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Abstract
This paper deals with the singularity analysis of4-DOF parallel manipulators with identical limb
structures performing Schönflies motions, namely, three independent translations and one rotation
about an axis of fixed direction. The6×6 Jacobian matrix of such manipulators contains two lines
at infinity among its six Plücker lines. Some points at infinity are thus introduced to formulate the
superbracket of Grassmann-Cayley algebra, which corresponds to the determinant of the Jacobian
matrix. By exploring this superbracket, all the singularity conditions of such manipulators can be
enumerated. The study is illustrated through the singularity analysis of the 4-RUU parallel manip-
ulator.

Keywords: parallel manipulator, singularity, Schönflies motions, Grassmann-Cayley algebra, su-
perbracket.

Analyse de Singularit́es du Manipulateur Parallèle 4-RUU au moyen de l’Algèbre
de Grassmann-Cayley

Résuḿe
Cet article traite de l’analyse des singularités de manipulateurs parallèles à quatre degrés de liberté
ayant des jambes identiques, générant des mouvements dits de Schönflies, c.à.d., trois translations
indépendantes et une rotation autour d’un axe de directionfixe. La matrice Jacobienne6 × 6 de
ces manipulateurs contient deux lignes à l’infini parmi sessix lignes de Plücker. Quelques points
à l’infini sont ainsi introduits pour formuler le superbracket de l’algèbre de Grassmann-Cayley
qui est correspond au déterminant de la matrice jacobienne. En examinant ce superbracket, toutes
les conditions de singularités de ces manipulateurs peuvent être énumérées. Les contributions de
l’article sont illustrées à travers l’analyse de singularités du manipulateur parallèle 4-RUU.

Mots-clé: manipulateur parallèle, singularités, mouvements de Schönflies, algèbre de Grassmann-
Cayley, superbracket.
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1 INTRODUCTION

The singular configurations of Parallel Manipulators (PMs)are critical poses characterized by
either the loss of some degrees of freedom (DOF), the gain of some extra DOF or the loss of
stiffness. The determination of singular configurations isthus a central issue in robotics due to their
major effect on the robot performance [1,2]. Lower-mobility PMs are suitable for a wide range of
applications that require fewer than six DOF. The classification of singularities for lower-mobility
PMs has stimulated the interest of many researchers [3–6]. In this paper, the classification proposed
in [4], which is similar the one proposed in [7], is adopted. Accordingly, a lower-mobility PM can
exhibit three different types of singularities: (i) limb singularities, (ii) platform singularities [4],
also known as constraint singularities [8] and (iii) actuation singularities, also called architecture
singularities [7]. Constraint and actuation singularities are referred to asparallel singularitiesand
are related to the rank deficiency of the6× 6 Jacobian matrixJ of the PM.

The determination of the parallel singularities of a PM consists in finding either the poses,
yielding the singularity locus, or the conditions, yielding the configurations, for whichJ becomes
rank-deficient. Generally,J expresses a system of screws or more precisely Plücker lines. In this
paper,J is determined by using the theory of reciprocal screws [9–13]. For most manipulators,
the determinant of such a matrix is highly nonlinear and unwieldy to assess even with a computer
algebra system. Hence, linear algebra fails to provide satisfactory results, and therefore, the use
of Grassmann-Cayley Algebra (GCA) [2,13–15] or Grassmann Geometry (GG) [1,16–18] can be
regarded as a promising solution. The GCA is a systematic approach to obtain a bracket represen-
tation of the determinant ofJ, calledsuperbracket. By exploring this superbracket, it is possible
to obtain a vector form and a geometrical interpretation of the parallel singularities. On the other
hand, GG is a geometric approach that provides a classification for the conditions under which a
set ofn Plücker lines spans a variety of dimension lower thann. This paper focuses on the appli-
cation of GCA to provide a compact vector expression for the singularity locus of 3T1R PMs with
identical limb structures.

