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On a generalized combinatorial conjecture involving addition mod 2 k -1

In this note, we give a simple proof of the combinatorial conjecture proposed by Tang, Carlet and Tang, based on which they constructed two classes of Boolean functions with many good cryptographic properties. We also give more general properties about the generalization of the conjecture they propose.

Introduction

In a very recent paper inspired by the previous work of Tu and Deng [START_REF] Tu | A conjecture about binary strings and its applications on constructing boolean functions with optimal algebraic immunity[END_REF], Tang, Carlet and Tang [START_REF] Tang | Highly nonlinear boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks[END_REF] constructed an infinite family of Boolean functions with many good cryptographic interesting properties depending on the validity of the following combinatorial property: They verified it experimentally for k ≤ 29, as well as the following generalized property for k ≤ 15 where u ∈ Z/(2 k -1)Z is such that gcd(u, 2 k -1) = 1:

Conjecture 2. ∀k ≥ 2, max t∈(Z/(2 k -1)Z) * # (a, b) ∈ Z/(2 k -1)Z 2 | ua ± b = t; w(a) + w(b) ≤ k -1 ≤ 2 k-1 .
This generalized conjecture includes the original conjecture proposed by Tu and Deng [START_REF] Tu | A conjecture about binary strings and its applications on constructing boolean functions with optimal algebraic immunity[END_REF].

From now on, let us denote by S k,t,±,u the quantity of interest:

S k,t,±,u = # (a, b) ∈ Z/(2 k -1)Z 2 | ua ± b = t; w(a) + w(b) ≤ k -1 .
In Section 2, we give some general properties about such sets and their cardinalities. In Section 3, we give the proof of Conjecture 1. In Section 4, we conjecture a recursive formula for 2 k-1 -S k,t,-,1 .

General properties

Here we follow the approach of the previous attempts to prove the original conjecture of Tu and Deng [START_REF] Flori | On a conjecture about binary strings distribution[END_REF][START_REF] Flori | On the number of carries occuring in an addition mod 2 k -1[END_REF].

We recall the elementary results:

Lemma 1. For k ≥ 1,
• ∀a ∈ Z/(2 k -1)Z, w(2a) = w(a);

• ∀a ∈ Z/(2 k -1)Z * , w(-a) = k -w(a).
We first remark that for a given a ∈ Z/(2 k -1)Z, b must be equal to ±(t -ua), whence the following lemma.

Lemma 2. For k ≥ 2, S k,t,±,u = # a ∈ Z/(2 k -1)Z | w(a) + w(±(t -ua)) ≤ k -1 .
We now show that is enough to study the conjecture for one t, but also one u, in each cyclotomic class.

Lemma 3. For k ≥ 2, S k,t,±,u = S k,2t,±,u .
Proof. Indeed a → 2a is a permutation of Z/(2 k -1)Z so that

S k,2t,±,u = # a ∈ Z/(2 k -1)Z | w(a) + w(±(2t -ua)) ≤ k -1 = # a ∈ Z/(2 k -1)Z | w(2a) + w(±2(t -ua)) ≤ k -1 = # a ∈ Z/(2 k -1)Z | w(a) + w(±(t -ua)) ≤ k -1 = S k,t,±,u . Lemma 4. For k ≥ 2, S k,t,±,u = S k,t,±,2u .
Proof. Using the previous lemma:

S k,t,±,2u = S k,2t,±,2u = # a ∈ Z/(2 k -1)Z | w(a) + w(±(2t -2ua)) ≤ k -1 = # a ∈ Z/(2 k -1)Z | w(a) + w(±(t -ua)) ≤ k -1 = S k,t,±,u .
We now show a more elaborate relation.

Lemma 5. For k ≥ 2 and gcd(u, 2 k -1) = 1, S k,t,±,u = S k,±u -1 t,±,u -1 .
Proof. We use the fact that a → u -1 (∓a + t) is a permutation of Z/(2 k -1)Z.

S k,t,±,u = # a ∈ Z/(2 k -1)Z | w(a) + w(±(t -ua)) ≤ k -1 = # a ∈ Z/(2 k -1)Z | w(u -1 (∓a + t)) + w(a) ≤ k -1 = # a ∈ Z/(2 k -1)Z | w(±(±u -1 t -u -1 a)) + w(a) ≤ k - = S k,±u -1 t,±,u -1 .

