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An efficient characterization of a family of hyperbent functions with multiple trace terms

Lisoněk recently reformulated the characterization of Charpin and Gong of a large class of hyperbent functions in terms of cardinalities of hyperelliptic curves. In this paper, we show that such a reformulation can be naturally extended to a distinct family of functions proposed by Mesnager. Doing so, a polynomial time and space test is obtained to test the hyperbentness of functions in this family. Finally we show how this reformulation can be transformed to obtain a more efficient test.

Introduction

Boolean functions form an important component of various practical cryptographic algorithms. They can for example be viewed as components of S-boxes and are used in different types of cryptographic applications such as block ciphers, stream ciphers and in coding theory. One basic criterion for their design is nonlinearity. The significance of this aspect has again been demonstrated by the recent development of linear cryptanalysis by Matsui and others. Bent functions are Boolean functions achieving the highest possible nonlinearity. In view of the Parseval equation this definition implies that such functions only exist for an even number of variables.

Bent functions were introduced by Rothaus [START_REF] Rothaus | On "bent" functions[END_REF] in 1976. They turned out to be rather complicated combinatorial objects. A concrete description of all bent functions is elusive. The class of bent functions contains a subclass of functions, introduced by Youssef and Gong [START_REF] Amr | Hyper-bent functions[END_REF] in 2001, the so-called hyperbent functions. In fact, the first definition of hyperbent functions was based on a property of the extended Hadamard transform of Boolean functions introduced by Golomb and Gong [START_REF] Gong | Transform domain analysis of des[END_REF]. Golomb and Gong proposed that S-boxes should not be approximated by a bijective monomial, providing a new criterion for S-box design. The classification of hyperbent functions and many related problems remain open. In particular, it seems difficult to define precisely an infinite class of hyperbent functions, as indicated by the number of open problems proposed by Charpin and Gong [START_REF] Charpin | Hyperbent functions, Kloosterman sums, and Dickson polynomials[END_REF].

Some explicit constructions of hyperbent functions on F 2 n have been proposed in the literature. Monomial hyperbent functions are famous bent functions due to Dillon [START_REF] Francis | Elementary Hadamard Difference Sets[END_REF]. The list of currently known hyperbent functions is given in Table 1. In [START_REF] Charpin | Hyperbent functions, Kloosterman sums, and Dickson polynomials[END_REF], Charpin and Gong have characterized by means of Dickson polynomials a large class of hyperbent functions, which includes the well-known monomial functions with the Dillon exponent as a particular case. Afterwards Mesnager [START_REF] Mesnager | Hyper-bent boolean functions with multiple trace terms[END_REF] has characterized by means of Dickson polynomials another class of hyperbent functions, distinct from that of Charpin and Gong.

Very recently, Lisoněk [START_REF] Lisoněk | Hyperbent functions and hyperelliptic curves. Talk given at Arithmetic[END_REF] has reformulated the Charpin-Gong hyperbentness criterion in terms of the number of rational points on certain hyperelliptic curves. Using this criterion, the hyperbentness of a given function can be tested in both polynomial time and space in n. The ideas in its approach go back to the works of Lachaud and Wolfmann [START_REF] Lachaud | Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2[END_REF], and Katz and Livné [START_REF] Katz | Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3[END_REF]. Following the works of Lachaud et al., and Lisoněk, the purpose of this paper is to establish an efficient new hyperbentness criterion for the class proposed by Mesnager.

It is organized as follows. In Section 2, we recall definitions for Boolean functions, binary exponential sums, Dickson polynomials and hyperelliptic curves. In Section 3, we recall the known classes of hyperbent functions. We then recall the Charpin-Gong criterion and deduce the Lisoněk reformulation. Finally we show that such an approach naturally extends to the class of functions described by Mesnager and propose a slightly different reformulation leading to a faster test.

Notation and preliminaries

For any set S, S * = S \ {0} and #S denotes the cardinality of S. Unless stated otherwise, m will be a positive integer greater than 3 and a an element of F 2 m used to define (hyper, semi)-bent Boolean functions with n = 2m inputs.

