,
Domotic F-measure=96.8%) than the baseline (WER=18.3%,
Domotic F-measure=89.2%) and other approaches.

Index Terms: home automation, smart home, distant speech,
multisource ASRs, keyword detection

1. Introduction

Since the rise of Ubiquitous Computing, new ways of conceiv-
ing our home environment appeared. One of these, is the de-
velopment of smart homes which are habitations equipped with
a set of sensors, actuators, automated devices and centralised
software which control the increasing amount of household ap-
pliances ranging from lights, automatic motorised blinds. .. to
Hi-Fi systems, PCs, alarms systems, etc. that fit modern homes.
These smart homes represent a promising solution to support
the elderly and disabled persons in living in their own home
as autonomously as possible. Among all the interaction and
sensing technologies used in smart home, speech processing
technology has a great potential to become one of the major
interaction modalities in smart home. Indeed, voice interfaces
are much more adapted to disabled people and the ageing pop-
ulation who have difficulties in moving or seeing, than tactile
interfaces (e.g., remote control) which require physical and vi-
sual interaction [1, 2]. Moreover, voice command is particularly
suited to distress situations. A person, who cannot move after a
fall but being conscious, may have still the possibility to call for
assistance while a remote control may be unreachable. Despite
all this, very few smart home projects have seriously consid-
ered speech recognition in their design [1, 2]. Part of this can
be attributed to the complexity of setting up this technology in
areal environment and to important challenges that still need to
be overcome [3].

The SWEET-HOME project has started in 2010 to address
some of these challenges. One of the major issues that pre-
vents the development of speech technology in real home set-
ting is the poor performance of Automatic Speech Recognition
(ASR) in noisy environment [3]. Indeed, ASR systems have

reached correct performances with close talking microphones
(e.g. head-set), but the performance decreases significantly as
soon as the microphone is moved away from the mouth of the
speaker. In realistic conditions, this deterioration is due to a
broad variety of effects including reverberation and presence of
undetermined background noise such as TV, radio and devices
[4]. All these problems, related to the so called ‘distant speech’
context, should be taken into account in the home context [5].
While, user linguistic preferences, dialogues and age dependant
voice interfaces have been studied during this decade [1, 2, 6],
distant speech in smart home received attention very recently
within the speech processing community [7].

This paper presents results of state-of-the-art and novel
ASR techniques evaluated on realistic data acquired in a multi-
room smart home. Before presenting our experimental frame-
work (Section 3), the proposed techniques are described in Sec-
tion 2. The experiments and results are then presented in Sec-
tion 4. This paper concludes with brief remarks about the results
and future work.

2. SWEET-HOME project and corpus

The SWEET-HOME project (sweet-home. imag. fr) aims
at designing a new smart home system based on audio tech-
nology focusing on three main aspects: to provide assistance
via natural man-machine interaction (voice and tactile com-
mand), to ease social e-inclusion and to provide security re-
assurance by detecting situations of distress. If these aims are
achieved, then the person will be able to pilot, from anywhere
in the house, their environment at any time in the most natural
way possible. The targeted smart environments in which speech
recognition must be performed thus include multi-room homes
with one or more microphones per room set near the ceiling.
This places the project in a distant-speech context where micro-
phones may be far apart from each other and may thus record
similar or very different sources. The most close projects seem
to have focused mainly on one-room microphone array [1] or
one or unspecified number of microphones [2, 6].

To achieve the project goals, the DOMUS smart home de-
picted in Figure 1 was adapted to acquire a realistic corpus and
to test the developed techniques. This smart home was set up by
the Multicom team of the Laboratory of Informatics of Greno-
ble, partner of the project. It is a thirty square meters suite flat
including a bathroom, a kitchen, a bedroom and a study, all
equipped with sensors and effectors such as infra-red presence
detectors, contact sensors, video cameras (used only for anno-
tation purpose), etc. In addition, seven microphones were set in
the ceiling.

An experiment was conducted to acquire a representative
speech corpus composed of utterances of domotic order, dis-
tress call and casual sentence. This corpus is called the SWEET-
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Figure 1: Position of the 7 microphones in the DOMUS Home

HOME speech corpus. 21 persons (including 7 women) par-
ticipated to a 2-phase experiment to record, among other data,
speech corpus in a daily living context. The average age of
the participants was 38.5 £ 13 years (22-63, min-max). To en-
sure that the audio data acquired would be as close as possible
to real daily living sounds, the participants were asked to per-
form several daily living activities in the smart home. A visit,
before the experiment, was organized to make sure that the par-
ticipants will find all the needed items to perform the activities.
No instruction was given to any participant about either how
they should speak or in which direction. Consequently, no par-
ticipant emitted sentences directing their voice to a particular
microphone. The distance between the speaker and the clos-
est microphone is about 2 meters. Sound data were recorded
in real-time thanks to a dedicated PC embedding an 8-channel
input audio card [3].