Proof of the conjecture

We now prove Conjecture 1, and so Conjecture 2 for u equal to any power of 2 according to Lemma 4. First, we note that for u = 1 and the sign -, Lemma 5 becomes

S k,t,-,1 = S k,-t,-,1 .
Second, for the specific values of a = 0, t, we have that

• w(0) + w(-t) = w(-t) ≤ k -1,
• and w(t

) + w(0) = w(t) ≤ k -1,
so that we always have

{0, t} ⊂ a ∈ Z/(2 k -1)Z | w(a) + w(-(t -a)) ≤ k -1 .
Finally, for a = 0, t, we have that

w(a) + w(-(t -a)) = k -w(-a) + k -w(t -a) = 2k -(w(-a) + w(t -a)) .
Then using the fact that a → -a is a permutation of Z/(2 k -1)Z:

S k,t,-,1 = 2 + # a ∈ Z/(2 k -1)Z \ {0, t} | w(a) + w(-(t -a)) ≤ k - = 2 + # a ∈ Z/(2 k -1)Z \ {0, t} | w(-a) + w(t -a) ≥ k + 1 = 2 + # a ∈ Z/(2 k -1)Z | w(-a) + w(t -a) ≥ k + 1 = 2 + # a ∈ Z/(2 k -1)Z | w(a) + w(t + a) ≥ k + 1 = 2 + (2 k -1 -# a ∈ Z/(2 k -1)Z | w(a) + w(t + a) ≤ k ) ≤ 2 + (2 k -1 -# a ∈ Z/(2 k -1)Z | w(a) + w(t + a) ≤ k -) ≤ 2 k + 1 -S k,-t,-,1 ≤ 2 k + 1 -S k,t,-,1 . Hence 2S k,t,-,1 ≤ 2 k + 1 ,
but we know that S k,t,-,1 is an integer, which concludes the proof of Conjecture 1.

We also note that for t = 0,

S k,0,-,1 = # a ∈ Z/(2 k -1)Z | 2w(a) ≤ k -1 = ⌊ k-1 2 ⌋ w=0 # a ∈ Z/(2 k -1)Z | w(a) = w = ⌊ k-1 2 ⌋ w=0 k w , which is equal to 2 k-1 - k (k+1)/2 if k is odd, and 2 k-1 - k k/2-1 -k/2 k /2 if k is even.
Therefore the conjecture can be naturally extended to include the case t = 0.

Computing the exact gap

If we rewrite the above reasoning more carefully, we find that

S k,t,-,1 = 2 k-1 + (1 -# a ∈ Z/(2 k -1)Z | w(a) + w(t + a) = k )/2 .
It is an interesting problem to find a closed-form formula for the value of

M k,t = # a ∈ Z/(2 k -1)Z * | w(a) + w(t + a) = k , M k = min t∈Z/(2 k -1)Z M k,t .
We denote by ∆ k the following value

∆ k = M k -1 2 , so that S k,t,-,1 = 2 k-1 -∆ k .
The experimental results of Tang, Carlet and Tang suggest that the following recursive formula is verified:

∆ k+1 = 2∆ k + 1 if k even, 2∆ k + 1 -Γ (k-1)/2 if k odd, where Γ n = 1 + n-1 w=0 C w and C w = 2w
w /(w + 1) is the w-th Catalan number. Γ n is the sequence A155587 in OEIS [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. Further experimental investigations made with Sage [START_REF] Stein | Sage: Open Source Mathematical Software (Version 4.7.0[END_REF] show that the minimal value M k seems to be attained for t = 1 if k is even and t = 3 if k is odd. In fact, the next proposition gives explicit formulae for M k,1 and M k, [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF] .

We recall that r(a, t) = w(a + t) -w(a) -w(t) can be interpreted as the number of carries occurring while adding a and t. Then we can describe M k,t as

M k,t = # a ∈ Z/(2 k -1)Z * | w(a) + w(t + a) = k = # a ∈ Z/(2 k -1)Z * | 2w(a) + w(t) -r(a, t) = k = # a ∈ Z/(2 k -1)Z * | r(a, t) = -k + w(t) + 2w(a) . Proposition 1. For k ≥ 2, M k,1 = ⌊(k+1)/2⌋ w=1 2w -2 w -1 .
Proof. We know that M k,1 = M k,-1 , so we enumerate the set of a's verifying r(a, -1) = 2w(a) -1 according to w(a) or equivalently r(a, -1). The binary expansion of -1 is 1---10. First, for any number t ∈ Z/(2 k -1)Z, 0 ≤ r(a, t) ≤ k, so we deduce that a must verify 1 ≤ w(a) ≤ ⌊(k + 1)/2⌋.

