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Abstract

This paper deals with the singularity analysisteDOF parallel manipulators with identical limb
structures performing Schonflies motions, namely, thméependent translations and one rotation
about an axis of fixed direction. Tliex 6 Jacobian matrix of such manipulators contains two lines
at infinity among its six Plucker lines. Some points at intfirdre thus introduced to formulate the
superbracket of Grassmann-Cayley algebra, which cornelspim the determinant of the Jacobian
matrix. By exploring this superbracket, all the singuladonditions of such manipulators can be
enumerated. The study is illustrated through the singylanalysis of the 4-RU parallel manip-
ulator.

Keywords: parallel manipulator, singularity, Schonflies motionsagsmann-Cayley algebra, su-
perbracket.

Analyse de Singularies du Manipulateur Parallele 4-RJU au moyen de 'Algebre
de Grassmann-Cayley

Résune

Cet article traite de I'analyse des singularités de mdatpurs paralleles a quatre degrés de liberté
ayant des jambes identiques, générant des mouvementedichonflies, c.a.d., trois translations
indépendantes et une rotation autour d’'un axe de direéitten La matrice Jacobienrtex 6 de
ces manipulateurs contient deux lignes a I'infini parmisigdignes de Plicker. Quelques points
a l'infini sont ainsi introduits pour formuler le superbkat de 'algebre de Grassmann-Cayley
qui est correspond au déterminant de la matrice jacobigame&xaminant ce superbracket, toutes
les conditions de singularités de ces manipulateurs pe@tee énumeérées. Les contributions de
I'article sont illustrées a travers I'analyse de singit#s du manipulateur parallele 4.

Mots-clé: manipulateur paralléle, singularités, mouvements d@Bities, algebre de Grassmann-
Cayley, superbracket.
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1 INTRODUCTION

The singular configurations of Parallel Manipulators (PN82 critical poses characterized by
either the loss of some degrees of freedom (DOF), the gaimmiesextra DOF or the loss of
stiffness. The determination of singular configuratiorthiss a central issue in robotics due to their
major effect on the robot performance [1, 2]. Lower-mokiftMs are suitable for a wide range of
applications that require fewer than six DOF. The clasdificeof singularities for lower-mobility
PMs has stimulated the interest of many researchers [3a-@)id paper, the classification proposed
in [4], which is similar the one proposed in [7], is adoptea.cArdingly, a lower-mobility PM can
exhibit three different types of singularitieg) (imb singularities, {) platform singularities [4],
also known as constraint singularities [8] and)(actuation singularities, also called architecture
singularities [7]. Constraint and actuation singulasitaee referred to gsarallel singularitiesand
are related to the rank deficiency of thex 6 Jacobian matrixd of the PM.

The determination of the parallel singularities of a PM gstssin finding either the poses,
yielding the singularity locus, or the conditions, yieldithe configurations, for which becomes
rank-deficient. Generallyl expresses a system of screws or more precisely Pluckesr linghis
paper,J is determined by using the theory of reciprocal screws [9—E8r most manipulators,
the determinant of such a matrix is highly nonlinear and @hiyi to assess even with a computer
algebra system. Hence, linear algebra fails to providefsatory results, and therefore, the use
of Grassmann-Cayley Algebra (GCA) [2, 13-15] or Grassmaeortetry (GG) [1,16-18] can be
regarded as a promising solution. The GCA is a systematimapp to obtain a bracket represen-
tation of the determinant af, calledsuperbracket By exploring this superbracket, it is possible
to obtain a vector form and a geometrical interpretatiorhefpiarallel singularities. On the other
hand, GG is a geometric approach that provides a classiiicédr the conditions under which a
set ofn Plucker lines spans a variety of dimension lower thafThis paper focuses on the appli-
cation of GCA to provide a compact vector expression for thgudarity locus of 3T1R PMs with
identical limb structures.