Boolean functions in polynomial form

Let n be a positive integer. A Boolean function f on F 2 n is an F 2 -valued function on the Galois field F 2 n of order 2 n . The weight of f , denoted by wt(f ), is the Hamming weight of the image vector of f , that is, the cardinality of its support {x ∈

F 2 n | f (x) = 1}.
For any positive integer k, and r dividing k, the trace function from F 2 k to F 2 r is denoted by Tr k r (•). It can be defined as:

Tr k r (x) = k r -1 i=0 x 2 ir = x + x 2 r + x 2 2r + • • • + x 2 k-r .
In particular, we denote the absolute trace over F 2 of an element x ∈ F 2 n by Tr n 1 (x) = n-1 i=0 x 2 i . Every non-zero Boolean function f defined on F 2 n has a (unique) trace expansion of the form:

∀x ∈ F 2 n , f (x) = j∈Γn Tr o(j) 1 a j x j + ǫ(1 + x 2 n -1 ), a j ∈ F 2 o(j) ,
called its polynomial form, where Γ n is the set of integers obtained by choosing one element in each cyclotomic coset modulo 2 n -1, the most usual choice being the smallest element in each cyclotomic coset, called the coset leader, o(j) is the size of the cyclotomic coset containing j, and ǫ = wt(f ) modulo 2. Recall that, given an integer e, 0 ≤ e ≤ 2 n -1, having the binary expansion: e = n-1 i=0 e i 2 i , e i ∈ {0, 1}, the 2-weight of e, denoted by w 2 (e), is the Hamming weight of the binary vector (e 0 , e 1 , • • • , e n-1 ).

Walsh-Hadamard transform, bent and hyperbent functions

Let f be a Boolean function on F 2 n . Its "sign" function is the integer-valued function χ (f ) = (-1) f . The Walsh-Hadamard transform of f is the discrete Fourier transform of χ f , whose value at ω ∈ F 2 n is defined as:

χ f (ω) = x∈F 2 n (-1) f (x)+Tr n 1 (ωx) .
Bent functions are functions with maximum non-linearity. They only exist for even number of inputs and can be defined as follows.

Definition 1. A Boolean function f : F 2 n → F 2 (n even) is said to be bent if χ f (ω) = ±2 n 2 for all ω ∈ F 2 n .
Hyperbent functions have even stronger properties than bent functions. More precisely, hyperbent functions can be defined as follows.

Definition 2. A Boolean function f : F 2 n → F 2 (n even) is said to be hyperbent if the function x → f (x i
) is bent for every integer i co-prime with 2 n -1.

Binary exponential sums

The classical binary Kloosterman sums on F 2 m are defined as follows.

Definition 3. The binary Kloosterman sums on F 2 m are:

K m (a) = 1 + x∈F * 2 m (-1) Tr m 1 (ax+ 1 x ) , a ∈ F 2 m . It is an elementary fact that K m (a) = K m (a 2 ).
The cubic sums are defined as follows.

Definition 4. The cubic sums on F 2 m are:

C m (a, b) = x∈F 2 m (-1) Tr m 1 (ax 3 +bx) , a, b ∈ F 2 m .

Dickson polynomials

Recall that the family of binary Dickson polynomials D r (X) ∈ F 2 [X] of degree r is defined by

D r (X) = ⌊ r 2 ⌋ i=0 r r -i r -i i X r-2i , r ≥ 2 .
Moreover, the family of Dickson polynomials D r (X) can also be defined by the following recurrence relation:

D i+2 (X) = XD i+1 (X) + D i (X) , with initial values D 0 (X) = 0, D 1 (X) = X .
The reader can refer to [START_REF] Lidl | Dickson polynomials[END_REF] for many useful properties and applications of Dickson polynomials. We give the list of the first six Dickson polynomials:

D 0 (X) = 0, D 1 (X) = X, D 2 (X) = X 2 , D 3 (X) = X + X 3 , D 4 (X) = X 4 , D 5 (X) = X + X 3 + X 5 .