Schönflies Motion Generators (SMGs) [19] are manipulatorsperforming three independent
translations and one rotation about an axis of fixed direction. This type of motion is required
in a wide range of industrial pick and place operations such as the assembly of computer circuit
boards. The type synthesis of parallel SMGs with identical limb structures, performed in [12],
leads to four kinematic architectures1: 4-RUU, 4-PUU, 4-RRUR and4-PRUR. For instance, as
an important criterion, the kinematic arrangementsRUU andPUU require two links whereas the
other ones require at least three links. In this paper, we focus on the singularity analysis of the
4-RUU PM based on GCA. The remainder of the paper is organized as follows. First, the su-
perbracket decomposition of GCA and some fundamental concepts of the projective spaceP3 are
recalled. Then, the4-RUU PM is presented and its constraint analysis is performed in order to de-
termine its Jacobian matrixJ. A superbracket of the PM is then formulated. Finally, the singularity
conditions of the4-RUU PM are enumerated and some singular configurations are illustrated.

1R, P andU stand for a revolute joint, a prismatic joint and a universaljoint, respectively, while an underline is
used to denote the actuated joints.
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2 GRASSMANN-CAYLEY ALGEBRA

The GCA was developed by H. Grassmann (1809–1877) as a calculus for linear varieties operating
onextensorswith thejoin “∨” andmeet“∧” operators. The latter are associated with thespanand
intersectionof vector spaces of extensors characterized by theirstep. GCA makes it possible to
work at the symbolic level, and therefore, to produce coordinate-free algebraic expressions for the
singularity conditions of spatial PMs. For further detailson GCA, the reader is referred to [2,14,20]
and references therein.

2.1 Superbracket decomposition

The rows of the Jacobian matrixJ of a PM are usually Plücker coordinate vectors of six projective
lines. The superjoin of these six vectors inP5 corresponds to the determinant ofJ up to a scalar
multiple, which is the superbracket in GCAΛ(V (2)) [20]. Thus, a singularity occurs when this
superbracket vanishes. The superbracket is an expression involving 12 points selected on the six
lines and can be developed into a linear combination of24 bracket monomials [2, 21], each one
being the product of three brackets of four projective points:

[ab, cd, ef, gh, ij, kl] =
24∑

i=1

yi (1)

where

y1 = −[abcd][efgi][hjkl] y2 = [abcd][efhi][gjkl] y3 = [abcd][efgj][hikl]
y4 = −[abcd][efhj][gikl] y5 = [abce][dfgh][ijkl] y6 = −[abde][cfgh][ijkl]
y7 = −[abcf][degh][ijkl] y8 = [abdf][cegh][ijkl] y9 = −[abce][dghi][fjkl]
y10 = [abde][cghi][fjkl] y11 = [abcf][dghi][ejkl] y12 = [abce][dghj][fikl]
y13 = −[abdf][cghi][ejkl] y14 = −[abde][cghj][fikl] y15 = −[abcf][dghj][eikl]
y16 = [abdf][cghj][eikl] y17 = [abcg][defi][hjkl] y18 = −[abdg][cefi][hjkl]
y19 = −[abch][defi][gjkl] y20 = −[abcg][defj][hikl] y21 = [abdh][cefi][gjkl]
y22 = [abdg][cefj][hikl] y23 = [abch][defj][gikl] y24 = −[abdh][cefj][gikl]

A bracket[abcd] is null if and only if (iff) the projective pointsa, b, c andd are coplanar.

2.2 Projective space

The 3-dimensional projective spaceP3 is characterized by the affine spaceR3 in addition to the
plane at infinityΩ∞. It is noteworthy that the coordinates of a projective element are determined up
to a scalar multiple. A projective point has four homogeneous coordinates whereas a projective line
has six Plücker coordinates represented by its Plücker coordinate vector. The following properties
highlight the relations between projective elements:

• A finite point,A, is represented by its homogeneous coordinates vectora = (a1, a2, a3, 1)
T ,

the first three coordinates being its Cartesian coordinatesin R
3;

• A finite line, L, is represented by its Plücker coordinates vectorF = (s; r × s); wheres is
a unit vector along the line direction, (r × s) represents the moment ofL with respect to the
origin andr is the position vector of any point onL;
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Figure 1: A4-RUU PM.