Schonflies Motion Generators (SMGs) [19] are manipulapegorming three independent
translations and one rotation about an axis of fixed diractidhis type of motion is required
in a wide range of industrial pick and place operations swsctha assembly of computer circuit
boards. The type synthesis of parallel SMGs with identizablstructures, performed in [12],
leads to four kinematic architectutest-RUU, 4-PUU, 4-RRUR and4-PRUR. For instance, as
an important criterion, the kinematic arrangemeRt$U andPUU require two links whereas the
other ones require at least three links. In this paper, was@n the singularity analysis of the
4-RUU PM based on GCA. The remainder of the paper is organized bsvil First, the su-
perbracket decomposition of GCA and some fundamental gascé the projective spade; are
recalled. Then, thé-RUU PM is presented and its constraint analysis is performeddeardo de-
termine its Jacobian matrik A superbracket of the PM is then formulated. Finally, tmgsiarity
conditions of thel-RUU PM are enumerated and some singular configurations aré&ated.

IR, P andU stand for a revolute joint, a prismatic joint and a univejeait, respectively, while an underline is
used to denote the actuated joints.
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2 GRASSMANN-CAYLEY ALGEBRA

The GCA was developed by H. Grassmah®00—1877) as a calculus for linear varieties operating
on extensorsvith thejoin “Vv” and meet‘ A” operators. The latter are associated with$panand
intersectionof vector spaces of extensors characterized by gtep GCA makes it possible to
work at the symbolic level, and therefore, to produce cowtdi-free algebraic expressions for the
singularity conditions of spatial PMs. For further detailsGCA, the reader is referred to [2,14,20]
and references therein.

2.1 Superbracket decomposition

The rows of the Jacobian matrixof a PM are usually Pliicker coordinate vectors of six pribjec
lines. The superjoin of these six vectorshrn corresponds to the determinantbiip to a scalar
multiple, which is the superbracket in GCAV(?)) [20]. Thus, a singularity occurs when this
superbracket vanishes. The superbracket is an expressiining 12 points selected on the six
lines and can be developed into a linear combinatiopdabracket monomials [2, 21], each one
being the product of three brackets of four projective mint

[ab, cd, ef, gh, ij, k1] = > _y; 1)
=1

where
abcd][efgi][hjkl] lefhi gjkl} y3 = [abcd][efg]|[hikl]

= Y2 ] ]
y4 = {abcd] lefhj][gikl] y5 = [abce] [dfgh}

[
[ijk1 ye = —[abde][cfgh]|[ijkl]
abcf|[degh|[ijkl] ys = [abdf][cegh][ijkl] Y9 = —[abce|[dghi][f jk1]
ylo = [abde|[cghi|[fjk1l]  y;; = [abcf|[dghi][ejkl] w2 = [abce|[dghj][fikl]
y13 = —[abdf][cghi]lejkl] yi4 = —[abde][cghj][fikl] y15 = —[abcf][dghj][eikl]
Y16 = [abdf|[cghj]leikl]  yi7 = [abcg|[defi][hjkl]  yi153 = —[abdg][cefi][hjkl]
Y19 = —[abch|[defi][gjkl] 1y = —[abcg][defj][hikl] yzn = [abdh][cefi][gjkl]

Yoo = [abdg][cefj][hikl]  yo3 = [abch|[def]j][gikl] Y94 = —[abdh][cefj][gikl]
A bracket[abcd] is null if and only if (iff) the projective points, b, c andd are coplanar.

2.2 Projective space

The 3-dimensional projective spad® is characterized by the affine spake in addition to the
plane at infinity(2.,. It is noteworthy that the coordinates of a projective elehage determined up
to a scalar multiple. A projective point has four homogerssmordinates whereas a projective line
has six Plicker coordinates represented by its Pluckandawate vector. The following properties
highlight the relations between projective elements:

o Afinite point, 4, is represented by its homogeneous coordinates veetofa,, a,, as, 1)7,
the first three coordinates being its Cartesian coordinatgs;

e Afinite line, £, is represented by its Pliicker coordinates veétet (s; r x s); wheresis
a unit vector along the line directiom, & s) represents the moment gfwith respect to the
origin andr is the position vector of any point of;
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(b) Wrench graph irPs.