Second, for a given number of carries r, a number a verifying r(a, -1) = r must be of the following form

-1 = 1---1---10 , a = ????1 r 0---0 .
Such a description is valid even if r(a, -1) = k. So, for a given weight w, a number a verifying w(a) = w and r(a, -1) = 2w -1 must be of the following form

-1 = 1---1---10 , a = ????1 2w-1 0---0 ,
with the other w -1 bits equal to 1 anywhere among the 2w -2 first bits. Hence there are 2w-2

w-1 differents a's of weight w verifying r(a, -1) = 2w -1. Finally, summing up on 1 ≤ w ≤ ⌊(k + 1)/2⌋, we get that M k,1 = ⌊(k+1)/2⌋ w=1 2w-2 w-1 . Proposition 2. For k ≥ 3, M k,3 = 1 + 2 ⌊k/2⌋ w=1 2w -2 w -1 .
Proof. We proceed as in the proof of Proposition 1. The arguments are only slightly more technical.

We know that M k,3 = M k,-3 , so we enumerate the set of a's verifying r(a, -3) = 2w(a) -2 according to w(a) or equivalently r(a, -3). The binary expansion of -3 is 1---100.

First, from r(a, -3) = 2w(a) -2, we deduce that 1 ≤ w ≤ ⌊k/2⌋ + 1. Second, for a given number of carries r, there are now different possibilities. For any t ∈ Z/(2 k -1)Z, there are exactly k-w(t)-1 w=0 k-w(t) w different a's producing no carries. Indeed, such a's are characterized by the facts that they have no bits equal to 1 in front of any bit of t equal to 1 and that they can not have only 1's in front of the bits of t equal to 0. For t = -3, the such a's are exactly 0, 1 and 2 and both 1 and 2 have weight 1.

Then, for a given number of carries 1 ≤ r < 2⌊k/2⌋, a number a verifying r(a, -3) = r cannot have its two last bits (in front of the two bits of -3 equal to 0) equal to 1. Otherwise it would produce k carries. So it must be of one of the following forms with the other w -1 bits set to 1 anywhere among the 2w -2 remaining bits in the first case, and the other w -2 bits set to 1 anywhere among the 2w -4 first bits in the second one. Hence there are 2w-2 w-1 + 2w-4 w-2 differents a's of weight w. Finally, if k is odd and w(a) = ⌊k/2⌋ + 1, then r(a, t) = k -1 and a must be of the following form -3 = 1---100 , a = ????101 .

There are 2w-4 w-2 different such a's. And, if k is even and w(a) = ⌊k/2⌋ + 1, then r(a, t) = k and a must be of the following form -3 = 1---100 , a = ?????11 .

There are also 2w-4 w-2 different such a's. Therefore, we find that

M k,3 = 2 + ⌊k/2⌋ w=2 2w -2 w -1 + ⌊k/2⌋+1 w=2 2w -4 w -2 = 1 + 2 ⌊k/2⌋ w=1 2w -2 w -1 .
We now prove recurrence relations for M k,1 and M k,3 .

Corollary 1. If k is even, then 2M k,1 + 1 = M k+1,3 . If k is odd, then M k,3 -Γ (k-1)/2 = (M k+1,1 -1)/2 .
Proof. The first equality is a simple consequence of the fact ⌊k/2⌋ = ⌊(k + 1)/2⌋ when k is even.

For the second one, we write k -1 (k -1)/2 .

M k,3 -Γ (k-1)/2 = 1 + 2 ⌊k/2⌋ w=1 2w -2 w -1 -1 - (k-3)/2 w=0 2w w /(w + 1) = 2 (k-1)/2 w=1 2w -2 w -1 - (k-3)/2 w=0 2w w /(w + 1) = 1 + (k-3)/2 w=1 ( 2 
To conclude this section, let us note that M k,1 ≤ M k,3 if k is even and M k,3 ≤ M k,1 if k is odd. So, if we assume that these are indeed the minimal values M k according to the parity of k, then ∆ k is given by ∆ k = (M k,1 -1)/2 if k even, (M k,3 -1)/2 if k odd, and the recursive formulae are proved.
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