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INTRODUCTION

The singular configurations of Parallel Manipulators (PMs) are critical poses characterized by either the loss of some degrees of freedom (DOF), the gain of some extra DOF or the loss of stiffness. The determination of singular configurations is thus a central issue in robotics due to their major effect on the robot performance [START_REF] Merlet | Singular Configurations of Parallel Manipulators and Grassmann Geometry[END_REF][START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF]. Lower-mobility PMs are suitable for a wide range of applications that require fewer than six DOF. The classification of singularities for lower-mobility PMs has stimulated the interest of many researchers [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF][START_REF] Fang | Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures[END_REF][START_REF] Conconi | A New Assessment of Singularities of Parallel Kinematic Chains[END_REF][START_REF] Zlatanov | Singularity Analysis of Mechanisms and Robots Via a Velocity-Equation Model of the Instantaneous Kinematics[END_REF]. In this paper, the classification proposed in [START_REF] Fang | Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures[END_REF], which is similar the one proposed in [START_REF] Joshi | Jacobian Analysis of Limited-DOF Parallel Manipulators[END_REF], is adopted. Accordingly, a lower-mobility PM can exhibit three different types of singularities: (i) limb singularities, (ii) platform singularities [START_REF] Fang | Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures[END_REF], also known as constraint singularities [START_REF] Zlatanov | Constraint Singularities of Parallel Mechanisms[END_REF] and (iii) actuation singularities, also called architecture singularities [START_REF] Joshi | Jacobian Analysis of Limited-DOF Parallel Manipulators[END_REF]. Constraint and actuation singularities are referred to as parallel singularities and are related to the rank deficiency of the 6 × 6 Jacobian matrix J of the PM.

The determination of the parallel singularities of a PM consists in finding either the poses, yielding the singularity locus, or the conditions, yielding the configurations, for which J becomes rank-deficient. Generally, J expresses a system of screws or more precisely Plücker lines. In this paper, J is determined by using the theory of reciprocal screws [START_REF] Ball | A Treatise On the Theory of Screws[END_REF][START_REF] Waldron | The Mobility of Linkages[END_REF][START_REF] Hunt | Kinematic Geometry of Mechanisms[END_REF][START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF][START_REF] Amine | Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints[END_REF]. For most manipulators, the determinant of such a matrix is highly nonlinear and unwieldy to assess even with a computer algebra system. Hence, linear algebra fails to provide satisfactory results, and therefore, the use of Grassmann-Cayley Algebra (GCA) [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Amine | Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints[END_REF][START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF][START_REF] Kanaan | Singularity Analysis of Lower-Mobility Parallel Manipulators using Grassmann-Cayley Algebra[END_REF] or Grassmann Geometry (GG) [START_REF] Merlet | Singular Configurations of Parallel Manipulators and Grassmann Geometry[END_REF][START_REF] Merlet | Parallel Robots[END_REF][START_REF] Mbarek | Singularity Analysis of a Fully Parallel Manipulator with Five-Degrees-of-Freedom Based on Grassmann Line Geometry[END_REF][START_REF] Tale-Masouleh | Singularity Analysis of 5-RPRRR Parallel Mechanisms via Grassmann Line Geometry[END_REF] can be regarded as a promising solution. The GCA is a systematic approach to obtain a bracket representation of the determinant of J, called superbracket. By exploring this superbracket, it is possible to obtain a vector form and a geometrical interpretation of the parallel singularities. On the other hand, GG is a geometric approach that provides a classification for the conditions under which a set of n Plücker lines spans a variety of dimension lower than n. This paper focuses on the application of GCA to provide a compact vector expression for the singularity locus of 3T1R PMs with identical limb structures.

Schönflies Motion Generators (SMGs) [START_REF] Caro | The Rule-based Conceptual Design of the Architecture of Serial Schönflies-motion Generators[END_REF] are manipulators performing three independent translations and one rotation about an axis of fixed direction. This type of motion is required in a wide range of industrial pick and place operations such as the assembly of computer circuit boards. The type synthesis of parallel SMGs with identical limb structures, performed in [START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF], leads to four kinematic architectures1 : 4-RUU, 4-PUU, 4-RRUR and 4-PRUR. For instance, as an important criterion, the kinematic arrangements RUU and PUU require two links whereas the other ones require at least three links. In this paper, we focus on the singularity analysis of the 4-RUU PM based on GCA. The remainder of the paper is organized as follows. First, the superbracket decomposition of GCA and some fundamental concepts of the projective space P 3 are recalled. Then, the 4-RUU PM is presented and its constraint analysis is performed in order to determine its Jacobian matrix J. A superbracket of the PM is then formulated. Finally, the singularity conditions of the 4-RUU PM are enumerated and some singular configurations are illustrated.