• Let underlined points denote points at infinity. Any finite line,F = (s; r × s), has a unique
point at infinityc = (s; 0). This point only depends on the line direction and is determined
up to a scalar multiple. Accordingly, ifa andb are two finite points onF , thenc = b −
a. Furthermore, all finite lines directed alongs intersect at one common point at infinity,
namely,c;

• All finite planes of normal vectorm, have a common line at infinity. This line is given by:
M = (0; m) and passes through the point at infinity of any finite line orthogonal tom;

• Two lines at infinityM1 = (0; m1) andM2 = (0; m2) intersect at a unique point at infinity
g = (m1 × m2; 0).

3 JACOBIAN M ATRIX OF THE 4-RUU PM

3.1 Architecture review and kinematic modeling

Figure 1(a) represents the CAD model of a4-RUU PM, which consists of a fixed base and a moving
platform connected to each other with four identicalRUU limbs. The input of the mechanism is
provided by four revolute actuators attached to the base. From [12], the geometric characteristics
of each limb are:

1. Each limb is composed of five revolute joints such that the second and the third ones, as well
as the fourth and the fifth ones, are built with intersecting and perpendicular axes and are
thus assimilated toU-joints of central pointsBi andCi, respectively;

2. The axes of the first, second and fifth revolute joints of thei-th limb are parallel to a fixed
direction alongz. Let fi be the unit vector directed along lineBiCi. Thus, the planePi
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defined by the axes of the second and the last revolute joints has(z × fi) = mi as normal
vector;

3. The third and the fourth revolute joints of thei-th limb have axes parallel tomi that changes
instantaneously. These axes form a planeVi having(mi × fi) as normal vector.

3.2 Constraint analysis

Each limbli = RiUi
1U

i
2 (i = 1, . . . , 4) of the4-RUU PM applies one constraint momentMi =

(0; mi×z) reciprocal to the twists associated with jointsRi, Ui
1 andUi

2. Vectorsmi×z have a com-
mon orthogonal vectorz. Thus, in a non singular configuration, the four constraint wrenchesMi

form a2-systemWc4RUU , namely, the constraint wrench system of the PM:

Wc4RUU = span(Mi) ; i = 1, . . . , 4 (2)

The legs of the4-RUU PM can apply independently four constraint wrenches to limit only two
DOF. Thus, it is an over-constrained SMG. Moreover, the moving platform cannot rotate about an
axis of direction orthogonal toz. It provides three independent translations and one rotation about
an axis of fixed direction alongz. By locking the actuator of thei-th limb, an additional constraint
appears, which is called the limb actuation wrench. It is a pure forceFi = (fi; rCi

× fi) wherefi
is the unit vector of(BiCi = Pi ∩ Vi) andrCi

is the position vector of pointCi. In a non-singular
configuration, the actuation wrench system of the PM is a4-system expressed as:

Wa4RUU = span(Fi) ; i = 1, . . . , 4 (3)

Based on the constraint analysis, the rows ofJ of the4-RUU PM can be composed of four indepen-
dent zero pitch wrenches withinWa4RUU plus two independent infinite pitch wrenches withinWc4RUU .
However, a parallel singularity occurs when the system spanned by the four actuation forces and
the four constraint moments becomes a(n < 6)-system.

4 L IMB SINGULARITIES

The superbracket of a PM only provides information about theparallel singularities. Thus, it
does not consider limb singularities. A limb singularity issimilar to the singularity of a serial
manipulator. It occurs for the4-RUU PM when a limb kinematic screw system degenerates. This
happens for thei-th limb if the actuation forceFi = (fi; rCi

×fi) crosses the axis,Ai, of the actuated
joint (the firstR-joint of the limb). In such a case, the limb actuation force acts as a constraint force
even without locking the limb actuator. Consequently, the platform loses one DOF. Referring to
Fig. 1(a), this can occur upon two situations:

1.1 Fi = (fi; rCi
× fi) crossesAi at a finite point, namely,Ci. In that case,AiCi ‖ z as depicted in

Fig. 2(a). As a result, the4-RUU PM loses the translational DOF alongfi;

1.2 Fi crossesAi at infinity, namely, at pointj = (z; 0). In such a case,fi ‖ z as shown in
Fig. 2(b). Consequently, the4-RUU PM loses the translational DOF alongz.
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Figure 2: Limb singularities.