Figure 1: A4-RUU PM.

e Let underlined points denote points at infinity. Any finitedj /' = (s; r x s), has a unique
point at infinityc = (s; 0). This point only depends on the line direction and is deteedi
up to a scalar multiple. Accordingly, € andb are two finite points orf’, thenc = b —

a. Furthermore, all finite lines directed alosgntersect at one common point at infinity,
namely,c;

¢ All finite planes of normal vectom, have a common line at infinity. This line is given by:
M = (0; m) and passes through the point at infinity of any finite line ogibnal tom;

e Two lines at infinityM; = (0; m;) and M, = (0; m,) intersect at a unique point at infinity
g = (m; x my; 0).
3 JACOBIAN MATRIX OF THE 4-RUU PM
3.1 Architecture review and kinematic modeling

Figure 1(a) represents the CAD model aFRUU PM, which consists of a fixed base and a moving
platform connected to each other with four identiBJU limbs. The input of the mechanism is
provided by four revolute actuators attached to the basemii2], the geometric characteristics
of each limb are:

1. Each limbis composed of five revolute joints such that #w®ed and the third ones, as well
as the fourth and the fifth ones, are built with intersecting perpendicular axes and are
thus assimilated tbJ-joints of central points3; andC;, respectively;

2. The axes of the first, second and fifth revolute joints ofittielimb are parallel to a fixed
direction alongz. Let f; be the unit vector directed along ling,C;. Thus, the plané>;
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defined by the axes of the second and the last revolute joast&zhx f;) = m; as normal
vector;

3. The third and the fourth revolute joints of théh limb have axes parallel tm; that changes
instantaneously. These axes form a pléhkaving(m; x f;) as normal vector.

3.2 Constraint analysis

Each limbl; = R'U'UY (i = 1,...,4) of the4-RUU PM applies one constraint momehf; =
(0; m; x z) reciprocal to the twists associated with joiR's U’ andU}. Vectorsm; x z have a com-
mon orthogonal vectaz. Thus, in a non singular configuration, the four constrairgnehes\/;
form a2-systemiig,,;, namely, the constraint wrench system of the PM:

The legs of thel-RUU PM can apply independently four constraint wrenches totlonly two
DOF. Thus, itis an over-constrained SMG. Moreover, the mgyilatform cannot rotate about an
axis of direction orthogonal ta. It provides three independent translations and one cotatbout
an axis of fixed direction along By locking the actuator of theth limb, an additional constraint
appears, which is called the limb actuation wrench. It isegarceF; = (f;;r¢, x f;) wheref;

is the unit vector of B,C; = P; N'V;) andr ¢, is the position vector of poin®;. In a non-singular
configuration, the actuation wrench system of the PM4ssgstem expressed as:

Wigpy =SPant;) ; i=1,....4 3)

Based on the constraint analysis, the row3 of the4-RUU PM can be composed of four indepen-
dent zero pitch wrenches withit} ,;,,; plus two independent infinite pitch wrenches withi, ;.
However, a parallel singularity occurs when the system ispdioy the four actuation forces and
the four constraint moments becomesa< 6)-system.

4 LIMB SINGULARITIES

The superbracket of a PM only provides information aboutghgallel singularities. Thus, it
does not consider limb singularities. A limb singularitysisnilar to the singularity of a serial
manipulator. It occurs for th&-RUU PM when a limb kinematic screw system degenerates. This
happens for theth limb if the actuation forcé’; = (f;; r, xf;) crosses the axigy;, of the actuated
joint (the firstR-joint of the limb). In such a case, the limb actuation forctsas a constraint force
even without locking the limb actuator. Consequently, ttefprm loses one DOF. Referring to
Fig. 1(a), this can occur upon two situations:

1.1 F; = (f;; re, x f;) crossed; at a finite point, namelyy;. In that cased;C; || z as depicted in
Fig. 2(a). As a result, th&-RUU PM loses the translational DOF alofig

1.2 F; crossesA; at infinity, namely, at poinf = (z; 0). In such a casef; || z as shown in
Fig. 2(b). Consequently, theRUU PM loses the translational DOF alomg
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(a) A limb singularity, conditiorL.1 (b) A limb singularity, conditiori.2

Figure 2: Limb singularities.