GRASSMANN-CAYLEY ALGEBRA

The GCA was developed by H. Grassmann (1809-1877) as a calculus for linear varieties operating on extensors with the join "∨" and meet "∧" operators. The latter are associated with the span and intersection of vector spaces of extensors characterized by their step. GCA makes it possible to work at the symbolic level, and therefore, to produce coordinate-free algebraic expressions for the singularity conditions of spatial PMs. For further details on GCA, the reader is referred to [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF][START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF] and references therein.

Superbracket decomposition

The rows of the Jacobian matrix J of a PM are usually Plücker coordinate vectors of six projective lines. The superjoin of these six vectors in P 5 corresponds to the determinant of J up to a scalar multiple, which is the superbracket in GCA Λ(V (2) ) [START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF]. Thus, a singularity occurs when this superbracket vanishes. The superbracket is an expression involving 12 points selected on the six lines and can be developed into a linear combination of 24 bracket monomials [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Mcmillan | Invariants of Antisymmetric Tensors[END_REF], each one being the product of three brackets of four projective points:

[ab, cd, ef, gh, ij, kl] = 24 i=1 y i (1) 
where A bracket [abcd] is null if and only if (iff) the projective points a, b, c and d are coplanar.

y 1 = -[abcd][efgi][hjkl] y 2 = [abcd][efhi][gjkl] y 3 = [abcd][efgj][hikl] y 4 = -[abcd][efhj][gikl] y 5 = [abce][dfgh][ijkl] y 6 = -[abde][cfgh][ijkl] y 7 = -[abcf][degh][ijkl] y 8 = [abdf][cegh][ijkl] y 9 = -[abce][dghi][fjkl] y 10 = [abde][cghi][fjkl] y 11 = [abcf][dghi][ejkl] y 12 = [abce][dghj][fikl] y 13 = -[abdf][cghi][ejkl]

Projective space

The 3-dimensional projective space P 3 is characterized by the affine space R 3 in addition to the plane at infinity Ω ∞ . It is noteworthy that the coordinates of a projective element are determined up to a scalar multiple. A projective point has four homogeneous coordinates whereas a projective line has six Plücker coordinates represented by its Plücker coordinate vector. The following properties highlight the relations between projective elements:

• A finite point, A, is represented by its homogeneous coordinates vector a = (a 1 , a 2 , a 3 , 1) T , the first three coordinates being its Cartesian coordinates in R 3 ;

• A finite line, L, is represented by its Plücker coordinates vector F = (s; r × s); where s is a unit vector along the line direction, (r × s) represents the moment of L with respect to the origin and r is the position vector of any point on L; • Let underlined points denote points at infinity. Any finite line, F = (s; r × s), has a unique point at infinity c = (s; 0). This point only depends on the line direction and is determined up to a scalar multiple. Accordingly, if a and b are two finite points on F , then c = ba. Furthermore, all finite lines directed along s intersect at one common point at infinity, namely, c;
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• All finite planes of normal vector m, have a common line at infinity. This line is given by: M = (0; m) and passes through the point at infinity of any finite line orthogonal to m;

• Two lines at infinity M 1 = (0; m 1 ) and M 2 = (0; m 2 ) intersect at a unique point at infinity g = (m 1 × m 2 ; 0).

JACOBIAN MATRIX OF THE 4-RUU PM

3.1 Architecture review and kinematic modeling Figure 1(a) represents the CAD model of a 4-RUU PM, which consists of a fixed base and a moving platform connected to each other with four identical RUU limbs. The input of the mechanism is provided by four revolute actuators attached to the base. From [START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF], the geometric characteristics of each limb are:

1. Each limb is composed of five revolute joints such that the second and the third ones, as well as the fourth and the fifth ones, are built with intersecting and perpendicular axes and are thus assimilated to U-joints of central points B i and C i , respectively;

defined by the axes of the second and the last revolute joints has (z × f i ) = m i as normal vector;

3. The third and the fourth revolute joints of the i-th limb have axes parallel to m i that changes instantaneously. These axes form a plane V i having (m i × f i ) as normal vector.