The first phase (Phase 1) consisted in following a scenario
of activities without condition on the time spent and the manner
of achieving them (having a breakfast, simulate a shower, get
some sleep, clean up the flat using the vacuum, etc.). During
this first phase, participants uttered 40 predefined casual sen-
tences on the phone (e.g., “Allo” (Hello), “J’ai eu du mal a
dormir” (I slept badly)) but were also free to utter any sentence
they wanted (some did speak to themselves aloud). The sec-
ond phase (Phase 2) consisted in reading aloud a list of 44 sen-
tences whose 9 were distress sentences (e.g., “A I’aide”(help),
“Appelez un docteur” (call a doctor)) and 3 were domotic or-
ders (e.g., “Allumez la lumiere” (furn on the light)). In this pa-
per, experiments are performed without device noise (TV, radio,
vacuum, ..).

Finally, the French SWEET-HOME speech corpus is made
of 862 sentences (38 minutes 46s per channel in total) for Phase
1, and 917 sentences (40 minutes 27s per channel in total)
for Phase 2 all from 21 speakers. Each sentence is available
for each channel and has been humanly annotated on the best
Signal-to-Noise Ratio (SNR) channel. The average SNR for the
considered sentences of the best SNR channel is 20.3 dB (SNR
is typically around 55 db in studio record). It must be clear that
the data from the 7 microphones was the only data source used
in this study.

3. Proposed approaches for robust ASR

To detect domotic commands in the SWEET-HOME context, we
propose a three-stage approach. The first one detects audio ac-
tivity and classifies it as speech or other sound, the second one
extracts the utterances using an ASR system and the last one
recognizes a vocal command or a distress situation from the de-
coded utterances. This paper describes the two last stages, for
the first stage the reader is referred to [4].

To address the issues of the SWEET-HOME context (noise,
distant-speech) and to benefit from it (multiple microphones
which are continuously recording) we propose to test the im-
pact of some state-of-the-art and novel techniques that fuse the
streams of information at three independent levels of the speech
processing: acoustic signal enhancement, decoding enhance-

ment, and ASRs output combination. The remaining of this sec-
tion presents the implemented techniques for robust ASR and
the chosen method for vocal order recognition.

3.1. Beamforming

At the acoustic level, it may be interesting to fuse the different
channels in order to enhance the signal. However, a simple sum
of signals would result in a worse single channel with echoes.
That is why a beam-forming algorithm [8] was used to merge all
channels in a single one which fed an ASR system. Beamform-
ing involves low computational cost and combines efficiently
acoustic streams to build an enhanced acoustic signal.

The acoustic beamforming algorithm is based on the
weighted&sum microphone array theory. Given M micro-
phones, the signal output y[t] is computed by:

ylt) = Y Waltlzm[t — D™D 1]

m=1

where W, [t] is the weight for microphone m at time ¢, know-
ing that "M _ W, [t] = 1, the signal of the m"" channel is
& [t] and D™ [E] is the delay between the m!” channel
and the reference channel. In our experiments, the reference
channel was the one with the highest SNR overall in Phase 2
and the 7 signals were entirely combined for each speaker rather
than doing a sentences based combination (the tested algorithm
failed with too short sentences). Once the new signal y is com-
puted, it can feed a monosource ASR stage.

3.2. Driven Decoding Algorithm

At the decoding level, a novel version of the Driven Decoding
Algorithm (DDA) was applied. DDA aims to align and cor-
rect auxiliary transcripts by using a speech recognition engine
[9, 10]. This algorithm improves system performance dramat-
ically by taking advantage of the availability of the auxiliary
transcripts.

DDA acts at each new generated assumption of the ASR
system. The current ASR assumption is aligned with the auxil-
iary transcript (from a previous decoding pass). Then a match-
ing score o is computed and integrated with the language model

[9]:
ﬁ(wi|wi71 ,Wi—2) = Plia(wi |wi—1,wi—2)

where ]5(w¢|wi_1, w;—2) is the updated trigram probabil-
ity of the word w; knowing the history w;_2,w;—3, and
P(w;|w;—1,w;—2) is the initial probability of the trigram.
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Figure 2: DDA used with two streams: the first stream allows
one to drive the second stream

We propose to use a variant of the Driven Decoding Algo-
rithm where the output of the first microphone is used to drive
the output of the second one (cf. Figure 2). This approach
presents two main benefits:

e The second ASR system speed is boosted by the approx-
imated transcript (only 0.1xRT),



e DDA merges truly and easily the information from the
two streams while voting strategies (such as ROVER) do
not merge ASR systems outputs.