5 SINGULARITY ANALYSIS OF THE 4-RUU PM usING GCA

In order to formulate a superbracket expression ofitiRtJU PM, one must represent its different
wrenches irP; and then select two points on each Pliicker ling.d finite line (pure force) could
be represented in the superbracket either by two finite painby one finite point and its unique
point at infinity. In turn, a line at infinity could be represed by two points at infinity. However,
the selection of the foregoing points must highlight as maslpossible geometric (coincidence,
parallelism, orthogonality, intersection and so on) rela between the wrenches in order to obtain
a simplified expression of the superbracket.

As shown in Fig. 1(a), each actuation force of taBUU PM can be expressed As= (P;NV;),
i = 1,...,4, planeP; being of normal(z x f;) = m; while plane); is of normalm; x f;. On
the other hand, in a general case, two plaReand?P; (i # j) intersect at a finite line, namely,
T;; = (P: NP;). Such a line is orthogonal to both vectars: f; andz x f; and is thus directed
alongz. Therefore, fori # j, one can find a ling;; = (P, N P;) directed along and crossing
the two actuation forces; and F;. In this vein, leta andc be the intersection points af, with
Fy and F», respectively. Likewise, le¢ andg be the intersection points gk, with F3 and F,
respectively.

On the other hand, let = (f;; 0), d = (f2; 0), £ = (f3; 0) andh = (f4; 0). Accordingly, the
four actuation forces can be expressed as:

Fi=ab ; [Fy=cd ; Fz=ef ; F;=gh (4)

Now letx = (x; 0) andy = (y; 0). Hence, linexy collects all points at infinity corresponding

to directions orthogonal ta. Letj = (z; 0), i = (my; 0), k = (My; 0), 1 = (m3; 0) andm =
(my; 0). Accordingly, the four constraint moments are expressed as
My=1ij 3 My=%kj ; M;=1j ; My=mj (5)
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wherei, k, 1 andm belong to xy. A wrench graph, representing the projective lines assedia
with the wrenches of th&-RUU PM in 5, is given in Fig. 1(b).

5.1 Superbracket decomposition

Due to the redundancy of constraints, a superbracket of-fR6U PM can be composed of the

four actuation forced’; (i = 1,...,4) in addition to two among the four constraint moments
. 4

expressed in Eqg. (5). Thus, one can Wrég) = C] = 6 superbrackets; (j = 1,...,6).

However, a parallel singularity occurs when the six poss#biperbrackets vanish simultaneously.
For example, the superbrackgtinvolving the two constraint momenty andkj takes the form:

Si = [ab, ef, cd, gh, 1j, kj] (6)

From Eq. (1),5; can be decomposed into a linear combinatioRrobracket monomials, which
leads to only five non-zero monomials as follows:

ikj b

ik j] (7)
The bracket of four projective points is defined as the dateant of the matrix whose columns are
the homogeneous coordinates of these points. Accordioglyhadgik j] = [eikj] = [ik j].