5 SINGULARITY ANALYSIS OF THE 4-RUU PM USING GCA

In order to formulate a superbracket expression of the4-RUU PM, one must represent its different
wrenches inP3 and then select two points on each Plücker line ofJ. A finite line (pure force) could
be represented in the superbracket either by two finite points or by one finite point and its unique
point at infinity. In turn, a line at infinity could be represented by two points at infinity. However,
the selection of the foregoing points must highlight as muchas possible geometric (coincidence,
parallelism, orthogonality, intersection and so on) relations between the wrenches in order to obtain
a simplified expression of the superbracket.

As shown in Fig. 1(a), each actuation force of the4-RUU PM can be expressed asFi = (Pi∩Vi),
i = 1, . . . , 4, planePi being of normal(z × fi) = mi while planeVi is of normalmi × fi. On
the other hand, in a general case, two planesPi andPj (i 6= j) intersect at a finite line, namely,
Tij = (Pi ∩ Pj). Such a line is orthogonal to both vectorsz × fi andz × fj and is thus directed
alongz. Therefore, fori 6= j, one can find a lineTij = (Pi ∩ Pj) directed alongz and crossing
the two actuation forcesFi andFj . In this vein, leta andc be the intersection points ofT12 with
F1 andF2, respectively. Likewise, lete andg be the intersection points ofT34 with F3 andF4,
respectively.

On the other hand, letb = (f1; 0), d = (f2; 0), f = (f3; 0) andh = (f4; 0). Accordingly, the
four actuation forces can be expressed as:

F1 = ab ; F2 = cd ; F3 = ef ; F4 = gh (4)

Now let x = (x; 0) andy = (y; 0). Hence, linexy collects all points at infinity corresponding
to directions orthogonal toz. Let j = (z; 0), i = (m1; 0), k = (m2; 0), l = (m3; 0) andm =
(m4; 0). Accordingly, the four constraint moments are expressed as:

M1 = ij ; M2 = kj ; M3 = lj ; M4 = mj (5)

2011 CCToMM M3 Symposium 6



wherei, k, l andm belong to xy. A wrench graph, representing the projective lines associated
with the wrenches of the4-RUU PM in P3, is given in Fig. 1(b).

5.1 Superbracket decomposition

Due to the redundancy of constraints, a superbracket of the4-RUU PM can be composed of the
four actuation forcesFi (i = 1, . . . , 4) in addition to two among the four constraint moments

expressed in Eq. (5). Thus, one can write

(
4

2

)

= C2
4 = 6 superbracketsSj (j = 1, . . . , 6).

However, a parallel singularity occurs when the six possible superbrackets vanish simultaneously.
For example, the superbracketS1 involving the two constraint momentsij andkj takes the form:

S1 = [ab, ef, cd, gh, ij, kj] (6)

From Eq. (1),S1 can be decomposed into a linear combination of24 bracket monomials, which
leads to only five non-zero monomials as follows:

S1 = − [a b e f][c d h j][g i k j]− [a b e d][f g h j][c i k j] + [a b e h][f c d j][g i k j]

− [a b f h][e c d j][g i k j] + [a b f d][e g h j][c i k j] (7)

The bracket of four projective points is defined as the determinant of the matrix whose columns are
the homogeneous coordinates of these points. Accordingly,one has[g i k j] = [e i k j] = [i k j].
Furthermore, since pointse, g andj belong to the same projective line, namely, toT34, the bracket
[e g h j] is null and therefore:[a b f d][e g h j][c i k j] = 0. Thus, Eq. (7) becomes:

S1 = [i k j]
(

−[a b e f][c d h j]− [a b e d][f g h j] + [a b e h][f c d j]− [a b f h][e c d j]
)

(8)

From the determinant properties, we know that:

[a b e c][f d h j] = +[a b e f][c d h j] + [a b e d][f c h j] + [a b e h][f d c j] + [a b e j][f d h c] (9)

On the other hand,[f d h j] = 0. Moreover,[f d c j] = −[f c d j]. Therefore,

[a b e j][f d h c] = −[a b e f][c d h j]− [a b e d][f c h j] + [a b e h][f c d j] (10)