The applied strategy is dynamic and used, for each utter-

ance to decode, the best channel for the first pass and the second
best channel for the last pass.
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Figure 3: DDA 2-level: vocal orders are recognized from the
first decoded stream which are then used to drive the decoding
of the second stream

This approach was extended to take into account a priori
knowledge about the expected utterances. The ASR system is
driven by vocal orders recognized during the first pass. This
method is called DDA 2-level: speech segments of the first pass
are projected into the 3 — best vocal orders by using an edit
distance (cf. 3.4) and injected via DDA into the ASR system
for the fast second pass as presented in Figure 3.

3.3. ROVER

At the ASR combination level, a ROVER [11] was applied.
ROVER is expected to improve the recognition results by pro-
viding the best agreement between the most reliable sources.
It combines systems output into a single word transition net-
work. Then, each branching point is evaluated with a vote
scheme. The word with the best score is selected (number of
votes weighted by confidence measures). This approach neces-
sitates high computational resources when several sources need
to be combined and real time is needed (in our case, 7 ASR
systems must operate concurrently).

A baseline ROVER was tested using all available channels
without a priori knowledge. In a second time, an a priori con-
fidence measure based on the SNR was used: for each decoded
segment s; from the i ASR system, the associated confidence
score ¢(s;) was computed by ¢(s;) = QR(Si)/Zzzl 2fi(s;)
where R() is the function computing the SNR of a segment and
s; is the segment generated by the ‘" ASR system. For each
annotated sentence a silence period I;; at the beginning and the
end is taken around the speech signal period Ispeecn. The SNR
is thus evaluated as:

sil S[TL]2

>n sm? s,
R(S) — 10 log( €lspeech =M /Z E\II = )
Finally, a ROVER using only the two best channels over-
all was tested in order to check whether other channels contain

redundant information and whether good results can be reach
with reasonable computational cost.

[Tspeech|

3.4. Detection of domotic orders and distress sentences with
proposed approaches

We propose to transcript each domotic order and distress sen-
tences in a phoneme graph in which each path corresponds to a

variant of pronunciation. Then the number of sentences to de-
tect is 12 (3 domotic orders + 9 distress sentences). Automatic
transcripts are transcribed in the same way.

In order to locate domotic orders into automatic transcripts
T of size m, each sentence of size n from domotic orders H are
aligned to 7" by using a Dynamic Time Warping (DTW [12])
algorithm at the phonetic level. The deletion, insertion and sub-
stitution costs were computed empirically. The cumulative dis-
tance ~y(¢,7) between H; and T; is computed as: ~(i,7) =
d(T;, Hy) +min{y(i — 1,5 —1),7(i — 1,5),7(i,j — 1)}

Each domotic order is aligned and associated with an align-
ment score: the percentage of well aligned symbols. The do-
motic order with the best score is then selected for decision
according a detection threshold. This approach takes into ac-
count some recognition errors such as word endings or slight
variations. Moreover, in many cases, a miss-decoded word is
phonetically close from the good one (due to the close pronun-
ciation).

4. Experiments and results

In all experiments, the Phase 1 corpus was used for develop-
ment and training whereas the Phase 2 corpus served for the
evaluation. This section presents the ASR tuning and the exper-
imental results of the proposed approaches.

4.1. The Speeral ASR system

The LIA (Laboratoire d’Informatique d’ Avignon) speech recog-
nition tool-kit Speeral [13] was chosen as unique ASR system.
This choice was made based on experiments we undertook with
several state-of-the-art ASR systems and on the fact that DDA
is only implemented in Speeral. Speeral relies on an A" de-
coder with HMM-based context-dependent acoustic models and
trigram language models. HMMs are classical three-state left-
right models and state tying is achieved by using decision trees.
Acoustic vectors are composed of 12 PLP (Perceptual Linear
Predictive) coefficients, the energy, and the first and second or-
der derivatives of these 13 parameters.

In the study, the acoustic models were trained on about 80
hours of annotated speech. Given the targeted application of
SWEET-HOME the computation time should not be a breach of
real-time use. Thus, the 1xRT Speeral configuration was used.
In this case, the time required by the system to decode one hour
of speech signal is real-time (noted 1xRT). The 1xRT system
uses a strict pruning scheme. Furthermore, acoustic models
were adapted for each of the 21 speaker by using the Maxi-
mum Likelihood Linear Regression (MLLR) and the annotated
Phase 1 corpus. MLLR adaptation is a good compromise while
only a small amount of annotated data is available

For the decoding, a 3-gram language model (LM) with a
10K lexicon was used. It results from the interpolation of a
generic LM (weight 10%) and a specialized LM (weight 90%).
The generic LM was estimated on about 1000M of words from
the French newspapers Le Monde and Gigaword. The special-
ized LM was estimated from the sentences (about 200 words)
that the 21 participants had to utter during the experiment (do-
motic orders, casual phrases, etc.).