Elliptic and hyperelliptic curves

In this section we give basic definitions for elliptic and hyperelliptic curves as well as results about point counting on such curves over finite fields of characteristic 2. When we speak of cardinality of such curves and note #E(F 2 m ), we mean the number of points on it with coordinates in the given finite field F 2 m . We omit the reference to the finite field if the context is clear. The main fact about such curves we will use in the next section is that there exist algorithms to compute their cardinalities in polynomial time and space in m. Classical treatment of the theory of elliptic curves can be found for example in [START_REF] Joseph | The arithmetic of elliptic curves[END_REF][START_REF] Husemöller | Elliptic curves[END_REF][START_REF] Cassels | Lectures on elliptic curves[END_REF][START_REF] Washington | Elliptic curves. Discrete Mathematics and its Applications[END_REF][START_REF] Knapp | Elliptic curves[END_REF]. A more cryptographic oriented point of view, and especially special treatment for even characteristic, can be found for example in [START_REF] Koblitz | Constructing elliptic curve cryptosystems in characteristic 2[END_REF][START_REF] Koblitz | Algebraic aspects of cryptography[END_REF][START_REF] Enge | Elliptic Curves and Their Applications to Cryptography: An Introduction[END_REF][START_REF] Blake | Elliptic curves in cryptography[END_REF][START_REF] Cohen | Handbook of elliptic and hyperelliptic curve cryptography[END_REF][START_REF] Galbraith | Mathematics of Public Key Cryptography[END_REF] An elliptic curve can be defined as follows.

Definition 5. An elliptic curve E is a smooth projective algebraic curve of genus one with a rational point O E .

In more down-to-earth terms, such a curve can be described by a Weierstrass equation of the form:

E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 ,
giving its affine part. There is an additional point at infinity O E which can be seen as the only non-affine solution to the homogenized equation.

There are many different algorithms to compute the cardinality of elliptic curves. The main result we need has been given by Harley [START_REF] Harley | Asymptotically optimal p-adic point-counting[END_REF]. A complete description of many existing algorithms can be found in Vercauteren's thesis [START_REF] Vercauteren | Computing zeta functions of curves over finite fields[END_REF] or in [START_REF] Vercauteren | Advances in point counting[END_REF][START_REF] Lercier | Point counting on elliptic and hyperelliptic curves[END_REF]. Theorem 6 ([14]). Let E be an elliptic curve defined over F 2 m . There exist an algorithm to compute the cardinality of

E in O(n 2 (log n) 2 log log n) time and O(n 2 ) space.
The theory of hyperelliptic curve, with a cryptographic point of view, can be found for example in [START_REF] Michael Jacobson | Hyperelliptic curves and cryptography[END_REF][START_REF] Koblitz | Algebraic aspects of cryptography[END_REF][START_REF] Menezes | An elementary introduction to hyperelliptic curves[END_REF][START_REF] Gaudry | Hyperelliptic curves and the HCDLP[END_REF][START_REF] Cohen | Handbook of elliptic and hyperelliptic curve cryptography[END_REF][START_REF] Galbraith | Mathematics of Public Key Cryptography[END_REF]. We can define rather generally an hyperelliptic curve as follows.

Definition 7. An hyperelliptic curve H is a smooth projective algebraic curve which is a degree 2 covering of the projective line.

This definition includes the elliptic curves, but it is sometimes understood that an hyperelliptic curve should be of genus g ≥ 2.

A description of the different types of hyperelliptic curves in even characteristic can be found in [START_REF] Andreas | How to distinguish hyperelliptic curves in even characteristic[END_REF]. For the cryptographic point of view, the curves are often chosen to be imaginary hyperelliptic curves. This is also the kind of curves we will encounter. Such an hyperelliptic curve of genus g can be described by an affine part given by the following equation:

H : y 2 + h(x)y = f (x),
where h(x) is of degree ≤ g and f (x) is monic of degree 2g + 1.

The main result about point counting of hyperelliptic curves we use is given by Vercauteren [START_REF] Vercauteren | Computing zeta functions of curves over finite fields[END_REF]. A stronger result is also given for hyperelliptic curves of a special form.

Definition 9. An Artin-Schreier curve is an hyperelliptic curve whose affine part is given by an equation of the form:

H : y 2 + x n y = f (x),
where 0 ≥ n ≥ g and f (x) is monic of degree 2g + 1.