As a result, Eq. (8) becomes:

S = [i k j]
︸ ︷︷ ︸

A1

(

[a b e j][f d h c]− [a b f h][e c d j]
)

︸ ︷︷ ︸

B

(11)

Obviously, in Eq. (11), termA1 = [g i k j] depends only on the chosen constraint momentsij

andkj whereas termB does not depend on the choice of pointsi andk. Consequently, termB is
a common multiple of the six possible superbrackets:

Sj = Aj B ; j = 1, . . . , 6 (12)

whereA1 = [g i k j], A2 = [g i l j], A3 = [g i m j], A4 = [g k l j], A5 = [g k m j] and A6 =
[g l m j].
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Figure 3: Two critical configurations of the4-RUU PM.

5.2 Condition for constraint singularities

Constraint singularities correspond to the degeneracy of the constraint wrench system of the manip-
ulator. In such configurations, the manipulator loses some constraints and, as a result, its moving
platform gains one or several DOF. Accordingly, a constraint singularity of the4-RUU PM occurs
when the four constraint momentsMi (i = 1, . . . , 4) form an < 2-system, i.e., when all terms
Aj (j = 1, . . . , 6) expressed in Eq. (12) vanish simultaneously. Let us consider bracket[g i k j],
namely, termA1. This bracket vanishes iff pointsi, k andj belong to the same projective line.
Since pointj corresponds to a fixed direction alongz, it is a fixed point. Pointsi andk are asso-
ciated with two directions orthogonal toz and, therefore, these points belong to a line that cannot
pass through pointj unlessi andk are coincident. Consequently, all termsAj vanish simulta-
neously iff pointsi, k, l, andm become all coincident. As a result, the4-RUU PM reaches a
constraint singularity iff:

m1 ‖ m2 ‖ m3 ‖ m4 (13)

In such a configuration, the constraint wrench system of the manipulator degenerates into a1-
system and the moving platform gains one extra DOF, namely, the rotation about an axis directed
along the common direction ofmi (i = 1, . . . , 4), as shown in Fig. 3(a). In such a critical configu-
ration, if the moving platform rotates about an axis directed alongz, then the robot will come back
to a non-singular configuration.

On the other hand, in a constraint singular configuration, ifthe moving platform rotates about
an axis directed alongmi, the revolute joints attached to the moving platform will nolonger be
directed alongz. As a consequence, the constraint wrench of each limb becomes a wrench of
finite pitch (a combination of a force and a moment). In that case, the moving platform has neither
pure constraint moments nor pure constraint forces. Moreover, the limbs constrain neither a pure
rotation nor a pure translation. Such a configuration is shown in Fig. 3(b) and corresponds to
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Table 1: Actuation singularity conditions of the4-RUU PM.

Case Vector form Algebraic form
(a) f3 ‖ f4 f ≡ h

(b) u ‖ z e, c andj are aligned
(c) f2 ‖ f1 d ≡ b

(d) (f3 × f4) ‖ (u × z) f h ≡ u j

(e) (f2 × f1) ‖ (u × z) d b ≡ u j

(f) (f3 × f4) ‖ (f2 × f1) f h ≡ d b

(g) (f3 × f4) ‖ (u × z) ‖ (f2 × f1) f h ≡ u j ≡ d b

(h)
(

(f3 × f4)× (u × z)
)

⊥(f2 × f1) (f h ∧ u j) ∈ d b

acoupled motion.

5.3 Conditions for actuation singularities

In this paper, the actuation singularities correspond to configurations in whichJ is rank deficient
while the constraint wrench system does not degenerate. In such configurations, the motion of the
moving platform becomes uncontrollable, namely, the actuators cannot control the motion of the
moving platform. According to Eq. (12), these singularities are related to the vanishing conditions
of termB. In order to obtain geometric and vector conditions for actuation singularities, termB is
expressed in a more compact form by considering the following bracket simplifications:

• [f d h c] = [c d f h] = [a d f h];

• Sincej = c− a, [a b e j] = [(c− j) b e j] = [c b e j] = [e c b j].