4.2. Results

Results of the approaches are presented table 1. The ASR stage
was evaluated using the Word Error Rate (WER) whereas the
vocal order recognition (classification) stage was evaluated us-
ing recall/precision/F-measure triplet: the number of domotic
orders is about 10. Domotic orders were manually specified by
annotating all sentences. During the detection, if a marked do-



motic order is well detected, it is considered as detected. In all
other cases, a detected order is considered as false detection.
For each approach, the presented results are the average over
the 21 speakers (plus standard deviation for the WER). For the
sake of comparison, results of a baseline and an oracle baseline
systems are provided. The baseline system outputs the best de-
coding amongst 7 ASR systems according to the highest SNR.
The oracle baseline is computed by selecting the best WER for
each speaker.

Method WER*5P  Domotic  Domotic F

recall precision -measure
Baseline 18.3%12:1 88.0 90.5 89.2
Oracle Baseline 17.7%10:3 88.5 91.3 89.9
Beam Forming 16.8%8:3 89.0 92.6 90.8
DDA +SNR 11.4%5:6 933 97.3 95.3
DDA 2 lev.+SNR 8.8+3:7 95.6 98.1 96.8
ROVER 20.6+85 85.0 90.0 87.4
ROVER 2c+SNR 13.0%6-6 91.3 953 93.3
ROVER +SNR 12.2%6:1 92.7 97.4 95.0
ROVER Oracle 78%27 99.4 98.9 99.1

Table 1: WER, Domotic orders detection

The baseline system achieved a 18.3 % WER (best SNR
channel). All proposed SNR-based approaches benefited from
the multiple available microphones. Beamforming led to a 8.1%
relative WER improvement. This result shows that combin-
ing all channels increases the ASR task robustness. The DDA
method showed a 37.8% relative improvement by using the
SNR. The 2 level DDA presented a 52 % relative improvement
with a very high stability (SD=3.7): this gain is easily explained
as the second decoding pass was perfused with a priori knowl-
edge (i.e., domotic orders) triggered by the first pass. Finally,
the SNR-based ROVER led to a 33.4% relative improvement.

In all configurations, accuracy of the vocal orders recog-
nition was good: the baseline recognition gave a 89.2% F-
measure. It can be observed that in other configurations the
spotting task correlated with the WER. Thereby, ROVER and
the two DDA configurations led to a significant F-measure im-
provement over the baseline of about 7% absolute. Beamform-
ing gain was not significant. ROVER performed detections sim-
ilar to the DDA approaches, but required to decode all channels.
Finally, the best configuration was based on the 2 level DDA
leading to a 96.8% F-measure.

5. Conclusion

Several approaches were presented to perform accurate vo-
cal order recognition in multi-room smart-homes where audio
information is captured by several microphones in a distant
speech context. The proposed approaches were acting at the
three main levels of the ASR task: acoustic, decoding and hy-
pothesis selection. Some of them included a priori knowledge
either dynamically computed such as the SNR or acquired off
line such as the predefined domotic orders.

Results confirmed that the use of the seven microphones
improved the ASR accuracy. Beamforming improved the WER
(16.8%), however its performance were very close to the base-
line one (18.3%). This may be due to the fact that the seven
microphones are far apart from each other and might not con-
tain enough redundancy to obtain a really enhanced acoustic
signal. The Driven Decoding Algorithm gave the best perfor-
mance with a 11.4% WER and 95.3% F-measure for vocal or-
der classification. DDA results were only slightly better than the

ROVER results, however DDA needs only two channels while
ROVER necessitates 7 ASR systems performing concurrently
to approach DDA performances. The DDA computational cost
is thus very low compared to the ROVER one. Moreover, the
2-level DDA approach makes it possible to include a priori
knowledge to increase performances to 8.8% WER and 96.8%
F-Measure with much better stability than the baseline (3.7%
WER standard deviation vs. 10.3%). However, this ameliora-
tion will be achieved only if test data contains domotic orders.
This study shows that good recognition rate can be obtained by
adapting classical ASR systems mixing multisource and domain
knowledge. We plan to adapt these approaches to noisy condi-
tions notably by applying source separation techniques to real
daily living records composed of uncontrolled noise.
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