Theorem 10. Let H be an Artin-Schreier curve of genus g defined over F 2 m . There exist an algorithm to compute the cardinality of H in

O(g 3 m 3 (g 2 + log 2 m log log m) log gm log log gm)
bit operations and O(g 3 m 3 ) memory.

Constructions of hyperbent functions

From now on, let n = 2m be an even integer.

Hyperbent functions in polynomial form: state of the art

The list of currently known hyperbent functions is given in Table 1.

Class of functions Conditions on the coefficients References

Tr n 1 ax r(2 m -1) ; gcd(r, 2 m + 1) = 1 Km(a) = 0 [7, 22 , 23, 5] 
Tr

n 1 ax r(2 m -1) + Tr 2 1 bx 2 n -1 3 ; m odd, gcd(r, 2 m + 1) = 1 Km(a) = 4 [31]
Tr n

1 aζ i x 3(2 m -1) + Tr 2 1 β j x 2 n - 1 3 
; m odd and m ≡ 3 (mod 6), β is a primitive element of F 4 , ζ is a generator of the cyclic group U of (2 m + 1)-th of unity, (i,

j) ∈ {0, 1, 2} 2 , a ∈ F * 2 m
Km(a) = 4 and Tr m 1

a 1/3 = 0 [29]
Tr n 1 aζ i x 3(2 m -1) + Tr 

a 1/3 = 1 [29] 2 m-1 -1 i=1
Tr n

1 ax i(2 m -1) a ∈ F 2 m \ F 2 [12]. 2 m-2 -1 i=1
Tr n

1 ax i(2 m -1) ; m odd a (2 m -4) -1 ∈ {x ∈ F * 2 m | Tr m 1 (x) = 0} [12]
Table 1: Families of hyperbent functions Moreover, Charpin and Gong [START_REF] Charpin | Hyperbent functions, Kloosterman sums, and Dickson polynomials[END_REF] gave a characterization of hyperbentness for a large class of Boolean functions defined on F 2 n , which includes the well known monomial functions with the Dillon exponent as a special case. Theorem 11 ([5]). Let n = 2m. Let S be a set of representatives of the cyclotomic classes modulo 2 m + 1 whose cosets have full size n. Let f ar be the function defined on F 2 n by f ar (x) = r∈R Tr n 1 a r x r(2 m -1) , a r ∈ F 2 m , where R ⊆ S. Let g ar be the Boolean function defined on F 2 m by g ar (x) = r∈R Tr m 1 (a r D r (x)). Then f ar is hyperbent if and only if

x∈F * 2 m χ Tr m 1 x -1 + g ar (x) = 2 m -2 wt(g ar ) -1 .
Finally, Mesnager [START_REF] Mesnager | Hyper-bent boolean functions with multiple trace terms[END_REF] gave a characterization of hyperbentness for another large class of hyperbent functions defined on F 2 n with multiple trace terms and which do not belong to the family considered by Charpin and Gong in [START_REF] Charpin | Hyperbent functions, Kloosterman sums, and Dickson polynomials[END_REF]. There was a typo in the theorem given in [START_REF] Mesnager | Hyper-bent boolean functions with multiple trace terms[END_REF] corrected here. Theorem 12 ([30]). Let n = 2m with m odd and S be a set of representatives of the cyclotomic classes modulo 2 n -1 whose cosets have full size n. Let b ∈ F * 4 . Let f ar,b be the function defined on F 2 n by (1)

f ar,b (x) = r∈R Tr n 1 a r x r(2 m -1) + Tr 2 1 bx 2 n -1 3 , ( 1 
)
where R ⊆ S and all the coefficients a r are in F 2 m . Let g ar be the related function defined on F 2 m by g ar (x) = r∈R Tr m 1 (a r D r (x)), where D r (x) is the Dickson polynomial of degree r. Then:

1. f ar,b is hyperbent if and only if f ar,b is bent.
2. If b is a primitive element of F 4 , then the three following assertions are equivalent:

(a) f ar,b is hyperbent; (b) x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar (D 3 (x))) = -2; (c) x∈F * 2 m χ Tr m 1 x -1 + g ar (D 3 (x)) = 2 m -2 wt(g ar • D 3 ) + 3.

f ar,1 is hyperbent if and only if

2 x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar (D 3 (x))) -3 x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar (x)) = 2 .