Accordingly,

B = [a d f h][e c b j]− [a b f h][e c d j] = [a
•

d f h][e c
•

b j] = (a f h) ∧ (e c j) ∧ (d b) (14)

where the dotted letters stand for the permuted elements as explained in [14, 20]. An actuation
singularity occurs iff termB of Eq. (14) vanishes, namely, if the projective line(db) crosses the
intersection line of planes(a f h) and(e c j). It amounts to the following vector form:

(

(f3 × f4)× (u × z)
)

• (f2 × f1) = 0 (15)

From Eqs. (14) and (15), an actuation singularity of the4-RUU PM occurs upon each of the
following cases:

(a) Plane (a f h) degenerates, which happens ifff ≡ h ⇔ f3 ‖ f4, i.e., the two actuation forcesF3

andF4 are parallel;

2011 CCToMM M3 Symposium 9
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Figure 4: Two actuation singular configurations of the4-RUU PM.

(b) Plane (e c j) degenerates, which happens iff pointse, c andj are aligned. In that case,u ‖ z,
i.e.,T12 ≡ T34;

(c) Line (d b) degenerates, which happens iffd ≡ b, i.e., iff F1 ‖ F2 as shown in Fig. 4(a);

(d) Plane (a f h) coincides with plane (e c j). Since pointa lies in plane (e c j), the condition
(a f h) ≡ (e c j) amounts to(f h) ≡ (u j). In that case,(f3 × f4) ‖ (u × z), i.e.,f3, f4, u and
z are orthogonal to a given direction;

(e) Line (d b) lies in plane (a f h). In such a case,(f2 × f1) ‖ (f3 × f4). For example, if the four
actuation forces are coplanar, as shown in Fig. 4(b);

(f) Line (d b) lies in plane (e c j). In such a case,(f2 × f1) ‖ (u × z);

(g) The intersection line of planes (a f h) and (e c j) coincides with line (d b). Since planes (a f h)
and (e c j) contain pointa, they intersect at a line at infinity iff they coincide. Accordingly,
condition (g) amounts to(f h) ≡ (u j) ≡ (d b), i.e.,(f3 × f4) ‖ (u × z) ‖ (f2 × f1);

(h) Let us consider the general case of Eq. (15), namely, the intersection line of planes (af h)
and (e c j) crosses line (d b). If planes (a f h) and (e c j) are not coincident (condition(d)),
then they will intersect at a finite lineD directed alongn = (f3 × f4) × (u × z). Thus, the
point at infinity,n = (n; 0), of line D is the intersection point of lines (f h) and (u j). The
finite line D crosses line (d b) iff n ∈ (d b). In that case, the lines at infinity (f h), (d b)
and (u j) intersect at pointn. As a result,n is orthogonal to(f2 × f1), (f3 × f4) and(u × z).

All possible cases of Eq. (15) are expanded in Table 1. It should be noted that Eq. (15) is obtained
by considering two linesT12 (crossingF1 andF2) and T34 (crossingF3 andF4). Vector u in
Eq. (15) could be written asu34

12, i.e., the unit vector of a line non-parallel toz and crossing lines

2011 CCToMM M3 Symposium 10



T12 andT34. Accordingly, since a lineTij exists between each pair of forcesFi andFj , the vector
form of actuation singularities can be generalized as follows:

(

(fi × fj)× (fk × f l)
)

• (ukl
ij × z) = 0 (16)

where(i, j, k, l) ∈ (1, 2, 3, 4)4, i 6= j 6= k 6= l andukl
ij is the unit vector of a line crossingTij

andTkl.

6 CONCLUSION

In this paper, the singularity conditions of 3T1R Parallel Manipulators (PMs) with identical limb
structures were investigated through the singularity analysis of the4-RUU PM based on Grassmann-
Cayley Algebra (GCA). First, the Jacobian matrixJ of the PM was derived using screw theory.
Then, a wrench graph that represents the wrenches of the4-RUU PM, namely, the rows ofJ in
the 3-dimensional projective space, was obtained. Accordingly, a superbracket was formulated
and explored to provide a compact vector expression for the singularity locus, which is difficult to
assess using classical linear algebra tools. Finally, all the geometric singularity conditions of the
4-RUU PM were enumerated and some singular configurations were illustrated.
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