Constraint analysis

Each limb

l i = R i U i 1 U i 2 (i = 1, . . . , 4 
) of the 4-RUU PM applies one constraint moment M i = (0; m i ×z) reciprocal to the twists associated with joints R i , U i 1 and U i 2 . Vectors m i ×z have a common orthogonal vector z. Thus, in a non singular configuration, the four constraint wrenches M i form a 2-system W c 4RU U , namely, the constraint wrench system of the PM:

W c 4RU U = span(M i ) ; i = 1, . . . , 4 (2) 
The legs of the 4-RUU PM can apply independently four constraint wrenches to limit only two DOF. Thus, it is an over-constrained SMG. Moreover, the moving platform cannot rotate about an axis of direction orthogonal to z. It provides three independent translations and one rotation about an axis of fixed direction along z. By locking the actuator of the i-th limb, an additional constraint appears, which is called the limb actuation wrench. It is a pure force

F i = (f i ; r C i × f i ) where f i is the unit vector of (B i C i = P i ∩ V i )
and r C i is the position vector of point C i . In a non-singular configuration, the actuation wrench system of the PM is a 4-system expressed as:

W a 4RU U = span(F i ) ; i = 1, . . . , 4 (3) 
Based on the constraint analysis, the rows of J of the 4-RUU PM can be composed of four independent zero pitch wrenches within W a 4RU U plus two independent infinite pitch wrenches within W c 4RU U . However, a parallel singularity occurs when the system spanned by the four actuation forces and the four constraint moments becomes a (n < 6)-system.

LIMB SINGULARITIES

The superbracket of a PM only provides information about the parallel singularities. Thus, it does not consider limb singularities. A limb singularity is similar to the singularity of a serial manipulator. It occurs for the 4-RUU PM when a limb kinematic screw system degenerates. This happens for the i-th limb if the actuation force F i = (f i ; r C i ×f i ) crosses the axis, A i , of the actuated joint (the first R-joint of the limb). In such a case, the limb actuation force acts as a constraint force even without locking the limb actuator. Consequently, the platform loses one DOF. Referring to Fig. 1(a), this can occur upon two situations:

1.1 F i = (f i ; r C i × f i ) crosses A i at a finite point, namely, C i . In that case, A i C i z as depicted in
Fig. 2(a). As a result, the 4-RUU PM loses the translational DOF along f i ;

1.2 F i crosses A i at infinity, namely, at point j = (z; 0). In such a case, f i z as shown in Fig. 2(b). Consequently, the 4-RUU PM loses the translational DOF along z. 

A i B i C i A i F i z (a) A limb singularity, condition 1.1. A i B i C i A i F i z z z (b) A limb singularity, condition 1.2.

SINGULARITY ANALYSIS OF THE 4-RUU PM USING GCA

In order to formulate a superbracket expression of the 4-RUU PM, one must represent its different wrenches in P 3 and then select two points on each Plücker line of J. A finite line (pure force) could be represented in the superbracket either by two finite points or by one finite point and its unique point at infinity. In turn, a line at infinity could be represented by two points at infinity. However, the selection of the foregoing points must highlight as much as possible geometric (coincidence, parallelism, orthogonality, intersection and so on) relations between the wrenches in order to obtain a simplified expression of the superbracket.

As shown in Fig. 1(a), each actuation force of the 4-RUU PM can be expressed as F i = (P i ∩V i ), i = 1, . . . , 4, plane P i being of normal (z × f i ) = m i while plane V i is of normal m i × f i . On the other hand, in a general case, two planes P i and P j (i = j) intersect at a finite line, namely, T ij = (P i ∩ P j ). Such a line is orthogonal to both vectors z × f i and z × f j and is thus directed along z. Therefore, for i = j, one can find a line T ij = (P i ∩ P j ) directed along z and crossing the two actuation forces F i and F j . In this vein, let a and c be the intersection points of T 12 with F 1 and F 2 , respectively. Likewise, let e and g be the intersection points of T 34 with F 3 and F 4 , respectively.