Reformulation in terms of cardinality of curves

The characterizations of hyperbentness given by Charpin and Gong (Theorem 11) as well as Mesnager (Theorem 12) can be naturally reformulated in terms of cardinality of curves. The ideas in this approach go back to the works of Lachaud and Wolfmann [START_REF] Lachaud | Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2[END_REF], and Katz and Livné [START_REF] Katz | Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3[END_REF]. We recall a simple proof of their result here, because its generalizations can be proved in a very similar manner.

Theorem 13 ([21, 17]). Let m ≥ 3 be any positive integer, a ∈ F * 2 m and E a the projective elliptic curve defined over F 2 m whose affine part is given by the equation

E a : y 2 + xy = x 3 + a . Then #E a = 2 m + K m (a) . Proof. Indeed K m (a) = 1 + x∈F * 2 m χ Tr m 1 x -1 + ax ,
and

x∈F * 2 m χ Tr m 1 x -1 + ax = x∈F * 2 m (1 -2 Tr m 1 x -1 + ax ) = 2 m -1 -2#{x ∈ F * 2 m | Tr m 1 x -1 + ax = 1} = -2 m + 1 + 2#{x ∈ F * 2 m | Tr m 1 x -1 + ax = 0} .
Using the additive version of Hilbert's Theorem 90, we get

x∈F * 2 m χ Tr m 1 x -1 + ax = -2 m + 1 + 2#{x ∈ F * 2 m | ∃t ∈ F 2 m t 2 + t = x -1 + ax} = -2 m + 1 + 2#{x ∈ F * 2 m | ∃t ∈ F 2 m t 2 + xt = x + ax 3 } .
We recognize the number of points of E a minus the only point with x-coordinate x = 0 and the only point at infinity.

x∈F * 2 m χ Tr m 1 x -1 + ax = -2 m + 1 + #E a -2 = -2 m -1 + #E a .
Hence the necessary and sufficient condition for hyperbentness of the monomial functions with the Dillon exponent given in Table 1 can be reformulated as follows.

Proposition 14. The notations are as in Theorem 13. Moreover let r be an integer such that gcd(r, 2 m + 1) = 1 and f a be the Boolean function with n inputs f a (x) = Tr n 1 ax r(2 m -1) . Then f a is hyperbent if and only if

#E a = 2 m .
The class of functions described by Mesnager in [START_REF] Mesnager | A new class of bent and hyper-bent Boolean functions in polynomial forms[END_REF] can also be given such a treatment.

Proposition 15.

The notations are as in Theorem 13. Moreover suppose that m is odd and let r be an integer such that gcd(r,

2 m + 1) = 1, b ∈ F * 4 and f a,b be the Boolean function f a,b (x) = Tr n 1 ax r(2 m -1) + Tr 2 1 bx 2 n -1 3 . Then f a,b is hyperbent if and only if #E a = 2 m + 4 .
The theory of elliptic curves is rich and was subsequently used in different papers to efficiently find specific values of Kloosterman sums [START_REF] Lisonek | On the connection between Kloosterman sums and elliptic curves[END_REF][START_REF] Ahmadi | An efficient deterministic test for Kloosterman sum zeros[END_REF][START_REF] Flori | The value 4 of binary kloosterman sums[END_REF], and so to build hyperbent functions. In particular, Theorem 6 shows that computing their cardinalities is polynomial time and space in m and so is testing the hyperbentness of such a Boolean function.

Very recently, Lisoněk [START_REF] Lisoněk | Hyperbent functions and hyperelliptic curves. Talk given at Arithmetic[END_REF] generalized this reformulation to the Charpin-Gong criterion (Theorem 11) for hyperbentness of Boolean function with multiple trace terms. His idea is that both terms of the equality can be reformulated in terms of cardinalities of hyperelliptic curves as in Theorem 13. We give detailed proofs of theses results because it is not completely available in [START_REF] Lisoněk | Hyperbent functions and hyperelliptic curves. Talk given at Arithmetic[END_REF] and we will use similar results to reformulate the Mesnager condition.