Furthermore, since points g andj belong to the same projective line, namely7tg, the bracket
legh j] is null and thereforefab £ d[e gh j][c ik j] = 0. Thus, Eq. (7) becomes:

Si = [ikj] (~labetllcdn]] — [abed]fgh]| + [aben|[tcd]] ~ [abthllecdj]) (8)
From the determinant properties, we know that:

[abec|[fdhj] = +[abef][cdhj]+[abed][fchj] + [abe

hl[fdcj] + [abej][fdhc] (9)

On the other handf d b j| = 0. Moreover,[f d c j] = —[f cd j]. Therefore,

[abejj[fdhc] = —[abef][cdhj] —[abed][fchj] +[abeh][fcd j] (10)

As aresult, Eq. (8) becomes:

S =[ikj] (labejl[tahc] — [abfh]lecd;]) (11)
ek A ’

Obviously, in Eq. (11), termi; = [gik j|] depends only on the chosen constraint moments
andkj whereas tern3 does not depend on the choice of poinndk. Consequently, tern is
a common multiple of the six possible superbrackets:

6
whereA, = [gikj], Ay = [gilj], A3 = [gim]j], Ay = [gkl]], As = [gkmj]and A =
[glmj].
2011 CCToMM M Symposium 7



(a) A constraint singular configuration. (b) A coupled motion.

Figure 3: Two critical configurations of theRUU PM.

5.2 Condition for constraint singularities

Constraint singularities correspond to the degeneradysofdnstraint wrench system of the manip-
ulator. In such configurations, the manipulator loses soomstcaints and, as a result, its moving
platform gains one or several DOF. Accordingly, a constrsimgularity of the4-RUU PM occurs
when the four constraint momentg; (i = 1,...,4) form an < 2-system, i.e., when all terms
A; (7 =1,...,6) expressed in Eq. (12) vanish simultaneously. Let us cendithcketg ik j],
namely, termA4,. This bracket vanishes iff points k and j belong to the same projective line.
Since pointj corresponds to a fixed direction alongit is a fixed point. Points andk are asso-
ciated with two directions orthogonal mwand, therefore, these points belong to a line that cannot
pass through poinj unlessi andk are coincident. Consequently, all termdds vanish simulta-
neously iff pointsi, k, 1, andm become all coincident. As a result, tHeRUU PM reaches a
constraint singularity iff:

my [ my || mg [ my (13)

In such a configuration, the constraint wrench system of thaipulator degenerates intola
system and the moving platform gains one extra DOF, nantedyrdtation about an axis directed
along the common direction of; (: = 1, ...,4), as shown in Fig. 3(a). In such a critical configu-
ration, if the moving platform rotates about an axis dirdc®ngz, then the robot will come back
to a non-singular configuration.

On the other hand, in a constraint singular configuratiothefmoving platform rotates about
an axis directed alonm;, the revolute joints attached to the moving platform will loager be
directed alongz. As a consequence, the constraint wrench of each limb bexanverench of
finite pitch (a combination of a force and a moment). In thatecéhe moving platform has neither
pure constraint moments nor pure constraint forces. Maedkre limbs constrain neither a pure
rotation nor a pure translation. Such a configuration is showFig. 3(b) and corresponds to

2011 CCToMM M Symposium 8



Table 1: Actuation singularity conditions of tHeRUU PM.

Case Vector form Algebraic form

(a) fs | f4 f=h

(b) ullz e, c andj are aligned
(c) fo | fu d=b

(d) (fs x fy) || (u x2) fh=uj

(€) | (faxfy) | (uxz db=uj

() (f3 x fy) || (f2 x fy) fh=db

@ | (fsxfy)[(uxz)|(faxfi) |fh=uj=db

(h) (f3><f4)><(u><z)>J_(f2><f1) (EnAuj) €db

acoupled motion

5.3 Conditions for actuation singularities

In this paper, the actuation singularities correspond tdigarations in whichl is rank deficient
while the constraint wrench system does not degenerateicmenfigurations, the motion of the
moving platform becomes uncontrollable, namely, the d@otsacannot control the motion of the
moving platform. According to Eq. (12), these singulastae related to the vanishing conditions
of term B. In order to obtain geometric and vector conditions for astn singularities, terns is
expressed in a more compact form by considering the follgwiacket simplifications:

o [fdhc|=[cdfh]=[adfh]