On the other hand, let b = (f 1 ; 0), d = (f 2 ; 0), f = (f 3 ; 0) and h = (f 4 ; 0). Accordingly, the four actuation forces can be expressed as:

F 1 = ab ; F 2 = cd ; F 3 = ef ; F 4 = gh (4) 
Now let x = (x; 0) and y = (y; 0). Hence, line xy collects all points at infinity corresponding to directions orthogonal to z. Let j = (z; 0), i = (m 1 ; 0), k = (m 2 ; 0), l = (m 3 ; 0) and m = (m 4 ; 0). Accordingly, the four constraint moments are expressed as:

M 1 = ij ; M 2 = kj ; M 3 = lj ; M 4 = mj (5) 
where i, k, l and m belong to xy. A wrench graph, representing the projective lines associated with the wrenches of the 4-RUU PM in P 3 , is given in Fig. 1(b).

Superbracket decomposition

Due to the redundancy of constraints, a superbracket of the 4-RUU PM can be composed of the four actuation forces F i (i = 1, . . . , 4) in addition to two among the four constraint moments expressed in Eq. ( 5). Thus, one can write 4 2 = C 2 4 = 6 superbrackets S j (j = 1, . . . , 6). However, a parallel singularity occurs when the six possible superbrackets vanish simultaneously. For example, the superbracket S 1 involving the two constraint moments ij and kj takes the form:

S 1 = [ab, ef, cd, gh, ij, kj] (6) 
From Eq. ( 1), S 1 can be decomposed into a linear combination of 24 bracket monomials, which leads to only five non-zero monomials as follows:

S 1 = -[a b e f][c d h j][g i k j] -[a b e d][f g h j][c i k j] + [a b e h][f c d j][g i k j] -[a b f h][e c d j][g i k j] + [a b f d][e g h j][c i k j] (7) 
The bracket of four projective points is defined as the determinant of the matrix whose columns are the homogeneous coordinates of these points. Accordingly, one has

[g i k j] = [e i k j] = [i k j].
Furthermore, since points e, g and j belong to the same projective line, namely, to T 34 , the bracket [e g h j] is null and therefore: [a b f d][e g h j][c i k j] = 0. Thus, Eq. ( 7) becomes:

S 1 = [i k j] -[a b e f][c d h j] -[a b e d][f g h j] + [a b e h][f c d j] -[a b f h][e c d j] (8) 
From the determinant properties, we know that: 

As a result, Eq. ( 8) becomes:

S = [i k j] A 1 [a b e j][f d h c] -[a b f h][e c d j] B (11) 
Obviously, in Eq. ( 11), term A 1 = [g i k j] depends only on the chosen constraint moments ij and kj whereas term B does not depend on the choice of points i and k. Consequently, term B is a common multiple of the six possible superbrackets:

S j = A j B ; j = 1, . . . , 6 (12) 
where 

A 1 = [g i k j], A 2 = [g i l j], A 3 = [g i m j], A 4 = [g k l j], A 5 = [g k m j] and A 6 = [g l m j].

Condition for constraint singularities

Constraint singularities correspond to the degeneracy of the constraint wrench system of the manipulator. In such configurations, the manipulator loses some constraints and, as a result, its moving platform gains one or several DOF. Accordingly, a constraint singularity of the 4-RUU PM occurs when the four constraint moments M i (i = 1, . . . , 4) form a n < 2-system, i.e., when all terms A j (j = 1, . . . , 6) expressed in Eq. ( 12) vanish simultaneously. Let us consider bracket [g i k j], namely, term A 1 . This bracket vanishes iff points i, k and j belong to the same projective line. Since point j corresponds to a fixed direction along z, it is a fixed point. Points i and k are associated with two directions orthogonal to z and, therefore, these points belong to a line that cannot pass through point j unless i and k are coincident. Consequently, all terms A j vanish simultaneously iff points i, k, l, and m become all coincident. As a result, the 4-RUU PM reaches a constraint singularity iff:

m 1 m 2 m 3 m 4 (13) 
In such a configuration, the constraint wrench system of the manipulator degenerates into a 1system and the moving platform gains one extra DOF, namely, the rotation about an axis directed along the common direction of m i (i = 1, . . . , 4), as shown in Fig. 3(a). In such a critical configuration, if the moving platform rotates about an axis directed along z, then the robot will come back to a non-singular configuration.