Proposition 16. Let f : F 2 m → F 2 m be a function such that f (0) = 0, g = Tr m 1 (f ) and G f be the (affine) curve defined over F 2 m by G f : y 2 + y = f (x) . Then x∈F * Proof. Indeed x∈F * 2 m χ (g(x)) = 2 m -1 -2#{x ∈ F * 2 m | g(x) = 1} = 2 m -1 -2#{x ∈ F 2 m | g(x) = 1} = 2 m -1 -2(2 m -#{x ∈ F 2 m | g(x) = 0} = -2 m -1 + 2#{x ∈ F 2 m | ∃t ∈ F 2 m , t 2 + t = f (x)} = -2 m -1 + #G f . Proposition 17. Let f : F 2 m → F 2 m , g = Tr m 1 (f ) and H f be the (affine) curve defined over F 2 m by H f : y 2 + xy = x + x 2 f (x) , Then x∈F * 2 m χ Tr m 1 x -1 + g(x) = -2 m + #H f . Proof. Indeed x∈F * 2 m χ Tr m 1 x -1 + g(x) = x∈F * 2 m (1 -2(Tr m 1 x -1 + g(x))) = 2 m -1 -2#{x ∈ F * 2 m | Tr m 1 x -1 + g(x) = 1} = -2 m + 1 + 2#{x ∈ F * 2 m | Tr m 1 x -1 + g(x) = 0} = -2 m 1 + 2#{x ∈ F * 2 m | ∃t ∈ F 2 m t 2 + t = x -1 + f (x)} = -2 m + 1 + 2#{x ∈ F * 2 m | ∃t ∈ F 2 m t 2 + xt = x + x 2 f (x)} = -2 m + 1 + #H f -#{P ∈ H f | x = 0} = -2 m + #H f .
We can now easily deduce the reformulation of the Charpin-Gong criterion.

Theorem 18 ([27]). The notations are as in Theorem 11. Moreover, let H ar and G ar be the (affine) curves defined over F 2 m by The smooth projective models of the curves H ar and G ar are hyperelliptic. Moreover they are Artin-Schreier curves. As for elliptic curves, Theorem 10 says that there exist an efficient algorithms to compute the cardinality of such curves. Thus Lisoněk obtained an efficient test for hyperbentness of Boolean functions in the class described by Charpin and Gong. Indeed, if we fix a subset of indices R and denote by r max the maximal index (which we can suppose to be odd), the polynomial defining H ar (respectively G ar ) is of degree r max + 2 (respectively r max ), so the curve is of genus (r max + 1)/2 (respectively (r max -1)/2). The complexity for testing a Boolean function in this family is then dominated by the computation of the cardinality of a curve of genus (r max + 1)/2, which is polynomial in m for a fixed r max (and so fixed genera for the curves H ar and G ar ).

H ar : y 2 + xy = x + x 2 r∈R a r D r (x) , G ar : y 2 + y = r∈R a r D r (x) .
We now show that a similar reformulation can be applied to the criterion of Mesnager for Boolean functions with multiple trace terms. 

2 + xy = x + x 2 r∈R a r D r (D 3 (x)) , G 3 ar : y 2 + y = r∈R a r D r (D 3 (x)) . If b is a primitive element of F 4 , then f ar,b is hyperbent if and only if #H 3 ar -#G 3 ar = 3 . If b = 1, then f ar,1 is hyperbent if and only if #G 3 ar -#H 3 ar - 3 2 (#G ar -#H ar ) = 3 2 .
Proof. If b is a primitive root of unity, according to Proposition 17 the left term of the criterion is 

x∈F * 2 m χ Tr m 1 x -1 + g ar (D 3 (x)) = -2 m + #H
(x -1 )=1 χ (g ar • D 3 (x)) = 1 2   x∈F * 2 m χ (g ar • D 3 (x)) - x∈F * 2 m χ Tr m 1 x -1 + g ar • D 3 (x)   = 1 2 -2 m -1 + #G 3 ar --2 m + #H 3 ar = 1 2 #G 3 ar -#H 3 ar -1 .
If b = 1, in condition 3 of Theorem 12, using the previous calculations, the left term is