[y

Accordingly,

fhllechbj] = (afh)A(ecj) A(db)  (14)

|
I
o
lo*
|+
=
©
(@]
[
|
I
o
[eX

B =]adfh]lecb ]

where the dotted letters stand for the permuted elementgspdaired in [14, 20]. An actuation
singularity occurs iff termB of Eq. (14) vanishes, namely, if the projective lif@b) crosses the
intersection line of plane& £ h) and(e c j). It amounts to the following vector form:

((f3 % f4) % (U % z)) o(foxf)=0 (15)

From Eqgs. (14) and (15), an actuation singularity of 4/BUU PM occurs upon each of the
following cases:

(a) Plane &£ h) degenerates, which happensfife h < f3 || f,, i.e., the two actuation forces;
andF; are parallel,
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(a) F1 andF5 are parallel. (b) All actuation forces are coplanar.

Figure 4: Two actuation singular configurations of thRUU PM.

(b) Plane é c j) degenerates, which happens iff poiats andj are aligned. In that casa, || z,
i.e.,ﬂg = 754,

(c) Line (db) degenerates, which happensdfts b, i.e., iff F} || F; as shown in Fig. 4(a);

(d) Plane &£ h) coincides with planeg(c j). Since pointa lies in plane ¢ c j), the condition
(afh) = (ecj) amountstdfh) = (uj). In that case(f; x f,) || (u x z), i.e.,f3, f4, uand
z are orthogonal to a given direction;

(e) Line (db) lies in plane £ h). In such a casdf, x f;) || (f; x f;). For example, if the four
actuation forces are coplanar, as shown in Fig. 4(b);

(f) Line (db) liesin plane é c j). In such a casdf, x f;) || (u x z);

(9) The intersection line of planes £ h) and  c j) coincides with line ¢ b). Since planesa(f h)
and e c j) contain point, they intersect at a line at infinity iff they coincide. Acdargly,
condition @) amountstqfh) = (uj) = (db), i.e.,(f3 x fy) || (U x 2) || (f2 x f1);

(h) Let us consider the general case of Eq. (15), namely, thesetgon line of planesaf h)
and g c j) crosses linedb). If planes &£ h) and € c j) are not coincident (conditiody}),
then they will intersect at a finite lin® directed along = (f5 x f;) x (u x z). Thus, the
point at infinity,n = (n; 0), of line D is the intersection point of lineg &) and @ j). The
finite line D crosses linedb) iff n € (db). In that case, the lines at infinitf f), (db)
and @ j) intersect at point. As a resultn is orthogonal tqf, x f), (f3 x f4) and(u x z).

All possible cases of Eq. (15) are expanded in Table 1. Itishoeinoted that Eq. (15) is obtained
by considering two line¥;, (crossingF; and F3) and 734 (crossingFs and Fy). Vectoru in
Eq. (15) could be written as’3, i.e., the unit vector of a line non-parallel zaand crossing lines
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T2 and7s4. Accordingly, since a ling;; exists between each pair of forcEsand F;, the vector
form of actuation singularities can be generalized as Vggto

((fi % ;) % (f, fl)> o (UM x2) =0 (16)

whctle;?(i, kD) e (1,2,3, )i # 5 #k#I andufjl is the unit vector of a line crossirg;
ana’/g.

6 CONCLUSION

In this paper, the singularity conditions of 3T1R Paralleipulators (PMs) with identical limb
structures were investigated through the singularityyaiabf thet-RUU PM based on Grassmann-
Cayley Algebra (GCA). First, the Jacobian matiivof the PM was derived using screw theory.
Then, a wrench graph that represents the wrenches aof-RigU PM, namely, the rows o in
the 3-dimensional projective space, was obtained. Accordinglguperbracket was formulated
and explored to provide a compact vector expression foritigakarity locus, which is difficult to
assess using classical linear algebra tools. Finallyhellgeometric singularity conditions of the
4-RUU PM were enumerated and some singular configurations wastraited.
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