On the other hand, in a constraint singular configuration, if the moving platform rotates about an axis directed along m i , the revolute joints attached to the moving platform will no longer be directed along z. As a consequence, the constraint wrench of each limb becomes a wrench of finite pitch (a combination of a force and a moment). In that case, the moving platform has neither pure constraint moments nor pure constraint forces. Moreover, the limbs constrain neither a pure rotation nor a pure translation. Such a configuration is shown in Fig. 3(b) and corresponds to Table 1: Actuation singularity conditions of the 4-RUU PM.

Case

Vector form Algebraic form (a)

f 3 f 4 f ≡ h (b)
u z e, c and j are aligned

(c) f 2 f 1 d ≡ b (d) (f 3 × f 4 ) (u × z) f h ≡ u j (e) (f 2 × f 1 ) (u × z) d b ≡ u j (f) (f 3 × f 4 ) (f 2 × f 1 ) f h ≡ d b (g) (f 3 × f 4 ) (u × z) (f 2 × f 1 ) f h ≡ u j ≡ d b (h) (f 3 × f 4 ) × (u × z) ⊥(f 2 × f 1 ) (f h ∧ u j) ∈ d b
a coupled motion.

Conditions for actuation singularities

In this paper, the actuation singularities correspond to configurations in which J is rank deficient while the constraint wrench system does not degenerate. In such configurations, the motion of the moving platform becomes uncontrollable, namely, the actuators cannot control the motion of the moving platform. According to Eq. ( 12), these singularities are related to the vanishing conditions of term B. In order to obtain geometric and vector conditions for actuation singularities, term B is expressed in a more compact form by considering the following bracket simplifications: 

• [f d h c] = [c d f h] = [a d f h]; • Since j = c -a
where the dotted letters stand for the permuted elements as explained in [START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF][START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF]. An actuation singularity occurs iff term B of Eq. ( 14) vanishes, namely, if the projective line (db) crosses the intersection line of planes (a f h) and (e c j). It amounts to the following vector form:

(f 3 × f 4 ) × (u × z) • (f 2 × f 1 ) = 0 (15) 
From Eqs. ( 14) and ( 15), an actuation singularity of the 4-RUU PM occurs upon each of the following cases:

(a) Plane (a f h) degenerates, which happens iff f ≡ h ⇔ f 3 f 4 , i.e., the two actuation forces F 3 and F 4 are parallel; All possible cases of Eq. ( 15) are expanded in Table 1. It should be noted that Eq. ( 15) is obtained by considering two lines T 12 (crossing F 1 and F 2 ) and T 34 (crossing F 3 and F 4 ). Vector u in Eq. ( 15) could be written as u 34 12 , i.e., the unit vector of a line non-parallel to z and crossing lines 2011 CCToMM M 3 Symposium 10 T 12 and T 34 . Accordingly, since a line T ij exists between each pair of forces F i and F j , the vector form of actuation singularities can be generalized as follows:

F 1 F 2 F 3 F 4 (a) F 1 and F 2 are parallel. F 1 F 2 F 3 F 4 B 1
(f i × f j ) × (f k × f l ) • (u kl ij × z) = 0 (16) 
where (i, j, k, l) ∈ (1, 2, 3, 4) 4 , i = j = k = l and u kl ij is the unit vector of a line crossing T ij and T kl .

CONCLUSION

In this paper, the singularity conditions of 3T1R Parallel Manipulators (PMs) with identical limb structures were investigated through the singularity analysis of the 4-RUU PM based on Grassmann-Cayley Algebra (GCA). First, the Jacobian matrix J of the PM was derived using screw theory. Then, a wrench graph that represents the wrenches of the 4-RUU PM, namely, the rows of J in the 3-dimensional projective space, was obtained. Accordingly, a superbracket was formulated and explored to provide a compact vector expression for the singularity locus, which is difficult to assess using classical linear algebra tools. Finally, all the geometric singularity conditions of the 4-RUU PM were enumerated and some singular configurations were illustrated.
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 3 Figure 3: Two critical configurations of the 4-RUU PM.
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 1 b) All actuation forces are coplanar.
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 4 Figure 4: Two actuation singular configurations of the 4-RUU PM.

R, P and U stand for a revolute joint, a prismatic joint and a universal joint, respectively, while an underline is used to denote the actuated joints.

The axes of the first, second and fifth revolute joints of the i-th limb are parallel to a fixed direction along z. Let f i be the unit vector directed along line B i C i . Thus, the plane P i
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