2 x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar • D 3 (x)) = #G 3 ar -#H 3 ar -1 ;
and the right term is

2 + 3 x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar (x)) = 2 + 3 2 (#G ar -#H ar -1) = 1 2 + 3 2 (#G ar -#H ar ) .
Here all the curves are also Artin-Schreier curves. So for a fixed subset of indices R, we also get a test polynomial in m. However the complexity of the point counting algorithms also depends on the genera of the curves, and so on the degrees of the polynomials involved to define them. Denoting by r max the maximal index as above, the genus of H 3 ar (respectively G 3 ar ) is (3r max + 1)/2 (respectively (3r max -1)/2), so approximately three times that of H ar (respectively G ar ). Therefore the associated test is slower than for Boolean functions of the family of Charpin and Gong for a given subset R: we have to compute the cardinalities of two curves of genera (3r max + 1)/2 and (3r max -1)/2 if b is primitive, or four curves of genera (3r max + 1)/2, (3r max -1)/2, (r max + 1)/2 and (r max -1)/2 if b = 1, instead of two curves of genera (r max + 1)/2 and (r max -1)/2. Hence we propose another reformulation of the Mesnager criterion involving less computations. Here we discarded the computation of the cardinality of the curve of genus (3r max + 1)/2 and we have to compute the cardinalities of three curves of genera (3r max -1)/2, (r max + 1)/2 and (r max -1)/2.

Theorem 8 .

 8 Let H be an hyperelliptic curve of genus g defined over F 2 m . There exist an algorithm to compute the cardinality of H in O(g 3 m 3 (g 2 + log 2 m log log m) log gm log log gm) bit operations and O(g 4 m 3 ) memory.

2 1 β j x 2 n -1 3 ; m odd and m ≡ 3 ( 2 m

 332 mod 6), β is a primitive element of F 4 , ζ is a generator of the cyclic group U of (2 m + 1)-th of unity i ∈ {1, 2}, j ∈ {0, 1, 2}, a ∈ F * Km(a) + Cm(a, a) = 4 and Tr m 1

  Then f ar is hyperbent if and only if#H ar -#G ar = -1 .Proof. According to Proposition 17, the left term becomes x∈F * 2 m χ Tr m 1 x -1 + g ar (x) = -2 m + #H ar ; and according to Proposition 16, the right term becomes x∈F * 2 m χ (g ar (x)) = -2 m -1 + #G ar .

Theorem 19 .

 19 The notations are as in Theorem 12. Moreover, let H ar and G ar be the (affine) curves defined over F 2 m byH ar : y 2 + xy = x + x 2 r∈R a r D r (x) ,G ar : y 2 + y = r∈R a r D r (x) ; and let H 3 ar and G 3 ar be the (affine) curves defined over F 2 m by H 3 ar : y

Theorem 20 . 2 .

 202 The notations are as in Theorem 19. If b is a primitive element of F 4 , then f ar,b is hyperbent if and only if ar + #H ar ) = -3 If b = 1, then f ar,1 is hyperbent if and only if We use the fact that m is odd, so that the function x → D 3 (x) = x 3 + x is a permutation of the set {x ∈ F * 2 m | Tr m 1 x -1 = 0}, and similar arguments as previously. If b primitive, thenx∈F * 2 m |Tr m 1 (x -1 )=1 χ (g ar • D 3 (x)) = x∈F * 2 m χ (g ar • D 3 (x)) -x∈F * 2 m ,Tr m 1 (x -1 )=0 χ (g ar • D 3 (x)) = x∈F * 2 m χ (g ar • D 3 (x)) -x∈F * 2 m ,Tr m 1 (x -1 )=0 χ (g ar (x)) 2 m -2 + #G ar ) + (-2 m -1 + #H ar )) ar + #H ar ) . If b = 1, then 2 x∈F * 2 m ,Tr m 1 (x -1 )=1 χ (g ar • D 3 (x)) = -1 + 2#G 3 ar -(#G ar + #H ar ) .

m χ (g(x)) (= 2 m -1 -2 wt(g)) = -2 m -1 + #G f .